A Web-based Search Engine for Indian Languages

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Manoj Kumar Malviya

to the

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur
March, 1999

Certificate

This is to certified that the work contained in the thesis entitled “A Web-based Search En-

gine for Indian Languages’, by Manoj Kumar Malviya, has been carried out under our

supervision and that this work has not been submitted elsewhere for a degree.

(Dr. Rajat Moona)

Department of Computer Science &
Engineering,

Indian Institute of Technology,
Kanpur.

March, 1999

i

(Dr. T. V. Prabhakar)
Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

Abstract

In this thesis, a Web based Search Engine for Indian languages is implemented. This
software allows full-text indexing and searching of a database of HTML documents
written in any Brahmi-based Indian Language and English. Gatherer, Indexer and
Search Processor are the basic components of this search engine. Gatherer retrieves
HTML documents and gathers information from the documents which is then used
by the indexer to create the document index. The search Processor contains the
logic of document searching based on the search query. It is capable of searching all
phonetically equivalent words and different forms of a keyword of any Indian language.

Indexing and searching of Hindi and English text has been tested on it.

Acknowledgments

I would like to express my deep sense of gratitude to my thesis supervisors, Dr T.
V. Prabhakar and Dr. Rajat Moona for their expert guidance and encouragement
throughout this thesis work. Inspite of their hectic schedule they were always ap-
proachable and took their time off to attend to my problems and give the appropriate
advice. I am greatly indebted to Dr Rajeev Sangal and Dr. Vineet Chaitanya for their
guidance and support throughout my work. I thank all my classmates and friends
specially Farhan, Guptaji, Kapil, Prasad, Bepari, Prasanna, Nihal, Atul, Srikar, Uma,
Saleem, Mahanta, and Sishir for their help and support. I wish I could express my
thankfulness to all my old friends for their love, support and encouragement. I thank
my parents and my sisters for their love and affection I have been receiving. Finally
I thank God for being kind to me and driving me through this journey.

Contents

Acknowledgments i
1 Introduction 1
1.1 Multilingualism on WWW o000 1
1.2 Motivationo 2
1.3 Organization of Thesis 3

2 Background 4
2.1 Search Engines oo 4
2.1.1 Types of Search Engines 4

2.1.2 Parts of a Search Engine 6

2.1.3 OtherIssues 9

2.2 Indian Languages and Coding Standards 10
2.2.1 Nature of Indian Languages Alphabet 10

2.2.2 ISCII standard 12

2.2.3 Other Standard L. 13

224 Why ISCIT 7.o o oo 14

2.3 Morphological Analyzer 14

3 Design and Implementation 16
3.1 Design Issues 16

il

3.2 General Design of our Search Engine 18
3.3 Gatherer 18
3.4 Indexer. 20
3.4.1 Document Parsing and Weight calculation 20
3.4.2 Morphological Analyzer 21
3.4.3 Indexing Data Structure 21
3.5 Search Processor 24
3.5.1 Query Processoro 25
3.5.2 Phonetic Tolerance Routines 25
3.5.3 Morphological Analyzer 26
3.5.4 Stop Word Removal 26
3.5.5 Searching in Database 26
3.5.6 Results Ranking and Display 27
3.6 User Interface 27
Conclusion and Future Work 28
4.1 Experiments 28
4.1.1 Recall and Precision of our Search Engine 28
4.2 Features Summary 29
4.3 Future Work 29
User Manual 34
A1 Gatherer 34
A2 Index Builder 35
A.3 Search Processor 36
A4 Configuration Files o o 37
A41 ${CONFIG.DIR}/htdig.conf. 37
A.4.2 Languages and fonts related configuration files 38

il

Chapter 1
Introduction

With the rapid growth of Internet, the availability of information becomes less of a
problem as large amounts of digitally stored information is readily available on the
Internet. But this information is so much that it becomes increasingly difficult and
time-consuming for the users to find the information relevant to their needs. This
explosive growth of information on the Internet has greatly increased the need for
information retrieval systems. Yahoo, Infoseek, Excite, Altavista, are some search
systems (search engines) that offers extensive coverage by trying to index on the
entire World Wide Web (WWW). Some of these search engines (like Altavista) have
multilingual search capabilities, but it is confined to some European languages. None
of these support Indian languages. Hence we found the need for a search engine

capable of searching Indian language documents.

1.1 Multilingualism on WWW

A wide number of languages are spoken by human beings in the world, and most
of the people prefer to have information in their own language . The WWW, being
the largest repository of information, should have the information in such a way so
that maximum people can take benefit of it. But unfortunately, this information is
not reaching to the widest of the masses. This is primarily because of the sweeping

dominance of English and western-European languages on the web.

However this situation is beginning to change, because most of the new Internet

users will not have English as a mother-tounge, and almost everyone wants to use
Internet in his or her native language. We can predict that, in several years, we
will have a situation similar to the one in publishing regarding the representation of

different languages.

The arrival of the languages other than English, points out the need of the support
in Internet based applications like HTML, HTTP server, Browser, Search Engines,
etc. The main hindrance in achieving this support on the Web is poor standards
and protocols in terms of multilingual text representation and rendering. Of late,
this has been realized and newer standards and protocols have been proposed and
implemented. Now HTML has several tags which allow one to specify fonts and
language attributes of a particular section of text. The newer version(1.1) of HTTP
also has several new tags especially to aid language negotiation and thereby to achieve
multilingualism on Web. A character coding scheme, UNICODE[13], has already
been designed to support the interchange, processing, and display of text in many
languages of the modern world. Unicode is a large character set that includes most of
the world languages. Moreover, there are search engines that index and search text

in many European languages other than English.

1.2 Motivation

As the Internet is becoming popular in India, the number of the documents written in
Indian languages is also increasing day by day. Many news-papers and magazines of
the Indian languages are now available on the Internet. There are search engines which
provide capability of searching the documents of various European languages. The
most popular search engine ‘Altavista’ can search the documents of many European
languages like French, German, Greek, etc. But there is no such searching facility
exists for any of the Indian language. The motivation of this thesis was to develop
a search engine which could index and search the documents of Indian languages
available on the Internet. Though, we have provided the search engine for Hindi
Language, the same design can be applied to search the documents of any other

Brahmi-based Indian language.

1.3 Organization of Thesis

Rest of the thesis is organized as follows. Chapter 2 introduces the terms and concepts
of the search engines and the Indian Languages . Chapter 3 discusses the design and
implementation details of different parts of our search engine. Results of testing,
Features of the software, and future work are discussed in chapter 4. User manual of

the search engine is provided in the appendix.

Chapter 2

Background

2.1 Search Engines

A Search Engine is a program (CGI, server module or separate server) that accepts
the request from the HTML form, searches the indexed database and returns the
result page to the user. In this thesis, an attempt has been made, to develop a
Search Engine for Indian languages which provides the capability of indexing and
searching of the text written in any of the Indian language as well as in English. In
order to fully comprehend the capabilities of such a search engine, it is essential, to
understand the basic functionality of the search engines and computer representation
of Indian languages. This chapter provides the background which will be useful later
when we discuss the design of our search engine. For rest of the discussion Hindi
is chosen, because all the Indian languages originating from Brahmi have a common
structure, hence all arguments for Hindi are also applicable to other Brahmi-based

Indian languages[4].

2.1.1 Types of Search Engines

The increasing sophistication of search engines makes the categorization of search
engines problematic. But the search engines can be divided into four categories based

on the original type of services offered by them [1].

g8 Full-Text Search Engines

Full-text search engines (also known as free-text search engines) analyze the contents
of the documents in such a way as to allow users to search for any string of text
they wish to find. A good full-text search engine will incorporate some form of
relevance weighting mechanism, so that items that have a higher level of relevance
are displayed first. The relevance can be based on the factors such as the number
of times the search word occurs in the test, the position of the search word in the

documents, etc. Altavista and Lycos are full-text search engines.

g Catalogue-based Search Engines

Catalogue-based search engines (also known as index search engines) use some form
of classification system. This system classifies the documents in different categories.
These categories could be like entertainment, Internet, medicine, country, etc. Effi-
ciency of searching in catalogue-based search engines depends on the way in which the
items are categorized. The number of categories at each level determine the number
of levels that need to be traversed. Many catalogue-based search engines also offer

full-text searching of files. Yahoo is a good example of this category.

