
Retargetable Cache Simulation Using High Level Processor Models�
Rajiv Ravindran Rajat Moona

Department of Computer Science & Engineering
Indian Institute of Technology
Kanpur, U.P., 208016, Indiafrajiva,moonag@cse.iitk.ac.in

Abstract

During processor design, it is often necessary to evalu-
ate multiple cache configurations. This paper describes the
design and implementation of a retargetable on-line cache
simulator. The cache simulator has been implemented us-
ing a retargetable instruction set simulator from the Sim-
nML [9] processor description language. The retargetabil-
ity helps in cache simulation and evaluation much before
the actual processor design.

1. Introduction

During the design of modern embedded systems, it is
necessary to automatically generate processor and appli-
cation development tools like assemblers, disassemblers,
compilers, instruction simulators etc. Automated genera-
tion of such tools yields faster turn-around time with lower
costs for the system design and simplify the process of de-
sign changes. Most such tools are system and processor
specific. However, with ever increasing complexity of sys-
tems and special purpose processors, there is a strong need
for generic and modular generator tools that could auto-
matically generate processor and application specific tools
from a high level description of the processor or system.
Such generator tools replace the system or processor spe-
cific tools and provide a generic integrated environment for
processor development. For a designer of the system, these
generator tools are useful as they allow him to explore sev-
eral alternatives early in the design phase. We have devel-
oped one such environment. In our environment, the pro-
cessors are modeled at a very high level of abstraction in
Sim-nMLspecification language [9].

We useSim-nMLto describe the instruction set architec-
ture of the processor from which various tools to aid pro-
cessor design are generated automatically. As part of the�This work was primarily supported by Cadence Design Systems(In-
dia) Pvt. Ltd. and done at Cadence Research Center at IIT Kanpur.

integrated development environment, we have developed a
cache simulation environment. This provides a mechanism
to simulate various caching policies. The designer can use
this cache simulator to study the trade-offs between differ-
ent caching policies by varying cache specific parameters.

During the design of a processor, it is essential to char-
acterize the data and address access patterns of the given
application. This helps the designer in choosing an optimal
caching policy and maximize the performance of the given
application on the processor. In an embedded system design
scenario, the application design can be done even before the
actual design of the processor. It also helps in evaluation of
the application program for timing constraints. The other
alternatives to this are to either design the processor or de-
velop a processor specific simulator. Both approaches are
clearly not suited in the embedded processor design world
where the designer would want to iterate over multiple de-
sign options and decide on the best for the given application
domain in a short period of time. The cache simulator is a
step towards our original goal of complete system simula-
tion consisting of a core microprocessor simulator, a cache
simulator, peripherals etc. in a retargetable manner from
Sim-nML.

We provide an on-line cache simulation using a retar-
getable application specific instruction set simulator. On-
line cache simulator keeps track of the instruction and data
addresses depending on the caching policy at run time. This
involves running the application on a functional simula-
tor for the processor and tracing the instruction and data
memory references. The cache simulator is built upon the
functional simulator -Fsim [1]. A retargetable functional
simulator generator -Fsimg, generates a processor specific
functional simulator using the processor model written in
Sim-nML. As the functional simulator simulates the exe-
cution of the given program, on-line cache simulation is
performed using specificcanonical functions(refer section
5). The instruction or data addresses are passed as param-
eters to the cache simulator, which simulate the caching
behavior by keeping track of the addresses. The cache

simulator is highly configurable wherein the designer can
specify the caching policies. The cache specifications in-
clude the hierarchy level of the cache, cache type (instruc-
tion/data/unified), associativity, cache size, cache linesize,
replacement policy, write back policies etc. The cache sim-
ulator can simulate hierarchy of caches. There were a cou-
ple of reasons as to why we chose to use an on-line cache
simulation as opposed to an off-line cache simulation (from
the address trace). To perform cycle-accurate timing simu-
lations, it is necessary to take into account cache delays. As
a later project, we intend to implement a timing simulator.
The present cache simulator could be integrated into this
timing simulator. During instruction/data access, the cache
simulator would estimate the delay in accessing the particu-
lar memory reference and provide the simulator the number
of clock cycles the processor has to stall. Another reason
to choose an on-line simulation policy was that trace gener-
ation consumes huge disk space and disk I/O time. More-
over, off-line cache simulation might be an inaccurate sim-
ulation of the address traces, as it does not take into account
the variations in addresses due to instruction reordering by
the processor. An on-line cache simulation is indeed able to
handle this and hence there is a need to tie it to a retargetable
functional simulator.

