Scanning and Processing of Forms

A Report Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Bachelor of Technology

by
Nishit Verma (96167) and
Susanta Kumar Nanda (96294)

to the
Department of Computer Science & Engineering

INDIAN INSTITUTE OF TECHNOLOGY KANPUR
April, 2000

Certificate

Certified that the work contained in the report entitled “Scan-
ning and Processing of Forms”, by Nishit Verma (96167) and

Susanta Kumar Nanda (96294) , has been carried out under my
supervision and that this work has not been submitted elsewhere

for a degree.

Dr. Pankaj Jalote and Dr. Rajat Moona

April, 2000

i

Preface

This report primarily describes the scanning and processing of forms devised spe-
cially for use by the scanner and the scanning software. These forms may be used for
a variety of purposes like entrance examinations, surveys etc. Again we describe the

Interface called Twain which connects the scanner to the application programme.

il

Acknowledgements

We would like to thank our supervisors Dr. Rajat Moona and Dr. Pankaj Jalote
for helping us at every step.We would like to thank them for helping us plan our
project in a better way and the help given to device the language to describe the
forms. Under their able guidance and support we were able to implement our Btech
project. We would also like to thank our batchmates for the help and support they

have given us.

iv

Contents

Preface

Acknowledgements

1

Introduction

Specification Language

21 An Example File
2.2 Description o

TWAIN: The Scanner Interface

Form processing

4.1 Bubble Processing:
4.2 Barcode:
4.3 Picture:
4.4 Output:
Implementation

5.1 Overall Module
5.2 Input Module
5.3 Main Module
5.4 Output Module
Conclusions

iii

iv

14
14
15
17
17

19
19
21
24
26

27

A Functional Specifications
B Interleaved 2 of 5 Character Set

Bibliography

vi

28

35

35

Chapter 1
Introduction

The traditional form processing methods are being carried out with the use of an
OMR machine. The method that it generally uses is that, the forms that are to
be processed, have special black marks in both of its sides, and the OMR machine
goes through line by line processing and gives out the bubbles which are filled. This

machine is a costlier one and some skill is required to process this.

In this project we have made a sincere effort to come out with an alternative for
this. The problem that this project addresses is towards devising a software for
processing forms using a scanner and an application software written on top of it.
Since scanner is much widely available and that its fairly cheaper when compared
to OMR so we hope this can work as a good alternative. It uses TWAIN as the
interfacing software for the application and the scanner. It assumes only three kinds
of data to be processed in the form viz. bubbles, barcodes, and pictures. Since
the automatic detection of these kinds of regions in a form is not a possible task,
the values that they take is not previously known, and that not every part may be
of the users’ interest, this brings out the need of a well defined manner to specify
the details of the form.

The project is carefully designed so as to handle any generic kind of forms with

the constraint that the processing can be carried out only on the three types of data

described earlier. Unlike OMR which is partially manual, this method is completely
automated. However, for every different kind of forms it requires an appropriate
way of specifying the details. Hence the need of a formal way of defining and specify-
ing the things in the forms and the output sought, i.e. a specification language.
This takes care of how to make the software understand the exact format of the

forms and the various values that various things can take.

After specifying the details in the specification language, the software scans the
forms, and connects to the rest of the image processing part using the twain in-
terface. Finally, using the data provided in the specification file, the outputs are

written and saved into some file.

Chapter 2
Specification Language

Before scanning any kind of form this software needs to know the general format of
the form, the kind of data involved in it, the exact location of the data, the values,
the outputs required, and the filenames where the outputs are to be stored. All these
are provided to the software in a prescribed format which we call as the Specification
Language. The specification language should to be simple, designed so as to catch
each and every aspect of the forms and should be generic enough to represent any

such kind of forms that one usually comes across.

The specification file that is used as an input to the software, describes the fol-

lowing things
¢ Global Allignment Mark:
— The coordinates of the allignment mark w.r.t. the bottom-left corner of
the form must be specified.
— The marker line lengths must be specified
— The marker line thickness must be specified
e Region Descriptions: The size, location and types of regions alongwith some

region specific attributes (such as the bubble size in case of the bubble-regions,

barcode format in barcode regions etc).

Alignment with respect to G.A.M

Length and width of the region

If Bubble region then cell size

If Image region then Colortype , Resolution .

If Barcode region then nem of the output variable

e Variables: These are used to group certain chunks of regions (might be bub-
bles or anything else) which has some logical associations between them. The
specification language also allows recursive use of variables (though not essen-
tial) which, in some cases help to group certain values better. The language
also allows to use indices on the variables to help specifying a common set of
bubbles. The things needed to be specified are —

— The list of the cell coordinates of each variable
— the corresponding values for those variables
— It also needs to be specified what will happen if no bubble is filled or

more than one bubble is filled .

e Output Variables: These are some special kind of variables whose values
are required to be output and stored in some format in the files specified. So

these are, in some sense, variables as above with some side effects.

e Bubble-Value Map: These are used to describe a variable and specifies the

value of the varible depending on how the form is filled.

