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Abstract

Advances in microprocessor technology continue to open up new application fields
for embedded systems. Originally they were used mainly for factory production line
control and other industrial applications. Their use spread to communications and
office equipment, then on to automotive systems, audio and video products, TV, cel-
lular phones, synthesizers, game machines, and household appliances such as washing
machines, airconditioners and lighting systems. Today nearly all the electrical and
electronic products around us are controlled by embedded systems. The growing
scale and complexity of software and the need for fast development turnaround time
have made improving software productivity a pressing need. The use of an operating

system has become increasingly important for this reason.

In this thesis, we design and implement the puITRON interface for a modular em-
bedded operating system platform. ITRON (Industrial - The Real-time Operating
system Nucleus) is a real-time, multitasking OS specification intended for use in
industrial embedded systems. The implementation supports level E(Extended) of
pITRON 3.0, the latest ITRON real-time kernel specification. Operating systems
compatible with interfaces like uITRON, POSIX, etc., contribute to improved soft-
ware productivity, as existing software components and development support tools
that are compatible with the standard can be used and it would be easier to train

system designers and programmers.
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Chapter 1
Introduction

Microcomputers being small and inexpensive are being used in various devices rang-
ing from automated telephone switching devices, cars, medical equipment, industrial
robots, missiles and spaceships to home appliances such as air conditioners, wash-
ers, cameras, cell phones and televisions. Often these microcomputers are embedded
in larger systems and are hence termed as embedded computer systems or embedded

systems in short.

The application programs written for embedded systems are not developed from
scratch but rather around an embedded operating system(EOS). This makes the appli-
cations simple, reliable, portable, and quick to develop. Further, an application can
use an existing code written for a different operating system(OS), if both OSes are
compatible with one or more industry standards like pITRON[Sak93], POSIX[POS92]

etc.

Embedded operating systems differ from general purpose operating systems in
the sense that an EOS has to be multi-threaded and preemptible; the notion of
thread priority has to exist; predictable thread synchronization mechanisms should
be supported; the OS behavior should be known; Interrupt latency (i.e. time from
interrupt to task run), the maximum time for each system call, and the maximum
time the OS and drivers mask the interrupts should be predictable; and the OS should

have extremely small memory and computation requirements.

In this thesis we design and implement a generic modular embedded OS plat-
form compatible with level E (Extended) pITRON 3.0[Sak93] standard. The cur-

rent implementation, however, doesn’t support the connection function required in a



loosely-coupled network of ITRON based machines.

1.1 pITRON 3.0 Specification

ITRON (Industrial - The Real-time Operating system Nucleus) is a real-time, multi-
tasking OS specification intended for use in industrial embedded systems. uITRON
3.0" is the latest ITRON real-time kernel specification[Sak93].

1.1.1 Levels of xITRON 3.0 specification

pITRON 3.0 specification is divided into three system call levels: Level R (Required),
Level S (Standard) and Level E (Extended). In addition to these three levels, there
is also Level C for CPU-dependent system calls.

level R (Required): The functions in this level are mandatory for all implemen-
tations of uITRON specification. These functions can be implemented even

without a hardware timer.

level S (Standard): This level includes basic functions for achieving a real-time,
multitasking OS.

level E (Extended): This level includes several additional and extended functions.
Specifically, this level includes object creation and deletion functions, rendezvous

functions, memory-pools and the timer handler.

level C (CPU dependent): This level provides implementation-dependent func-

tions required due to the CPU or hardware configuration.

The support level of the connection function is indicated by appending an ‘N’ to the
end of the level. For example, connectivity supported at level S would be referred to
as level SN.

The specification levels outlined above indicate the system calls supported at
each level. It is sometimes possible, however, to introduce extended features into
some system calls for which no compatibility is guaranteed. These functions are
called level X functions. These extended features include nested suspend_task() calls,

queued wakeup_task() calls, added information for refer_task() etc.

'The ‘u of uITRON is read as micro



1.1.2 Compatibility under uITRON 3.0 specification

The following conditions must be met for implementation of uITRON 3.0 specification

to be compliant.

1. The implementation must provide at least the three task states: RUN, READY
and WAIT.

2. Interrupt handlers may be defined. A method must be available for waking up

tasks from an interrupt handler, may be through a system call.

3. Alllevel R and level RN system calls are available. The connection function does
not need to be supported. Level RN system calls (such as signal_semaphore())
can only be used provided that all the functions are available except for con-

nectivity functions.

1.2 Motivation

The equipments controlled by embedded systems are becoming more and more sophis-
ticated, often incorporating many functions in a single product. Embedded systems
have grown in scale and complexity as a result. The growing scale and complexity
of software and the need for fast development turnaround time have made improving
software productivity a pressing need. The use of C and other high-level languages,
along with the use of an Operating System(OS), have become increasingly common

for this reason.

1.2.1 Need for a generic and configurable OS

Most often, the OS itself may not be well suited for all types of applications, as the
demand of such an OS can vary greatly depending on the scale and nature of the
embedded system in which it is used. An OS equipped with advanced functions that
are of little use in a small-scale embedded system, where memory in particular is
severely limited, will only increase the size of the system and lower its performance.
Specifically, the OS carries extra baggage not needed by the application. Thus there
is a need for an OS which is generic enough, to suite both large-scale and small-scale
embedded systems, and configurable such that it would not carry any extra baggage

not needed by the application.



1.2.2 Need for OS Compatibility with an industrial standard

OSes compatible with standard interfaces like uITRON[Sak93], POSIX[POS92], etc.,
contribute to improved software productivity, as existing software components and
development support tools can be used, that are compatible with the standard. More-
over, the expanding application of embedded systems means that an increasing num-
ber of software engineers are coming into contact with an embedded OS, making it
highly important to train system designers and programmers in the requisite skills.
The training becomes costlier, due to the large differences in specifications from one
OS to another. Thus there is a need for the OS intended for embedded OS develop-
ment to be compatible with an industrial standard.

In this thesis, our motivation has been to come up with an OS design that is
reliable, generic, highly configurable, and modular. The OS provides a compatible
interface with an industrial standard. Moreover, it is a collection of modules, which
can be plugged in or out as per the needs of the application. It is hence possible to

support any standard API with no extra cost.

1.3 Existing Operating Systems

There are many embedded kernels available[ES] today, most of them being highly
configurable and powerful, are only targeted to applications of a fixed range of com-

plexities. We present here, a brief description? of some of these operating systems.

1.3.1 CRTX Real-time Micro Kernel

CRTX[CRT] is a compact, simple to use, high performance off-the-shelf Micro Kernel
intended for use in small 8 and 16 bit embedded applications. CRTX was designed
primarily for portability. However, it doesn’t offer a standard API.

2Any comparisons made here are purely my personal beliefs based on the information I could
gather. They are presented here to bring out the specific areas in which these proprietary systems
lag and are not intended to jeopardize anybody’s reputation.



1.3.2 0OS/9 (Microware Systems Corporation)

0S-9]0S/] is a real-time, multiuser, multitasking operating system. It’s modular
architecture allows individual modules to be included or deleted in the operating
system during configuration for a specific application. This modularity makes OS/9
extremely scalable and powerful to fit most application needs. However, it doesn’t

support any standard API.

1.3.3 Harmony (National Research Council of Canada)

Harmony|oCH] is a multitasking, multiprocessing operating system for realtime con-
trol, developed at the National Research Council Laboratories. Harmony is a portable,
extensible and configurable system. Primarily developed for realtime control of
robotics experiments, for the development of experimental robot controllers and for
other applications of embedded systems where predictable temporal performance is
a requirement, Harmony fulfills the needs of only a fixed range of embedded appli-
cations. However, Harmony doesn’t provide a standard API and comes with huge

overhead for small-scale embedded applications.

1.3.4 RTEMS (Redstone Military Arsenal)

Real-Time Executive for Multiprocessor Systems (RTEMS)[RTE] is a non-commercial
real-time operating system for embedded computer systems. RTEMS implementa-
tions are available in either the Ada or C programming language providing function-
ality equivalent to that of commercial products. RTEMS is designed for the best
use in military control devices. The POSIX standard API is being added to RTEMS
3.6.0.

1.3.5 VxWorks (Wind River Systems)

VxWorks[VxW] offers a development and execution environment for complex real-
time and embedded applications on a wide variety of target processors. It supports
POSIX 1003.1b[POS92] real-time extensions, ANSI C (including floating point sup-
port) and complete TCP/IP networking across various media. VxWorks has been
used in many successful projects including the Mars path-finder, Virtual Reality, and

Traffic control.



Due to the reason that it is targeted mostly towards solving large and complex
problems, it is rather unsuitable for small-scale embedded systems, where most of its

extended features may not be used.

1.4 Organization of the Report

The rest of the thesis is organized as follows. In chapter 2, we discuss the overall
system design at block level and the relationships between different blocks. We also
give a brief overview of the blocks, that have been already implemented. We discuss
the design and implementation of the uITRON Task Manager Module in chapter 3,
the design and implementation of the pITRON Communication Manager Module in
chapter 4, the design and implementation of the uITRON Interrupt Manager Module
in chapter 5, the design and implementation of the uITRON Memory Manager Module
in chapter 6, the design and implementation of the uITRON Time Manager Module
in chapter 7, the design and implementation of the uITRON System Manager Module
in chapter 8. In chapter 9, we discuss an example application using this OS. This
application is a car dashboard controller for which design and implementation details
are given in this chapter. Finally, we conclude this thesis in chapter 10 and suggest

some future extensions.



Chapter 2

The System Design

Typical embedded system applications range from very simple ones, which need min-
imal services from the kernel, to complex ones that need highly extended and sophis-
ticated services. Also, an application might need the kernel to be compatible with
any of the industrial standards like pITRON[Sak93], POSIX[POS92| etc. The design

of our system is aimed to fulfill the requirements of all such applications.

2.1 The Problem

To meet the specific requirements of an embedded application, ideally, the kernel
should offer exactly only those services that are needed by the application, and should
carry no extra code. In practice, this can be achieved by constructing modules, each
module offering a particular class of service needed by the application, and the kernel
being able to hold only those modules that are needed by the application. This focuses
on the need to define a well defined intermodular interface, such that new modules

can be developed and added to the existing system with ease.

2.2 The Solution

The solution suggested in this thesis is to build a modular kernel. The modular
architecture allows the kernel to be modified and configured to meet the specific
needs of an application. Specifically, modules can be added or subtracted from the

system as per the application need. The result is a highly modular and reconfigurable



platform.

The kernel consists of two parts: the set of modules, or the configurable portion,
which offer various services to the application, and the compulsory portion, called the
nucleus, or the nano-kernel, which acts as a glue between the modules. Typical mod-
ules range from physical memory manager, interrupt handler, thread manager, etc.
to u)ITRON memory manager’, uITRON timer manager, uITRON communication
manager, etc. Thus, there could be an application using a bare interrupt handler, a
pITRON timer manager, and a POSIX thread manager?.

2.2.1 Nucleus Design

The specified design results in the nucleus code being pretty small, as it carries
only the start-up code and the code needed to interface one module with another.
Specifically, its functionality includes initialization of the kernel modules at system
start-up and communication among different modules, and between the application
and the kernel modules. The nucleus was developed by Kshitiz Krishna[Kri97] along

with various other modules.

2.2.2 Modules’ Design

Each module is designed such that, it makes very little or no assumptions about the
existence of other modules. However, a module can use the services of one of more
existing modules, with the help of the nanokernel. The modules being used are called
the pre-requisites of the module that uses them. For instance, a module like uITRON
task manager, could be using the services of the physical memory manager module

and the thread manager module.