The rest of the paper is organized as follows, In section 2,
we list the related work. In section 3, we give an overview
of theSim-nML. We describe the integrated simulation en-
vironment in section 4 and the cache simulator is described
in section 5. We also explain the mechanism to integrate the
cache simulator with the functional simulator and to simu-
late various caching mechanisms at run-time. Finally, we
present some simulation performance results in section 6
and conclude this paper.

2. Related Work

Performance modeling of a system is a growing area and
a lot of research has been pursued in this area. These pre-
vious works have resulted in a set of performance modeling
tools focusing on various aspects.

Cheetah [12] is a cache simulation package which
can simulate various cache configurations in a single pass
through the address trace. Specifically,Cheetahcan sim-
ulate ranges of set-associative, fully-associative or direct-
mapped caches.

ATOM [11] provides a framework for providing cus-
tomized program analysis tools. It provides a common
infrastructure provided in all code-instrumenting tools.
ATOMorganizes the final executable where the application
program and user’s analysis routines run in the same ad-
dress space.ATOMuses no simulation or interpretation. It
has been used to build a diverse set of tools for basic block
counting, profiling, dynamic memory recording, instruction

and data cache simulation, pipeline simulation, evaluating
branch prediction and instruction scheduling.

Pixie [10] is a utility that allows one to trace, profile or
generate dynamic statistics for any program that runs on a
MIPS processor. It works by annotating executable object
code with additional instructions that collect the dynamic
information during run time.

Dinero IV [2] is a trace driven uniprocessor cache sim-
ulator for memory reference.

QPT [4] [5] is profiler and tracing system. It rewrites a
program’s executable file (a.out) by inserting code to record
the execution frequency or sequence of every basic block or
control-flow edge. From this information, another program
QPT STATS can calculate the execution cost of procedures
in the program.

EEL [6] (Executable Editing Library) is a C++ library
that hides much of the complexity and system-specific de-
tail of editing executables. EEL provides abstractions that
allow a tool to analyze and modify executable programs
without being concerned with particular instruction sets,ex-
ecutable file formats, or consequences of deleting existing
code and adding foreign code. EEL greatly simplifies the
construction of program measurement, protection, transla-
tion, and debugging tools.

SimOS [7] is a machine simulation environment de-
signed to study large complex computer systems.SimOS
simulates the computer hardware in sufficient detail and
speed to run existing system software and application pro-
grams.

Visualization based Microarchitecture Workbench
(VMW) [13] is an infrastructure which facilitates the
specification of instruction set architecture and microarchi-
tecture of a machine in a concise manner.VMWprovides all
necessary infrastructure software to the designer, including
generic simulation software, visualization support software
and graphical user interface software. VMW automatically
integrates the machine specification and infrastructure
software to generate a customized performance simulator
based on the trace-driven simulation approach. ThusVMW
provides a powerful environment for modern superscalar
processor design.

3. Sim-nML

Sim-nML [9] is a direct extension ofnML [3] ma-
chine description formalism. It includes several features
which are useful for the performance simulation and are not
present innML.

Sim-nMLis targeted for describing any arbitrary proces-
sor architecture at the instruction set level hiding implemen-
tation details. The instruction set is described in a hierar-
chical manner. The semantic actions of the instructions are
captured as fragments of code spread all over the instruc-

tion tree. TheSim-nMLspecifications are described using
an attribute grammar. There is a fixed start symbol called
instruction, and two types of productions,and-ruleandor-
rule.

There are certain fixed attributes defined forand-rules
which capture various aspects of the instruction set. The
syntaxattribute captures the textual assembly language syn-
tax of the instructions. Theimageattribute captures the bi-
nary image of the instructions. Theactionattribute captures
the semantics of the instructions. Theusesattribute captures
the resource usage model and is used for timing simulation.

The following illustration is a specification for a simple
processor with four instructions –add, sub, bim (branch
immediate), andbin (branch indirect).