2.1 An Example File

Global Alignment mark (7mm, 77mm) , 181.5 mm , 77.5 mm , 1.4 mm , 1.4 mm
wrt bottom left

Region definitions
BUBBLE : R1: P1
(9 mm , 218 mm) # Alignment wrt GAM

(149 mm , 84 mm) # Region height and length
(4.257 mm , 3.231 mm) ;# Cell width and Height
BUBBLE : R2 : P1
(58 mm , 115.4 mm)

(35 mm , 39.5 mm)
(4.257 mm , 3.231 mm); # Cell width and Height
BARCODE : R3: P1
(13.5 mm , 85 mm)
(12.5 mm , 31.5 mm)
BT
INTERLEAVE20F5
=> F[1:8];
PICTURE : R4
(5.8 mm , -0.9 mm)
(35 mm , 45 mm)
DPI : 100
MONOS GIF ;
Name = N[1:35]
N[i] = (i,1):(1,26) => 'A’:’Z’ @RI
DOB = Date , Month , Year
Date = D1, D2

D1 =(1,2): (1,5)=>0,1,2,3 QR2
D2 =(2,2): (2,10)=> '0":’9" @QR2
Month = (5,1) : (5,12) => "JAN” | ”"FEB” , "MAR” , "APR” , "MAY” , ”JUN”

2
2

3

"JUL” , 7AUG” , ”SEP” , 7OCT” , ”"NOV” , "DEC”
QR2

Year = Y1, Y2

Y1 = (7,8):(7,11) => 6’9" QR2

Y2 = (8,2):(8,11) => '0’9'QR2

OUTPUT1 = Name , DOB => "data.txt”

2.2 Description

The specification file always begins with the global alignment mark . The global
alignment mark is the intersection of the horizontal marker line and the vertical
marker line . The first point desribes the x and y coordinates of the global align-
ment mark with respect to the bottom left corner . The rest of the terms describe
the length and the thickness os the horizontal and the vertical marker lines .

After the description of the Global alignment mark the region desriptions follow .
Before describing the region one needs to tell what type of region is it - BUBBLE
, IMAGE OR BARCODE . The region R1 above is a bubble region . For a bubble
region like R1 three things must be specified the alignmentof the region with respect
to the G.A.M | the region width and the region height and the cell width and the
cell height .

While specifying all the lengths the dimension is also specified with them . For eg
it can be written mm,cm,inch etc . After the bubble region R1 comes the bubble
region R2 .

After describing R2 the barcode region R3 is described . The barcode region de-
scription contains the coordinates of the origin of the barcode i.e bottom left corner
of the barcode . After specifying the origin coordinates with respect to the G.A.M
the length and width of the barcode is specified . Again we need to tell the scan

direction whether from Bottom to Top (BT), Top to bottom (TB), Left to right
(LR) , Right to left (RL) . After this the type of barcode is specified . Note that the
type can be any of the types CODABAR , UPC , INTERLEAVE20F5 etc . The
arrow specifies the name of the output variable to which the barcode string should

correspond to . Note that all the characters of the barcode string need not be used

Finally the picture region R4 is specified . Again the first point is alignmen-
t with respect to the G.A.M. . After this the height and width of the image
region is specified . After specifying these attributes the DPI at which the im-
age should be scanned , the bits per pixel resolution of the image which can be
MONO1,MONOS8,COLORS8,COLOR16,COLOR24,COLOR32 is specified . After
this the format in which the image is saved is specified . The format can be GIF |,
JPG, PPM ,BMP etc .

Now comes the turn of the exact specification of the bubble variables . Here the first
variable Name is an array . The actual variable N varies from 1 to 35 . Note the
coordinates specified are always in term of the cell coordinates of the region . The
presence of a colon ”:” indicates stepwise variation while indicating the coordinates
. For example here N[i| = (i,1):(i,26) => "A’"Z’ @R1 indiactes that the i’th value
of the string name can be any one of the cell coordinates (i,1) to (i,26) whichever is
darkened . The right hand side of the arrow tells the values which the filled bubbles
would take . The right hand side varies from A to Z . The value @QR1 indiactes that
the variable belongs to the region R1 . The second bubble variable DOB (Date of
birth is composed of a variety of other variables , Date month and Year in this case
. Note that the composition variables may or may not belong to the same region .
Date is again composed of two variables D1 and D2 . Similarly year is composed of
variables y1 and y2 .

Now come the output list . The output variable output 1 consisits of name and
DOB . The output should go in the file specified after the arrow.

Chapter 3

TWAIN: The Scanner Interface

The scanner software uses the Twain interface to connect with the real scanner .

For this a dyanamic link library Twain32.dll is used .

e The User Interface to Twain When an application uses Twain to acquire data ,
The acquisition process may be visible to the applications users in the following

three ways.

— The Application . The user needs to select the device from which they
intend to acquire the data . They also need to signal when they are ready

to have the data transferred .

— The source manager . When the user chooses the select source option
the application requests that the source manager display it’s select source
dialog box . This lists all available devices and allows the user to highlight
and select one device . If desired the application can write it’s own version

of this interface .

— The source . Every TWAIN compliant source provides a user interface
specific to it’s particular device . When the application user selects the
acquire option , the source’s user interface may be displayed . If desired

the application can write it’s own version of this interface , too .

e Communication between the elements of Twain . communication between

the elements of twain is possible through two entry points . They are called

DSM-Entry and DS-Entry

— The application The goal of the application is to acquire data from a
source . However the application cannot contact the source directly . All
requests for data , capability information error information etc must be
handled through the source manager . The application communicates to
the source manager through the source managers only entry point , the
DSM-Entry function . The parameter list of the DSM-Entry function

contains

*

An identifier structure providing information about the application

that originated the function call .

x The destination of this request .

