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Abstract
In this article, we survey the arguments and known results for and against the Isomorphism

Conjecture.

1 Introduction

The Isomorphism Conjecture for the class NP states that all polynomial-time many-one complete
sets for NP are polynomial-time isomorphic to each other. It was made by Berman and Hart-
manis [21]1, inspired in part by a corresponding result in computability theory for computably
enumerable sets [50], and in part by the observation that all the existing NP-complete sets known
at the time were indeed polynomial-time isomorphic to each other. This conjecture has attracted
a lot of attention because it predicts a very strong structure of the class of NP-complete sets, one
of the fundamental classes in complexity theory.

After an initial period in which it was believed to be true, Joseph and Young [40] raised serious
doubts against the conjecture based on the notion of one-way functions. This was followed by
investigation of the conjecture in relativized worlds [33, 46, 27] which, on the whole, also suggested
that the conjecture may be false. However, disproving the conjecture using one-way functions, or
proving it, remained very hard (either implies P 6= NP). Hence research progressed in three distinct
directions from here.

The first direction was to investigate the conjecture for complete degrees of classes bigger than
NP. Partial results were obtained for classes EXP and NEXP [20, 29].

The second direction was to investigate the conjecture for degrees other than complete degree.
For degrees within the 2-truth-table-complete degree of EXP, both possible answers to the conjecture
were found [44, 43, 41].

The third direction was to investigate the conjecture for reducibilities weaker than polynomial-
time. For several such reducibilities it was found that the isomorphism conjecture, or something
close to it, is true [16, 1, 8, 2].

These results, especially from the third direction, suggest that the Isomorphism Conjecture for
the class NP may be true contrary to the evidence from the relativized world. A recent work [12]
shows that if all one-way functions satisfy a certain property then a non-uniform version of the
conjecture is true.

An excellent survey of the conjecture and results related to the first two directions is in [45].
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2 Definitions

In this section, we define most of the notions that we will need.
We fix the alphabet to Σ = {0, 1}. Σ∗ denotes the set of all finite strings over Σ and Σn denotes

the set of strings of size n. We start with defining the types of functions we use.

Definition 2.1. Let r be a resource bound on Turing machines. Function f , f : Σ∗ 7→ Σ∗, is
r-computable if there exists a Turing machine (TM, in short) M working within resource bound of
r that computes f . We also refer to f as an r-function.

Function f is size-increasing if for every x, |f(x)| > |x|. f is honest if there exists a polynomial
p(·) such that for every x, p(|f(x)|) > |x|.

For function f , f−1 denotes a function satisfying the property that for all x, f(f−1(f(x))) =
f(x). We say f is r-invertible if some f−1 is r-computable.

For function f , its range is denoted as: range(f) = {y | (∃x) f(x) = y}.

We will be primarily interested in the resource bound of polynomial time, and abbreviate it as
p. We now define several notions of reducibilities.

Definition 2.2. Let r be a resource bound. Set A r-reduces to set B if there exists an r-function
f such that for every x, x ∈ A iff f(x) ∈ B. We also write this as A ≤rm B via f . Function f is
called an r-reduction of A to B.

Similarly, A ≤r1 B (A ≤r1,si B; A ≤r1,si,i B) if there exists a 1-1 (1-1 and size-increasing; 1-1,
size-increasing and r-invertible) r-function f such that A ≤rm B via f .

A ≡rm B if A ≤rm B and B ≤rm A. An r-degree is an equivalence class induced by the relation
≡rm.

Definition 2.3. A is r-isomorphic to B if A ≤rm B via f where f is a 1-1, onto, r-invertible
r-function.

The definitions of complexity classes P, NP, PH, EXP, NEXP etc. can be found in [52]. We
define the notion of completeness we are primarily interested in.

Definition 2.4. Set A is r-complete for NP if A ∈ NP and for every B ∈ NP, B ≤rm A. For
r = p, set A is called NP-complete in short. The class of r-complete sets is also called the complete
r-degree of NP.

Similarly one defines complete sets for other classes.

The Satisfiability problem (SAT) is one of the earliest known NP-complete problems [25]. SAT
is the set of all satisfiable propositional Boolean formulas.

We now define one-way functions. These are p-functions that are not p-invertible on most of
the strings. One-way functions are one of the fundamental objects in cryptography.

Without loss of generality (see [30]), we can assume that one-way functions are honest functions
f for which the input length determines the output length, i.e., there is a length function ` such
that |f(x)| = `(|x|) for all x ∈ Σ∗.

Definition 2.5. Function f is a s(n)-secure one-way function if (1) f is a p-computable, honest
function and (2) the following holds for every polynomial-time randomized Turing machine M and
for all sufficiently large n:

Pr
x∈UΣn

[ f(M(f(x))) = f(x) ] <
1

s(n)
.
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In the above, the probability is also over random choices of M , and x ∈U Σn mean that x is
uniformly and randomly chosen from strings of size n.

We impose the property of honesty in the above definition since a function that shrinks length
by more than a polynomial is trivially one-way.

It is widely believed that 2n
ε
-secure one-way functions exist for some ε > 0. We give one

example. Start by defining a modification of the multiplication function:

Mult(x, y) =
{

1z if x and y are both prime numbers and z is the product x ∗ y
0xy otherwise

In the above definition, (·, ·) is a pairing function. In this paper, we assume the following
definition of (·, ·): (x, y) = xy` where |`| = dlog |xy|e and ` equals |x| written in binary. With this
definition, |(x, y)| = |x|+ |y|+ dlog |xy|e. This definition is easily extended for m-tuples for any m.