B Meta-Search Engines

Meta-search engines (also known as multi-search engines) allow users to search for
the same keywords using more than one search engine, either sequentially or simul-

taneously. MetaCrawler and Find it! comes in this category.

m Specialist Search Engine

The search engines that are specifically designed to provide responses relevant to
specific areas of knowledge, comes in this category. This doesn’t include those search
engines run by individual companies. It restrict itself to a few examples of wide
ranging database search tools that cover the needs of particular user communities.
The example of this category is Interactive Movie Database Search(IMDb).

2.1.2 Parts of a Search Engine

The search engines have three major elements [2].

1. Gatherer
2. Indexer, and

3. Search Processor

g Gatherer

A search engine finds information for its database by accepting listing sent in by
authors wanting exposure or by getting the information from their gatherer. It is also
called the “web crawler”,“spider” or “robots”. These are the programs that roam the
Internet and store links and information about each page they visit. These agents
normally start with a historical list of links, such as list of most popular or best sites,
and follow the links on these pages to find more links to add to the database. A Web
Crawler could send back just the title and URL of each page, it visits, or just parse

some HTML tags, or it could send back the entire text of each page.

g Indexer

Everything the spider finds goes into the second part of a search engine, the index.
The index, sometimes called the catalogue, is prepared by the program called indexer.
The index is like a giant book containing a copy of every web page that the spider
finds. If a web page changes, then this book is updated with new information. The
purpose of indexing is to process the documents to be searched and to extract appro-
priate information. This information is stored in a data structure that will allow fast
searching of the text. During Indexing, the search engine processes documents in a
number of steps, including word extraction, stop word removal, word stemming and

term weight calculation.

e Word Extraction
For indexing purposes, it is necessary to convert the document text from a long

stream of characters into a stream of words. This process is often called word

breaking, word segmentation, or lexical analysis. According to the language of
the document text, the indexer uses a different algorithm to extract words from
the text.

Stop Word Removal

In some languages such as English, functional words (e.g. “the”, “a”, “and”,
“that”) are useless for indexing purposes. Similarly there are many words (like
EEY ﬁ', ar, T etc.) occurring in Hindi as well. These words occur in almost
every document of the language, and therefore do not help in distinguishing
between documents that are about different topics. For this reason, these func-
tional words are removed and are not indexed. The process of removing these
functional words is called stop words removal, and the functional words being

removed are called stop words.

Word Stemming

In many languages, including Hindi and English, a word may exist in a number
of morphological variants. For example, the English word “compute” may also
exists in its other morphological variants such as “computing”, “computed”,
“computer” or “computers”. Similarly the Hindi word @S&T may also exists
in other morphological variants such as FIE,%, FIW etc. While these mor-
phological variants are different word forms, they represent the same concept.
For indexing purposes, it is generally desirable to combine these morphological
variants of the same word into one canonical form .This process is called word
stemming and this canonical form is called root-word or base-word. Without

stemming, document containing word 8@ may not be returned for the query
TSHI since the indexer treats the word @€ and TS as two different words.

Term Weight Calculation

When given a search query containing keywords, any search engine will return
the documents containing those keywords. This simple retrieval algorithm is
ineffective especially when some of the query keywords are very common, in
which case a large number of documents will be returned, most of which are
not even relevant to the query submitted. For advance search engines, each
document will be associated with a score indicating the relevance of the docu-
ment to the query. In this way, the documents are ranked or sorted based on
the score so that documents having highest scores (most relevant) are displayed

first. In order to calculate the relevance score, each document term or keyword

must be weighted during indexing to indicate its importance within the docu-
ment. Keywords are weighted based on a number of factors, such as the number
of times the keyword appears in the document, the position of the keyword in
the document, whether the keyword appears within the document title or in

meta-keyword tag or in some heading tag.

g Search Processor

Search processor is the third part of a search engine. This is the program that sifts
through the millions of pages recorded in the index to find matches to a search and
rank them in order of what it believes is most relevant. This search processor could be
a CGI program, search server, or a Java servlet. The interface of this program is an
HTML form. When the form is submitted, the search processor takes its values and
performs the actual search. Each search engine has their own way of deciding what to
do about approximate spellings, plural variations, and truncations. The user’s input
goes through the following steps before searching in the database, depending on the

implementation of the search logic of the search processor.

e Query Processing
The first task of the search processor is to extract the keywords from the in-
put given by the user. If the search engine supports boolean commands (like
AND, OR, NOT), the input could be a complex boolean expression of the key-
words. The query processing routine parses the boolean expression and extract
the keywords from it. After searching each keyword, the results are combined
according to the boolean expression given in the query and displayed to the

user.

e Stop Word Removal
Search engines may remove the stop words from the query and search rest of

the keywords, because this speeds the search.

e Searching Algorithms
Each search engine uses its own logic for searching different forms of a word.
Some search engines use fuzzy logic to generate all forms of a keyword and

then search these in the database. Some engines use thesaurus to generate the

synonyms of the keywords and search those in the database. A good search

engine may tolerate some phoneme errors.

2.1.3 Other Issues

Following are some of the issues which are important in determining the quality of

search engines:

8 Recall and Precision

The success of a information retrieval system is typically quantified in terms of recall
and precision. Recall refers completeness. This is the degree in which a search engine
returns all the matching documents in a collection . When we obtain a large number
of “hits” from a search, this is known as high recall. Precision refers to the system’s
ability to find only the relevant documents. High precision means that the retrieved
documents are highly relevant to the subject of the query [3]. Following example will

clear the idea of Recall and precision.

There may be 100 matching documents for a query, but a search engine may only
find 80 of them. it would then list these 80 and have a recall of 80% . Similarly if
a search engine lists 80 documents found to match a query but only 20 of them are

relevant to the user, then the precision would be 25%.

It may be noted that the recall and precision measured depend on a prior knowl-

edge of what is relevant in the collection.

p Search Result Ranking and Listing

Search engines assign each document, they find, some measure of the quality of match
. This measure is called relevance score. In order to calculate the relevance score,
they follow a set of rules, involving the location and the frequency of keywords on a
web page. Search engines will check to see if the keyword appears in the title, if it
appears at the beginning of the document or it appears in the heading . Frequency of
a word in the document is the major factor through which search engine determines
relevancy. Documents with a higher frequency of a word are often considered more

relevant than other documents [2].

2.2 Indian Languages and Coding Standards

India is a multilingual country having 15 officially recognized languages, written in
various scripts. These existing scripts are derivative of ancient Brahmi and Perso-
Arabic scripts. Urdu, Sindhi, Kashmiri are primarily written in Perso-Arabic scripts.
All other Indian languages have evolved from the ancient Brahmi-script . The Northern
scripts are Devanagri, Punjabi, Gujarati, Oriya, Bengali, and Assamese, while the
Southern scripts are Telugu, Kannada, Malayalam, and Tamil . Different standards
have been envisaged for languages which originate from Perso-Arabic scripts, and for
languages which originates from Brahmi scripts. The standards for Brahmi-based

Indian scripts are reviewed below [3] .

2.2.1 Nature of Indian Languages Alphabet

All Brahmi-based Indian scripts are phonetic in nature. The alphabet in each may
vary somewhat, but they share a common phonetic structure. The difference between
scripts primarily are in their written forms, where different combination rules get used.
Hence all arguments for Devanagari are also applicable to other Brahmi-based Indian
scripts. Also for simplicity, elsewhere, the term Indian scripts implies Brahmi-based

Indian scripts [4].