*

A triplet that describes the requested operation .

*

A pointer field to allow the transfer of data .

— The source manager The source manager provides the communication
path between the application and the source , supports the users selec-
tion of the source and loads the source for access by the application .
Communications from application to the source manager arrive in the

DSM-Entry point.

x If the destination is the source manager then the source manager

processes the operation itself .

x If the destination is the source , the source manager translates the pa-
rameter list of the information , removes the destination parameters
and calls the appropriate source . To reach the source , the source
manager calls the source’s DS-Entry function . Twain requires each

source to have this entry point .

— The source The source receieves operations either from the application via
the source manager or the source manager itself . It processes the request
and returns the appropriate return code . (The codes are prefixed with
TWRC) indicating the results of the operation to the source manager

. This return code is then passed back to the application as the return

value of its DSM-Entry function call . If the operation was unsuccesful ,
a condition code (the codes are prefixed with TWCC) containing more
specific information is set by the source . Although the condition code is
set , it is not automatically passed back . The application must invoke

an operation to inquire abpout the contents of the condition code .

— Communication flowing from the source to tyhe application . A majority
of the operation requets are initiated by the application and flow to the
source manager and the source . The source via the source manager is
able to pass back data and Return Codes . However there are two times
when the source needs to interrupt the application and request that an

action occur . These situations are —

x Notify the application that a data transfer is ready to occur . The
time required for a source to prepare data for a transfer will vary
Rather than have the application wait for the preparation to be
complete the Source just notifies it when everything is ready . The
MSG-XFERREADY notice is used for this purpose .

x Request that the source’s user interface be disabled . This notifica-
tion should be sent by the source to the application when the user
clicks on the close button of the source’s user interface . The MSG-
CLOSEDREQ notice is used for this purpose .

e Twain States
— twain state 1 Pre Session Source Manager not loaded Application asks to

load the source manager .

— twain state 2 Source manager is loaded . Get the entry point . At this
point the source manager is ready to accept the operation triplets from

the application .

— twain state 3 Source manager is open . List all the sources and detect
the source . The source manager will remain in states 5 to 3 until it is

closed .

10

— twain state 4 Source is open . Perform Capability Negotiations . The
source should have verified that sufficient resources exist for it to run .
The application can inquire about the source’s capabilities (i.e. levels of
resolution , support of color or black and white images , automatic docu-
ment feeder available etc . The application can also set these capabilities
to it’s desired settings . For example it may restrict a source transferring

color images to providing black and white only .

— twain state 5 Source is enabled . Source will show it’s user interface.

When scan is over it will shut down .

— twain state 6 Transfer ready . Application will inquire about the image

information . It is possible for more than one image to transfer .

— twain state 7 Transferring . Source is transferring data in one of the three
modes - native mode , disk file transfer ,buffered memory . THe transfer
will either complete succesfully or terminate prematurely . The source

sends the appropriate return code indicating the outcome .
e twain capabilities
e some of the twain capabilities are

— Some device shave automatic document feeders

— Some devices are not limited to one image but can transfer multiple

images .
— Some devices support color images
— Some devices offer a variety of halftone patterns .

— Some devices offer a range of resolutions while others may offer other

options .
e Capability Negotiation The following general process is followed

— Determine if the selected source supports a particular capability.

11

— Inquire about the current value for this capability . Also inquire about
the capability’s default value and the set of Available values that are

supported by the source for that capability .

— Request that the Source set the current value to the applications desired
value . The current value will be displayed as the current selection in the

ource’s user interface .

— Limit , if needed the source’s available values to a subset of what would
normally be offered . For instance , if the application wants only black

and white data , it can restrict the source to transmit only that .

— Verify that the new values have been accepted by the source .
e Modes available for file transfer

— Native : Every source must support this transfer mode . On windows the

format of the data is DIB (Device Independent Bitmap)

— A source is not required to support this mode but it is recommended.
The application creates the file to be used in the transfer and ensures

that it is accesible by the source for reading and writing .

— Every source must support this transfer mode . The transfer occurs
through memory using one or more buffers . Memory for the buffers are

allocated and deallocated by the application .
e Twain capabilities are divided into two groups .

— CAP-xxxx Capabilities whose names begin with cap are capabilities that
could apply to any general source . Such capabilities include use of au-

tomatic document feeders , identification of the creator of data etc .
— ICAP-xxxx Capabilities whose names begin with ICAP are capabilities
that apply to image devices . The I stands for image .

e capabilities exist in many varieties but all have a default value , current value
and many other values that can be supported if selected . To help catego-

rize the supported values into clear structures TWAIN defines four types of

12

containers for the capabilities

— TW-ONEVALUE A single value whose current and default values are
coincident . The range of available values for this type of capability is
simply this single value . For example a capability that indicates the

presence of a document feeder could be of this type .

— TW-ARRAY A rectangular array of values that describe a logical item . It
is similar to the TW-ONEVALUE because the current and default values
are the same and there are no other values to select from . For example

a list of the names such as the supported capabilities list returned by the
CAP-SUPPORTEDCAPS capability would use this type of container .