Mult is a p-function since testing primality of numbers is in P [13]. Computing the inverse of
Mult is equivalent to factorization, for which no efficient algorithm is known. However, Mult is
easily invertible on most of the inputs, e.g., when any of x and y is not prime. The density estimate
for prime numbers implies that Mult is p-invertible on at least 1 − 1

nO(1) fraction of inputs. It is
believed that Mult is (1− 1

nO(1) )-secure, and it remains so even if one lets the TM M work for time

2n
δ

for some small δ > 0. From this assumption, one can show that arbitrary concatenation of
Mult:

MMult(x1, y1, x2, y2, . . . , xm, ym) = Mult(x1, y1) ·Mult(x2, y2) · · ·Mult(xm, ym)

is a 2n
ε
-secure one-way function [30](page 43).

One-way functions that are 2n
ε
-secure are not p-invertible almost anywhere. The weakest form

of one-way functions are worst-case one-way functions:

Definition 2.6. Function f is a worst-case one-way function if (1) f is a p-computable, honest
function, and (2) f is not p-invertible.

3 Formulation and Early Investigations

The conjecture was formulated by Berman and Hartmanis [21] in 1977. Part of their motivation
for the conjecture was a corresponding result in computability theory for computably enumerable
sets [50]:

Theorem 3.1 (Myhill). All complete sets for the class of computably enumerable sets are isomor-
phic to each other under computable isomorphisms.

The non-trivial part in the proof of this theorem is to show that complete sets for the class of
computably enumerable sets reduce to each other via 1-1 reductions. It is then easy to construct
isomorphisms between the complete sets. In many ways, the class NP is the resource bounded analog
of the computably enumerable class, and polynomial-time functions the analog of computable
functions. Hence it is natural to ask if the resource bounded analog of the above theorem holds.

Berman and Hartmanis noted that the requirement for p-isomorphisms is stronger. Sets reduc-
ing to each other via 1-1 p-reductions does not guarantee p-isomorphisms as p-functions do not
have sufficient time to perform exponential searches. Instead, one needs p-reductions that are 1-1,
size-increasing, and p-invertible:
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Theorem 3.2 (Berman-Hartmanis). If A ≤p1,si,i B and B ≤p1,si,i A then A is p-isomorphic to B.

They defined the paddability property which ensures the required kind of reductions.

Definition 3.3. Set A is paddable if there exists a p-computable padding function p, p : Σ∗×Σ∗ 7→
Σ∗, such that:

• Function p is 1-1, size-increasing, and p-invertible,

• For every x, y ∈ Σ∗, p(x, y) ∈ A iff x ∈ A.

Theorem 3.4 (Berman-Hartmanis). If B ≤pm A and A is paddable, then B ≤p1,si,i A.

Proof. Suppose B ≤pm A via f . Define function g as: g(x) = p(f(x), x). Then, x ∈ B iff f(x) ∈ A iff
g(x) = p(f(x), x) ∈ A. By its definition and the fact that p is 1-1, size-increasing, and p-invertible,
it follows that g is also 1-1, size-increasing, and p-invertible.

Berman and Hartmanis next showed that the known complete sets for NP at the time were all
paddable and hence p-isomorphic to each other. For example, the following is a padding function
for SAT:

pSAT (x, y1y2 · · · ym) = x ∧
m∧
i=1

zi

m∧
i=1

ci

where ci = zm+i if bit yi = 1 and ci = z̄i if yi = 0 and the Boolean variables z1, z2, . . ., z2m do not
occur in the formula x.

This observation led them to the following conjecture:

Isomorphism Conjecture. All NP-complete sets are p-isomorphic to each other.

The conjecture immediately implies P 6= NP:

Proposition 3.5. If the Isomorphism Conjecture is true then P 6= NP.

Proof. If P = NP then all sets in P are NP-complete. However, P has both finite and infinite sets
and there cannot exist an isomorphism between a finite and an infinite set. Hence the Isomorphism
Conjecture is false.

This suggests that proving the conjecture is hard because the problem of separating P from
NP has resisted all efforts so far. A natural question, therefore, is: Can one prove the conjecture
assuming a reasonable hypothesis such as P 6= NP? We address this question later in the paper.
In their paper, Berman and Hartmanis also asked a weaker question: Does P 6= NP imply that no
sparse set can be NP-complete?

Definition 3.6. Set A is sparse if there exist constants k, n0 > 0 such that for every n > n0, the
number of strings in A of length ≤ n is at most nk.

This was answered in affirmative by Mahaney [49]:

Theorem 3.7 (Mahaney). If P 6= NP then no sparse set is NP-complete.

Proof Sketch. We give a proof based on an idea of [9, 51, 19]. Suppose there is a sparse set S such
that SAT ≤pm S via f . Let F be a Boolean formula on n variables. Start with the set T = {F} and
do the following:
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Replace each formula F̂ ∈ T by F̂0 and F̂1 where F̂0 and F̂1 are obtained by setting
the first variable of F̂ to 0 and 1 respectively. Let T = {F1, F2, . . . , Ft}. If t exceeds a
certain threshold t0, then let Gj = F1 ∨ Fj and zj = f(Gj) for 1 ≤ j ≤ t. If all zj ’s are
distinct then drop F1 from T . Otherwise, zi = zj for some i 6= j. Drop Fi from T and
repeat until |T | ≤ t0. If T has only formulas with no variables, then output Satisfiable
if T contains a True formula else output Unsatisfiable. Otherwise, go to the beginning
of the algorithm and repeat.

The invariant maintained during the entire algorithm is that F is satisfiable iff T contains a
satisfiable formula. It is true in the beginning, and remains true in each iteration after replacing
every formula F̂ ∈ T with F̂0 and F̂1. The threshold t0 must be such that t0 is a upper bound on the
number of strings in the set S of size maxj |f(Gj)|. This is a polynomial in |F | since |Gj | ≤ 2|F |,
f is a p-function, and S is sparse. If T has more than t0 formulas at any stage then the algorithm
drops a formula from T . This formula is F1 when all zj ’s are distinct. This means there are more
than t0 zj ’s all of size bounded by maxj |f(Gj)|. Not all of these can be in S due to the choice of
t0 and hence F1 6∈ SAT. If zi = zj then Fi is dropped. If Fi is satisfiable then so is Gi. And since
zi = zj and f is a reduction of SAT to S, Gj is also satisfiable; hence either F1 or Fj is satisfiable.
Therefore dropping Fi from T maintains the invariant.