The processor has two addressing modes – immediate
and register indirect. The four instructions are hierarchi-
cally described. The branch immediate (bim) instruction
modifies the PC with an immediate branch offset. The
branch indirect (bin) takes the branch address in the speci-
fied register and puts it in the PC. Theadd instruction adds
two registers and puts the result in the first register. The
sub instruction subtracts two registers and puts the result
in the first register. Retargetable tools flatten out the hierar-
chical description to enumerate out the complete instruction
set and its associated attribute definitions. Different tools,
depending on their need, use different attributes. More de-
scription ofSim-nMLcan be found in [9].

4. Integrated Simulation Environment

The goal of this work is to model a complete system en-
vironment with a processor core specified usingSim-nML.
The processor simulator for a given application can be gen-
erated automatically from theSim-nMLprocessor descrip-
tion. Such a simulator, could be either functional or cycle
accurate.

The functional simulator is essentially an instruction set
simulator. The retargetable functional simulator generator
- Fsimg [1] uses a processor description inSim-nMLand
a program binary for that processor. It then generates an
instruction set simulator capable of simulating the instruc-
tions of the input program. The instructions are simulated
in sequential program order. The overall process is shown
in figure 1.

Fsimginitially flattens the hierarchy inimageandaction
attributes of theSim-nMLdescription. For each machine in-
struction,Fsimgemits a corresponding uniqueC function.
This function is obtained by translating flattenedactionat-
tribute definition to C. Fsimg then reads the program binary
and for every matched input instruction image, it generates

constREGS = 5
type word = int (16)
reg R [2**REGS, word]
reg PC [1 , word]
modeIMM (n : card (12)) = n
syntax= format (“%d”, n)
image = format (“%12b”, n)

modeREG IND (n : card (5)) = R [n]
syntax= format (“r%d”, n)
image = format (“%5b”, n)

resourcebu, alu
op instruction (x : instraction)
uses= x.uses
syntax= x.syntax
image = x.image
action = f

PC = PC + 2;
x.action;g

op instraction = branchinst arithmeticinst

op branchinst = bim bin

op bim (d : IMM)
uses= bu #1
syntax= format (“bim %s”, d.syntax)
image = format (“1000%s”, d.image)
action = f PC = PC + (d<< 4); g

op bin (r : REGIND)
uses= bu #1
syntax= format (“bin %s”, r.syntax)
image = format (“10010000000%s”, r.image)
action = f PC = r;g

op arithmeticinst = add sub

op add (r1 :card (5), r2 : REGIND)
uses= alu #1
syntax= format (“add r%d %s”, r1, r2.syntax)
image = format (“10100%5b%s”, r1, r2.image)
action = f R [r1] = R [r1] + r2;g

op sub (r1 :card (5), r2 : REGIND)
uses= alu #1
syntax= format (“sub r%d %s”, r1, r2.syntax)
image = format (“10110%5b%s”, r1, r2.image)
action = f R [r1] = R [r1] — r2; g

(Intermediate Format)
Written in Sin-nML
Processor Model Binary Program

(ELF format)

Fsimg

Fsim

Image

Memory Function
Pointer
Table

Instruction set
Types,

Registers,
etc.

Driving Routine

Functional Simulation
&

Instruction Trace

Figure 1. A View of Functional Simulation Pro-
cess

a call to the corresponding function defining that instruc-
tion. Thus, it generates a list of function calls corresponding
to all instructions in the input program. The driver routine
of the functional simulator, simulates the program by call-
ing functions sequentially until the program terminates.

Work is currently in progress to generate a cycle accu-
rate microarchitecture simulator. This would use theuses
attribute ofSim-nMLto model the resource usage pattern of
each instruction. A preliminary version of the cycle accu-
rate simulator has already been developed [8].

The processor core simulator would form the heart of the
integrated simulation environment. For the purpose of sys-
tem simulation and evaluation, other components like the
cache, bus, memory, interrupts etc. have to be simulated.
Interface functions orcanonical functionshave been pro-
vided inSim-nMLto facilitate the interaction of the proces-
sor core with the external world. The designer is free to
choose his own model to simulate the external environment
as long as it adheres to the calling convention of thecanon-
ical functions. This provides a flexible and convenient way
for system simulation. Currently, the cache simulation en-
vironment is designed as aC-function that is invoked by
the processor simulator. The cache simulator then executes
synchronously with the processor simulator.

The overall process is shown in figure 2.