— TW-RANGE Many capabilities allow the user to select their current value
from a range of regularly spaced values . The capability can specify the
minimum and maximum acceptable values and the incremental step size

between values . For example resolution might be supported from 100 to
600 in steps of 50 .

— TW-ENUMERATION This is the most general type because it defines a
list of values from which the current values can be chosen . The values
do not progress uniformly through a range and there is no consistent step
size between the values . For example if a source’s resolution options did

not occur in even step sizes then an enumeration would be used .

13

Chapter 4
Form processing

The project assumes that the form has three kinds of data of interest, which are
required to be processed. These three kinds of processable data are bubbles, bar-
codes, and pictures. Now, in order to process these data, they need to be scanned
carefully considering every bit of details such as, their exact position in the form,
size, values and so on. These data are initialized by retrieving them from the spec-
ified file. Once these are data are initialized, our work is much simpler.

After the form is scanned, then the TWAIN interface returns a handle of the
image file of the form in DIB (device independent bitmap) format to the software.
Once the file handle is transferred we carry out rest of the processing by carrying out
some careful calculations and some image processing using the data in the specified

file. We give some of the details for every part of the processing below this.

4.1 Bubble Processing:

This is an interesting part of our form processing. A traditional form contains a
huge number of bubbles, e.g. names, biodata, examination details, other personal
details, and so on. Here every bubble has a specified location as well as value. In
addtion to that not every bubbles are independent. By this we mean, there may be
some group of bubbles from which only one can be filled at a time, or some other

constraints. However, these are specified in the specification file. So, what we do is

14

that, go through a region of bubbles one at a time, find it exact location, and then
try to process that bubble.

To find the exact location, and procees it we use the data from the specification
file and go through the following procedures.

Calulate the offset of the bubble region by using its offset w.r.t. the global allign-
ment mark (GAM) and the coordinates of the GAM. By using the cell coordinates of
the particular cell in that region and the exact cell size, it is fairly easy to compute
the x and y bounds of the cell. Now the important point to make here is that the
cell size should also take care of the gaps between the cells, since this can cause
a large amount of shift of the cell in both the directions. After finding the exact
bounds of the cells the next thing we need to do is to find out the pixel values of
all the pixels that lie inside that cell. For this we use several predefined variables
and functions available for image files in DIB format. By using some thresholds for
detecting the color and to detect whether the cell is filled we can decide the values
of the cells.

4.2 Barcode:

A barcode is a kind of graphic representation of a number. It consists of a sequence
of bars. The colors of bars are black or white, and they can be thin or thick. So,
in this way, a bar code has a sequence of characters which are either of four types,
i.e. thin white, thick white, thin black, and thick black. Typically the thick ones
are two to three times wider than the thin lines. Now depending on these character
sequence the number that the barcode represents, is calculated. Now, since there
can be many interpretations to a particular sequence of bits or characters, hence are
the variety of barcode formats. However, there are some special kinds of barcode
formats that have international recognition. Some of them are, INTERLEAVED 2
OF 5, CODABAR 39, several versions of UPC (Universal Product Code) and many
more.

Though we went through many of the recognized formats that are commercially

available to decode in this project, but the forms that we came across had only

15

Interleaved 2 of 5 representations of the barcodes. In addition to that a barcode can

have some additional check bits along with its start and end code as well.

e Interleave 2 of 5: As the name suggests, it interleaves bits that represent
one character into another. Here four thin lines (two each of black and white)
are used as the start code. Then one thick black followed by two thin lines
(one black and one white) are used to represent the end code. The rest of the
bits in the middle all represent numbers of the barcode. It uses five bits to
represent a single digit. A thin line is considered to have the bit-value zero,
whereas a thick line has the bit-value one. In this format, th numbers of digits
that can be represented has to be even. If one has to represent a number
having odd number of digits, then the simplest solution is to add a zero at the
front or ignore the last digit. Since any barcode has to have the sequence in
alternate white and black fashion, this brings the idea of interleaving. So what
this format does is that, it uses first five black lines for the representation of
the first digit. The interleaving five white lines represent the next digit. After
a couple of digits, it starts again like this. The interpretation of the five digits
to get the value of the digit are predefined and attached in the appendix.

e Processing: With this background given above, it is not much difficult to
process a barcode of the above format and calculate the number it represents.
The method that we are using is extremely simple. We just count the width
(in number of pixels) of each of the bars (i.e. the count restarts when the
color of the bar changes). After that we find out the minimum and maximum
widths of both black as well as white lines. The average of these values work
as a threshold for detecting the thin and thick lines. After detecting this, rest
of our job is to extract the bit strings and find out the digit looking up the
table. For better accuracy, we need to take care of the start and end white

pixels which might occur due to wrong measurement.

16

4.3 Picture:

The picture regions are those which contain signatures or passport size photographs
or say, any comments etc. So there is not much processing is needed about these
except that they might be required to be saved into some user defined filename. So
here what we do is, calculate the exact offset of the image (or picture) w.r.t. the
GAM and then calculate the global offset of its left bottom point w.r.t. the form.
Then using the size given in the specification file, and the calculation of the exact
offset we get the pixels and then store it in the file, if required.