The above argument shows that the size of T does not exceed a polynomial in |F | at any stage.
Since the number of iterations of the algorithm is bounded by n ≤ |F |, the overall time complexity
of the algorithm is polynomial. Hence SAT ∈ P and therefore, P = NP.

The “searching-with-pruning” technique used in the above proof has been used profitably in
many results subsequently. The Isomorphism Conjecture, in fact, implies a much stronger density
result: All NP-complete sets are dense.

Definition 3.8. Set A is dense if there exist constants ε, n0 > 0 such that for every n > n0, the
number of strings in A of length ≤ n is at least 2n

ε
.

Buhrman and Hitchcock [22] proved that, under a plausible hypothesis, every NP-complete set
is dense infinitely often:

Theorem 3.9 (Buhrman-Hitchcock). If PH is infinite then for any NP-complete set A, there exists
ε > 0 such that for infinitely many n, the number of strings in A of length ≤ n is at least 2n

ε
.

Later, we show that a stronger density theorem holds if 2n
ε
-secure one-way functions exist.

4 A Counter Conjecture and Relativizations

After Mahaney’s result, there was not much progress on the conjecture although researchers believed
it to be true. However, this changed in 1984 when Joseph and Young [40] argued that the conjecture
is false. Their argument was as follows (paraphrased by Selman [53]). Let f be any 1-1, size-
increasing, 2n

ε
-secure one-way function. Consider the set A = f(SAT). Set A is clearly NP-

complete. If it is p-isomorphic to SAT, there must exist a 1-1, honest p-reduction of SAT to A
which is also p-invertible. However, the set A is, in a sense, a ‘coded’ version of SAT such that
on most of the strings of A, it is hard to ‘decode’ it (because f is not p-invertible on most of
the strings). Thus, there is unlikely to be a 1-1, honest p-reduction of SAT to A which is also
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p-invertible, and so A is unlikely to be p-isomorphic to SAT. This led them to make a counter
conjecture:

Encrypted Complete Set Conjecture There exists a 1-1, size-increasing, one-way function f
such that SAT and f(SAT) are not p-isomorphic to each other.

It is useful to observe here that this conjecture is false in computable setting: The inverse of any
1-1, size-increasing, computable function is also computable. The restriction to polynomial-time
computability is what gives rise to possible existence of one-way functions.

It is also useful to observe that this conjecture too implies P 6= NP:

Proposition 4.1. If the Encrypted Complete Set Conjecture is true then P 6= NP.

Proof. If P = NP then every 1-1, size-increasing p-function is also p-invertible. Hence for every
such function, SAT and f(SAT) are p-isomorphic.

The Encrypted Complete Set conjecture fails if one-way functions do not exist. Can it be shown
to follow from the existence of strong one-way functions, such as 2n

ε
-secure one-way functions? This

is not clear. (In fact, later we argue the opposite.) Therefore, to investigate the two conjectures
further, the focus moved to relativized worlds. Building on a result of Kurtz [42], Hartmanis and
Hemachandra [33] showed that there is an oracle relative to which P = UP and the Isomorphism
Conjecture is false. This shows that both the conjectures fail in a relativized world since P = UP
implies that no one-way functions exist.

Kurtz, Mahaney, and Royer [46] defined the notion of scrambling functions:

Definition 4.2. Function f is scrambling function if f is 1-1, size-increasing, p-computable and
there is no dense polynomial-time subset in range(f).

Kurtz et. al. observed that,

Proposition 4.3. If scrambling functions exist then the Encrypted Complete Set Conjecture is
true.

Proof. Let f be a scrambling function, and consider A = f(SAT). Set A is NP-complete. Suppose
it is p-isomorphic to SAT and let p be the isomorphism between SAT and A. Since SAT has a dense
polynomial-time subset, say D, p(D) is a dense polynomial time subset of A. This contradicts the
scrambling property of f .

Kurtz et. al. [46] then showed that

Theorem 4.4 (Kurtz, Mahaney, Royer). Relative to a random oracle, scrambling functions exist.

Proof Sketch. Let O be an oracle. Define function f as:

f(x) = O(x)O(x1)O(x11) · · ·O(x12|x|),

where O(z) = 1 if z ∈ O, 0 otherwise. For a random choice of O, f is 1-1 with probability 1. So,
f is a 1-1, size-increasing, pO-computable function. Suppose a polynomial-time TM M with oracle
O accepts a subset of range(f). In order to distinguish a string in range of f from those outside,
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M needs to check the answer of oracle O on several unique strings. And since M can query only
polynomially many strings from O, M can accept only a sparse subset of range(f).

Therefore, relative to a random oracle, the Encrypted Complete Set Conjecture is true and
the Isomorphism Conjecture is false. The question of existence of an oracle relative to which the
Isomorphism Conjecture is true was resolved by Fenner, Fortnow and Kurtz [27]:

Theorem 4.5 (Fenner, Fortnow, Kurtz). There exists an oracle relative to which Isomorphism
Conjecture is true.

Thus, there are relativizations in which each of the three possible answers to the two conjectures
is true. However, the balance of evidence provided by relativizations is towards the Encrypted
Complete Set Conjecture since properties relative to a random oracle are believed to be true in
unrelativized world too.2

5 The Conjectures for Other Classes

In search of more evidence for the two conjectures, researchers translated them to classes bigger
than NP. The hope was that diagonalization arguments that do not work within NP can be used
for these classes to prove stronger results about the structure of complete sets. This hope was
realized, but not completely. In this section, we list the major results obtained for classes EXP and
NEXP which were the two main classes considered.