Pre-requisites can be either hard or soft. A hard pre-requisite module must be
present and initialized before the module that uses it. In case of soft pre-requisites,
the pre-requisite module may or may not be present. If it is not present, nano-kernel
provides it’s own service (a null function) but in case the module is present, then it

must be initialized before this module.

LWITRON memory manager refers to the module compatible with the puITRON industrial
standard[Sak93], that offers memory management functions

2POSIX interrupt handler refers to the module compatible with the POSIX industrial
standard[POS92], that offers interrupt handling functions



A brief description of the modules developed prior to this thesis, namely, the
interrupt manager module and the thread manager module, are given in Appendix

B.

2.2.3 Intermodule Interface

The design standardizes the intermodule interface[Kri97] to be used for all service
requests and results between various modules, and the application. Communication
between the modules/application is achieved by using the module-ids, or ports®. A
module or an application willing to communicate with another module would re-
quest the nucleus to give the address of the service providing routine of that module,

mentioning the destination module’s id, or port.

2.2.4 Application Program Interface(API) Design

The modular design of the kernel facilitates new modules to be plugged-in without
any changes to the existing modules or the nucleus. The job of providing an API to
the existing kernel is to just add a new API module, or a set of API modules, which
make use of the services of the existing modules. For instance, to provide uITRON
standard API to the existing kernel, one can either develop a single uITRON API
module, or a set of modules like yITRON memory manager, pITRON task manager,
pI'TRON interrupt manager, etc. which make use of existing modules like physical
memory manager, bare interrupt handler, thread manager, etc. The latter approach
is better, since, all the modules are pluggable and the application can choose only

those modules that are needed.

In this thesis, we add uI'TRON API for the existing kernel. Specifically, various
functionally distinguished pfITRON modules are designed and implemented to provide
an application with uITRON compatible interface. These modules use the services of
the existing modules, which provide the basic services, and are hence very small and

conserve space as the application in most cases has to be put in a ROM.

3Though these are not exactly ports, the term is being used on the basis of closest similarity.



2.3 The Kernel Architecture

The block diagram of the system is given in figure 2.1. The nucleus is the compulsory
portion of the kernel, and all the modules, including the API modules form the
configurable portion. Any of these modules may be added or removed from the

system, as per the application requirements, at the system build time.
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Figure 2.1: Block Diagram of the System

At system startup, the nucleus initializes the modules, one by one, informing
each of them, it’s own service handler’s address. It will then pass the control of
execution to the application, informing it again, the address of the nucleus service
provider. From then onwards, the application can query the nucleus for the address
of any module’s service handler and use the corresponding module services. Modules

requiring services from other modules go through the same procedure.

In this chapter, the overall design of the system has been presented. The kernel

10



architecture has been shown at the block level and the design of individual blocks
has been presented. Specifically, the relationship between the nucleus, the modules,
and the application has been described. A brief overview of the existing work and

the work done in this thesis has been presented.
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Chapter 3

uITRON Task Manager Module

The pITRON Task Manager Module provides task management functions,(to access
and control the state of tasks), task-dependent synchronization functions,(which in-
clude functions that suspend tasks for a while, and associated functions that release
a task from the SUSPEND state), and the inter-task synchronization functions. This
Module uses the services of the Thread Manager Module[Section B.2] for task man-
agement and the services of the Memory Manager Module for memory allocation and

deallocation for each task.

3.1 The Design

A thread is an independent flow of execution. While the nano-kernel supports a single
thread of execution, the thread manager provides multiple threads executing concur-
rently in the system, which are transparent to nano-kernel and other modules. The
pITRON task manager module uses the services provided by the thread manager
module while supporting multiple tasks, each task corresponding to a unique thread
of the thread manager module. Task scheduling is governed by the task manager
by requesting the thread manager to use the task manager’s scheduling function to
schedule threads. This is done by having the address of the task manager’s scheduling
function sent to the thread manager during the initialization phase of the task man-
ager module. Hence, the task manager manages the task states; maintains it’'s own
ready queue to guide the thread manager through the uITRON specified scheduling

policies and provides it’s own task-dependent synchronization functions.

12



3.1.1 Basic Task Management

Tasks can be created and destroyed dynamically. Creation of a task involves a request
sent to the Memory Manager Module for allocation of memory specified by the stack
size. A newly created task is not started unless an explicit call is made to do so. This
call, sta_tsk(), requests the Thread Manager Module to create a new thread and mark
it READY. When a task exits, it enters the DORMANT state and the corresponding
thread is killed, but the allocated stack area is still held. This task can be re-started
by issuing the sta_tsk() system call. The stack space is released only when the task
is deleted.

3.1.2 Task Scheduling

Task scheduling is conducted based on task priority. If there are multiple tasks of the
same priority, scheduling is conducted on first come, first served (FCFS) basis. It is,
however, possible to dynamically change the priority of a task. On occurrence of an
external interrupt, tasks are re-scheduled after the interrupt handler is finished. The
task which was executing gets back its execution privileges, unless a task of higher
priority was brought to READY state by the interrupt handler.

3.1.3 Task Dependent Synchronization

A task can sleep or it can suspend, resume or wake-up other tasks. If the task specified
to be suspended is already in WAIT state, it will be put in the combined WAIT-
SUSPEND state. If wait conditions for the task are later fulfilled, it will enter SUS-
PEND state. If the task is resumed, it will return to the WAIT state before the
suspension. It is possible to nest the pairs of suspension and resumption requests
i.e., a task must be resumed the same number of times for which it was suspended in
order to return the task to its original state before the suspension. A task can sleep
with timeout, or forever, until another task issues a wakeup call. Wakeup calls can
be queued, i.e., a wakeup call could be issued to a task that is not sleeping, and the

request will be queued, unless the queue is full.

13



3.2 Module Prerequisites

e Hard Prerequisites: Memory Manager Module, Thread Manager Module.
The Memory Manager Module services are used each time a task is created or
deleted, to allocate or deallocate the stack space. The Thread Manager services

are used for the basic task management.

e Soft Prerequisites: None

3.3 Module configuration parameters

The module should be provided with the following static configuration parameters.

1. The maximum number of user tasks.
2. The maximum number of times suspend requests may be nested.

3. The maximum allowable number for the wakeup request queuing count.

3.4 Services provided by the Task Manager

The module provides Task Management functions and Task-Dependent Synchroniza-
tion functions, as specified by the uITRON specifications. It also provides services to
be used by other uITRON modules that deal with task management.

3.4.1 Task Management Functions

e Create Task This system call creates the task specified by task-id. Specifi-
cally, a TCB (Task Control Block) is allocated for the task to be created, and
initialized according to accompanying parameter values of task priority, task
handler, stack size etc. A stack area is also allocated for the task based on the

parameter stack size.

e Delete Task This system call deletes the task specified by task-id. Specifically,
it changes the state of the task specified by task-id from DORMANT into NON-
EXISTENT, and then clears the TCB and releases stack.

14



Start Task This system call starts the task specified by task-id. Specifically,
it changes the state of the task specified by task-id from DORMANT into
RUN/READY.

Exit Task This system call causes the issuing task to exit, changing the state
of the task into the DORMANT state.

Exit and Delete Task This system call causes the issuing task to exit and
then delete itself.

Terminate Other Task This system call forcibly terminates the task specified
by task-id. That is, it changes the state of the task specified by task-id into
DORMANT.

Disable Dispatch This system call disables task dispatching. Dispatching will
remain disabled after this call is issued until a subsequent call to ena_dsp() is

issued.

Enable Dispatch This system call enables task dispatching, that is, it finishes
dispatch disabled state caused by the execution of dis_dsp().

Change Task Priority This system call changes the current priority of the
task specified by task-id to the value specified by task priority.

Rotate Tasks on the Ready Queue This system call rotates tasks on the
ready queue associated with the priority level specified by task priority. Specif-
ically, the task at the head of the ready queue of the priority level in question
is moved to the end of the ready queue, thus switching the execution of tasks

having the same priority.

Release Wait of Other Task This system call forcibly releases WAIT state
(not including SUSPEND state) of the task specified by task-id.

Get Task Identifier This system call gets the ID of the issuing task.

Reference Task Status This system call refers to the state of the task specified
by task-id, and returns its current priority, its task state, and its extended

information.
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3.4.2 Task-Dependent Synchronization Functions

e Suspend Other Task This system call suspends the execution of the task
specified by task-id by putting it into SUSPEND state.

e Resume Suspended Task / Forcibly Resume Suspended Task Both these
system calls release SUSPEND state of the task specified by task-id. Rsm_tsk()
only releases one suspend request from the suspend request nest. Accordingly,
if more than one sus_tsk() has been issued on the task in question, that task
will remain suspended even after the execution of rsm_tsk() is completed. In
contrast, frsm_tsk() will clear all suspend requests even if more than one sus_tsk

has been issued on the same task.

e Sleep Task / Sleep Task with Timeout Both these system calls cause the
issuing task (which is in RUN state) to sleep until wup_tsk() is invoked.

e Wakeup Other Task This system call releases the WAIT state of the task
specified by task-id caused by the execution of slp_tsk() or tslp_tsk().

e Cancel Wakeup Request This system call returns the wakeup request queu-
ing count for the task specified by task-id while canceling all associated wakeup

requests. Specifically, it resets the wakeup request queuing count to 0.

3.4.3 Services provided for other modules

e Query/Update system status This system call can be used to check or
update the current system status flags, which indicate the current system exe-
cution to be in dispatch disabled state, or in task independent portion or in CPU
locked state.

e Release wait state This system call releases the wait state of the task specified

by task-id and returns it an error value specified.

e Wait and release control This system call makes the current running task

wait and release control.
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3.5 Implementation

3.5.1 Module Initialization

At initialization the task manager module sets-up the TCB (task control block) tables
and initializes the ready queue. It marks the current thread of execution to be the
first user task running, and schedules it. It queries the nano-kernel for the service
handlers of the physical memory manager module and the thread manager module. It
then intimates the thread manager, the address of the next_to_schedule() function
to be used in future. Further, it requests the thread manager to unhook the thread
manager’s check_sleepers() function from the timer interrupt and hook the task

manager’s check_sleepers() function.

3.5.2 Data Structures

The fields of the TCB are given below.

typedef struct task_control_block {
VP exinf; /* Extended Information */
ATR tskatr; /* Task Attribute */
PRI itskpri; /* Initial Task Priority */
PRI priority; /* Current Task Priority */
FP task; /* Task Start Address */
INT state; /* Current Task State */
INT suspend_count; /* Number of pending suspend requests */
INT wakeup_count; /* Number of pending wake-up requests */
UINT cause_of_wait; /* Cause of wait, if the task is waiting */
TMO timeout_count; /* Wait-time left if the task is waiting */
int_2b thread_id; /* The task’s corresponding thread-id */
MEM_BLK_ID_TYPE stack_id; /* Id of memory allocated for stack */
} TCB;

The pointer exinf is provided for the user to include extended information about the
task to be created. tskatr specifies whether the task is written in assembly or high

level language.
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The user tasks and system tasks are maintained using two static arrays, both
of type TCB and of sizes max_usr_tasks (known at system configuration time) and
max_sys_tsks (system known) respectively. These tables are indexed by the task-id
for efficient retrieval of information.

The ready queue is a singly-linked list simulated on an array of size (max_usr_tasks
+ max_sys_tsks). The linked list representation is needed for efficient dispatching
(the task at the head of the list is the one to be scheduled next), and during inser-
tion/deletion operations, as tasks frequently enter/leave the ready queue, which is to
be maintained sorted on task priority.

The boolean variables dispatch_enabled, task_independent_portion_entered

and CPU_locked represent the current system state.