Devanagari character set can be categorized into vowels, consonants, matras, mod-

ifiers, numerals, punctuation and some special symbol like halant and nukta .

e The Consonants, Vowels and Matras
Indian script consonants have an implicit 3T vowel included in them. they
have been categorized according to their phonetic properties. There are 5 Varg
(groups) and non-Varg consonants. Each Varg contains 5 consonants the last
of which is a nasal one. The first four consonants of each Varg constitute the
Primary and Secondary pair. The second consonant of each pair is the aspirated
counterpart (has additional & sound) of the first one. Table 2.1 and 2.2 shows

the sets of Vowels and consonants used in Devanagari script.

Note that the consonants 3T and Y are pronounced identically today. Each vowel
except 3T has a corresponding matra which can be attached to a consonant to

form composite characters.

10

Primary Secondary

vargl | @ T 9 g
varg2 |94 & ST =
varg3 | € & g @ o
vargd |4 I T T T
vargd |9 W T ¥ H

non-varg |4 ¥ 1 9§ ;1 ¥ H

Table 2.1: Consonants of Devanagari

Vowels 3T AT § § S & =®
Matra r F 7 - o .
Vowels @ ﬁ\' AT T T =T
Matra = T T :

Table 2.2: Vowels of Devanagari

The vowels ﬁ\' and 3T are actually diphthongs (i.e. a compound vowel charac-
ter, in which the articulation begins as for one vowel and moves onto another)
although in Hindi they get pronounced as longer vowel form of T and T re-

spectively.

Anuswar
Anuswar ¢: indicates a nasal consonant sound. When an Anuswar comes before a

consonant belonging to any of the 5 Vargs, then it represents the nasal consonant
belonging to the Varg (see Table 2.3). Before a non-Varg consonant however

the anuswar represents different nasal sound.

Chandrabindu
This % denotes nasalization of the preceding vowel (can be implicit 3T vowel

within a consonant). e.g.

11

ATH=oF | TS@=U" | TSIT=T0T | GSI=99

E=0T | 8= | TTaT=99T | 9rser=97%"

qUET=92T | HUS=Fc | HAUST=HST | gUg—2a

F =9 | T=9Y | F==4% | T=T1

THET =997 | [Fh=" | @ET=94T | ©RI=F

Table 2.3: Some examples

In devanagari script it often get substituted with Anuswar, as latter

is more convenient for writing.
e Visarg (:) comes after a vowel sound and represents a sound similar to §.

e Nukta and Halant The nukta (.) is used along with some consonants (like

F.G, T, T, S, %, F) and is mostly used to represent some foreign sound.

A special sign Halant (%) is needed to indicate that the consonant does not have

the implicit =T vowel in it.

e All punctuation marks used in Indian scripts are borrowed from English

except for the full-stop, instead of which viram is used.

2.2.2 ISCII standard

Since the 70s, different committees of the Department of Official Languages and the
DOE (Department of Electronics) have been evolving different code and keyboard,
which could cater to all the Indian scripts due to their common phonetic structure.
In 1980s the ISCII code (Indian Script Code for Information Interchange) was rec-

ommended, and it is widely used for internal representation of Indian scripts.

e ISCII character set
ISCII character set [4] is a super-set of all the characters required in ten Brahmi-

based Indian scripts. For convenience, the alphabet of the official Devanagari

12

has been used in the standard. The ISCII code contains only the basic alphabet
required by the Indian scripts, and all the composite characters are formed by

the combination of these basic characters.

ISCII code has the advantage that there is only one way of typing a word. The
spelling of a word is the phonetic order of the constituent basic characters. This
provides a unique spelling for each word, which is not affected by the display

rendition.

e Eight-bit ISCII code
In this section ISSCII-8 [4] (Indian Script Standard Code for Information inter-
change) as standardized by DOE in 1986, is reviewed. The lower 128 characters
of the 8-bit table contain the ASCII character set, while upper half of the table
is used for Indian script code. This coding scheme allows Roman characters to

be freely mixed with Indian scripts.

e Seven-bit ISCII code
Seven-bit coding scheme is recommended for those computers and packages
which do not allow the use of 8-bit codes. In 7-bit coding 128 positions are
available for representing all the characters of the script. This coding has the

disadvantage that Roman scripts cannot be mixed with Indian scripts.

2.2.3 Other Standard

Another popular representation, published by NCST (National Centre for Software
Technology), is pure consonant based coding. In this representation the consonants
are always in their pure form i.e. with halant. Vowels when added to consonants
results in the corresponding matra symbol on the consonant. The coding table is 7-
bit table where some of the ASCII codes are replaced by the Indian script characters.
This coding facilitates automatic alphabetization in perfect order of Devanagari. Also
it does not disturb basic ASCII codes of most of the signs which are common in

Devanagari and Latin.

13

2.2.4 Why ISCII ?

For the implementation of our search engine for Indian languages, we are using

eight-bit ISCII encoding because of the following reasons :

1. ISCII has been designed as per ISO norms and has found acceptance in Unicode[13].
2. ISCII codes allow a complete delinking of the codes from the displayed fonts[4].

3. The eight-bit ISCII code retains the standard ASCII code. This makes it
feasible to use Indian script along with existing Engilsh computers and software,

so long as 8-bit character codes are allowed [4].

2.3 Morphological Analyzer

Since we are using a morphological analyzer in our search engine, it is necessary to
have a brief look at it. Morphology is concerned with the internal make-up of words.
Morphological analyzer analyzes words grammatically. It determines class (i.e noun,

adjective, verb etc.) of the words and extract the root words.

Morphological theory can be divided into two categories: inflectional morphology

and derivational morphology.

e Inflectional morphology is concerned with the manner in which the lexical
stem(root word or base word) is combined with grammatical markers (like 3,

T, 4T, etc in hindi and s, es, etc. in english) for things like plurality and tense.

e.g. words dS% and TSl are made from the root word TSHT by combin-
ing matras & and T respectively. Morphological Analyzers which support in-
flectional morphology gives the root word of the input word by removing any
grammatical markers if present. For example, if word Ffegr s given as input

to such a morphological analyzer, then it will return the root word T&T.

e Where inflectional morphology is concerned with the combination of stems with
grammatical markers, derivational morphology deals the construction of
stem themselves. Typical cases of derivational morphology involves the class
changing suffixes which form adjectives from nouns, verb from nouns, noun from

verbs and so on, as the following examples illustrate.

14

T4 (noun) —> H@dT (adjective)
g9 (noun) —> FHIETAT (adjective)
9F (noun) —>> HTH® (adjective)

Table 2.4: Examples of derivational morphology

The resulting lexical stem are again subject to appropriate inflectional morphol-
ogy, so we get form such as AT from THEATAT .

The morphological analyzer[8], we are using in our search engine, supports

only inflectional form of morphology.

15

Chapter 3
Design and Implementation

This chapter discusses the design and implementation of our search engine for Indian
languages. In the implementation of our search engine, we are using the Gatherer
of an existing search engine htdig[6]. Moreover, some other libraries like basic data
structure library, Common Gateway Interface library, and user interface library of
the htdig are also being used in our search engine. These libraries are not discussed
here. Instead the main stress is laid on the implementation of the features which are

important for the search engines, in the context of Indian languages.

3.1 Design Issues

In designing information retrieval engines it is very important to consider the human
factors - how people search, how they make decisions. Normally, users specify some
keywords of a subject for searching the documents. Sometimes they want to restrict
the search criteria by specifying some boolean operators (like AND, NOT etc.) with
the keywords and sometimes they want more number of matches. Features of the
language for which the search engine is being made, also plays a major role in search
engine design. Following are some Indian languages specific features which should be

present in a search engine of any Indian language :

e Different forms of the words
Almost in every language, grammatical markers (like s, es, ing, etc. in English

and &, T, 9t in Hindi) are used with a word stem (or root word) and new words

16

are made. These new words, called morphological variants of the stem, present
the same concept but just differ in tense, plurality etc. For example @ga,
Fl@ﬁ are morphological variant of root word ©TST.