SIMULATOR

CACHE

SIMULATOR

PROCESSOR

BUS

SIMULATOR

INTERRUPT

PROCESSOR

Figure 2. A View of Integrated Simulation En-
vironment

5. Cache Simulator

Sim-nMLwas designed for specifying the instruction set
and an abstract microarchitecture model of a processor. For
a system design, it is necessary to model not just the proces-
sor but also other components of the system like the cache,
memory, bus etc. This would facilitate evaluation of the
combined performance of the system for a given applica-
tion domain. Sim-nMLprovides a flexible mechanism for
interface between the processor and other system compo-
nents through the use ofcanonical functions. Sim-nMLlan-
guage specification does not impose any discipline on how
thecanonical functionsare to be implemented. It is left to
the tools to decide on the interface and implementation of
thecanonical functions.

The cache simulator integrates with the functional sim-
ulator through thecanonical functions. For cache simula-
tion, thecanonical functionsare specified in theactionat-
tribute of theSim-nMLspecification (see example in follow-
ing subsection). The functional simulator implements the
canonical functionsin a parametrized way asC functions.
During its execution, the functional simulator calls theseC
routines. For the cache simulator, two canonical functions
icacheanddcacheare used in theSim-nMLspecification.
They provide an interface to the cache simulator back-end.
This back-end implements the instruction cache, data cache
and the unified cache. Theicachefunction call provides the
cache functionality for the instruction access whiledcache

function call provides the same for the data access. A sep-
arate cache configuration file is used to select the caching
policy.

5.1. Instruction Cache Simulation

The icachecanonical function call acts as the interface
between the processor simulator and the instruction access
functionality of the cache simulator. Theicachecanonical
function call is inserted in theaction attribute of the top
level instructionnode in theSim-nMLspecification. This
is done so that, during flattening of theSim-nMLspecifi-
cation, all instructions would contain calls to this interface
function. The functional simulator implementsicacheas a
C routine passing it the address of the current instruction as
a parameter. For the example processor specification given
in page 3, the“icache” call is inserted as shown below

op instruction (x : instr_action)
uses = x.uses
syntax = x.syntax
image = x.image
action = {

"icache"(PC);
PC = PC + 2;
x.action;

}

Here, PC is declared as a register which holds the address
of the current instruction. During simulation, the functional
simulator calls theicacheroutine for each instruction. The
instruction cache simulator keeps track of the instruction
addresses and evaluates the cache hits and misses depending
on the caching policy specified in the configuration file.

5.2. Data Cache Simulation

For data cache simulation, the“dcache” canonical func-
tion call acts as the interface between the processor simula-
tor and the data cache simulation routine of the cache sim-
ulator back-end. The‘dcache’ canonical functioncalls are
inserted in theSim-nML actionattribute for memory access
instructions, typically load/store instructions. Just asthe
“icache” canonical function, the“dcache” canonical call
is implemented in the functional simulator as aC routine.
Thedcacheroutine takes two parameters, the data memory
address and the mode of memory access operation. This
could be either a read or write to the cache. The“dcache”
canonical functioncall is specified as shown below.

op load_byte (x : 32bitaddr)
uses = load_store_unit #3
syntax = format("lb %32b", x)
image = format("1100%32b", x)

action = {
"dcache"(x, READ);
A = M[x];

}

The instructionload byte, loads a byte from the mem-
ory M into the accumulatorA. Thecanonical functioncall
“dcache” is passed the address of the memory location
from which a byte is to be loaded and also the mode of
memory access, READ. The other access mode is WRITE
which is used to specify store operations. This access mode
is used in implementing the write-through and write-back
caching policy. In the write-through policy, the data is writ-
ten directly into memory simultaneously while writing into
the cache. In write-back, only the cache is updated.

5.3 Unified Cache Simulation

Depending upon the cache configuration theicacheand
dcachefunctions can simulate the unified cache as well. For
this, both functions essentially perform the same function-
ality.

5.4 Cache Specification

A cache configuration file is used to characterize the
cache to be simulated. The cache simulation functions
icache and dcache read the configuration file during
initialization and creates the specified cache simulation
environment. A sample cache configuration file is given
below.