3.5.3 Task Management and Scheduling

The thread manager’s scheduler, which is hooked to the timer interrupt, calls the
next_to_schedule () function of the task manager. This function finds the task to be
scheduled next and returns the corresponding thread id. The check_sleepers() func-
tion of the task manager decrements the timeout_count of all tasks that are waiting
with timeout, by one and once the counter reaches zero, it releases the wait state for

the corresponding task and returns it an error value E_.TMOUT, through timeout_count.

3.5.4 uITRON Implementation-dependent Specifications for

Task Management

e Specification: It is implementation dependent whether or not SUSPEND state,
WAIT-SUSPEND state, DORMANT state, and NON-EXISTENT state are
supported.

Implementation: All these states are supported, along with the mandatory
ones, RUN, READY, and WAIT.

e Specification: Priority levels outside the range 1 to 8 (including negative val-
ues) may also be specified depending on the implementation.

Implementation: Priority levels outside the range 1 to 8 are not allowed.
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e Specification: Depending on the implementation, specifying tskpri = TPRI_INI
may cause a task’s priority to be reset to the initial task priority which was de-
fined when it was first created.

Implementation: This feature is supported.

e Specification: It is implementation dependent where a task which has been
forced to enter SUSPEND state and s later resumed by the rsm_tsk system call
will enter the ready queue among tasks of corresponding priority.
Implementation: Such a task is placed to the end of the ready queue among
the tasks of the same priority. Since the suspended tasks are removed from the
ready queue, for better dispatching performance in cases where many suspended
tasks can be expected, maintaining the scheduling order for suspended tasks

would be inefficient.

e Specification: [t is implementation dependent whether rotation of the ready
queue including the running task is supported.
Implementation: This feature is supported and can be used by the user, for
instance, to implement round robin scheduling of same priority tasks when this
method is preferred over FCFS scheduling. Specifically, round robin scheduling
may be implemented by using an interrupt handler invoked by timer interrupt

periodically, or using a cyclic handler, to issue the rot_rdq system call.

e Specification: The mazimum number of times suspend requests may be nested,
and even whether or not suspend request nesting (the ability to issue sus_tsk on
the same task more than once) is even allowed, is implementation dependent.
Implementation: Suspend request nesting is allowed and the maximum num-

ber of suspend requests is known at the time of system configuration.

e Specification: It is always possible to queue at least one wakeup request. The
mazimum allowable number for the wakeup request queuing count is implemen-
tation dependent, and may be any number higher than or equal to one.
Implementation: Queuing more than one wakeup requests is supported and
the maximum number of wakeup requests that can be queued is known at the

time of system configuration.
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Chapter 4
Communication Manager

The pfITRON Communication Manager supports task synchronization, mutual exclu-
sion, and communication functions. These functions are completely independent of

tasks and include semaphores, eventflags and mailboxes.

4.1 The Design

The module uses the services of the Task Manager Module to deal with the task
WAIT states. Specifically, the u)ITRON task manager’s service, release wait state, is
used to release the wait state of tasks waiting for an event, and the service, wait and
release control, is used to make the current task wait on an event. These services are
briefly described in section 3.4.3.

The module uses the services of the Memory Manager Module during inter-task
communication, to allocate/deallocate memory for the buffers. Specifically, memory

is allocated or de-allocated when a mailbox is created or deleted, respectively.

4.1.1 Semaphores

The module provides a generic semaphore scheme to provide mutual exclusion and
synchronized access to resources. The task notifying other tasks of an event increases
the number of resources held by the semaphore by one, and the task waiting for the
event decreases the number of resources held by the semaphore by one. If the number

of resources held by a semaphore is 0, the task requiring resources will wait until the
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next time resources are returned to the semaphore. If there is more than one task

waiting for a semaphore, the tasks will be placed in the queue.

4.1.2 Eventflags

The module provides eventflags for task synchronization which use bit correspondence
flags to represent the availability of events. A task notifying other tasks of an event
can set and clear certain bits of the associated eventflag. Tasks waiting for the event
will continue to wait until certain conditions, represented by the bit pattern of the
eventflag, have been met.

4.1.3 Mailboxes

Mailboxes provide both task synchronization and communication by passing mes-
sages. The task notifying other tasks of an event (the task which are sending a
message) can place messages on a message queue. Tasks waiting for the event (tasks
which will receive the message) can retrieve messages from the message queue. If
there is no message on the message queue yet, the task will wait until the next mes-
sage arrives. If there is more than one task waiting for a message the tasks will be
placed in a queue. The contents of the messages are in shared memory and only the
corresponding first address is actually sent or received. The message contents are not

copied.

4.1.4 Level X functions supported by the module

e The initial semaphore count and the maximum semaphore count can be specified

at the time of semaphore creation.

e The ordering of tasks based on task priority level, on a semaphore’s/a mailbox’s

queue is supported.

e Multiple tasks can wait at the same time for the same eventflag. Hence, a single

set_flg() system call could result in the release of multiple waiting tasks.

e When a semaphore or an eventflag or a mailbox is referred, the system call

returns the task-id at the head of the waiting queue (along with the other
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information), rather than just returning a boolean value stating whether some

task is waiting.

e Priority-ordered queuing of messages in a mailbox buffer is supported.

4.2 Module Prerequisites

e Hard Prerequisites: Memory Manager Module, uITRON Task Manager
Module. The Memory Manager Module services are used to allocate/deallocate
memory for the buffers used by mailboxes. The pITRON Task Manager Module
services are used to deal with the task WAIT states.

e Soft Prerequisites: None

4.3 Module Configuration Parameters

The module needs to be provided with the following static configuration parameters:

1. The maximum number of user semaphores.
2. The maximum number of user event flags.

3. The maximum number of user mailboxes.

4.4 Module Services

e Create Semaphore This system call creates the semaphore specified by semid.
e Delete Semaphore This system call deletes the semaphore specified by semid.

e Signal Semaphore This system call returns one resource to the semaphore
specified by semud. Specifically, if there are any tasks waiting for the specified
semaphore, the task at the head of the queue becomes READY. if there are no

tasks waiting, the associated semaphore count is incremented by one.

e Wait on Semaphore This system call obtains one resource from the semaphore

specified by semid. Specifically, if the semaphore count is one or greater, it is
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decremented by one and the issuing task continues to execute. If the count is 0,
the issuing task will enter the WAIT state and will be put in the queue associated

with the specified semaphore. This function can be used with timeout.

Reference Semaphore Status This system call refers to the state of the
semaphore specified by semid, and returns its current semaphore count, waiting

task information, and its extended information.

Create Eventflag This system call creates the eventflag specified by flgid and

initializes the associated flag pattern.
Delete Eventflag This system call deletes the eventflag specified by figid.

Set Eventflag This system call sets the bits specified by setptn of the one word
eventflag specified by flgid.

Clear Eventflag This system call clears the bits of the one word eventflag

based on the corresponding zero bits of clrptn.

Wait for Eventflag This system call waits for the eventflag specified by figid
to be set to satisfy the wait release condition specified by wfmode. This function

can be used with timeout.

Reference Eventflag Status This system call refers to the state of the event-
flag specified by flgid, and returns its current flag pattern, waiting task infor-

mation, and its extended information.

Create Mailbox This system call creates the mailbox specified by mbzid. A

buffer area of size bufent is also allocated for the mailbox.
Delete Mailbox This system call deletes the mailbox specified by mbzxid.

Send Message to Mailbox This system call sends the message packet whose

start address is given by pk_msg to the mailbox specified by mbzid.

Receive Message from Mailbox This system call receives a message from
the mailbox specified by mbzid. If there is no message in the specified mailbox
the issuing task will enter the WAIT state, and be put on the queue for waiting

for arriving messages. This function can be used with timeout.
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e Reference Mailbox Status This system call refers to the state of the mailbox
specified by mbzxid, and returns the next message to be received, waiting task

information, and its extended information.

4.5 Implementation

While the control information for managing semaphores, eventflags and mailboxes
are statically allocated tables, the message queues used by the mailboxes, however,
use dynamic allocation of memory. Message queues are implemented as ring buffers.
Depending the buffer size specified during mailbox creation, memory is allocated for
the ring buffer and the buffer data structures are set-up. With the message queue
implemented as a ring buffer, the task issuing the snd_msg() call will not enter a
WAIT state even if the message cannot be queued because the ring buffer is full.
An E_QOVR error will be returned immediately to the issuing task if this situation
arises.

To maintain wait queues, for instance, the one used by semaphores, a single wait
queue is statically allocated of size (max_no_of_semaphores * max no_of_tasks),

and each semaphore dynamically picks up individual nodes from this pool, as needed.

4.5.1 Module Initialization

At initialization the gITRON communication manager queries the nano-kernel for
the service handlers of the physical memory manager module and the thread manager
module. It then sets-up the control tables and initializes the wait queues for managing

the semaphores, eventflags, and the mailboxes.

4.5.2 Data Structures

typedef struct semaphore_node {

VP exinf; /* Extended Infromation */
ATR sematr; /* Semaphore Attributes */
INT semcnt; /* Semaphore Count */

INT maxsem; /* Max Semaphore Count */

BOOL status; /* States whether the node is valid or not */

24



} semaphore_node;

The semaphore attributes specify the manner in which waiting tasks are put on the

semaphore’s queue.

typedef struct eventflag_node {

VP exinf; /* Extended Infromation */

ATR flgatr; /* Event Flag Attributes */

UINT flgptn; /* Event Flag Pattern */

BOOL status; /* States whether the node is valid or not */

} eventflag_node;

The eventflag attributes specify whether multiple tasks waiting on the eventflag is

allowed.

typedef struct mailbox_node {

VP exinf; /* Extended Information */

ATR mbxatr; /* Mailbox Attributes */

T_MSG* buffer; /* Buffer to hold messages */

INT bufcnt; /* Buffer Message Count */

INT head, tail; /* Positions in the buffer where messages are
deleted and inserted, respectively */

INT msg_count; /* # of msgs currently stored in the buffer */

BOOL status; /* States whether the node is valid or not */

} mailbox_node;

The mailbox attributes specify the manner in which tasks receiving messages are put
on the mailbox’s queue and the manner in which messages are put on the message
queue (the buffer).

4.5.3 uITRON Implementation-dependent Specifications

e Specification: When a semaphore/an eventflag/a mailbox being waited for by
more than one tasks is deleted, the order of tasks on the ready queue after the

WAIT state is cleared is implementation dependent in the case of tasks having
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the same priority.
Implementation: Tasks with same priority enter the ready queue in the same

order as they were earlier in the semaphore/eventflag/mailbox wait queue.

26



Chapter 5

uITRON Interrupt Manager
Module

The pITRON Interrupt Manager Module services include defining interrupt handlers
and disabling/enabling of external interrupts and task dispatching.

5.1 The Design

Interrupt handlers are considered task-independent portions. Task switching (dis-
patching) is not performed while a task-independent portion is executing and even
if the result of a system call issued inside a task-independent portion is a dispatch-
ing request, that dispatching is delayed until the control leaves the task-independent
portion. This is called delayed dispatching.

The module leaves the interrupt handling strategies to the bare interrupt manager
module, which is its hard prerequisite. Thus the module provides the uI'TRON in-
terrupt management functions independent of the interrupt handling strategies that
could be provided by various interrupt management modules, of which, any of them
could be plugged into the system as per the application need.

The module offers a special service to lock the CPU. Basically this system call
disables external interrupts and task dispatching. All possibility that a task might be
preempted (have its CPU privileges taken away) by an interrupt handler or another
task is suppressed. This system call internally informs the pITRON task manager
module that the CPU has been locked, and the status of the system is updated
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(CPU locked). The system status at any instant can be obtained by the Refer-
ence_System_Status() system call, provided by the uITRON System Manager Module.

5.2 Module Prerequisites

e Hard Prerequisites: Interrupt Manager Module.