Berman [20] showed that,

Theorem 5.1 (Berman). Let A be a p-complete set for EXP. Then for every B ∈ EXP, B ≤p1,si A.

Proof Sketch. Let M1, M2, . . . be an enumeration of all polynomial-time TMs such that Mi halts,
on input x, within time |x||i| + |i| steps. Let B ∈ EXP and define B̂ to be the set accepted by the
following algorithm:

Input (i, x). Let Mi(i, x) = y. If |y| ≤ |x|, accept iff y 6∈ A. If there exists a z, z < x (in
lexicographic order), such that Mi(i, z) = y, then accept iff z 6∈ B. Otherwise, accept
iff x ∈ B.

The set B̂ is clearly in EXP. Let B̂ ≤pm A via f . Let the TM Mj compute f . Define function g
as: g(x) = f(j, x). It is easy to argue that f is 1-1 and size-increasing on inputs of the form (j, ?)
using the definition of B̂ and the fact that f is a reduction. It follows that g is a 1-1, size-increasing
p-reduction of B to A.

Remark 5.2. A case can be made that the correct translation of the isomorphism result of [50] to
polynomial-time realm is to show that the complete sets are also complete under 1-1, size-increasing
reductions. As observed earlier, the non-trivial part of the result in the setting of computability is
to show the above implication. Inverting computable reductions is trivial. This translation will also
avoid the conflict with Encrypted Complete Set Conjecture as it does not require p-invertibility.
In fact, as will be shown later, one-way functions help in proving an analog of above theorem for
the class NP! However, the present formulation has a nice symmetry to it (both the isomorphism
and its inverse require the same amount of resources) and hence is the preferred one.

2There are notable counterexamples of this though. The most prominent one being the result IP = PSPACE [48, 54]
which is false relative to a random oracle [24].
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For the class NEXP, Ganesan and Homer [29] showed that,

Theorem 5.3 (Ganesan-Homer). Let A be a p-complete set for NEXP. Then for every B ∈ NEXP,
B ≤p1 A.

The proof of this uses ideas similar to the previous proof for EXP. The result obtained is not as
strong since enforcing the size-increasing property of the reduction requires accepting complement
of a NEXP set which cannot be done in NEXP unless NEXP is closed under complement, a very
unlikely possibility. Later, the author [5] proved the size-increasing property for reductions to
complete sets for NEXP under a plausible hypothesis.

While the two conjectures could not be settled for the complete p-degree of EXP (and NEXP),
answers have been found for p-degrees close to the complete p-degree of EXP. The first such result
was shown by Ko, Long and Du [41]. We need to define the notion of truth-table reductions to
state this result.

Definition 5.4. Set A k-truth-table reduces to set B if there exists a p-function f , f : Σ∗ 7→
Σ∗ × Σ∗ × · · · × Σ∗︸ ︷︷ ︸

k

×Σ2k such that for every x ∈ Σ∗, if f(x) = (y1, y2, . . . , yk, T ) then x ∈ A iff

T (B(y1)B(y2) · · ·B(yk)) = 1 where B(yi) = 1 iff yi ∈ B and T (s), |s| = k, is the sth bit of string
T .

Set B is k-truth-table complete for EXP if B ∈ EXP and for every A ∈ EXP, A k-truth-table
reduces to B.

The notion of truth-table reductions generalizes p-reductions. For both EXP and NEXP, it is
known that complete sets under 1-truth-table reductions are also p-complete [38, 23], and not all
complete sets under 2-truth-table reductions are p-complete [55]. Therefore, the class of 2-truth-
table complete sets for EXP is the smallest class properly containing the complete p-degree of
EXP.

Ko, Long, and Du [41] related the structure of certain p-degrees to the existence of worst-case
one-way functions:

Theorem 5.5 (Ko-Long-Du). If there exist worst-case one-way functions then there is a p-degree
in EXP such that the sets in the degree are not all p-isomorphic to each other. Further, sets in this
degree are 2-truth-table complete for EXP.

Kurtz, Mahaney, and Royer [43] found a p-degree for which the sets are unconditionally not all
p-isomorphic to each other:

Theorem 5.6 (Kurtz-Mahaney-Royer). There exists a p-degree in EXP such that the sets in the
degree are not all p-isomorphic to each other. Further, sets in this degree are 2-truth-table complete
for EXP.

Soon afterwards, Kurtz, Mahaney, and Royer [44] found another p-degree with the opposite
structure:

Theorem 5.7 (Kurtz-Mahaney-Royer). There exists a p-degree in EXP such that the sets in the
degree are all p-isomorphic to each other. Further, this degree is located inside the 2-truth-table
complete degree of EXP.

The set of results above on the structure of complete (or nearly complete) p-degree of EXP and
NEXP do not favour any of the two conjectures. However, they do suggest that the third possibility,
viz., both the conjectures being false, is unlikely.
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6 The Conjectures for Other Reducibilities

Another direction to approach the two conjectures is to weaken the power of reductions instead of
the class NP. The hope being that for reductions substantially weaker than polynomial-time, one
can prove unconditional results. For several weak reductions, this was proven correct and in this
section we summarize the major results in this direction.

The two conjectures for r-reductions can be formulated as:

r-Isomorphism Conjecture. All r-complete sets for NP are r-isomorphic to each other.

r-Encrypted Complete Set Conjecture. There is a 1-1, size-increasing, r-function f such that
SAT and f(SAT) are not r-isomorphic to each other.

Weakening p-reductions to logspace-reductions (functions computable by TMs with read-only
input tape and work tape space bounded by O(log n), n is the input size) does not yield uncondi-
tional results as any such result will separate NP from L, another long-standing open problem. So
we need to weaken it further. There are three major ways to doing this.