Cache Configuration File

Number of Levels
levels 1

Address length
addrlen 32

Description for L1 Cache
Level 1

Description for InstrCache of L1
type INSTRCACHE
associativity 4
size 32K
line 16
replace FIFO
subblock 4 # subblock size
write WB WA # Write Back, Write Allocate
writebuffer 32 # size of write buffer
nonblocking 2 # number of outstanding misses

Description for DataCache of L1
type DATACACHE
associativity 4
size 32K
line 16
subblock 4
replace FIFO
write WB WA
writebuffer 32
nonblocking 2

This following are the parameters used in the cache con-
figuration file.� levels: This specifies the total number of levels of

cache. The first level is named asL1, second asL2
and so on.� addrlen: This parameter specifies the length of the
memory address.� level: This is used to define the level that is being de-
scribed. Level n stands for thenth level of cache in
the hierarchy.� type: This parameter defines the cache type. It could
be INSTRCACHE for instruction cache orDATA-
CACHE for data cache orUNIFIED for a unified
cache architecture.� associativity: This specifies the associativity of the
cache being described. For a direct mapped cache the
associativity is1. For ann-way set associative cache
the value provided isn. A separate constantFULL is
used for describing a fully associative cache.� size n: It specifies the cache size,n can be suffixed
with K(kilobytes) orM(megabytes). Without the qual-
ifier, n is assumed to be in bytes.� line n: This specifies the cache line size,n can be suf-
fixed with K(kilobytes) orM(megabytes). Without the
quantifier,n is assumed to be in bytes.� replace: This denotes the replacement policy forset
associativecache systems. The policy can beFIFO
(first in first out),RANDOM or LRU (least recently
used).� subblock: This denotes the subblock size within a
cache line.� write : This specifies the write policy. It could be one
of the following:

– WB WA : write through with write allocate

– WB NWA : write back - no write allocate

– WT WA : write through with write allocate

– WT NWA : write through with no write allocate� writebuffer : This specifies the size of the write buffer
in bytes.� nonblocking: This specifies the number of outstand-
ing misses that a cache can satisfy without blocking
the processor.

The cache simulator assesses and accumulates the fol-
lowing parameters - cache hits, cache misses, conflict
misses, invalid misses, compulsory misses. During simu-
lation it internally keeps track of the above metrics. At the
end of simulation, the statistics are dumped into log file for
later analysis. Statistics are maintained for each cache type
at each cache level.

We have been able to describe several of processors in
Sim-nML. They include PowerPC603, Motorola68HC11,
ADSP2101, Intel8085, ARM, Sparc. The cache simulation
was extensively tested for PowerPC603 and Motorola pro-
cessors. The description of these processors can be obtained
at http://www.cse.iitk.ac.in/sim-nml.

Program Description

mmul.c Matrix multiplication program. This
program initializes two integer matrices
of 100x100 size and multiplies them.

bsort.c Bubble sort program. This program
initializes an array of 1500 integers in
descending order and sorts them to
ascending order using bubble sort
algorithm.

qs.c Quick sort program. This program
initializes array of 1,00,000 integers in
descending order and sorts them to
ascending order using quick sort algorithm.

fmmul.c Matrix multiplication for floating-point
numbers. Initializes and multiplies two
floating point matrices of size 100x100.

nqueen.c This program finds all the possible ways
that N queens can be placed on an NxN
chess board so that the queens cannot
capture one another. Here N is taken as 12.

Table 1. Benchmark Programs

Program Total No. of Instructions

mmul.c 111,681,966
bsort.c 60,759,034
qs.c 80,773,862

fmmul.c 112,281,966
nqueen.c 204,916,928

Table 2. Total number of instructions simu-
lated for test programs.

Cache Description

cache-conf-1 8K unified cache,
32 byte line size,
4-way associative,
LRU replacement policy.

cache-conf-2 8K instruction, data cache,
32 byte line size (both),
4-way associative (both),
LRU replacement policy (both).

cache-conf-3 2 Levels,
Level 1: 8K instruction data cache,

direct mapped,
Level 2: 32K instruction, data cache,

4-way associative,
LRU replacement policy,

Both levels have 32 byte line size.
cache-conf-4 3 Levels,

Level 1: 8K instruction, data cache,
4-way associative,
LRU replacement policy,

Level 2: 32K instruction, data cache,
8-way associative,
LRU replacement policy,

Levels 1, 2 have 32 byte line size,
Level 3: 64K unified cache,

direct mapped,
64 byte line size.

Table 3. Benchmark Programs

6. Results

In this section, we consider the slow down of the retar-
getable functional simulatorFsimbecause of the cache sim-
ulator. The cache simulator is run in various configurations
and the slow down in simulation speed is noted. Five bench-
mark programs were written inC (Table 1) and compiled for
PowerPC 603 Sim-nMLprocessor description. The simula-
tors were run on aPentium-II 350MHzmachine.