The Interrupt Manger Module services are used to define interrupt handlers.

e Soft Prerequisites: yITRON Task Manger Module.
The pITRON Task Manager Module services are used to inform the task man-
ager if CPU has been locked /unlocked and to wakeup tasks.

5.3 Configuration Parameters

The module does not have any static configuration parameters.

5.4 Services provided by the Interrupt Manager

The pITRON interrupt manager module provides the following services.

e Define Interrupt Handler This system call defines an interrupt handler for

the given interrupt number and makes that interrupt handler ready to use.

e Return from Interrupt Handler This system call causes the invoked inter-

rupt handler to finish.

e Return and Wakeup Task This system call releases the SLEEP state of the

task specified and causes the issuing interrupt handler to finish.
e Lock CPU This system call disables external interrupt and task dispatching.
e Unlock CPU This system call enables external interrupt and task dispatching.

e Disable Interrupt This system call disables the interrupt, specified by the

interrupt number.
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e Enable Interrupt This system call enables the interrupt, specified by the

interrupt number.

e Change Interrupt Mask This system call changes the interrupt mask to that
specified.

e Reference Interrupt Mask This system call returns the interrupt mask.

5.5 Implementation

At initialization, the pITRON interrupt manager module queries the nano-kernel for
the service handlers of the bare interrupt handler module and the pITRON task
manager module.

The module uses the service, add_handler() of the interrupt handler module to

define a new interrupt handler for the given interrupt number.

add_handler (intr_no, handler_priority, handler_addr);

The add_handler() system call adds the given service routine to the list of handlers,
sorted by handler priority, corresponding to the interrupt number. The uITRON
interrupt manager module does not use the service handlers’ priority feature provided
by the interrupt Manager Module, but instead specifies a default priority.

The module uses the service update_system_status() of the uITRON Task Man-
ager Module to update the system status, when the CPU is locked or unlocked.
The uITRON System Manager Module gets the system status information from the
pITRON Task Manager Module, using the Reference_System_Status() system call.
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Chapter 6

tITRON Memory Manager
Module

The pITRON Memory Manager Module offers services to manage memorypools and
to allocate/deallocate memory blocks from the memory pools. There are two types
of memorypools: fixed-size memorypools and variable-size memorypools. Both are
considered separate objects and require different system calls for manipulation. While
the size of memory blocks allocated from fixed-size memorypools are all fixed, blocks
of any size may be specified when allocating memory blocks from variable-size mem-

orypools.

6.1 The Design

The pITRON Memory Manager Module uses the services of the Physical Mem-
ory Manager Module, to allocate or deallocate memory for the memorypools. The
I TRON Memory Manger then manages the pool memory to allocate and deallocate
blocks of memory to various tasks.

If the memory block cannot be issued to the requesting task, due to lack of memory
in the memorypool, the task is placed on the memory allocation queue of the specified
memorypool, and will wait until it can get the memory it requires. The manner in
which tasks are put into this queue can be specified to be either FIFO-ordered or
Task Priority ordered, at the time of creation of the memorypool. However, a task

requesting for a memory block can always poll for memory in the memory pool or
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wait for memory, with timeout.

The uITRON Memory Manager uses the services of the pITRON Task Manager
Module either to make the current task wait, or to release the wait state of a task
waiting for memory. The module makes the current task wait, if the request can not
be satisfied as there is not enough memory in the memorypool. The module releases
the wait state of a task either when its memory request is satisfied successfully, or if
the memorypool it is waiting on, is deleted. If a task waits with timeout, for a memory
block, its wait state is released directly by the uI'TRON Task Manager Module.

6.1.1 Level X functions supported by the module

e The placement of tasks on the memorypool wait queue based on the task priority

level is supported.

6.2 Module Prerequisites

e Hard Prerequisites: Physical Memory Manager Module.
The Physical Memory Manager Module services are used to allocate and de-
allocate memory for the memorypools at the time of their creation and deletion

respectively.

e Soft Prerequisites: pfITRON Task Manager Module.
The pITRON Task Manager Module services are used to make the current task
wait (and release control) when it is going to wait for memory, and to release

the wait state of a waiting task which was waiting for memory.

6.3 Configuration Parameters

The module needs to be provided with the following static configuration parameters:

1. The maximum number of fixed size memorypools used by the application.

2. The maximum number of variable size memorypools used by the application.
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6.4 Services provided by the Memory Manager

The module provides the following services to the application and the other modules.

e Create Variable-Size Memorypool This system call creates a variable-size

memorypool of the given size.

e Delete Variable-Size Memorypool This system call deletes the specified

variable-size memorypool.

e Get Variable-Size Memory Block A memory block of the given size is
allocated from the specified variable-size memorypool. The system call supports

both polling and timeout features.

e Release Variable-Size Memory Block This system call releases the specified

memory block to the variable-size memorypool.

e Reference Variable-Size Memorypool Status This system call refers to
the state of the specified variable-size memorypool, and returns the total and
the maximum continuous free memory available, waiting task information, and

its extended information.

e Create Fixed-Size Memorypool This system call creates a fixed-size mem-
orypool of size given by memory block size and memory pool block count (the

maximum number of blocks that can be allocated from the pool at a time).

e Delete Fixed-Size Memorypool This system call deletes the specified fixed-

size memorypool.

e Get Fixed-Size Memory Block A fixed size memory block is allocated from
the specified fixed-size memorypool. The system call supports both polling and

timeout features.

e Release Fixed-Size Memory Block This system call releases the specified

memory block to the fixed-size memorypool.

e Reference Fixed-Size Memorypool Status This system call refers to the
state of the specified fixed-size memorypool and returns the current number of

free blocks, waiting task information, and its extended information.
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6.5 Implementation

6.5.1 Module Initialization

At initialization the pITRON Memory Manager Module sets-up the memory pool
tables and initializes their wait queues. It queries the nano-kernel for the service
handlers of the Physical Memory Manager Module and the uITRON Task Manager
Module.

6.5.2 Data Structures

Each entry of the variable-size memory pool and the fixed-size memory pool tables

have the following fields, respectively.

struct var_sz_mem_pool_cntrl_block {

VP exinf; /* Extended Information */

ATR mplatr; /* Memory Pool Attributes */
MEM_BLK_ID_TYPE blkid; /* Physical Mem mgr’s blkid */

INT maxblks; /* Max blks that can be allocated */

var_sz_block_node var_sz_blocks_head_node;

/* Head node of linked list which maintains block assignments */

I

struct fixed_sz_mem_pool_cntrl_block {
VP exinf; /* Extended Information */
ATR mpfatr; /* Memory Pool Attributes x/
INT blfsz; /* Memory Block Size */
INT mpfcnt; /* # of blocks in the pool */
MEM_BLK_ID_TYPE blkid; /* Physical Mem mgr’s blkid */

};

The memory pool attributes specify the manner in which tasks waiting for memory
allocation are put on the memorypool’s queue. The blkid is a tag to the memory

allocated for the pool by the Physical Memory Manager Module.
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6.5.3 Memory Allocation

Memory is allocated for creation of memorypools, using the service, get_mem_blk(),
of the Physical Memory Manager Module. Allocation of memory blocks in each of

the pools is done as follows.

g Variable-size Memorypools

A doubly linked list is maintained to manage the block allocation. Specifically, at
the time of pool creation, additional amount of memory is requested, which is used
for the linked list. Given the size of the pool, it is assumed that the maximum
number of blocks that can be requested from the pool are (pool_size/FACTOR). The
FACTOR used was 10, as it is fair enough for most of the cases. This results in
faster allocation and deallocation of memory blocks, as there is no need to contact
the Physical Memory Manager Module again, for more memory. The doubly linked
list representation simplifies merging of adjacent free memory blocks, and is faster.
However, it conserves more memory.

The following algorithm is used when a request for a memory block of a specific

size arrives.

1. Refer the status of memorypool;
2. if (the memorypool wait queue is not empty) OR
if (the continuous free space available is lesser than required)
then
if (the task is just polling) return NO_MEM;
else
Add the task-id and the memory requested to the queue;
Make the current task wait and Release Control;
3. Allocate memory block;
4. Check out the free space left now.
Try allocating memory to the tasks at the head of the queue.
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8 Flixed-size Memorypools

As the maximum number of blocks that can be requested from a fixed-size memo-
rypool is fixed and known, additional memory (a control block) of size number-of-
blocks/81is requested at the time of pool creation, to manage the allocation/deallocation
of blocks. Each bit in the control block corresponding to a unique block in the pool

and determines whether the block is allocated.

The following algorithm is used when a request for a memory block arrives.

1. Refer the status of memorypool;
2. if (the memorypool wait queue is not empty)
then
if (the task is just polling) return NO_MEM;
else
Add the task-id to the queue;
Make the current task wait and Release Control;

3. Allocate memory block;

6.5.4 Memory De-allocation

Memory is de-allocated when a memorypool is deleted, using the service, free_mem_blk(),
of the Physical Memory Manager Module. When a pool is deleted, however, if there
are any tasks waiting to get memory blocks from the memorypool, a specific error

will to returned to each waiting task.

Deallocation of memory blocks in the pools is done as follows.

g Variable-size Memorypools

The address of the memory block to be freed, indirectly gives the address of the
control node, in the pool linked list. The status of the node is set to be free, and
using the doubly linked feature of the list, the neibhoring nodes, if already FREE,

are merged to form a single node with larger continuous space.
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8 Flixed-size Memorypools

De-allocation in fixed-size memorypools is simply retrieving and resetting the corre-

sponding control bit of the memory block.

6.5.5 uITRON Implementation-dependent Specifications

e Specification: When tasks form a queue to compete for a memory, it is im-
plementation dependent whether priority is given to tasks requesting the smaller
size of memory or those at the head of the queue.

Implementation: No priority is given to the tasks requesting smaller size of
memory but allocation is strictly done in the order specified (FIFO or task-

priority based) while creating the pool.

e Specification: When a memorypool being waited for by more than one tasks
is deleted, the order of tasks on the ready queue after the WAIT state is cleared
1s implementation dependent in the case of tasks having the same priority.
Implementation: The tasks are placed in the same order in the ready queue

as they were in the memorypool wait queue.
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Chapter 7

ITRON Time Manager Module

The pI'TRON Time Manager Module provides services for time-dependent processing.
These services include functions for setting and referring the system clock, delaying
tasks, manipulating handlers invoked cyclically (cyclic handlers), and manipulating

handlers started at specified time (alarm handlers).

7.1 The Design

Time can be either absolute or relative, and is managed and expressed in terms of milli-
seconds, seconds, minutes, hours, days(or date), months and years. Using the services
of the Interrupt Manager Module, the module maintains the system time and manages
the cyclic handlers and alarm handlers. This is done by defining highest priority
handlers(a service provided by the Interrupt Handler Module) for the hardware timer
interrupt, which maintain the system time and manage the cyclic handlers and the
alarm handlers.

Cyclic handlers and alarm handlers are generally called timer handlers. Timer
handlers are executed as task-independent portions and the user must save any regis-
ters used by the timer handler. Even if dispatching is required while a timer handler
is executing, it is not processed immediately, but rather that dispatching is delayed
until the timer handler finishes. This is called delayed dispatching.

A cyclic handler is invoked first exactly after the time interval has elapsed. The
handler will run cyclically until either its definition is cancelled or it is deactivated.

Different cyclic handlers are identified by cyclic handler-id and when redefining a
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cyclic handler, it is not necessary to first cancel the handler definition which has that
id.