6.1 Restricting the Input Head Movement

Allowing the input head movement in only one direction leads to the notion of 1-L-functions.

Definition 6.1. A 1-L-function is computed by deterministic TMs with read-only input tape, the
workspace bounded by O(log n) where n is the input length, and the input head restricted to move
in one direction only (left-to-right by convention). In other words, the TM is allowed only one scan
of its input. To ensure the space bound, the first O(log n) cells on the work tape are marked at the
beginning of the computation.

These functions were defined by Hartmanis, Immerman and Mahaney [34] to study the complete
sets for the class L. They also observed that the “natural” NP-complete sets are also complete under
1-L-reductions. Structure of complete sets under 1-L-reductions attracted a lot of attention, and
the first result was obtained by Allender [14]:

Theorem 6.2 (Allender). For the classes PSPACE and EXP, complete sets under 1-L-reductions
are p-isomorphic to each other.

While this shows a strong structure of complete sets of some classes under 1-L-reductions, it does
not answer the 1-L-Isomorphism Conjecture. After a number of extensions and improvements [29,
37, 10], the author [1] showed that,

Theorem 6.3 (Agrawal). Let A be a 1-L-complete set for NP. Then for every B ∈ NP, B ≤1−L
1,si,i A.

Proof Sketch. We first show that A is also complete under forgetful 1-L-reductions. Forgetful
1-L-reductions are computed by TMs that, immediately after reading a bit of the input, forget its
value. This property is formalized by defining configurations: A configuration of a 1-L TM is a
tuple 〈q, j, w〉 where q is a state of the TM, j its input head position, and w the contents of its
worktape including the position of the worktape head. A forgetful TM, after reading a bit of the
input and before reading the next bit, reaches a configuration which is independent of the value of
the bit that is read.

Let B ∈ NP, and define B̂ be the set accepted by the following algorithm:
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Input x. Let x = y10b1k. Reject if b is odd or |y| 6= tb for some integer t. Otherwise, let
y = y1y2 · · · yt with |yi| = b. Let vi = 1 if yi = uu for some u, |u| = b

2 ; vi = 0 otherwise.
Accept iff v1v2 · · · vt ∈ B.

The set B̂ is a ‘coded’ version of set B and reduces to B via a p-reduction. Hence, B̂ ∈ NP.
Let f be a 1-L-reduction of B̂ to A computed by TM M . Consider the workings of M on inputs
of size n. Since M has O(log n) space, the number of configurations of M will be bounded by
a polynomial, say q(·), in n. Let b = kdlog ne such that 2b/2 > q(n). Let C0 be the initial
configuration of M . By the Pigeon Hole Principle, it follows that there exist two distinct strings
u1 and u′1, |u1| = |u′1| = b

2 , such that M reaches the same configuration, after reading either of u1

and u′1. Let C1 be the configuration reached from this configuration after reading u1. Repeat the
same argument starting from C1 to obtain strings u2, u′2, and configuration C2. Continuing this
way, we get triples (ui, u′i, Ci) for 1 ≤ i ≤ t = bn−b−1

b c. Let k = n− b− 1− bt. It follows that the
TM M will go through the configurations C0, C1, . . ., Ct on any input of the form y1y2 . . . yt10b1k

with yi ∈ {uiui, u′iui}. Also, that the pair (ui, u′i) can be computed in logspace without reading the
input.

Define a reduction g of B to B̂ as follows. On input v, |v| = t, compute b such that 2b/2 >
q(b+ 1 + bt), and consider M on inputs of size b+ 1 + bt. For each i, 1 ≤ i ≤ t, compute the pair
(ui, u′i) and output uiui if the ith bit of v is 1, output uiu′i otherwise. It is easy to argue that the
composition of f and g is a forgetful 1-L-reduction of B to A.

Define another set B′ as accepted by the following algorithm:

Input x. Reject if |x| is odd. Otherwise, let x = x1x2 · · ·xns1s2 · · · sn. Accept if exactly
one of s1, s2, . . ., sn, say sj , is zero and xj = 1. Accept if all of s1, s2, . . ., sn are one
and x1x2 · · ·xn ∈ B. Reject in all other cases.

Set B′ ∈ NP. As argued above, there exists a forgetful 1-L-reduction of B′ to A, say h. Define
a reduction g′ of B to B′ as: g′(v) = v1|v|. It is easy to argue that h ◦ g′ is a size-increasing,
1-L-invertible, 1-L-reduction of B to A and h ◦ g′ is 1-1 on strings of size n for all n. Modifying
this to get a reduction that is 1-1 everywhere is straightforward.

The above result strongly suggests that the 1-L-Isomorphism Conjecture is true. However, the
author [1] showed that

Theorem 6.4 (Agrawal). 1-L-complete sets for NP are all 2-L-isomorphic to each other but not
1-L-isomorphic.

The 2-L-isomorphism above is computed by logspace TMs that are allowed two left-to-right
scans of their input. Thus, the 1-L-Isomorphism Conjecture fails and a little more work shows
that the 1-L-Encrypted Complete Set Conjecture is true! However, the failure of the Isomorphism
Conjecture here is for a very different reason: it is because 1-L-reductions are not powerful enough to
carry out the isomorphism construction as in Theorem 3.2. For a slightly more powerful reducibility,
1-NL-reductions, this is not the case.

Definition 6.5. A 1-NL-function is computed by TMs satisfying the requirements of definition 6.1,
but allowed to be nondeterministic. The nondeterministic TM must output the same string on all
paths on which it does not abort the computation.
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For 1-NL-reductions, the author [1] showed, using proof ideas similar to the above one, that:

Theorem 6.6 (Agrawal). 1-NL-complete sets for NP are all 1-NL-isomorphic to each other.