However, in each of these we did not care much about the output filename and
just assumed that it is easily available from some source and used to store the data.
But this might not be fixed or planned before. This filename might as well depend
upon the data those are processed in the form itself, like say barcode. And this
is really the case needed in many places with justified reasons because every form
normally has a unique identity number which is printed by the help of a barcode.
And since it is unique, so a user might be really interested in using this number or
parts of it to name the files that are storing the data of the form. And that is what

we describe in our next section.

4.4 Output:

The output are stored in some file. The filename are generally specified by the user
while specifying the output details. In our specification format we allow it to be a
concatenation of several strings which are not know prior to the processing of the

form. They can include,

e Constant Strings: The file name can have a string constant that is known

a priory, e.g. "DATA.DAT” or whatever string.

e User Input Strings: The string size may be known before, but not the exact
string. While naming the file, it can be asked to the user to input some string,

which is then taken as the part of the name of the file. In our specification

17

model this is specified as a dollar variable, e.g. $[5] is a user input string of

size 5.

¢ Barcode dependent Strings: In many a cases the part of the key barcode
that appears in the form might be needed to use as a part of the file name.
This can be useful because the key barcode is unique to a particular form. So

the file name can uniquely identify its association with the particular form.

18

Chapter 5
Implementation

The project implements a hardware software interface. It interfaces a scanner to
an application programme with the interfacing software as TWAIN. The overall
software module can be shown by connecting some black boxes and defining their
functionalities and their inputs and outputs. Once we connect all the boxes with
their specified details, we can get a feel of the overall software with their detailed
control flow paths. In the next few sections we describe all the modules in details

hinting about their functionalities.

5.1 Overall Module

Figure 1 shows a rough diagram of what the overall software module looks like. The
basic structure of the software can be thought of as having three parts, the input
module, the main module, and the output module. The input module deals with the
specification files and intializes the data structures by reading the values specified in
the specification file. This is basically sets the input for the software to work. That
is, it lets the software know every details of the form that it is going to process,
what are the outputs required, and everything that it needs to know before going
to scan the form and process it.

The main module is sort of central part of the software and it works as a bridge

between the input and the output modules. It initializes the scanner and sets its

19

0¢

GET

BUBBLES
GET
REGIONS

GET
BARCODES
GET Fillsthe values
0? Pl CTU RES those were empty earlier
5 l.initidlizesdata
- structures for the
o specification INPUT MAIN O/P
g 2. data structures for MODULE
% output specs (.h file) MODULE g
S 3. Routinesto initiaize D
: the o/p data structs owith | TWAIN U
; from the O/p data pixel array I/F L
o files.
% PARSER DATA E
) SOURCE
MANAGER
INPUT LEXICAL TWAIN writes
] to
SPECIFICATION ANALYZER il
SCANNER Ies
DATA SOURCE
(SW)

PAPERS SCANNER

verious values, then scans the image and transfers the handle of the scanned image
of the form in DIB format to the next step. The next step is where all the processing
begins. This processes all the regions separately and gets their values depending on
what are actually needed in the output (this can be known from the output format

given in the specification file).

After the works done by the above modules, the job of the output module is pretty
simple. It just does some processing using the values received after the processing in
the main module and gets the filename where all the outputs are to be saved. And
then just just saves the values into the specified file. With this kind of overview to
all the modules we are now in a proper shape to go into the details of each of the

modules. The next three sections provide the details of each of them.

5.2 Input Module

The input module functions as the initializer for the software with certain added
routines. It takes input as the specification file that has been designed by the us-
er to specify all the details of the form that is going to be processed. In a way,
the importance of this module is that if anything goes wrong with this, the whole
software fails, i.e. the processing does not come out with the accurate result. So
while writing the specification file, every care should be taken to avoid any kind of
errors whatsoever. There can be no error checking mechanisms incorporated here
excepting some in this module, as the software has no prior information about the

form that it is going to process, neither can it assume any.

After it gets the input specification file, it first runs a lexical analyzer on the speci-
fication file that recognises and then passes the tokens to the next phase. The next
phase is a parser which parses these tokens according to the grammars of the spec-
ifications that are allowed. However, there are certain obvious constraints imposed
on the specifications. Before using any variables corresponding to a region, user

should make sure that the region is defined with all its details (refer chapter 2).

21

Every variable that are used in the specification file must be defined earlier or later.
Our parser does not impose any condition on the definition of a variable prior to its
use. As long as every variable that are used are also defined at some point of time
all is well. However, an ouput variable is always necessary in a specification file as
otherwise there will be no output and that means no processing needed. The global
allignment mark is also compulsory for the file to have. So, with these constraints
the parser parses the specification file. After this phase the initialization of all the
data structures of the software begins. There are some global data structures main-
tained in this software that are required in every part of the project and which are
initialized in this phase. We will go through a rough introduction on what kind of

data structures used in this part.

¢ Global Allignment Mark: This stores the coordinates of the global al-
lignment point, the approximate lengths of the horizontal and vertical lines
intersecting at the GAM, and their approximate widths. These are used to
allign the picture properly and find out the coordinates of all the other parts

later.

e Region Table: This data structure is a generic one so as to store the data
of each kinds of regions i.e. bubble, barcode and picture, along with all their
details. So while processing a particular region, the details can be extracted

from this data structure.

e Symbol Table: There is also a global symbol table maintained which keeps
track of all the identifiers or symbols that are defined by that point of time in
the specification file. This take care of the errors like redefinition of a variable,
using a variable without ever defining it in the file etc. Along with storing
the identifiers it also stores a pointer to the actual node which contains all the
detailed description and defintion of that variable. The details of a variable
are stored in its node in a member called components. The components are a

list of one of the following kind of nodes,

— Variable: This is a case of recursive definition of variables. That is,

we define variable in terms of other variables. If these variables are not

22

defined earlier, they need to be defined later.