Alarm handlers are similarly identified by alarm handler-ids but the time for alarm
handler invocation could be either absolute or relative. If an absolute time is specified,
the handler will be invoked at the clock time specified. If relative time is specified, the
alarm handler will be invoked after the amount of time specified has elapsed. In any
case, the definition of the alarm handler is cancelled automatically when the specified
time comes and that the handler is invoked. When redefining an alarm handler, it is,
however, not necessary to first cancel the handler definition which has that id.

The module offers services to delay (keep in WAIT state) the running task, in
real-time. This is done by using the services of the uITRON Task Manager Module
to make the current task wait, with timeout(the delay value). The task WAIT state is
released as soon as the specified time expires, but if a higher priority task is executing
by this time, the task is kept in the ready queue, and it waits further for it’s turn to

come.

7.2 Prerequisites for the Time Manager Module

e Hard Prerequisites: Interrupt Handler Module.
The Interrupt Handler Module services are used to maintain system time, and

to manage cyclic handlers and alarm handlers.

e Soft Prerequisites: pITRON Task Manager Module.
The pITRON Task Manager Module timeout service is used to delay the running

task in real-time.

7.3 Configuration parameters

The module needs to be provided with the following static configuration parameters:

1. The maximum number of cyclic handlers defined by the application.

2. The maximum number of alarm handlers defined by the application.
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7.4 Services provided by the Time Manager

The pI'TRON Time Manager Module provides the following services.
e Set System Clock This system call sets the system clock to the time specified.

e Get System Clock This system call returns the current value of the system

clock.

e Delay Task This system call temporarily halts the execution of the task issuing
the call, and makes it enter the time elapse wait state. The task halts execution

for the amount of time specified.
e Define Cyclic Handler This system call defines a cyclic handler.

e Activate Cyclic Handler This system call changes the activation of the spec-
ified cyclic handler (OFF/ON/Re-initialize the interval counter).

e Reference Cyclic Handler Status This system call refers to the state of
the specified cyclic handler and returns the cyclic handler’s activation state,
the remaining time until the cyclic handler is invoked next, and its extended

information.
e Define Alarm Handler This system call defines an alarm handler.

e Reference Alarm Handler Status This system call refers to the state of the
specified alarm handler, and returns the remaining time until the alarm handler

is invoked, and its extended information.

e Return from Timer Handler This system call causes the invoked timer

handler (cyclic or alarm) to finish.

7.5 Implementation

7.5.1 Module Initialization

At initialization the pITRON Time Manager Module sets the system time to a default
value and initializes the cyclic handler and alarm handler tables. It also initializes

the 8253 timer(Counter 0) to generate an interrupt, 100 times per second. It queries
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the nano-kernel for the service handlers of the Interrupt Manager Module and the
pITRON Task Manager Module. It then adds handlers to the timer interrupt to

maintain system clock and manage cyclic handlers and alarm handlers.

7.5.2 System Time

System time is absolute and contains the fields milli-seconds, seconds, minutes, hours,
date, month and year. The system time is incremented by 10 milli-seconds on each
timer interrupt and other fields like seconds, minutes, etc., are modified accordingly.
Leap years are taken care of. The system call, set_system_call(), re-initializes the

system time.

7.5.3 Cyclic Handlers

Relative time is specified for invocation of a cyclic handler, in terms of milli-seconds,
seconds, minutes, hours, days, months(1 month = 30 days), and years (1 year =
365 days). The handler that manages the cyclic handlers goes through all the active
cyclic handlers, each time it is invoked, and decrements the waiting count by 10 milli-
seconds, and if the count reaches zero, the module informs the uI'TRON Task Manger
Module, that a task independent portion is being entered into. It then invokes the
cyclic handler. Once the cyclic handler exits, the uITRON Task Manager Module is

re-informed about the current system status and the wait counter is re-initialized.

7.5.4 Alarm Handlers

Absolute or relative time can be specified for invocation of an alarm handler. Alarm
handler specified by relative time are processed in the same way as a cyclic handler,
except that their definition is cancelled once the handler is invoked. However, if the
time specified is absolute, a comparison is made with the current system time, instead

of maintaining a waiting counter.

7.5.5 uITRON Implementation-dependent Specifications

e Specification: If more than one timer handler and/or interrupt handler are to

be invoked at the same time, it is implementation dependent whether they may
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either be run serially or they may be run nested.
Implementation: Timer handlers are invoked by an interrupt handler, which

invokes them serially. Interrupt handlers, however, can be nested.

Specification: In an implementation allowing define_cyclic_handler() or de-
fine_alarm_handler() to be issued by a timer handler, it is possible to redefine a
timer handler with the same timer handler number/id in the handler.

Implementation: define_cyclic_handler() and define_alarm_handler() are al-
lowed inside any timer handler and hence the redefinition of the same timer

handler number /id.
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Chapter 8

uITRON System Manager Module

System management functions are used to set and refer the overall system environ-
ment. These system calls include functions for getting the OS version, referencing
the system’s dynamic status, and referencing configuration information (the system’s

static status).

8.1 The Design

The information about the OS version, maker code, uITRON specification version
number implemented (3.02), internal implementation version number (ver 1.0), CPU
information (Intel 8086, 8088), available functions (Level E) etc., is hard-coded, and
can be obtained from the get_version() system call.

To refer the system’s dynamic status, the uITRON System Manager Module uses
the services of the uI'TRON Task Manager Module. The puITRON Task Manager
Module manages the three flags, DISPATCH-DISABLED, TASK-INDEPENDENT-
PORTION-ENTERED, and CPU-LOCKED. Any module that performs an operation
that would modify the system status, informs the puI'TRON Task Manger Module
about the change, and the latter updates the flag. The puITRON System Manger

Module simply refers to these flags for the current system status.

8.2 Prerequisites for the System Manager Module
e Hard Prerequisites: None.
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e Soft Prerequisites: pITRON Task Manager Module.
The pITRON Task Manager Module services are used to refer to the current
system status - if the CPU has been locked, or if a task-independent portion is
running, or if the dispatching is disabled.

8.3 Configuration parameters

The module does not have any static configuration parameters.

8.4 Services provided by the System Manager

The pITRON System Manager Module provides the following services.

e Get Version Information This system call gets informations of the maker of
the pITRON specification OS currently executing, the identification number of
the OS, the uITRON specification version number which the OS is based on,

and the version number of the OS product.

e Reference System Status This system call refers the execution state of the
CPU and OS, and returns information such as whether dispatching is disabled

and whether a task-independent portion is executing.

e Reference Configuration Information This system call refers static infor-

mation regarding the system and information specified at its configuration.

8.5 Implementation

At initialization, the pITRON System Manager Module queries the nano-kernel for
the service handler of the uI'TRON Task Manager Module. The system call Reference
System Status uses the service system_status_info() of the uITRON Task Manager
Module and the current system state is informed to the user, in terms of whether dis-
patching is disabled, whether the cpu has been locked and whether a task-independent
portion is executing. The configuration information returned by the module is imple-

mentation dependent, and has the following structure.
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typedef struct t_rcfg {
nucleus_node nucleus;
u_mem_m_node u_mem_m;
u_task_m_node u_task_m;
u_time_m_node u_time_m;
u_comm_m_node u_comm_m;

} T_RCFG;

typedef struct nucleus_node {
INT max_no_of_ports;

} nucleus_node;

typedef struct u_mem_m_node {
INT max_app_var_sz_pools;
INT max_app_fixed_sz_pools;

} u_mem_m_node;

typedef struct u_task_m_node {
INT max_user_tasks;
INT max_suspend_requests;
INT max_wakeup_requests;

} u_task_m_node;

typedef struct u_time_m_node {
INT max_cyclic_handlers;
INT max_alarm_handlers;

} u_time_m_node;

typedef struct u_comm_m_node {
INT max_user_eventflags;
INT max_user_mailboxes;
INT max_user_semaphores;

} u_comm_m_node;

Hence we see that the uITRON System Manager Module provides valuable infor-

mation such that flexible code can be written.

44



Chapter 9

Car Dashboard Controller - An
Application Program

The kernel design and various modules presented in this thesis, offer services that can
be used for a wide range of applications. The OS platform is compatible with level
E(extended) pITRON 3.0 industrial standard. In this chapter, we discuss the design of
a car dashboard controller, an application developed using the current implementation
of the kernel.

9.1 The Model

Consider a car dashboard which shows the speed, total distance traveled, traveled
distance in a trip, fuel status, battery status, car temperature, pressures of all the
four tyres and alarms for an unlocked door. The car parameters are monitored con-
tinuously by an embedded controller. Warnings are shown on the dashboard so that
the driver can take appropriate action. For implementing such a car dashboard, we

model the application program as follows.

e The CPU is interrupted on completion of each rotation of the car tyre. A
photo sensor, that is stationary with respect to the rotating tyre, can be used
for this purpose. It would detect the light from an emitter, again stationary
with respect to the wheel. The movement of the wheel interrupts the light path
between emitter and detector. This signal is used to identify the wheel rotation.

Once the CPU is interrupted, the corresponding task would update the distance
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traveled and the speed.

A switch on the car body can be used to detect whether a door is locked. This
switch is pressed closed by the door. Door lock status is displayed periodically,

and is checked when the car is moving, to warn the driver if any door is unlocked.

An object floating in the fuel tank, connected to a rheostat can produce a voltage
corresponding to the fuel level. This value, through an A/D converter, is read

periodically by the controller to update the fuel display.

The output of the temparature sensor, sensing the temparature inside the car,

is read using A/D converter to periodically update the temparature display.

Battery voltage is directly read and converted to digital form, to be read by the
CPU, periodically.

Tyre pressure can be measured in the following way. A metal cylinder connected
to the nozzle of the tyre having a disc obstructing the air, which can be moved
away from the nozzle by the air pressure in the tyre and by a spring trying to
push it towards the nozzle. Hence, the higher the tyre pressure, the farther the
disc moves away from the nozzle, and a rheostat connected to the other end can
produce a corresponding voltage. This voltage can be continuously read by the

pads connected on the stationary part on either side of the tyre.

9.2 The Design

The application needs various data to be displayed and updated on the dashboard

constantly. Specifically, data is received by the two tasks - Update_Display and

Show_Warning from their respective mailboxes used for data communication - one

for display requests, and one for warnings. Both the tasks are of high priority and

their main function is to wait on a mailbox (other tasks are scheduled during this

time) as long as there are no messages, and once a message arrives, they retrieve it

and display. The task, Show_Warning, is the highest priority task.
The interrupt handler, UpdateDistancePerOneRotationOfTheWheel, in-

voked on each rotation of the car tyre, updates the distance traveled (both the total

distance and the recently traveled distance) by the circumference of the tyre.
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The following cyclic handlers constantly monitor the input data at regular intervals

and append the information to the display mailbox. If an event is detected that needs

the driver to be warned, an appropriate warning message is also sent (to the warning

mailbox).

1.

Speed Handler: The speed handler computes the new speed depending on the
last known distance, current distance and the time lapse between two successive
invocations of the handler. It then sends the new speed data as a message to
the display mailbox. Depending on the speed, it also generates the following

warnings:

(a) Doors unlocked. (if speed > 0)
(b) You are going too fast. (If speed > SPEED_LIMIT)

Distance Handler: The display handler simply sends a display message to the

display mailbox for both the distance values maintained.

Fuel Handler: The fuel handler sends the current fuel value to the display
mailbox and depending on the fuel value, the following warnings are sent to the

warning mailbox.

(a) Fuel is below the safe amount.

(b) Fuel too low.

Battery Handler: The battery handler sends the current battery voltage to
the display mailbox. Depending on this value the following warning is sent to

the warning mailbox.
(a) Battery Voltage too low.

Temperature Handler: The temperature handler sends the current temper-

ature inside the car to the display mailbox.

Tyre Pressure Handler: The tyre pressure handler sends four messages to
the display mailbox giving the tyre pressures of the four tyres. It also sends the

following warning message, depending on the tyre pressures.