It may be possible that the document contains a root word, say @Sl and the
user gives any morphological variant of that root word, say @S for searching.
The search engine should be able to handle such conditions and should give the

matches of all the morphological variants of the word.

Phonetic Tolerance

As we saw in section 2.2, Indian languages alphabet contains many characters
(% &, = etc.) which give same sound i.e they are phonetically equivalent.
These characters are used interchangeably in many modern Indian languages.
e.g. ?HET, HUST, H=sT and ?auET are phonetically equivalent words. Section 2.2
has provided the detailed description of all characters which are phonetically

equivalent.

User may use any phonetically equivalent word of a keyword for the searching.
So the search engine should be able to support some form of phonetic tolerance.
If the user gives word &=ST for searching, then the search engine should give
matches for all its phoneme equivalent words ST, FUST, ST

Font Independence

Due to lack of standardization in display technologies, Indian language docu-
ments on the Web are being written in different fonts. Each web author uses
their own font encoding in the HTML documents. There is no universally ac-
cepted font or display encoding. Therefore a search engine for Indian languages
should be able to incorporate different font encodings. It should be independent

of the font encoding used in the documents.

Boolean operators

User may want to search more than one keyword at a time. He may want
to combine the keywords according to some boolean expression, to restrict or
generalize the search. Therefore a good search engine should allow the use of
boolean operators(like AND, OR, NOT, etc.)

User Controllable search

Sometimes people may want the match on all the phoneme equivalents of a

17

keyword and sometimes they may want an exact match. A good search engine
should provide the facility to control the searching criteria to the search engine

user.

3.2 General Design of our Search Engine

Our search engine is primarily designed to index and search Indian language docu-
ments available on the Web. However, it can index and search English documents
simultaneously. Its design is language independent. Only one module is language
specific, and that is the morphological analyzer. We are using a morphological an-
alyzer of Hindi language in the implementation. This Hindi morphological analyzer
can easily be replaced by the morphological analyzer of any other Indian language.

With this replacement, our search engine can work for any other Indian language.

At the top level, our search engine can be divided into three parts : gatherer,
indexer, and search processor. Gatherer collects the documents from the Web and
passes them to the indexer. The main task of the indexer is to build an index of
the documents submitted by the gatherer. During indexing, indexer parses HTML
documents, collects information about each word in the document, generates root
words, removes stop words, and at last builds index on the keywords and its root
words (if any) using the collected information. This index is used by the search

processor for the searching of the documents.

The detail design is shown in figure 3.1. We now discuss each part in detail.

3.3 Gatherer

Gatherer works as a regular Web user, sends HTTP request to the remote server
for collecting the documents. It starts its journey of the Web from the starting urls
specified in the configuration file of htdig . It follows all hyper links that it comes
across. Since we are using the gatherer of htdig in our search engine, we are not

discussing it anymore.

18

QUERY BY USER URLs from configuration

,,,,,,,,,,, r,,,,,,,,,,,,,,,,, file

| QUERY PROCESSOR | GATHERER
" | PHONETIC | i
| TOLERENCE | INDEXER —— HTML PARSER
| ROUTINE : 3
| MORPHOLOGICAL | 3 MORPHOLOGICAL
| ANALYZER : | ANALYZER 3
3 . SEARCH | |
3 . PROCESSOR 3
| STOP WORD 3 i STOP WORD
i REMOVAL i 1 REMOVAL
3 SEARCHING i § INDEXING |
| ROUTINE 3 | ROUTINE
; search : |
1 ¢ results T
| SCORE 3
| CALCULATION
et e T e T | Keywor ds
RESULTS
TO THE USER INDEXING STRUCTURE

Figure 3.1: The Design of our Search engine

19

3.4 Indexer

Everything the gatherer finds goes into the indexer. Indexer of our search engine
works in two phases. First phase runs with the gatherer. It takes documents from
the gatherer, parses those documents, and collects the information about each word
of the document. Root word generation and stop word removal are also performed in
the first phase. The information collected in the first phase is stored locally for the
use of second phase. The first phase creates two files. The first one is the list of all
words and the second one is database of URLs. The main task of the second phase

of the indexer is to build the indexing structure.

3.4.1 Document Parsing and Weight calculation

Document parsing involves the separation of text from the HITML tags. Text of Hindi

and English languages is also separated by the parser.

Words occur with different HTML tags in the HTML documents. We are assuming
that the words coming in headings, title, and keyword tag represent the subject of the
document. So the words occurring with these tags are assigned a higher weighting
factor. In this way, the weighting factor tells about the HTML tag in which the word
has occurred. After determining the weighting factor the next task is to determine the
language of the word. In this process, program checks the parameters of the tag. If word is surrounded by a tag with font name as some
Hindi font (‘xdvng’ in our case), then it means the word belongs to Hindi language
otherwise some other language. If the word belongs to Hindi, it is converted into
ISCII encoding.

Now the weight of the word is calculated using following formula :

weight = (1000 — location) x weighting_factor
where location = of fset x 1000/content_lentgth, and
weighting_factor is weight of the tag in which the word is coming,
content_length is the size of the document and
offset is the offset of that word in the document.

The sum of the weight of each occurrence of the word gives the weight of the word
in that particular document. Weight, document id, and word frequency are the fields

of the data record which have to be stored in database with the word as indexing key.

20

This word is passed to the morphological analyzer for further processing.

3.4.2 Morphological Analyzer

The primary task of morphological analyzer is to return the root word of a given
input word. This is necessary to search the different forms of a word. For example, if
the word @S% appears in the document then its root word ST and original word
@s% will be stored in the database. Now, if user gives word @Sl for searching,
then its root word @Sl will also be searched in the index, which is already available
in the database. In this fashion, different forms of the words are supported by the

search engine.

After generation of the root word from the given input word, the stop word list
is checked for these words. If any of the words exist in the stop word list, both these
words (root word and original word) are not included in the database, and the next
word is extracted from the document. The morphological analyzer used in our search
engine does input/output in wx-keyboard scheme (see Appendix), therefore each word
is converted from ISCII to wx-keyboard scheme before passing to morphological ana-

lyzer, and returned root word is converted back into ISCII from wx-keyboard scheme.

The first phase ends with the creation of two intermediate files. The first file
stores the list of all words and second file stores the database of URLs.

3.4.3 Indexing Data Structure

The second phase of the indexer creates a URL database and word database from the
intermediate files that were created in the first phase. This word database is accessed
via an index of the keywords. The index file is organized as a variant of basic tries[9]

referred as compressed tries[5].

A basic trie is an m-ary tree (m is the size of alphabet set) in which the root node
points to another node for each of the possible alphabets a word may have. Each of
these nodes, likewise, contain a pointer to a node for each possible second alphabet
and so forth. The basic trie is space inefficient, therefore we are using compressed

tries, which is discussed below.

21

g Compressed Tries

The storage model of the word database is developed in two levels. At the topmost
level we have indexing structure of compressed trie and at the lower level we have the
database which contains record for each word (see figure 3.2). Search processor first

need to traverse the indexing structure to find the required record in the database.

Indexing Structure of trie

Y
Word Database which contains data record

Figure 3.2: Organization of Word Database

We are using a two level structure at each branching level in the indexing structure.
The first level is known as a LEVEL A NODFE and leads to a LINKED LIST of
LEVEL B NODES at the second level. At the leaf level we have DATA RECORD
stored in the word database. One other structure SKIP ARRAYS also exists in the

database.