The author [1] also showed similar results for c-L-reductions for constant c (functions that are
allowed at most c left-to-right scans of the input).

6.2 Reducing Space

The second way of restricting logspace reductions is by allowing the TMs only sublogarithmic space,
i.e., allowing the TM space o(log n) on input of size n; we call such reductions sublog-reductions.
Under sublog-reductions, NP has no complete sets, and the reason is simple: every sublog-reduction
can be computed by deterministic TMs in time O(n2) and hence if there is a complete set for NP
under sublog-reductions, then NTIME(nk+1) = NTIME(nk) for some k > 0, which is impossible [26].
On the other hand, each of the classes NTIME(nk), k ≥ 1, has complete sets under sublog-reductions.

The most restricted form for sublog-reductions is 2-DFA-reductions:

Definition 6.7. A 2-DFA-function is computed by a TM with read-only input tape and no work
tape.

2-DFA functions do not require any space for their computation, and therefore are very weak.
Interestingly, the author [4] showed that sublog-reductions do not add any additional power for
complete sets:

Theorem 6.8 (Agrawal). For any k ≥ 1, sublog-complete sets for NTIME(nk) are also 2-DFA-
complete.

For 2-DFA-reductions, the author and Venkatesh [11] proved that:

Theorem 6.9 (Agrawal-Venkatesh). Let A be a 2-DFA-complete set for NTIME(nk) for some
k ≥ 1. Then, for every B ∈ NTIME(nk), B ≤2DFA

1,si A via a reduction that is mu-DFA-invertible.

muDFA-functions are computed by TMs with no space and multiple heads, each moving in a
single direction only. The proof of this is also via forgetful TMs. The reductions in the theorem
above are not 2-DFA-invertible, and in fact, it was shown in [11] that:

Theorem 6.10 (Agrawal-Venkatesh). Let f(x) = xx. Function f is a 2-DFA-function and for
any k ≥ 1, there is a 2-DFA-complete set A for NTIME(nk) such that A 6≤2DFA

1,si,i f(A).

The above theorem implies that 2DFA-Encrypted Complete Set Conjecture is true.

6.3 Reducing Depth

Logspace reductions can be computed by (unbounded fan-in) circuits of logarithmic depth.3 There-
fore, another type of restricted reducibility is obtained by further reducing the depth of the circuit
family computing the reduction. Before proceeding further, let us define the basic notions of circuit
model.

3For a detailed discussion on the circuit model of computation, see [52].
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Definition 6.11. A circuit family is a set {Cn : n ∈ N} where each Cn is an acyclic circuit with n
Boolean inputs x1, . . . , xn (as well as the constants 0 and 1 allowed as inputs) and some number of
output gates y1, . . . , yr. {Cn} has size s(n) if each circuit Cn has at most s(n) gates; it has depth
d(n) if the length of the longest path from input to output in Cn is at most d(n).

A circuit family has a notion of uniformity associated with it:

Definition 6.12. A family C = {Cn} is uniform if the function n 7→ Cn is easy to compute in
some sense. This can also be defined using the complexity of the connection set of the family:

conn(C) = {(n, i, j, Ti, Tj) | the output of gate i of type Ti is input to gate j of type Tj in Cn}.

Here, gate type Ti can be Input, Output, or some Boolean operator.
Family C is Dlogtime-uniform [18] if conn(C) is accepted by a linear-time TM. It is p-uniform [15]

if conn(C) is accepted by a exponential-time TM (equivalently, by a TM running in time bounded
by a polynomial in the circuit size). If we assume nothing about the complexity of conn(C), then we
say that the family is non-uniform.

An important restriction of logspace functions is to functions computed by constant depth
circuits.

Definition 6.13. Function f is a u-uniform AC0-function if there is a u-uniform circuit family
{Cn} of size nO(1) and depth O(1) consisting of unbounded fan-in AND and OR and NOT gates
such that for each input x of length n, the output of Cn on input x is f(x).

Note that with this definition, an AC0-function cannot map strings of equal size to strings
of different sizes. To allow this freedom, we adopt the following convention: each Cn will have
nk + k log(n) output bits (for some k). The last k log n output bits will be viewed as a binary
number r, and the output produced by the circuit will be the binary string contained in the first r
output bits.

It is worth noting that, with this definition, the class of Dlogtime-uniform AC0-functions admits
many alternative characterizations, including expressibility in first-order logic with {+,×,≤} [47,
18], the logspace-rudimentary reductions [39, 17], logarithmic-time alternating Turing machines with
O(1) alternations [18] etc. Moreover, almost all known NP-complete sets are also complete under
Dlogtime-uniform AC0-reductions (an exception is provided by [7]). We will refer to Dlogtime-
uniform AC0-functions also as first-order-functions.

AC0-reducibility is important for our purposes too since the complete sets under the reductions
of the previous two subsections are also complete under AC0-reductions (with uniformity being
Dlogtime- or p-uniform). This follows from the fact that these sets are also complete under some
appropriate notion of forgetful reductions. Therefore, the class of AC0-complete sets for NP is larger
than all of the previous classes of this section.

The first result for depth-restricted functions was proved by Allender, Balcázar, and Immer-
man [16]:

Theorem 6.14 (Allender-Balcázar-Immerman). Complete sets for NP under first-order projections
are first-order-isomorphic to each other.

First-order projections are computed by a very restricted kind of Dlogtime-uniform AC0 family in
which no circuit has AND and OR gates. This result was generalized by the author and Allender [6]
to NC0-functions, which are functions computed by AC0 family in which the fan-in of every gate of
every circuit is at most two.
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Theorem 6.15 (Agrawal-Allender). Let A be a non-uniform NC0-complete set for NP. Then for
any B ∈ NP, B non-uniform NC0-reduces to A via a reduction that is 1-1, size-increasing, and
non-uniform AC0-invertible. Further, all non-uniform NC0-complete sets for NP are non-uniform
AC0-isomorphic to each other where these isomorphisms can be computed and inverted by depth
three non-uniform AC0 circuits.