(a) Tyre pressure low in tyre #
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7. Door-lock Handler: The Door-lock handler sends the current Door-lock sta-

tus of the four doors of the car to the display mailbox.

All the above mentioned cyclic handlers, tasks, and the interrupt handler together

make the car dashboard controller simple and complete.

9.3 Results

The design and implementation(a simulation) of this application, took about twenty
man hours. The application is completely written in ‘C’ language[Appendix C], and
the size of the source code is about 500 lines. It can be clearly seen that using the
pITRON API we are able to design the application at a very high level of abstraction,

making the design and implementation of the application very simple.
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Chapter 10

Conclusion

In this thesis we presented a generic modular embedded OS platform compatible with
level E(Extended) pITRON 3.0 standard. The OS is well suited for both the small-
scale and large-scale embedded systems, as the modules are pluggable in nature and
hence, no extra baggage needs to be carried by the application. Further the mod-
ular architecture allows the OS to provide a compatible interface with an industrial
standard like uITRON, contributing to improved software productivity.

The example application of a car dashboard controller, presented in Chapter 9 and
Appendix C, clearly shows that the embedded OS platform presented in this thesis
reduces the development time; reduces the design complexity; reduces the chances of

error and makes the application compatible with an industrial standard.

The current implementation supports the basic modules: Physical Memory Man-
ager, Interrupt Handler, Thread Manager and the uITRON API modules: Task Man-
ager, Communication Manager, Interrupt Manager, Memory Manager, Time Manager
and System Manager. These modules would suffice for both the simple applications
and most of the complicated ones. For other applications, modules like Network

Manager, may be necessary.

10.1 Existing Work

The work presented here is an extension of the existing work, which includes the

design and implementation of the nucleus and the following modules [Appendix: B|

1. Interrupt Handler Module and
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2. Thread Manager Module

These two modules are sufficient for small applications, but do not provide any stan-
dard API.

10.2 Future Work

The following tasks could be taken up, as part of future work, to take the work

towards its logical completion.

Modules Several other modules like Network Manager, etc., and modules support-
ing other standard API can be developed. Further, modules serving the same
purpose but using different strategies can be developed too, and any of those

modules can be picked up by the application, depending on the need.

Applications More applications can be developed using this kernel to verify the

correctness and suitability of the kernel.

Tools Several tools can be developed for simulating and debugging sample applica-
tions and modules, leading to rapid development of the OS and the embedded

applications.

Porting Porting of the machine-dependant parts of the modules for different hard-

ware architectures and processors can also be taken up.
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Appendix A

API

This chapter discusses the application program interface provided by various uITRON
modules. Though the modules and the application communicate using the stardard-
ized intermodule interface[Kri97], given below are the library function prototypes that

can be used by the applications using the help of the standard library.

A.1 puITRON Task Manager Module
1. Create Task

ER cre_tsk ( ID tskid, T_CTSK *pk_ctsk ) ;
- (pk_ctsk members)-

VP exinf ExtendedInformation
ATR tskatr TaskAttribute

FP task TaskStartAddress
PRI itskpri InitialTaskPriority
INT stksz  StackSize (in bytes)

2. Delete Task

ER del_tsk ( ID tskid ) ;

3. Start Task
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10.

11.

12.

ER sta_tsk ( ID tskid, INT stacd ) ;
Exit Issuing Task

void ext_tsk () ;

Exit and Delete Task

void exd_tsk () ;

Terminate Other Task

ER ter_tsk ( ID tskid ) ;

Disable Dispatch

ER dis_dsp () ;

Enable Dispatch

ER ena_dsp () ;

Change Task Priority

ER chg_pri ( ID tskid, PRI tskpri ) ;
Rotate Tasks on the Ready Queue
ER rot_rdq ( PRI tskpri ) ;

Release Wait of Other Task

ER rel_wai ( ID tskid ) ;

Get Task Identifier

ER get_tid ( ID *p_tskid ) ;

52



13. Reference Task Status

ER ref_tsk ( T_RTSK #*pk_rtsk, ID tskid ) ;
- (pk_rtsk members)-

VP exinf ExtendedInformation

PRI tskpri TaskPriority

UINT tskstat TaskState

14. Suspend Other Task
ER sus_tsk ( ID tskid ) ;
15. Resume Suspended Task/Forcibly Resume Suspended Task

ER rsm_tsk ( ID tskid ) ;
ER frsm_tsk ( ID tskid ) ;

16. Sleep Task/Sleep Task with Timeout

ER slp_tsk () ;
ER tslp_tsk ( TMO tmout ) ;

17. Wakeup Other Task
ER wup_tsk ( ID tskid ) ;
18. Cancel Wakeup Request

ER can_wup ( INT *p_wupcnt, ID tskid ) ;

A.2 puITRON Communication Manager Module

1. Create Semaphore
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ER cre_sem ( ID semid, T_CSEM *pk_csem ) ;

- (pk_csem members)-

VP exinf  ExtendedInformation
ATR sematr SemaphoreAttributes
INT isemcnt InitialSemaphoreCount [level X]
INT maxsem MaximumSemaphoreCount [level X]

. Delete Semaphore

ER del_sem ( ID semid ) ;

. Signal Semaphore
ER sig_sem ( ID semid ) ;

. Wait on Semaphore/Poll and Request Semaphore/Wait on Semaphore
with Timeout

ER wai_sem ( ID semid ) ;
ER preq_sem ( ID semid ) ;
ER twai_sem ( ID semid, TMO tmout ) ;

. Reference Semaphore Status

ER ref_sem ( T_RSEM *pk_rsem, ID semid ) ;
- (pk_rsem members)-
VP exinf ExtendedInformation
BOOL_ID wtsk WaitingTaskInformation

INT semcnt SemaphoreCount
. Create Eventflag

ER cre_flg ( ID flgid, T_CFLG x*pk_cflg ) ;
-(pk_cflg members)-
VP exinf  ExtendedInformation
ATR flgatr EventFlagAttributes
UINT iflgptn InitialEventFlagPattern

o4



10.

11.

12.

Delete Eventflag
ER del_flg ( ID flgid ) ;
Set Eventflag/Clear EventFlag

ER set_flg ( ID flgid, UINT setptn ) ;
ER clr_flg ( ID flgid, UINT clrptn ) ;

. Wait for Eventflag/Wait for Eventflag (Polling)/Wait for Eventflag

with Timeout

ER wai_flg ( UINT xp_flgptn, ID flgid, UINT waiptn, UINT wfmode) ;

ER pol_flg ( UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

ER twai_flg ( UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode,
TMO tmout ) ;

Reference Eventflag Status

ER ref_flg ( T_RFLG *pk_rflg, ID flgid ) ;
-(pk_rflg members)-
VP exinf  ExtendedInformation
BOOL_ID wtsk WaitingTaskInformation
UINT flgptn EventFlagBitPattern

Create Mailbox

ER cre_mbx ( ID mbxid, T_CMBX *pk_cmbx ) ;
- (pk_cmbx members)-
VP exinf ExtendedInformation
ATR mbxatr MailboxAttributes
(the use of the following information is implementation dependent)

INT bufcnt BufferMessageCount

Delete Mailbox
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ER del_mbx ( ID mbxid ) ;

13. Send Message to Mailbox
ER snd_msg ( ID mbxid, T_MSG *pk_msg ) ;

14. Receive Message from Mailbox/Poll and Receive Message from Mail-

box/Receive Message from Mailbox with Timeout

ER rcv_msg ( T_MSG *ppk_msg, ID mbxid ) ;
ER prcv_msg ( T_MSG *ppk_msg, ID mbxid ) ;
ER trcv_msg ( T_MSG *ppk_msg, ID mbxid, TMO tmout ) ;

15. Reference Mailbox Status

ER ref_mbx ( T_RMBX *pk_rmbx, ID mbxid ) ;
- (pk_rmbx members)-
VP exinf  ExtendedInformation
BOOL_ID wtsk WaitingTaskInformation
T_MSG  *pk_msg Start Address of Message Packet to be Received

A.3 pITRON Interrupt Manager Module

1. Define Interrupt Handler

ER def_int ( UINT dintno, T_DINT *pk_dint ) ;
-(pk_dint members)-
ATR intatr InterruptHandlerAttributes
FP inthdr InterruptHandlerAddress

2. Return from Interrupt Handler
void ret_int () ;
3. Return and Wakeup Task
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void ret_wup ( ID tskid ) ;
4. Lock CPU
ER loc_cpu () ;
5. Unlock CPU
ER unl_cpu () ;
6. Disable Interrupt
ER dis_int ( UINT eintno ) ;
7. Enable Interrupt
ER ena_int ( UINT eintno ) ;
8. Change Interrupt Mask (Level or Priority)
ER chg_iXX ( UINT iXXXX ) ;
9. Reference Interrupt Mask (Level or Priority)

ER ref_iXX ( UINT xp_iXXXX ) ;

A.4 uITRON Memory Manager Module

1. Create Variable-Size Memorypool

ER cre_mpl ( ID mplid, T_CMPL *pk_cmpl ) ;
- (pk_cmpl members)-

VP exinf ExtendedInformation
ATR mplatr MemoryPoolAttributes
INT mplsz  MemoryPoolSize (in bytes)
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2. Delete Variable-Size Memorypool
ER del_mpl ( ID mplid ) ;

3. Get Variable-Size Memory Block/Poll and Get Variable-Size Memory
Block/Get Variable-Size Memory Block with Timeout

ER get_blk ( VP *p_blk, ID mplid, INT blksz );
ER pget_blk ( VP *p_blk, ID mplid, INT blksz );
ER tget_blk ( VP *p_blk, ID mplid, INT blksz, TMO tmout ) ;

4. Release Variable-Size Memory Block
ER rel_blk ( ID mplid, VP blk ) ;
5. Reference Variable-Size Memorypool Status

ER ref_mpl ( T_RMPL *pk_rmpl, ID mplid ) ;
- (pk_rmpl members)-
VP exinf ExtendedInformation
BOOL_ID wtsk Waiting TaskInformation
INT frsz FreeMemorySize (in bytes)

INT maxsz  MaximumFreeMemorySize (in bytes)
6. Create Fixed-Size Memorypool

ER cre_mpf ( ID mpfid, T_CMPF *pk_cmpf ) ;
- (pk_cmpf members)-

VP exinf ExtendedInformation

ATR mpfatr MemoryPoolAttributes

INT mpfcnt MemoryPoolBlockCount

INT blfsz  MemoryBlockSize (in bytes)

7. Delete Fixed-Size Memorypool

ER del_mpf ( ID mpfid ) ;
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8. Get Fixed-Size Memory Block/Poll and Get Fixed-Size Memory Block/Get
Fixed-Size Memory Block with Timeout

ER get_blf ( VP #p_blf, ID mpfid );
ER pget_blf ( VP *p_blf, ID mpfid );
ER tget_blf ( VP xp_blf, ID mpfid, TMO tmout ) ;

9. Release Fixed-Size Memory Block
R rel_blf ( ID mpfid, VP blf ) ;
10. Reference Fixed-Size Memorypool Status

ER ref_mpf ( T_RMPF *pk_rmpf, ID mpfid ) ;
- (pk_rmpf members)-
VP exinf ExtendedInformation
BOOL_ID wtsk WaitingTaskInformation
INT frbcnt FreeMemoryBlockCount

A.5 pITRON Time Manager Module
1. Set System Clock

ER set_tim ( SYSTIME #*pk_tim );
typedef struct {

H msecs; /* Milli-seconds */
B secs; /* Seconds */

B mins; /* Minutes */

B hrs; /* Hours */

B date; /* Date */

B month; /* Month */

H year; /* Year */

}

SYSTIME, CYCTIME, ALMTIME;
2. Get System Clock
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ER get_tim ( SYSTIME *pk_tim );
. Delay Task