— Constant: In this case again it can be a string constant or a character

constant or any other types, if necessary.

— Coordinate to Value Map: This is one of the termination criteria for
the recursive variable definitions. The variable can have a value depend-
ing on the exact cell among a group of cells in a region which is filled.
For this one needs to specify the list of cell coordinates in a region which
together constitute an exclusive set and only one need to be filled out
of them. After specifying the coordinates one also needs to specify the
corresponding values that the coordinates will take if they are filled. So,
this data structure stores these informations in it. This helps in retriev-
ing the exact value tat the variable is going to take while that region is

processed.

— Expression: Though this type does not have of much use, but however
it plays an important role if we need to store a value of a variable which
is an expression, which is to be processed at the run time. Currently, we

do not exploit much of its usage.

e Output Table: The output table is a data structure which stores the list
of all the output variables. These output variables are like any other kind of
variables with a side effect. The side effect is that the value of the output
variable gets stored into a file. Besides this difference this table is more or less
same as the symbol table. The node of this table contains a variable name and
stores the description of the variable, and the description of the file name into
which the value of the variable will be written. The file name may not be a

straight forward one and may need some processing which is done afterwards.

After the initializations to these above defined data structures are over, we need
to provide something else. That is, provision of some definitions and routines to
access the output variables. For this we provide two more files. The first one is
"spec.h”, which contains all explicit definitions and declarations of the data struc-

tures related to output variables covering all the structures which might be used in

23

the structures of output variables.

The next one is a file called ”init.c” which contains a set of routines to access and
initialize these output data structures (those declared in the spec.h file) if the val-
ues are made available in a particular format in some file. So using these two files
one can easily use the values received by the processing module in case any post-
processing is desired. Now that we discussed some of the details of this module, we

can move to our next part, where really the processing takes place.

5.3 Main Module

This is so to say the heart of the project, as the name suggests. It connects all the
modules and organizes the data flow of the system. After the input module is done
with its initialization part and the files are generated, then its the form is to be
processed.

First of all the scanner is initialized. In the main function first the scanner is
initialized. Once the scanner is initialized it performs all the operations necessary for
image transfer. It negotiates for the capabilities, displays the source manager’s user
interface and then once the source is selected performs the actual image transfer.
The handle of the image in Device Independent Bitmap format is returned.

After this a Scan-Card class is initialized. The scan-card class contains all the
detailed information about the barcodes, images etc. After initializing the scan-
card the function extract card is called which extracts the barcode, bubble and the
picture values. If save scan-card is called after that the barcode, images are saved

in the files specified.

e Scanner: First of all the constructor for the scanner is called. In this construc-
tot there is the function which takes the scanner from twain state 1 to twain
state 4. The following steps are taken. First of all the Data Source Manager
is loaded then the operation open Data Source Manager is performed. After
this the user selects a particular Source. After selecting a particular source, it
is opened. After the source is opened capability negotiation is performed and

default capabilities are set. Some of the default capabilities which are set are

24

DPI, XimageResolutuion, YImageResolution, Bits per pixel count etc. Once
in state 4 the scanner waits for the data. After performing all the capability
negotiations, the function transfer scan is called. It goes from Twain state 4 to
7 and comes back to state 4. In this function the actual image transfer takes
place. The mode o image transfer here is the native mode, i.e. a handle of
the Device Independent Bitmap is passed after the actual scanning has taken
place . Note if there is some error while transferring, the function aborttrans-
fer is called which results in the twain-state going back to 4. All the capability
negotiations and the twain operations have a return-code. If this return code

indicates error, then the scanner goes into twain state

Scancard: The scancard is the data structure which contains the result of a
single scan. It contains an array of images, an array of barcodes, their offsets
with respect to the global alignment mark, their width and their height. While
calling the constructor all these items are initialized. For the initializations of
these items there respective constructors are called. Note that there are sepa-
rate image and barcode classes. Once the scancard is initialized, it’s handle is
set to the handle which was passed in transferscan. The dpi of the scancard

is also set to the dpi at which the image was scanned.

Locate and Extract ScanCard: This is the place where we do all the image
processing part. After retrieving the data from Global Allignment Mark, it
calls a routine ExtractScanCard. This routine retrieves the offsets data from
each of the regions and then processes each of these by calling several other
routines. First, the barcodes images are extracted from the full scan card.
By extraction we mean, a new image handle is created from the original one
but the new handle contains only the image of the concerned portion. To do
this, first the height and width of the image (to be extracted) are calculated
in terms of number of pixels. After that starting from the offset of the region
the particular image is extracted and the handle of the image is returned.
Then the rest of the image processing for this region is carried out on this
extracted image rather than doing it on the whole image. The details of the

image processing of these regions are described in chapter 4.

25

5.4 Output Module

After the image processing part is over for these regions, the next step is to produce
the output. For this we simply travel through the output list that had been created
during the initialization process in the input module. Then for each output node,
we go through the details of its components that need to be written. Then we go
through the filename portion. The main processing involved in this module is to
process and find out the exact filename in which the outputs are to written.