Proof Sketch. The proof we describe below is the one given in [3]. Let B ∈ NP, and define B̂ to
be the set accepted by the following algorithm:

On input y, let y = 1k0z. If k does not divide |z|, then reject. Otherwise, break z into
blocks of k consecutive bits each. Let these be u1u2u3 . . . up. Accept if there is an i,
1 ≤ i ≤ p, such that ui = 1k. Otherwise, reject if there is an i, 1 ≤ i ≤ p, such that
ui = 0k. Otherwise, for each i, 1 ≤ i ≤ p, label ui as null if the number of ones in it
is 2 modulo 3; as zero if the number of ones in it is 0 modulo 3; and as one otherwise.
Let vi = ε if ui is null, 0 if ui is zero, and 1 otherwise. Let x = v1v2 · · · vp, and accept
iff x ∈ B.

Clearly, B̂ ∈ NP. Let {Cn} be the NC0 circuit family computing a reduction of B̂ to A. Fix size
n and consider circuit Ck+1+n for k = 4dlog ne. Let C be the circuit that results from setting the
first input k+ 1 bits of Ck+1+n to 1k0. Randomly set each of the n input bits of C in the following
way: with probability 1

2 , leave it unset; with probability 1
4 each, set it to 0 and 1 respectively. The

probability that any block of k bits is completely set is at most 1
n4 . Similarly, the probability that

there is a block that has at most three unset bits is at most 1
n , and therefore, with high probability,

every block has at least four unset bits.
Say that an output bit is good if, after the random assignment to the input bits described above

is completed, the value of the output bit depends on exactly one unset input bit. Consider an
output bit. Since C is an NC0 circuit, the value of this bit depends on at most a constant, say c,
number of input bits. Therefore, the probability that this bit is good after the assignment is at
least 1

2 ·
1

4c−1 . Therefore, the expected number of good output bits is at least m
4c , where m is the

number of output bits of C whose value depends on some input bit. Using the definition of set
B̂, it can be argued that Ω(n) output bits depend on some input bit, and hence Ω(n) output bits
are expected to be good after the assignment. Fix any assignment that does this, as well as leaves
at least four unset bits in each block. Now set some more input bits so that each block that is
completely set is null, each block that has exactly two unset bits has number of ones equal to 0
modulo 3, and there are no blocks with one, three, or more unset bits. Further, for at least one
unset input bit in a block, there is a good output bit that depends on the bit, and there are Ω( n

logn)
unset input bits. It is easy to see that all these conditions can be met.

Now define a reduction of B to B̂ as: on input x, |x| = p, consider Ck+1+n such that the number
of unset input bits in Ck+1+n after doing the above process is at least p. Now map the ith bit of
x to the unset bit in a block that influences a good output bit and set the other unset input bit in
the block to zero. This reduction can be computed by an NC0 circuit (in fact, the circuit does not
need any AND or OR gate).

Define a reduction of B to A given by the composition of the above two reductions. This
reduction is a superprojection: it is computed by circuit family {Dp} with each Dp being an NC0

circuit such that for every input bit to Dp, there is an output bit that depends exactly on this input
bit. A superprojection has the input written in certain bit positions of the output. Therefore, it
is 1-1 and size-increasing. Inverting the function is also easy: given string y, identify the locations
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where the input is written, and check if the circuit Dp (p = number of locations) on this input
outputs y. This checking can be done by a depth two AC0 circuit.

This gives a 1-1, size-increasing, AC0-invertible, NC0-reduction of B to A. The circuit family is
non-uniform because it is not clear how to deterministically compute the settings of the input bits.
Exploiting the fact that the input is present in the output of the reductions, an AC0-isomorphism,
computed by depth three circuits, can be constructed between two complete sets following [21]
(see [8] for details).

Soon after, the author, Allender, and Rudich [8] extended it to all AC0-functions, proving the
Isomorphism Conjecture for non-uniform AC0-functions.

Theorem 6.16 (Agrawal-Allender-Rudich). Non-uniform AC0-complete sets for NP are non-uniform
AC0-isomorphic to each other. Further, these isomorphisms can be computed and inverted by depth
three non-uniform AC0 circuits.

Proof Sketch. The proof shows that complete sets for NP under AC0-reductions are also complete
under NC0-reductions and invokes the above theorem for the rest. Let A be a complete set for
NP under AC0-reductions. Let B ∈ NP. Define set B̂ exactly as in the previous proof. Fix an
AC0-reduction of B̂ to A given by family {Cn}. Fix size n, and consider Ck+1+n for k = n1−ε for a
suitable ε > 0 to be fixed later. Let D be the circuit that results from setting the first k + 1 input
bits of Ck+1+n to 1k0.

Set each input bit of D to 0 and 1 with probability 1
2 −

1
2n1−2ε each and leave it unset with

probability 1
n1−2ε . By the Switching Lemma of Furst, Saxe, and Sipser [28], the circuit D will

reduce, with high probability, to an NC0 circuit on the unset input bits for a suitable choice of
ε > 0. In each block of k bits, the expected number of unset bits will be nε, and therefore, with
high probability, each block has at least three unset bits. Fix any settings satisfying both of the
above.

Now define a reduction of B to B̂ that, on input x, |x| = p, identifies n for which the circuit D
has at least p blocks, and then maps ith bit of input x to an unset bit of the ith block of the input
to D, setting the remaining bits of the block so that the sum of ones in the block is zero modulo 3.
Unset bits in all remaining blocks are set so that the sum of ones in the block equals two modulo
3.

The composition of the reduction of B to B̂ and B̂ to A is an NC0-reduction of B to A. Again,
it is non-uniform due to the problem of finding the right settings of the input bits.