ER dly_tsk ( DLYTIME dlytim );
. Define Cyclic Handler

ER def_cyc ( HNO cycno, T_DCYC *pk_dcyc )
-(pk_dcyc members)-

VP exinf ExtendedInformation
ATR cycatr CyclicHandlerAttributes
FP cychdr CyclicHandlerAddress

UINT cycact CyclicHandlerActivation
CYCTIME cyctim CycleTime

. Activate Cyclic Handler

ER act_cyc ( HNO cycno, UINT cycact ) ;

. Reference Cyclic Handler Status

ER ref_cyc ( T_RCYC *pk_rcyc, HNO cycno )
-(pk_rcyc members)-
VP exinf  ExtendedInformation
CYCTIME 1fttim LeftTime
UINT cycact CyclicHandlerActivation

. Define Alarm Handler

ER def_alm ( HNO almno, T_DALM *pk_dalm )
-(pk_dalm members)-

VP exinf ExtendedInformation
ATR almatr AlarmHandlerAttributes
FP almhdr AlarmHandlerAddress

UINT tmmode TimeMode
ALMTIME almtim AlarmTime
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8. Reference Alarm Handler Status

ER ref_alm ( T_RALM *pk_ralm, HNO almno ) ;
-(pk_ralm members)-

VP exinf ExtendedInformation

ALMTIME 1fttim Time Left before Handler Runs

9. Return from Timer Handler

void ret_tmr ( ) ;

A.6 pITRON System Manager Module

1. Get Version Information

ER get_ver ( T_VER *pk_ver );

-(pk_ver members)-

UH maker 0S5 Maker

UH id Identification Number of the 0S

UH spver  ITRON or uITRON Specification Version Number
UH prver 0S Product Version Number

UH prno[4] Product Number(Product Management Information)
UH cpu CPU Information

UH var Variation Descriptor

2. Reference System Status

ER ref_sys ( T_RSYS *pk_rsys ) ;
-(pk_rsys members)-

INT sysstat SystemState

3. Reference Configuration Information

ER ref_cfg ( T_RCFG *pk_rcfg ) ;
-(pk_rcfg members)-

(CPU and/or implementation-dependent information is returned)
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Appendix B

Existing Modules

The following modules have been developed prior to this thesis. A brief description

of their design, pre-requisites, and services offered are given below.

B.1 Interrupt Manager Module[Kri97]

The interrupt manager provides services to let the application and other modules to
specify their functions to be added or removed from the service routine of a particular

interrupt.

B.1.1 The Design

Interrupts are handled in general, by having an interrupt service routine for each
interrupt and having it invoked automatically whenever the interrupt arrives. Con-
ventionally, when this interrupt routine is being executed, some or all the interrupts

are disabled or queued, depending on the interrupt’s priority.

8 Problems with interrupt level priorities

In cases where the same interrupt occurs multiple times in succession, fast enough,
such that the next interrupt arrives while the previous invocation is being served,

then, all subsequent calls are either masked, queued or allowed to be serviced.

If the subsequent calls are masked, we lose some input signals which may be
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urgent. If the calls are queued, the system cannot work since the queue keeps on
growing while the system is not able to serve the requests and if the interrupts are
allowed to be serviced, then the stack grows unbounded since the interrupts keep

coming but are not able to return.

8 The Solution

The approach adapted in the design of this module is to have priorities at the service
level rather than at interrupt level. All the interrupts are defined to have equal
priority and no interrupt is masked during normal execution. If at any time interrupt
masking is required then all interrupts are masked at the same time.

Hence, an application defines services along with their priorities. When an inter-
rupt is raised, the default service routine is invoked which executes service routines
in order of their priorities. In case another interrupt arises while the previous one
is still being served, the interrupt is allowed to be serviced and the previous one is

terminated leaving low priority services unserved.

B.1.2 Pre-requisites
e Hard Prerequisites : None.

e Soft Prerequisites : None.

The only dependency of this module is a run-time dependency on modules like “virtual
memory manager”. If it is present, the interrupt manager additionally sets-up the

interrupt tables for the protected mode.

B.1.3 Services

The module offers the following services to the application and the other modules.

e Add Handler - Add a given service subroutine to the list of an interrupt at

the given priority.

e Remove Handler - Remove a specified service routine or handler from the list

of handlers of the specified interrupt.
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B.2 Thread Manager Module[Kri97]

A thread is an independent flow of execution. While nano-kernel supports a single
thread of execution, a thread manager provides multiple threads which may be ex-
ecuting in a system concurrently. The module provides the application and other
modules, the services related to threads such as thread scheduling, thread creation,
thread termination etc. It also provides synchronization services like semaphores and
inter thread signaling. Apart from providing these services, the module also keeps

the existence of multiple threads transparent to the nano-kernel and other modules.

B.2.1 The Design

Basic thread management involves providing the application with the ability to use
multiple threads of execution. This includes services to start a new thread, to schedule

threads, to terminate a thread and to modify properties of a thread.

g Thread Creation

To start a new thread, the module internally uses the fork' construct. Externally, the

module offers a create? construct to simplify the application programming.

B Thread Scheduling

In embedded systems different applications require different types of scheduling al-
gorithms. Therefore, the design and its data structures make it easy to implement
most of the algorithms by just adding a function that determines the next thread to
be scheduled.

B8 Thread Termination

A thread is terminated when it exits or is killed by another thread. When a thread

terminates the module unlocks all the semaphores locked by the terminating thread

!The fork construct creates a new thread and returns to the statement following the fork call in
both threads. Here the two threads are considered to have a parent child relationship.

2The create construct creates a thread in which control is returned to the specified address. In
this case the threads are said to have a peer relationship.
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and clears its thread status structure entry. If its parent thread is still alive then
the module sends a signal to the parent thread to indicate that a child thread has

terminated.

B Semaphore Management

The module also provides a simple semaphore scheme to provide mutual exclusion
and synchronize access of shared resources. Although the semaphore service provided
by this module is very simple and is similar to binary mutex, it is sufficient for most
applications. More sophisticated synchronization services can easily be integrated at

the application level itself.

B Signal Management

The design here presents a bi-priority signal management scheme, in which, signals
can have two level of priorities, the default priority and the high priority. A signal
at default priority can be received by the target thread only when it gets scheduled
at its turn. In case of high priority signal, the target thread is scheduled out of its
turn to let it receive the signal. This scheme guarantees that a high priority signal
is received by the target thread as soon as the scheduler gets a chance to schedule
it. Even better constraints can be achieved by making the sender thread voluntarily
relinquish control after sending the signal. This makes the target thread receive the

signal almost immediately.

B.2.2 Pre-requisites
e Hard Prerequisites : None.

e Soft Prerequisites : Interrupt Manager Module.

If the interrupt manager module is present, it attaches the thread scheduler to the
‘timer_interrupt’ to support pre-emptive scheduling. Otherwise the module supports

only non-pre-emptive scheduling.
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B.2.3 Services

The module offers the following services to the application and the other modules.

e Create Thread - Set up the stack for the new thread, find an empty entry in

the thread array, and make proper entries thereby creating a new thread.

e Thread Exit - Mark the current thread status as dead, free all allocated

resources and send a signal to parent thread thereby killing the calling thread.

e Kill Thread - This service is same as thread exit except that this can kill a

specified thread rather than the calling thread.

e Set Thread Priority - Set the priority of the specified thread to a specified

value.
e Get Thread Priority - Returns the priority of the specified thread.
e Get Thread Id - Get the thread id of current thread.
e Suspend Thread - Suspend the execution of given thread.
e Resume Thread - Resume execution of a thread.
e Thread Switch - Voluntarily release of control.
e Thread Wait - Wait for one or more child threads to die.
e Thread sleep - Sleep for a given time.
e Initialize Semaphore - Initialize a given semaphore.

e Set Semaphore - Locks the given semaphore if not already locked or block if

it is already locked.

e Clear Semaphore - Unlock the given semaphore and unblock a thread blocked

on this semaphore.
e Close Semaphore - Close a given semaphore.

e Set Signal Handler - Sets a given function as the handler of a given signal in

the calling thread.
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e Revoke Signal Handler - Removes the signal handler which was last set and

restore the signal handler to the previous one.

e Send Signal - Sends a given signal to a specified thread.
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Appendix C

Test Application Code

#include
#include
#include
#include
#include

#include

<libh\u_libtsk.
<1libh\u_libcom.
<libh\u_libtim.
<libh\u_libint.
<libh\libprint.

"car_dashboard.

INT current_speed = 0;

INT total_distance = O,
INT current_fuel = INITIAL_FUEL;

h> /%
h> /%
h> /%
h> /%
h> /%
h"

Task Management functions */

Task Communication functions */
Time Management functions */
Interrupt Management functions */

Screen-Printing functions */

current_distance = 0;

INT current_battery_status =

INITIAL_BATT,;

INT current_temparature = INITIAL_TEMP;
INT current_tyre_pressure[4] = { INITIAL_PRES, INITIAL_PRES,

INITIAL_PRES, INITIAL_PRES };

BOOL current_door_lock[4] = { TRUE, TRUE, TRUE, TRUE };

char char_read = 0;

struct parameter_block_header* application_main (

struct parameter_block_header* message)

T_CTSK cre_tsk_data;
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T_CMBX cre_mbox_data;
T_DINT def_intr_data;

/* Pass the NUCLEUS HANDLER address to the library x*/

init_library (message);

/* Create a mailbox to hold the DISPLAY requests */
/* Messages are queued by "message-priority" x/
cre_mbox_data.mbxatr = TA_MPRI;
cre_mbox_data.bufcnt = DISPLAY_MBOX_BUF_LEN;
cre_mbx (DISPLAY_MBOX_ID, &cre_mbox_data);

/* Create a mailbox to hold the WARNING requests */
/* Messages are queued by "message-priority" */
cre_mbox_data.mbxatr = TA_MPRI;
cre_mbox_data.bufcnt = WARNING_MBOX_BUF_LEN;
cre_mbx (WARNING_MBOX_ID, &cre_mbox_data);

/* Create a task to update display whenever a request arrives
This task eventually waits for messages in "DISPLAY_MLBOX" */

cre_tsk_data.tskatr = TA_HLNG;

cre_tsk_data.task = display_current_status;

cre_tsk_data.itskpri = 2;

cre_tsk_data.stksz = DEFAULT_STACK_SIZE;

cre_tsk (DISPLAY_TASK_ID, &cre_tsk_data);

sta_tsk (DISPLAY_TASK_ID, 0);

/* Create a task which WARNs the driver. This task eventually
waits for messages in the mailbox "WARNING_MBOX" =/

cre_tsk_data.tskatr = TA_HLNG;

cre_tsk_data.task = warn_the_driver;

cre_tsk_data.itskpri = 1;
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cre_tsk_data.stksz = DEFAULT_STACK_SIZE;
cre_tsk (WARNING_TASK_ID, &cre_tsk_data);
sta_tsk (WARNING_TASK_ID, 0);

/* Create a task which generates wheel rotation interrupt at random
intervals - simulates using s/w interrupts and appr. delay */

cre_tsk_data.tskatr = TA_HLNG;

cre_tsk_data.task = generate_wheel_rotation_interrupts;

cre_tsk_data.itskpri = 3;

cre_tsk_data.stksz = DEFAULT_STACK_SIZE;

cre_tsk (GEN_WHEEL_INTR_TASK_ID, &cre_tsk_data);

sta_tsk (GEN_WHEEL_INTR_TASK_ID, 0);

/* Activate the Cyclic Handlers which scan data from time to time */

DEF_CYC (SPEED_HANDLER, TA_HLNG, TCY_ON, speed_handler,
SPEED_UPDATE_TIME) ;

DEF_CYC (DISTANCE_HANDLER, TA_HLNG, TCY_ON, distance_handler,
DISTANCE_UPDATE_TIME) ;

DEF_CYC (FUEL_HANDLER, TA_HLNG, TCY_ON, fuel_handler,
FUEL_UPDATE_TIME) ;

DEF_CYC (BATTERY_HANDLER, TA_HLNG, TCY_ON, battery_handler,
BATTERY_UPDATE_TIME) ;

DEF_CYC (TEMPARATURE_HANDLER, TA_HLNG, TCY_ON, temparature_handler,
TEMPARATURE_UPDATE_TIME) ;

DEF_CYC (TYRE_PRESSURE_HANDLER, TA_HLNG, TCY_ON,
tyre_pressure_handler, TYRE_PRESSURE_UPDATE_TIME) ;

DEF_CYC (DOOR_LOCK_HANDLER, TA_HLNG, TCY_ON, door_lock_handler,
DOOR_LOCK_UPDATE_TIME) ;

/* Define the Distance handler x*/

def_intr_data.intatr = TA_HLNG;

def_intr_data.inthdr = update_distance_per_one_rotation_of_wheel;
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def_int (WHEEL_INTERRUPT_NO, &def_intr_data);

/* Define the keyboard handler */

def_intr_data.intatr

def_intr_data.inthdr

TA_HLNG;

keyboard_handler;

def_int (0x09, &def_intr_data);

/* Process User inputs */
for (;;) {
(get_key()) {

switch
case
case
case
case
case
case
case
case

case

case

case

Jf) .
)V) .