To find out the complete filename, we need to travel through the whole list
of nodes those describe it, and process each one of them separately and finally
concatenate the result. To process each of the nodes, we might need to retrieve
data from the barcodes or might require to ask for user input etc. After getting the

filename, the outputs are written and saved to the file.

26

Chapter 6
Conclusions

At the end of this project, we have learnt a lot about how to process forms using the
scanner . We had also to implement the processing of course evaluation forms of the
ESC101 , the forms have been designed by us but the final processing could not be
implemented .This happened because the ESC101 survey could not be done on the
special forms designed by us , as we could not get the specially printed copy of the
forms due to lack of time . However we are able to scan the JEE and thei GATE
forms . Another important fact to be kept in mind while running our software is
that the specifications have to be very exact . Since the bubble size is 3 mm by 4
mm even a mistake of 1 or 2 mm in measuring can result in wrong processing of data
. A remedy for giving the bubble sizes is that first we note the whole region width
, region length and then divide the region area by the total number of bubbles in
that area . There have been some inefficiencies somewhere but overall the project
is working . One constraint is that different scanners allow different capabilities to
be set . For example some scanners do not allow the DPI to be set less than a
particular value .

Overall we spent a lot of effort in designing the language , parser , the scanner
interface and the output module .Ou guides have also been quite helpful and generous

to us .

27

Appendix A

Functional Specifications

e main.cpp
This is the file which contains the main function . In the main function first
the scanner is initialized . Once the scanner is initialized it performs all the
operations necessary for image transfer . It negotiates for the capabilities
, displays the source manager’s user interface and then once the source is
selected performs the actual image transfer . The handle of the image in Device
Independent Bitmap format is returned . After getting the image information
the parser is called . The parser takes as argument the specification file passed
as the second argument of the main function . The parser initializes the data
structures while parsing the specification file . After this a Scan-Card class is
initialized . The scan-card class contains all the detailed information about
the barcodes , images etc . After initializing the scan-card the function extract
card is called which extracts the barcode , bubble and the picture values . If
save scan-card is called after that the barcode , images are saved in the files

specified .
e Class-Barcode.cpp The file contains the following things -

— Constructor for the Class It initializes certain information about the bar-
code like offset w.r.t G.A.M , its length , its height etc.

— Destructor for the Class . It performs the usual destruction operation.

28

— - IT deallocates i.e. frees memory space reserved for that particular bar-

code but it is not a detructor i.e. it does not destroy the class itself

— Interpretbarcode This function first performs the check whether the bar-
code is valid or invalid . If the barcode is invalid , it calls the function
reset-barcodeinterpretation which resets the information containe din the
barcode . It initializes the variables bits (Which contains the barcode bits

) and the variable Barcodestring which contains the whole barcodestring.

— ExtractBarcode It rotates the subbitmap which contains the barcode |,
sets the handle in the barcode to the rotated bitmap and then calls the

function which computes the barcode value .
— GetBarcodeHandle Returns the image handle of the barcode

— SaveBarCodeBMP Saves the barcode only in BMP format in the specified
file and the directory .

— SaveBarcodeGIF saves the barcode in GIF format in the specified direc-
tory and the file .

Y

— PrintBarcode It prints all the information related to the barcode , it’s

offsets , barcode value , bitstring , barcode bits etc .

e Barcode.cpp This is a file which contains function related to the barcode but

accessible everywhere .

— Invalidbarcodetype returns true if the barcodetype is invalid i.e. does not

belong to one of i20f5 , codabar , upc .

— GetNumber-120F5 returns the number corresponding to the i20f5 bar-

code given the start index and the interleave factor .

— GetBarcodeString Given the barcodebits , it returns the barcode string
depending on the type of barcode .

— GetBarcodeBits This function returns the barcode bits . It reads the
barcode image passed through the handle . The barcode bits are labelled

as follows

29

* thin white 0
* thin black 1
* thick white 2
x thick black 3

e bbl.cpp This file contains all the functions necessary for bubble processing .

GetFileName Gives the file name where the output is to be stored given

a node to the outputlist .

Save-bbl-op This function traverses the outputlist and for each member

of the outputlist saves the bubble output .

gen-bbl-values This function generates and saves the bubble values for a

particular variable .

Read-cell This function returns 1 if the cell is completely black .

e Class-scancard.cpp This file contains the following functions

Constructor Initializes the scancard . Initializes the variables like the
number of barcodes , number of images , An array containing barcodes ,
an array containing images . This function calls the constructor for the

barcode and the constructor for images .

Destructor Performs the normal destruction function for a class.
IsInvalid Returns whether the scancard is valid or not .
Reinitialize Initializes the scancard again .

Setld Sets the id of the scancard . The id depends mainly on the keybar-

code . Here in this function id is passed as a string .

SetHandle Sets the handle of the scancard to the passed handle . Also
sets the dpi of the scancard to the passed DPI .

Getld Returns the id of the scancard .

ExtractScanCard This function performs the actual extraction of the s-

cancard given it’s handle . The offsets of image , barcode and the bubble

30

region in the scancard are already known . Here the handle of the image
region and the barcode region is also set . The handle of barcode and
image points to the subregion which contains these barcodes and images
respectively . After doing the computations necessary for images and

barcodes , the bubble region computations are performed .