The A level node is essentially an array of elements, which correspond to character
ranges. These array elements contain pointer pointers to linked lists of level B nodes.
Search through a level A node occurs by mapping the current character to one of the
elements in the level A node and following the pointer in it to the corresponding linked
list of level B nodes. Figure 3.3 illustrate a level A node, which has six elements and
has the character ranges as shown. Choice of the character range and the number of
elements in the level A node depends on the application. Distribution of the character
ranges should be done such that the linked lists of level B nodes have approximately
equal length once the record have been inserted. This will ensure that the difference
of maximum and minimum search time is not high. Figure 3.4 shows the structure
of level A node in our implementation. In the figure character ranges are written in
the form of 8-bit ISCII code.

The B level node is the node that distinguishes the path for one attribute from

another in the same range of the A level node. These nodes are created on demand

22

and maintained as lexicographically ordered linked lists. Level B nodes lead to other

A level nodes or to Data records.

A Level Node

A-E F-K L-Q R-T u-z

Linked list of B Level Nodes |

A D E X

Data Record Data Record

To Other B level Nodes

Figure 3.3: Generalized View of the Data Structure Involved in the Tries

0-127 128-179 | 180-195 | 196-207 | 208-214 | 215-255

Figure 3.4: Character range distribution in A level Node of our implementation

Skip arrays are structures that are being used to minimize the space utilization by
LEVEL A and LEVEL B nodes (figure 3.5). The common part of the key is kept in
a skip array, which occupy much lesser space as compared to the Level A and Level
B nodes. For example, if a database contains only two records with the indexing
key beginning with ‘M’ and the keys are Mario and Mariah, then it is evident that
the path for both the records is decided by the last letter in Mario i.e. ‘o0’ and by

[)

the second last in Mariah i.e. ‘a’. It would be unwise to have the two level node
structure for the letters ‘a’, ‘r’, and ‘i’. Thus, the substring “ari”is kept in a Skip

array structure.

23

A Level Node

A-E

F-K

L-Q

R-T

u-Z

Linked List of B level

Data
Blocks

8 Why Tries?

Nodes

Skip Array

a

]

!

(0}

1

'

record with key Mariah

record with key Mario

Figure 3.5: Compressed Tries with skip array

Following are some reasons for the selection of compressed trie.

e Trie is most suitable for retrieving all the words which have common prefix.

e To retrieve a data record, the number of comparisons does not depend on the

number of keys indexed. Instead it depends on the length of the key.

e An insertion into tries is localized and does not propagate to higher levels in the

indexing structure. Insertion only causes the expansion of the trie structure.

3.5 Search Processor

Search processor is the actual search engine of the search system. Here it is imple-

mentation as a CGI program which is expected to be invoked by an HTML form. It

will accept both GET and POST methods[17] of passing data to the CGI program.

HTML form is the primary interface of the search processor. When the form is
submitted, the search program will take values from the form and perform the actual
search in the indexing structure. The HTML form contains an input text field where
user will enter the search words. This form has some other option for controlling the
search criteria and for formatting of the results. The Searching process is divided into

the following four modules, which execute in the given sequence.

3.5.1 Query Processor

Search processor gets a list of words from the HTML form that invoked it. Query
processor takes this list and if the searching program was invoked with the boolean
expression parsing enable, then it does syntax check on that list. If there are syntax
errors, it displays the syntax error. If the boolean parser was not enabled, the list
of words is converted into a boolean expression by putting either "and”s or "or”s

between the words. This depends on the search type specified by the user.

In both cases each of the words in the list is converted into ISCII encoding, if it
belongs to the Hindi language. The language of the words is specified in the HTML
form by the user. Now, the query processor passes each of these words to the phonetic

tolerance routine.

3.5.2 Phonetic Tolerance Routines

The phonetic tolerance routine expand the list of words by generating their phoneme
equivalent words. If the user specified ‘the exact match’ search criteria then no
additions are made by this routine. This routine is divided into two parts. First part
involves the generation of the new words in which only the nasalized characters (%,
&, =, etc. see Table 2.3) are replaced by their phoneme equivalent characters. The
second part uses phoneme rules specified in the phoneme rules file. This file contains
the pairs of other phonetically equivalent characters of Indian language alphabet, and

an integer value called matching percentage. For example,

[GA] -> [GA] [NUKTA] -> 70
indicates that if T occurs in a word then generate a new word in which T will be

replaced with . And if this new word is later found in the index, its final weight

25

will be 70% of the weight value stored in the data record. This file can be changed

according to the requirements of various Indian languages.

3.5.3 Morphological Analyzer

The words generated in the last step are passed to the morphological analyzer for
generation of the root words. Since, among all the phoneme equivalent words, only
one word is grammatically valid, so the root word will be returned only for that valid
word. Morphological analyzer ignores other words. Here a grammatically valid word
means the word which is present in the dictionary. e.g. T, 3AT, and IT=H are
phonetically equivalent words but word 37T is grammatically valid. So morphological

analyzer recognizes only this word and returns root word (&) for it.

3.5.4 Stop Word Removal

Before searching the words in the indexing structure, it would be better if we remove
all the stop words from the list. This improves the searching time as non-relevant

words are not searched.

3.5.5 Searching in Database

Now each word of the list is searched in the indexing structure. Search begins at
the root. The current character say keyword[i] is mapped to a field in the A level
node. The search proceeds by following the pointer to the linked list of B level nodes
associated with it. If a B level node exists in the list with the same keyword as
keyword[i], then the search continues by following the pointer to the node at the next
level associated with the B level node, else the search stops and returns failure. If a
valid pointer to an A level is found then the search continues by repeating the above
steps. This is repeated each time an A level node is reached by the search. If a data
record is reached, then it is stored in the ‘result list’, and search continues for the
next keyword. After finishing the searching of all the keywords, the ‘result list’ is

used for result ranking and display.

26

3.5.6 Results Ranking and Display

Before ranking, the results are combined according to the boolean expression of the
query. Now the results are ranked. The rank of the match is determined by the
weight of the word that caused match. The document in which the keyword has
higher weight, is given higher rank. A Word’s weight is determined by the importance
of the word (as explained in the section 2.1.2) and by the phoneme rules (see section
3.5.2). For example words in the title of a document have a much higher weight than

words at the bottom of the documents.

Finally when the document ranks have been determined, the resulting matches

are displayed in the order of ranks.

3.6 User Interface

The user Interface of the search engine is made up of an HTML from, through which
user gives keywords for searching. Users are expected to enter Indian language (Hindi
in current implementation) keywords in wx-keyboard encoding scheme. A list of
transcription rules for Hindi language which uses this encoding scheme has been
provided in the appendix. A hyper link to these transcription rules has also been

provided in the HTML form for the convenience of the user.

27

Chapter 4

Conclusion and Future Work

4.1 Experiments

This software has been tested on a database of 780 Hindi documents spanning 14
MB of disk space. We found that the index size is 113% of the total documents
size. It is reasonable because this index allows fast searching of the database. Some
snapshots of the user and search engine interaction are given in the following pages.
wx-keyboard scheme has been used for input and output of Hindi language, while
ASCII code has been used for entry and display of English text.

Figure 4.6 shows the search results of all the morphological variants of the words

¥, =T and Af=T. This task is accomplished by searching the root words ST,
faer and ®f=¥. This figure also depicts the use of boolean expression in the query.
Figure 4.7, displays the matches for all the phonetically equivalent words. Fig 4.8

shows the use of English words in the search engine.

4.1.1 Recall and Precision of our Search Engine

In order to measure the recall and precision of our search engine, following tests were

conducted.

e We indexed 34 Hindi documents, out of which 21 documents were relevant to a
keyword 21T and 11 documents were relevant to a query (IT& or IT&=T)[14].
When the keyword ‘@TT® is given for searching, our search engine retrieved 18

28

documents, out of which 17 documents were relevant to that keyword, i.e. 80%
recall and 94% precision. Our search engine retrieved 9 documents for the query
(ﬂ'i? or EI'IE:iI), out of which 8 documents were relevant to this query, i.e. 72%

recall and 89% precision.

e In the second test, total indexed documents were 106, out of which 21 documents
were relevant to the keyword 217% and 13 documents were relevant to the query
(IT= or AT&T). Search engine retrieved 22 documents for the keyword 3T, out

of which 17 documents were relevant. This gave 80% recall and 77% precision.