)b):

current_fuel ++; break;
current_fuel --; break;
current_battery_status++; break;
current_battery_status--; break;
current_temparature ++; break;
current_temparature --; break;

current_tyre_pressure[get_key()-’1’] ++; break;

current_tyre_pressure[get_key()-’1’] --; break;
current_door_lock[get_key()-’1’] = TRUE;
door_lock_handler(); break;
current_door_lock[get_key()-’1’] = FALSE;

door_lock_handler(); break;

current_distance = 0; break;

void display_current_status (void)

{

T_MSG buffer_msg;

struct display_message *actual_msg;

INT row,col;
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init_display (Q);

for (;;) {
/* Receive a msg OR Wait for a message indefinitely */
rcv_msg (&buffer_msg, DISPLAY_MBOX_ID);
actual_msg = (struct display_message *) buffer_msg.msgaddr;
switch (actual_msg->sender_id) {
case SPEED_HANDLER: PRINT (3,12,actual_msg->value); break;
case TOTAL_DISTANCE: PRINT (4,12,actual_msg->value/10);
print_hex (actual_msg->value%10); break;
case CURRENT_DISTANCE: PRINT (5,12,actual_msg->value/10);
print_hex (actual_msg->value%10); break;
case FUEL_HANDLER: PRINT (3,41,actual_msg->value); break;
case BATTERY_HANDLER: PRINT (4,41,actual_msg->value); break;
case TEMPARATURE_HANDLER: PRINT (5,41,actual_msg->value); break;
case TYRE_FRNT_L: PRINT (4,69,actual_msg->value); break;
case TYRE_FRNT_R: PRINT (4,74,actual_msg->value); break;
case TYRE_REAR_L: PRINT (5,69,actual_msg->value); break;
case TYRE_REAR_R: PRINT (5,74,actual_msg->value); break;
case DOOR_FRNT_L: gotoxy (8,70);
print_char ((actual_msg->value)? ’X’:’-’); break;
case DOOR_FRNT_R: gotoxy (8,75);
print_char ((actual_msg->value)? ’X’:’-’); break;
case DOOR_REAR_L: gotoxy (9,70);
print_char ((actual_msg->value)? ’X’:’-’); break;
case DOOR_REAR_R: gotoxy (9,75);

print_char ((actual_msg->value)? ’X’:’-’); break;

}

void warn_the_driver (void)
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T_MSG buffer_msg;
char *warning;

int row;

for (5;) {
/* Receive a msg OR Wait for a message indefinitely */
rcv_msg (&buffer_msg, WARNING_MBOX_ID);
/* Pring Warning */

gotoxy (15, 25);

for (warning = (char *) buffer_msg.msgaddr, row = 15;
*warning; warning ++) {
if (*warning == ’\n’) {
row ++;
gotoxy (row, 25);
}
else print_char (*warning);
}
dly_tsk (200);
/* Clear the warning */
for (row=15; row<=20; row++) {
gotoxy (row, 25);
print_string (" ")

}
static INT td = 0, cd = 0; /* ‘td’ and ‘cd’ in Meters */
void update_distance_per_one_rotation_of_wheel ()
{
td += CAR_WHEEL_2_PI_R;
if (td >= 100) {
td -= 100;
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total_distance ++;
}
cd += CAR_WHEEL_2_PI_R;
if (cd >= 100) {

cd -= 100;

current_distance ++;

void speed_handler (void)

static char *msg_to_warn = "Watch Out!!\nYou are going just too fast";
static char *door_lock_msg = "Check Out!!\nDoors unlocked";

T_MSG buffer_msg;

static struct display_message msg_to_display;

INT count;

static INT last_known_td = 0, last_known_total_distance = 0;

/* Update Speed */
current_speed = (((total_distance - last_known_total_distance)*100 +
(td - last_known_td)) *(1000/SPEED_UPDATE_TIME)*18)/5;

last_known_td = td;
last_known_total_distance = total_distance;
/* Display Speed */
SEND_DISPLAY_MSG (SPEED_HANDLER, current_speed, 1, msg_to_display);
/* Warnings */
if (current_speed > 0)

for (count = 0; count < 4; count ++)

if (!current_door_lock[count])
SEND_WARNING_MSG (&door_lock_msgl[0], 1);

if (current_speed > SPEED_LIMIT)

SEND_WARNING_MSG (&msg_to_warn[0], 1);
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void distance_handler (void)
{
T_MSG buffer_msg;
static struct display_message msg_disp[2];

SEND_DISPLAY_MSG (TOTAL_DISTANCE, total_distance, 1, msg_disp[0]);
SEND_DISPLAY_MSG (CURRENT_DISTANCE, current_distance, 1, msg_disp[1]);
}
void fuel_handler (void)
{
static char *msg_to_warnl = "Check Out! \nFuel is going down";
static char *msg_to_warn2 = "Attention!! \nFuel too low";
T_MSG buffer_msg;
static struct display_message msg_to_display;

static INT last_known_distance = 0;

if ((total_distance - last_known_distance) >= CAR_MILAGE) {
if (current_fuel) current_fuel —--;
last_known_distance = total_distance/CAR_MILAGE*CAR_MILAGE;
}
if (current_fuel < FUEL_LIMIT2)
SEND_WARNING_MSG (&msg_to_warn2[0], 1)
else if (current_fuel < FUEL_LIMIT1)
SEND_WARNING_MSG (&msg_to_warn1[0], 1);
SEND_DISPLAY_MSG (FUEL_HANDLER, current_fuel, 2, msg_to_display);
}
void battery_handler (void)
{
T_MSG buffer_msg;
static struct display_message msg_to_display;

static char *msg_to_warn = "Battery is going down \nTake care";
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if (current_battery_status < MIN_BATTERY)
SEND_WARNING_MSG (&msg_to_warn[0], 1);
SEND_DISPLAY_MSG (BATTERY_HANDLER, current_battery_status, 2,
msg_to_display);
}
void temparature_handler (void)
{
T_MSG buffer_msg;
static struct display_message msg_to_display;
SEND_DISPLAY_MSG (TEMPARATURE_HANDLER, current_temparature, 3,
msg_to_display);

}
void tyre_pressure_handler (void)
{

INT count;

T_MSG buffer_msg;
static struct display_message msg_to_displayl[4];

static char *msg_to_warn = "Check Out! \nTyre pressure low";

for (count=0; count < 4; count++) {
if (current_tyre_pressure[count] < TYRE_PRESSURE_LIMIT)
SEND_WARNING_MSG (&msg_to_warn[0], 1);
SEND_DISPLAY_MSG (TYRE_FRNT_L+count, current_tyre_pressure[count],
2, msg_to_displaylcount]);

}
}
void door_lock_handler (void)
{

INT count;

T_MSG buffer_msg;
static struct display_message msg_to_displayl[4];
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for (count=0; count < 4; count++)
SEND_DISPLAY_MSG (DOOR_FRNT_L+count, current_door_lock[count], 2,
msg_to_displayl[count]);
}
void generate_wheel_rotation_interrupts ()
{
static INT random_speed = 0, 1 = 1;
INT time_to_wait_in_msec;
#define MIN_SPEED 30
#define AVG_SPEED 70
#define MAX_SPEED 120

init_rand (5);

for (;;)
{
i--;
if (1i) {

if (random_speed <= MIN_SPEED) {

random_speed += get_random(2) ;

else if (random_speed <= AVG_SPEED) {
random_speed += get_random(2);
i=10;

}

else if (random_speed <= MAX_SPEED) {
random_speed += (get_random (3) - 1);
i = 20;

}

else {
random_speed -= get_random(3) 7 0:1;

i = 30;
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}

}

if (random_speed != 0) {
time_to_wait_in_msec = 1000/5*18*CAR_WHEEL_2_PI_R/random_speed;

tslp_tsk (time_to_wait_in_msec/10);
asm INT WHEEL_INTERRUPT_NO

static unsigned int rsl[55];

void init_rand(int seed)

{

3

int 1i;

for (i=0; i<b5; i++) rsl[il

i"seed;

int get_random (int max)

{

}

int 1i;

for (i=0; i<b5; ++i) rsl[il

(rs1[i] + rsl[(i+24) % 55])%max;

return rsl[0];

void init_display()

{

initscr ();

print_fast_from_now_on() ;

gotoxy
gotoxy
gotoxy
gotoxy
gotoxy
gotoxy
gotoxy

@3,
(4,
(5,
(3,
(4,
(5,
(3,

5); print_string ("Speed: ");
5); print_string ("TDist: ");
5); print_string ("CDist: ");
35); print_string ("Fuel: ");
35); print_string ("Batt: ");
35); print_string ("Temp: ");

67); print_string ("Tyre Pressure");
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gotoxy (7, 68); print_string ("Door Locks");
gotoxy (23, 0);
print_string ("‘a z’ ‘f v’ ‘b n’ ‘t g’ ‘pl-4 11-4° ‘di1-4 c1-4’");
door_lock_handler();
}
void init_library (struct parameter_block_header* message)
{
init_u_int_h (message);
init_u_task_m (message);
init_u_comm_m (message);
init_u_time_m (message);
}
void keyboard_handler (void)
{

char scancode,temp;

scancode = in_port_1b (0x60);
temp = in_port_1b (0x61);
outport_1b (0x61, temp | 0x80);
outport_1b (0x61, temp);
if (scancode > 0) char_read = scancode;
}
char get_key ()
{
char c;
char *scan_to_ascii =
"?1234567890-=\b\t" /* Scan codes 00 to Of */
"quwertyuiop[l\n7as" /* Scan codes 10 to 1f */
"dfghjkl;’ ‘?\\zxcv" /* Scan codes 20 to 2f */
"bom, ./" /* Scan codes 30 to 35 */

3

79



while (char_read <= 0)

¢ = char_read;

char_read = 0;

if (¢ == 0x39) return ’ ’;

if (c ==1 || ¢ ==0x1d || ¢ == 0x2a || ¢ > 0x35)
return c;

return scan_to_asciilc-1];
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