— LocateandExtractCard This function is called from the main module itself
. This function calls the function which calculates the rotation angle of
the scancard . After calculating the rotation angle , it calls the function

Extractscancard .

— PrintScancrad Prints the current status of the scancard along with infor-

mation about variables like barcodes , images in it .

— SaveScancard Saves the parts which can be saved in the directory specified

— Traverseregionlist Traverse the region list and find out how many bar-

codes and images are there .
e Class-scanner.cpp
— Constructor Normal constructor for the class . In this constructor Twain
state is changed from 1 to 4 .
— Destructor Normal destructor . Twain state is restored to 1 .
— IsInValid Tells whether the scanner is valid or invalid .

— LoadDataSrcMgr Loads the Data Source manager . The twain state

changes from 1 to 2 .

— OpenDataSrcMgr Opens the data source manager after loading it . The

current twain state is 2 .
— SelectSrc Select the source .
— OPenSrc Open the source .

— CreateCapstructure Create a capabilty structure .

31

SetDefaultCap Set all the values for the default capabilities like DPI ,
image resolution in the X direction , image resolution in the y direction

, bits per pixel count etc .

SetCapCurrOneValue Set the value for the passed capability .
Getcapvalues Get all the values of the default capabilities .
GetCapCurrOneValue Get the current value of the capability passed .
IfCapCanBeSet Returns true if the capability passed can be set .
EnableSrc Enable the source .

AlterEventLoop Start in state 5 and end in state 4 .

ImageNativeXfer Start in state 6 and end in state 5 if succesful . Perform

the actual image transfer in the native mode .
EndTransfer Start in state6/7 and end in state 5 if successful .

AbortTransfer Stop the transfer in between . Start in state 6 and end in

state 5 if succesful .

DisableSrc Disable the source .

CloseSrc Close the source .

CloseDataSrcMgr Close the data source manager .
UnloadDataScMgr Unload the Data Source Manager .

PrintFailureCause Every twain operation returns a status code . Reading
this status code print the cause of failure if any of a particular twain

operation .

GoFromTwainstatelto4 Perform the requisite operations like loadDataS-
rcManager , openDataSrcManeger , selectsource , opensource , setdefault-

capbilities and change the twain state fro 1 to 4.
GetDPI Get the current DPT .
GetTwainState Return the current twain state .

TransferScan Transfer the scan handle . The input twain state is 4 .

Enable the surce and go into an event loop .

32

GoFromTwainstate4tol Perform the requisite operations like closedatas-

rcmanager , closedatasrc and then go to twain state 1.

Gototwainstatel Free the twain Dyanamic link library and go to twain
statel .

e lass-Image.cpp

Constructor Performs the usual operation for the constructor of a class.

Initializes certain information like width , length | offsets etc .
Destructor Usual destructor for the class .
Reinitialize Reinitailizes the whole object .

ExtractImage Performs the image exttraction operation . This is only

setting the handle to the area which contains this particular image .
PrintImage Print the information relating to the image .
GetImageHandle Return the handle of the image .

SavelmageGIF save the image in GIF format .

SavelmageBMP save the image in BMP format .

e rotate-bmp.cpp

GetRotatedBitMap Most of the complexity of this function is due to
the fact that DIBs are organized differently depending on the number of
colors it uses. There are two main attributes of a DIB that affect the
flow of control . The first is the number of bits used to specify a pixel.
This affects how the color information is read and written. The second
attribute is the compression. This function does not support run length
encoded DIBs. The actual rotation involves using a reverse transform.
That is, for each destination pixel we determine the source pixel that
should be copied there. The reason for this is that the straight transform
will leave small blank spots. The main stuff here is getting and setting
the color information. For bitmaps with 4 bits per pixel, we again have

to deal with bitmasks. In this case the 4 most significant bits specify the

33

pixel on the left. When the bits per pixel is 8, 16, 24 or 32 we copy 1,2,3
and 4 bytes respectively. Also, when the bits per pixel is more than 8
and the destination pixel does not correspond to any of the source pixel,

then we set it to the background color.

— GetRotatedsubbitmap This function is similar to the above function .
It differs only in the case that here the bitmap to be rotated is just a

rectangle in the original bitmap .

— ReducedDPIBitmap Create a new bitmap with reduced DPI image in the

original bitmap .
— ReducedDPIBitmap Create a new bitmap with reduced DPI image

— ReducedBits-8-to-1-Bitmap - Create a new bitmap with reduced bpp im-

age
e write2file.cpp

— WriteDIB write a device independent bitmap to a file .
e writegif.cpp

— DeleteGIFstream Delete the GIF stream
— hbmp2GIFstream Convert the bitmap to GIF stream

— GIFwrite write the GIF image to a file
e parser.cpp

— generate(): Generates the output data structures and write to the file

"spec.h”

— gen(): Generates a set of routines to initialize the data structures created

by the above routine, and writes them to a file ”init.c”

34

Appendix B

Interleaved 2 of 5 Character Set

ASCIT | Binary | Check Character
Character | Word Value
1 10001 1

01001

11000

00101

10100

01100

00011

10010

O[O0 | |||]| W| N

01010

S| O |00 | IO | Ot k=W

0 00110
Start 0000 * Stop 100 *

Note : * Alternate bars and spaces, not interleaved

35