For the query (IT& or IT&T), our search engine retrieved 19 documents, out

of which 11 documents were relevant, i.e. 80% recall and 57% precision.

Our search engine missed some relevant documents because it doesn’t support

synonym search.

4.2 Features Summary

The salient features of our search engine are as follows:

e [t gives the match on all the morphological variants of the given input word.

It supports phonetic tolerance.

The search engine is independent to the font encodings. It can be easily config-

ured for different font encodings.

e Users can control the search criteria.

Searching of English documents is also supported by our search engine.

4.3 Future Work

e Our search engine does not support ‘Sandhi’. For example, it cannot give match
for the word YTH, which is coming in the composite word TMHFT. This feature
can be incorporated in the search engine later. This will require the replacement
of the morphological analyzer with a new one which supports ‘Sandhi’ and

derivational kind of morphology.

29

e In our search engine users can not use both Hindi and English words for search-

ing, simultaneously. Search engine can be extended to provide this feature.

e The user interface of our search engine can be modified to provide input and

output in Devanagari script.

e Our search engine does not support synonym search. It can be extended to
support this feature thus allowing the searching of original words as well as

their synonyms.

30

M. Hetscape: Search results for ‘{pyfre ZiloM) or manxira’

File: Edit %iew Go Communicator

2 ®»® A4 & 2 @wWm @ 3 &

Back Forward Reload Home Sgarch Metscape Print Security atap

JT Bookmarks & G0 To: ;nittp:ffpcl'?li:9".]8".],l"www,l"SE.:LrDhEngine,l"Eenrch,l"Eeurch.Dg.i.?n::cmfig= ,.F| ﬁv Wiz

4]

([Film & Music 4 Search Engines [Mails [Samachar ¢ Dictionary 4 Index of fusersfmanojkm

search results for ’((pyAre or pyArA) and (xiloM or xila)) or
manxira’

Match: Boolean _i| Format: | Long _l| Search: | Mo Phonemes _l| Leanguage: Hindi _1|

Refine search: | {pyﬁre xiloM) or manxira S'-=553-'f"3]-'1|

Documents 1 — 9 of 9 matches. More ¥ indicate a better match.

.. hindi bhajan ..z 3=x
; : 1:8em: kWi m:@Kkr sesraw sesmenrs 110 11 g sfire sifire @l a= ot e g
qeyTd HI-g oigd sis i A s gemes 112 1 a9 4 I R ar Srrsalrmeae, | e
AT ahE BWE Sww sy Tmae 13 nfEr AT L,
http: ifwvww.cse.titk.ac.infusersimanojkmitestthindi. htrl 02,20/99, 70681 bytes

al mere pyaare vatan, ai mere ahale vatan<i=r
. to Slow-DEVNAGRI Go back to Index You will need to Dovmload the Xdvng For
see this properly in the Devnagri script. § &% e saw, § &% Frad 5907 gw & Reer g
WTeE, o gT A A ...
http:iwww.cse.ditk.ac.infusersimanojlan/petriotic/102_jir.hanl 03/12/99, 3259 bytes

hoTho.n pe sachchaaii rahatii hai jahaa.n dil me.n safaaii rahatii hair
. ggogabhtiho) — 3 (ST & geTer gioT § & o9 & o gieT &) — 2 w9 s A5 o
IR U F T RIOT R - . .
http:iivww.cse.titk.ac. mfusersfmanmkm;’testﬁﬂﬂ jtrfutrnd 02/20/99, 4145 bytes

@ | |http:fmw.cse.iitk..an:.infusersfmannjkmﬂest-’hindi.html | sk Ol SAE

Figure 4.6: Example showing the searching of different forms of the words

31

M Netscape: Search results for “(pyare xiloM) or manxira’
File- Edit “iew Go Communicatar

2« » 4 &®% 2 @m @3 &

Back, Fopyard Reload Huone Search Metscape Print SECUtY St

Jv Bookmarks ‘&, GoTo: ;ihttp:,l",l"pcl?li :909CI)"mﬂfSe:lrchEngine)"Ee.:lrc:h,l"ﬁe.:lrc:h.ogi?cnnfig: ,.f‘ ﬁv What's

S

(4 Film & Music (4 Search Engines 4 Mails [Samachar ¢ Dictionary Index of fusers/manajkm

Search results for ’({(pyAre or pyArA or pyArE) and (xiloM or xila
or xiloz or xIloz or xilOz or xIloM or xilOM or xI10z or xI1OM or
xIla}) or (manxira or mazxira or maMxira or maMxIra or mazxIr:
or manxlIra)’

Match: Boolean — Format: Long - Search: All Phonemes Language: Hindi =
g guag

Refine search: | fpyhre xileoM) or manxira M‘

Documents 1 — 10 of 14 matches. More * indicate a better match.

.. hindi bhajan .75
v b KW qewe seeres semenrs (10 1 wad shie sifie @l dw Ao Ao e (9
Wﬁgﬂﬁﬁ?ﬁﬂﬁﬂ‘rﬁrmﬂw ||qllﬂﬁﬂ?iwﬁﬁwwiﬁiwﬁw1=r | VR AT
SIEE Tvw aWog Ae=an 1y e e L,
hap: v cseditk.ac.infusersimanojlanitestthindi. htinl 02/20/99, 70681 bytes

.. atha tulasiidaasa kRita raamacharitamaanasa sundarakaaNDa ..753%
« & TR R{TE SO -8 SRiaew [| THTRE SR GOl HIETHI &€ S95g ST
http:/Avww.cseattk.ac.infusersimanotbm/ftest/sundarakaaNDa hitveed 02/20/59, 50771 bytes

4l mere pyaare vatan, ai mere ahale vatan=:=%
. to Slow-DEVNAGRI Go back to Index You will need to Dovmload the Xdvng Font
see this properly in the Devnhagri seript. & &% sy av=, § &% o 997 gw & faer s q g
!E| |http:fﬂmuw.cse.iitk.ac.infusersfmannjkmftest-’hindi.html | i tes E Rl

Figure 4.7: Example showing the searching of phonetically equivalent words

32

M. Hetscape: Search results for ‘comments actor Title’

File: Edit “iew Go Communicatar

4 = A4 aF =2 % &

Back, Earyard Reload Haome sedrch Metscape Print Securty g

-

&T Bookmarks J& Lacation: ﬁhttp:,l",l"pcﬂ?li:ECIEIUfmmu,l"l,l"myhtraenrchfhtraeurch.Dgi?n::crnfig=htclig&re

(] Film & Music] Search Engines [Mails [Samachar 4 Dictionary 4 Index of fusers/manojkm

Search results for ’comments and actor and Title’

Ilatch: Sl = | Format: | Short — | Search: | Mo Phonemes — | Language: English — |

Refine search: |comments actor Title SEWChi

Documents 1 — 10 of 244 matches. More # indicate a better match.

vrirdesr dulhan banii huii

Trirdrir naa to kaaravaa.n kii talaash hai
Trirdrir vande maataram.h

Trirerss al Gam-—e—dil kyaa karuu.N
Trrddy jaaneman jaaneman tere do nayan

Trirdrsy intahaa ho ga i, i.ntazaar kil
Trorvess Dolii me.n biThaaii ke kahaar

752777t vo shaam kuchh ajiib thii
Trirdrir are raftaa raftaa dekho aa.Nkh merii la.Dii hai
Trirdrir are raftaa raftaa dekho aa.Nkh merti la.Dhii hai

Pages:

Transcription Rule
Hindi-Search

33
Figure 4.8: Example showing the use of English words

Appendix A

User Manual

The search engine implemented in this thesis is a complete world wide indexing and
searching system which support indexing and searching of any Indian language. It is

made as three executable modules. These are :

e Gatherer
e Index Builder and

e Search Processor

The gatherer and index builder are executed by the search engine administrator
on periodic basis. The interface of both of these program is command line driven.
The search processor is invoked by an HTML form. The details of each module is

listed in the following paragraphs.