Table 2 gives the total number of dynamically executed
instructions during the simulation of each of the programs
as reported by the functional simulator.

The performance results of functional simulator are
given in Table 4.

Table 3 lists the different cache configurations which
were used to run the cache simulator. Table 5 compares the
performance of the functional simulator with cache simula-
tion for each of these cache configurations.

From Table 6 we observe on an average of 80% slow-
down in simulation speed because of online cache simula-
tion.

Target instructions
Program per second. Fsim

compiled with
optimization level 3

(in million instructions per second)

mmul.c .89
bsort.c 1.1
qs.c 1.3

fmmul.c 1.3
nqueen.c 1.4

Table 4. Simulation speed of the functional
simulator without cache simulation

cache-conf 1 2 3 4

mmul.c .22 .22 .29 .20
bsort.c .20 .20 .20 .20
qs.c .17 .17 .07 .16

fmmul.c .21 .21 .28 .20
nqueen.c .29 .29 .34 .28

Table 5. Simulation speed of functional simu-
lator with cache simulation (in million instruc-
tions per second)

7. Conclusion

In this paper we presented an execution driven retar-
getable cache simulator. The cache simulator is modular
with the only interface to the instruction set simulator be-
ing thecanonical functions. Thus it is possible to change
the processor description and hence the address trace with-
out modifying the cache simulator. The cache configuration
file provides a convenient and easily adaptable way to sim-
ulate multiple caching policies. The cache-simulator does
not slow down the instruction set functional simulator to

cache-conf 1 2 3 4

mmul.c 75 75 67 77
bsort.c 81 81 81 81
qs.c 83 83 94 83

fmmul.c 83 83 78 84
nqueen.c 79 79 75 80

Table 6. Percentage decrease in simulation
performance due to cache simulation

unacceptable range.

References

[1] S. Chandra and R. Moona. Retargetable functional simulator
using high level processor models.Proceedings of Interna-
tional Conference on VLSI Design, Calcutta, India., January
2000.

[2] J. Edler and M. D. Hill. Dinero IV Trace-Driven Uniproces-
sor Cache Simulator.

[3] M. Freerick. The nML Machine Description Formalism.
http://www.cs.tu-berlin.de/˜ mfx/dvi docs/nml2.dvi.gz,
1993.

[4] J. R. Larus. Efficient Program Tracing.IEEE Computer,
26(5):52–61, May 1993.

[5] J. R. Larus and T. Ball. Rewriting Executable Files to Mea-
sure Program Behavior.Software Practice & Experience,
24(2):197–218, Feb 1994.

[6] J. R. Larus and E. Schnarr. EEL: Machine-Independent Ex-
ecutable Editing. SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), June 1995.

[7] S. D. Mendel Rosenblum, Edouard Bugnion and S. A.
Herrod. Using the SimOS Machine Simulator to Study
Complex Computer Systems.ACM Transactions on Mod-
eling and Computer Simulation, 7(1):78–103, Jan 1997.
http://simos.stanford.edu.

[8] V. Rajesh. A generic approach to performance model-
ing and its application to simulator generator. Master’s
thesis, Dept. of Computer Science and Engg., IIT Kan-
pur, India, http://www.cse.iitk.ac.in/research/mtech1996
/9611132.html, July 1998.

[9] V. Rajesh and R. Moona. Processor modeling for hardware
software co-design.Proceedings of International Confer-
ence on VLSI Design, Goa, India., January 1999.

[10] M. D. Smith. Tracing with Pixie.Memo from Center for
Integrated Systems, Stanford Univ., April 1991.

[11] A. Srivastava and D. Wall. ATOM: A system for building
customized analysis tools.Proceedings of the SIGPLAN ’94
Conference of Programming Language Design and Imple-
mentation (PLDI), pages 196–205, June 1994.

[12] R. A. Sugumar and S. G. Abraham. Efficient simulation of
caches under optimal replacement with application to miss
characterizations.Proceedings of the 1993 ACM Sigmetrics
Conference on Measurements and Modeling of Computer
Systems, May 1993.

[13] D. Trung A. and S. John Paul. VMW: A Visualization-Based
Microarchitecture Workbench.IEEE Computer, pages 57–
64, Dec 1995.