A.1 Gatherer

Command to run gatherer :

gather [options]

34

g Options

-h Restrict the gatherer to documents that are at most mazhops links away from the

starting documents. this only works if -i is also given.

-i Initial. Do not use any old database.

g Files

${CONFIG_DIR}/htdig.conf - The htdig configuration file.
${DATABASE_DIR}/db.wordlist - The intermediate word database file created by
gatherer.

${DATABASE_DIR}/db.docdb - The intermediate documents url database file cre-
ated by gatherer.

${CONFIG_DIR}/config/ - Directory containing the language and font related infor-

mation.

A.2 Index Builder

Command to run index builder :

build

g Files

${CONFIG_DIR}/htdig.conf - The htdig configuration file.
${DATABASE_DIR}/db.wordlist - The intermediate word database file created by
gatherer.

${DATABASE_DIR}/db.docdb - The intermediate documents url database file cre-
ated by gatherer.

${DATABASE_DIR}/trie/ - The Directory containing the indexing structure and the
word database.

${DATABASE_DIR}/db.docs.index - The documents url index.

35

A.3 Search Processor

It is a CGI program (named ’search’) that is invoked by an HTML form.

p Inputs

Match Type of search.

e All Default boolean operator is “and”.
e Any Default boolean operator is “or”.

e Boolean Use boolean expression given in query.
Format Result Format

e Long Detailed display of results.
e Short Brief display of results.

Search The Search criteria.

e No Phonemes Give matches only for words and there different forms.

e Valid Phonemes Give matches for words, there different forms and the
phoneme equivalents in which only nasalized characters are replaced with

their equivalents.

e All Phonemes Give matches for all phoneme equivalent words.
Language Language of the keywords.

e Hindi Language of the keywords is Hindi.
e English Language of the keywords is English.

g Files

${CONFIG_DIR}/htdig.conf - The htdig configuration file.
${DATABASE_DIR}/trie/ - The Directory containing the indexing structure and the
word database.

${DATABASE_DIR}/db.docs.index - The documents url index.

36

${DATABASE_DIR}/db.docdb - The intermediate documents url database file cre-
ated by gatherer.
${CONFIG_DIR}/config/ - Directory containing the language and font related infor-

mation.

A.4 Configuration Files

Configuration Files are divided into two categories. The files of first category spec-
ify the attributes for a particular environment. This category has only one file
${CONFIG_DIR}/htdig.conf. The languages and fonts related configuration files

come in second category.

A.4.1 ${CONFIG_DIR}/htdig.conf

This is the main runtime configuration file for all programs that make up search
engine. Each line in this file is either a comment or contains an attribute. Comment
line are blank lines or lines that start with a ’#’. Attributes consist of a variable

name and an associated value:
<name>:<whitespace><value><newline>

The name contains any alphanumeric character or underline (_) The <value> can
include any character except newline. It is possible to split the <value> across several

lines of the configuration file by ending each line with a backslash (\).

If a program needs a particular attribute and it is not in the configuration file, it
will use the default value which is defined in htcommon/default.cc. Following are

some important attributes specified in htdig.conf file.

e DATABASE DIR
This is the directory which contains all database and other intermediate data
files.

e START _URL
This is the list of URLs that will be used to start a dig when there was no
existing database. Note that multiple URLs can be given here.

37

e EXCLUDE URL
The urls which contains any of the pattern specified with this attribute will not
be retrieved by the gatherer. This is used to exclude common things such as

an infinite virtual web-tree which start with cgi-bin. e.g. exclude_urls : cgi-bin

.cgi

e LIMIT_URLS_TO
This attribute limits the scope of the indexing process. The value for this
attribute is just a list of string patterns. As long as URLs contain at least

one of the patterns it will be seen as part of the scope of the index. e.g
LIMIT_URLS_TO : ${START_URL}

e HTTP PROXY
The URL specified in this attribute points to the host and port where the proxy
server resides. e.g. HTTP_PROXY : http://202.54.56.146:3128

A.4.2 Languages and fonts related configuration files

The formats of these files are taken from the configuration files of Iterm[7]. There is
a main configuration file or the specification file, whose name is specs. It is present
in ${CONFIG DIR}/config directory. Besides specification file, there are other file
which contains information about ISCII encoding, fonts, syllable rules of the language,
phoneme rules, and wx-keyboard encoding. These files are listed in specification file.
These files are used for the purpose of translation of ISCII code to font code and

vice-versa.

All the files have a common format. Blank, newline, and tabs are ignored. Com-
ments can be present between “/*” and “*/”. Every string should be followed by a
blank and all the strings except where specified can have maximum of 15 characters.
Rest of the string is ignored. % is a delimiter which should be present before starting

of each new information. : and “-> are used as delimiters.

Various symbols used to explain the format of files are:

e <> indicates that the value conforming to the description in these brackets be

specified. The value may be in form of string,characters or decimal values.

e {} means that the value can occur 0 or more number of times.

38

e [] indicates that it is optional.

B Specification file format

Various files containing the ISCII coding details, fonts, type, syllable rules, phoneme
rules, and wx-keyword scheme are specified in this file. All the entries are in form of
string of characters. The maximum number of characters present in the font name
and file could be upto 100. Absolute or relative filename may be specified. If relative
filename is specified, then path prefix from specs file is prepended to the file name.
The absolute filename begins with \.

/i<Default Language>

/<Language name> : <normal font name> <bold font name>
<file which contains ISCII coding detail>
<file containing the font details>
<file which gives the type map>
<file containing the syllable rules>
<file containing phoneme rules>
<file containing the wx-keyword encoding>

%Devanagari
%Devanagari :dvngl0 dvnglO :iscii font type rule phonemes morph

Table A.5: Syntax - specification file

g ISCII Coding scheme file format

The coding scheme file contains 7 and 8 bit details for Indian scripts. All the char-
acters in the set are given some descriptive names. This name is used refer to the
character in all other files. For example:

Corresponding to each character its equivalent 7-bit and 8-bit coding is provided.
For each character there can be only 8 bit code, while in 7-bit coding maximum of 5

codes can form one character.

39

Descriptive Name | Character

)

%Chandrabindu
%Visarg :
%Aa 3T
%l T
%Ka F
%Kha T

Table A.6: Assigning descriptive names to characters

%[<Esc Character >]

{¥<string description for characters> ->
<8 bit coding in decimal> ->

{<7 bit coding in form of character>} }
Yox /* Escape Character (7-bit) x/
%Chandrabindu — > 161 — > A
%Visarg —>163 —>Bx
%Aa —>165 —>Ck
%l ->166 —>Cl
%Ka ->179 —->D
%Kha —>180 —>E

Table A.7: Syntax - code file

Decimal value is to be specified for 8 bit, however, 7-bit code are specified in form

of characters.

B Font map file format

Font table and font characters used for determining the number of characters per row
are specified in font map file. Also list of characters to be moved to the beginning or
to the end of the syllable are present in font map file.

Fonts are basically categorized into various user defined types. Each category
contains several mappings. To convert an ISCII code into font code, font table is

searched for matching entries. “Conjuncts” is a reserved keyword and all mappings

40

%{ <font characters
%{ <font characters

%<font character to
%<font character to

{ %<type name>

{ %{<string description for characters>} -> { } } }

to
to

be
be

be moved to the beginning> }

be moved to the end> }

considered as base char - for 7 bit coding>
considered as base char - for 8 bit coding>

% 69
% 13

% 107
% 107

% Conjunct
%Ka
%Ja

% Vowel
% A
% Aa

%Consonant
% Ka
% Kha

%Half-Consonant
% Ka
% Kha

%Matra
% Matra-Aa
% Matra-i

%Reph
% Ra

/* Characters to be moved to the beginning x/
/* Characters to be moved to the end x/

/* Base character for 7 bit code */
/* Base character for 8 bit code */

Halant Hard-Sha — > 35
Halant Jna — > 43
- > 97
- > 97
— > 107
— > 175
Halant — > 063
Halant - > 72
— > 65
— > 69
Halant —>13

65

Table A.8: Syntax - font file

41

specified under conjunct are first searched for. The user may edit the present font
file to add more conjuncts. The categories defined here are used in listing all the

combination rules, details of which are present in rules section.

B Type map file format

Word written in any Indian script is composed of syllables. Syllables are a sequence
of characters combined according to some rules. The user can provide the rules for

finding valid syllables.

To specify the rules first of all a type map is to be provided. This map categorized
the character set. For example the set may be categorized into vowels, consonants,
matras, etc. A particular character not included in this file is assigned the default
type specified by the user. Maximum of 50 different types can be present. “Begin”
and “End” are reserved keywords and cannot be used. Refer to Table A.9 for syntax

of type_map file.

p Syllable rules file format

This file contains the syllable rules which lists the valid syllables. It also contains
the combination rules, which specifies the mapping between input ISCII characters
and output font codes. The combination rules follow the syllable rules. “Begin” and
“End” are reserved keywords and are used to denote the beginning and end of syllable

or word.

e Syllable rules
Now using the categories in type map file syllable rules can be specified. There
are a number of rules each having some name. User can specify all combination

of categories representing valid syllables.

Every type indicates one character of that type in the character set. If there can
be combination of same type, then the type has to be written down required
number of times. Some rules are very complicated. To specify these rules, the
total combination specifying a syllable can be split in many rules. The user
can specify that a particular rule does not indicate a valid syllable but it has to

combine with some other rules to form a complete syllable. To specify this he

42

%<default type>

{%<type> -> <string description for character> }
%Invalid
%A — > Vowel
%Aa — > Vowel
%l — > Vowel
%1i — > Vowel
%Ka — > Consonant
%Kha — > Consonant
%Ga — > Consonant
%Gha — > Consonant
%Ra — > Cons-r
%Chandrabindu — > Modifier
%Ansuwar — > Modifier
%Visarg — > Modifier
%Matra-Aa — > Matra
%Matra-I — > Matra
%Matra-U — > Matra
%Halant — > Halant

Table A.9: Syntax - type map file

state what all rules can follow this rule.

For example:

R2:Type_consonant Type_Halant -> R3 R4

R3:END

R4:Type_Consonant

If there are no rules present after -> then it indicates that the combinations

present in that rule signifies a valid syllable.

e Combination Rules
The input string of characters are combine in some way to form display sym-
bols of certain category in the font table. These can be specified in form of
combination rules. These rules basically states that these combination of char-
acter from various categories (specified in type map file) in the input string will
generate the font codes belonging to certain categories (specified in font map

file). This helps in determining the location in the font table where characters

43

{/<rule number>: {<types>} -> {<rule number>} }

%R0
%R1
%R2
%R3
% R4
%R5
%R6
TRT
%R8
%RI

:Vowel Modifier

:Vowel

:Consonant Halant
:Consonant Halant
:Consonant Halant

:End

:Consonant Matra Modifier
:Consonant Matra
:Consonant Modifier
:Consonant

>

>

> R3

> R4

> R5 R6 R7 RS
>

V V V V

{%{ <character types> }

Table A.10: Syntax - syllable rules

-> {}}

%Begin
%Begin
%Halant
%Consonant
%Consonant
% Vowel
%Modifier
%Matra
%Consonant
%Numeral

Cons-r Halant End
Cons-r Halant
Cons-r

Halant End

Halant

%Punctuation

%Halant
%Nukta

> Half-cons

> Reph

> Rkar

> Consonant Halant
> Half-cons

> Vowel

> Modifier

> Matra

> Consonant
> Numeral

> Punctuation
> Halant

> Nukta

Table A.11: Syntax - combination rules

44

of that particular type are present. Also it helps to generate the font characters
according to the given context. The string which matches is replaced by font
code. Generation of font code are generally context sensitive. This requirement

of the language is met by specifying the combination rules.

g8 Phoneme rule file format

This file contains the pairs of phonetically equivalent characters of Indian language
alphabet and an integer value called matching percentage. In the rules, character
descriptions are enclosed in ‘" and ‘]’. In order to generate the phoneme equivalent
words, one side of the characters are replaced by the other side of the characters in the
original word. Any no of characters can be specified on both of the sides. According
to the requirements of the language, rules can be added and deleted by the users, and

matching percentage can be changed. The matching percentage should be an integer.

{%{[<string description for characters>]} ->
{[<string description for characters>]} ->
matching_percentage }

%[MATRA] — > [MATRAIJ] - > 30
%[MATRA_EY] — > [MATRA_ATJ] - > 35
%[Kal — > [KA] [NUKTA] - > 50
%[Khal — > [KHA] [NUKTA] — > 50
%[CHANDRABUNDU] — > [ANUSWAR| - > 90

Table A.12: Syntax - phoneme rules file

8 Wx-keyboard scheme file format

The wx-keyword scheme is specified by indicating the correspondence between the
characters in Indian scripts and characters of wx-keyboard encoding. Morphological
analyzer used in our search engine accepts input and produces output using this
encoding. Moreover, the search engine does input/output with user in this encoding.
Each keyword entered by the user is converted into ISCII encoding, using this table.

45

{%<string description for characters> -> { <wx-keyboard encoded chars> } }

%11 - >
%U —>u
%UU —>U
%KA —>k a
%KHA —>K a
%NGA —>g a

Table A.13: Syntax - wx-keyboard scheme file

Each group of characters on the right hand side of the rule is equivalent to the

character whose description is specified on the left hand side of the rule.

46

Bibliography

1]

OII - Searching techniques
http://www2.echo.lu/oii/en/search.html

A Webmaster’s Guide To Search Engines

http://searchenginewatch.com/webmasters/index.html

Search Engine Glossary
http://searchenginewatch.com/facts/glossary.html

Indian Script Code for Information Interchange - ISCII standard.
IS 13194 : 1991, Bureau of Indian Standards, Manak Bhawan, 9 Bahadur Shah
Zafar Marg, New Delhi, December 1992.

Puneet Chopra, An Efficient Concurrency Control Model for Compressed
Tries, Department of Computer Science and Engineering, Indian Institute of
Technology Delhi,New Delhi 110016

ht://Dig — Internet Search Engine Software
http://www.htdig.org/

Nitu Choudhary, Iterm-Indian Terminal Emulator for X, Department of Com-
puter Science and Engineering, Indian Institute of Technology, Kanpur (U.P.)

Dr. Vineet Chaitanya and Dr. Rajeev Sangal, Morphological Analyzer for
Anusaraka, Indian Languages Translation Project, IIT Kanpur Center for Nat-
ural Language Processing, University of Hyderabad, Hyderabad (A.P)
ftp://202.41.85.21/

Panos E. Livadas, File structures, Theory and Practice, Prentice Hall ISBN
0-13-315094-1

47

[10]

[11]

[12]

[13]

[15]

[16]

 considered harmful.
http://www.isoc.org:8080/web_ml/html/fontface.html

Specifying fonts in Web pages.
http://www.microsoft /com/typography /web/designer/font-face.htm

Francois Yergeau. A world-wide World Wide Web.
http://www13.w3.org/International /francois.yergeau.html

The Unicode Standard.
http://www.unicode.org/unicode/standard.html

Index of Song Categories.

http://www.cs.wisc.edu/ navin/india/songs/isongs/indexes/categories/index.html

Carrasco Benitez. Web Internationalization.

http://www.dragoman.org/winter/draft0.html

R. Fielding, et. al.. Hypertext Transfer Protocol - HTTP/1.1.
RFC 2068

Thomas Boutell. CGI programming in C and Perl.
Addison-Wesley Publishing Company.

48