The focus then turned towards removing the non-uniformity in the above two reductions. In
the proof of theorem 6.15 given in [6], the uniformity condition is p-uniform. In [7], the uniformity
of 6.16 was improved to p-uniform by giving a polynomial-time algorithm that computes the correct
settings of input bits. Both the conditions were further improved to logspace-uniform in [3] by
constructing a more efficient derandomization of the random assignments. And finally, in [2], the
author obtained very efficient derandomizations to prove that:

Theorem 6.17 (Agrawal). First-order-complete sets for NP are first-order-isomorphic.

The isomorphisms in the theorem above are no longer computable by depth three circuits;
instead, their depth is a function of the depth of the circuits computing reductions between the
two complete sets.
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6.4 Discussion

At first glance, the results for weak reducibilities above seem to provide equal support to both the
conjectures: the Isomorphism Conjecture is true for 1-NL and AC0-reductions for any reasonable
notion of uniformity, while the Encrypted Complete Set Conjecture is true for 1-L and 2-DFA
reductions. However, on a closer look a pattern begins to emerge. First of all, we list a common
feature of all the results above:

Corollary 6.18. For r ∈ {1-L, 1-NL, 2-DFA, NC0, AC0}, r-complete sets for NP are also complete
under 1-1, size-increasing, r-reductions.

The differences arise in resources required to invert the reductions and to construct the isomor-
phism. Some of the classes of reductions that we consider are so weak, that for a given function f in
the class, there is no function in the class that can check, on input x and y, whether f(x) = y. For
example, suppose f is an NC0-function and one needs to construct a circuit that, on input x and y,
outputs 1 if y = f(x), and outputs 0 otherwise. Given x and y, an NC0 circuit can compute f(x),
and can check if the bits of f(x) are equal to the corresponding bits of y; however, it cannot output
1 if f(x) = y, since this requires taking an AND of |y| bits. Similarly, some of the reductions are too
weak to construct the isomorphism between two sets given two 1-1, size-increasing, and invertible
reductions between them. Theorems 6.3 and 6.4 show this for 1-L-reductions, and the same can
be shown for NC0-reductions too. Observe that p-reductions do not suffer from either of these two
drawbacks. Hence we cannot read too much into the failure of the Isomorphism Conjecture for
r-reductions. We now formulate another conjecture that seems better suited to get around the
above drawbacks of some of the weak reducibilities. This conjecture was made in [1].

Consider a 1-1, size-increasing r-function f for a resource bound r. Consider the problem of
accepting the set range(f). A TM accepting this set will typically need to guess an x and then
verify whether f(x) = y. It is, therefore, a non-deterministic TM with resource bound at least r.
Let rrange ≥ r be the resource bound required by this TM. For a circuit accepting range(f), the
non-determinism is provided as additional “guess bits” and its output is 1 if the circuit evaluates
to 1 on some settings of the guess bits. We can similarly define rrange to be the resource bound
required by such a non-deterministic circuit to accept range(f).

r-Complete Degree Conjecture. r-Complete sets for NP are also complete under 1-1, size-
increasing, r-reductions that are rrange-invertible.

Notice that the invertibility condition in the conjecture does not allow non-determinism. For
p-reductions,

Proposition 6.19. The p-Complete Degree Conjecture is equivalent to the Isomorphism Conjec-
ture.

Proof. Follows from the observation that prange = p as range of a p-function can be accepted in
non-deterministic polynomial-time, and from Theorem 3.2.

Moreover, for the weaker reducibilities that we have considered, one can show that,

Theorem 6.20. For r ∈ {1-L, 1-NL, 2-DFA, NC0, AC0}, the r-Complete Degree Conjecture is
true.
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Proof. It is an easy observation that for r ∈ {1-L, 1-NL, AC0}, rrange = r. The conjecture follows
from Theorems 6.3, 6.6, and 6.17.

Accepting range of a 2-DFA-function requires verifying the output of 2-DFA TM on each of
its constant number of passes on the input. The minimum resources required for this are to have
multiple heads stationed at the beginning of the output of each pass, guess the input bit-by-bit, and
verify the outputs on this bit for each pass simultaneously. Thus, the TM is a non-deterministic
TM with no space and multiple heads, each moving in one direction only. So Theorem 6.9 proves
the conjecture.

Accepting range of an NC0-function requires a non-deterministic AC0 circuit. Therefore, Theo-
rems 6.15 and 6.17 prove the conjecture for r = NC0.

In addition to the reducibilities in the above theorem, the r-Complete Degree Conjecture was
proven for some more reducibilities in [1].

These results provide evidence that r-Complete Degree Conjecture is true for all reasonable
resource bounds; in fact, there is no known example of a reasonable reducibility for which the
conjecture is false.

The results above also raise doubts about the intuition behind the Encrypted Complete Set
Conjecture as we shall argue now. Consider AC0-reductions. There exist functions computable
by depth d, Dlogtime-uniform AC0 circuits that cannot be inverted on most of the strings by
depth three, non-uniform AC0 circuits [35]. However, by Theorem 6.16, AC0-complete sets are also
complete under AC0-reductions that are invertible by depth two, non-uniform AC0 circuits and the
isomorphisms between all such sets are computable and invertible by depth three, non-uniform AC0

circuits. So, for every 1-1, size-increasing, AC0-function, it is possible to efficiently find a dense
subset on which the function is invertible by depth two AC0 circuits.

Therefore, the results for weak reducibilities provide evidence that the Isomorphism Conjecture
is true.

7 A New Conjecture

In this section, we revert back to the conjectures in their original form. The investigations for
weak reducibilities provide some clues about the structure of NP-complete sets. They strongly
suggest that all NP-complete sets should also be complete under 1-1, size-increasing p-reductions.
Proving this, of course, is hard as it implies P 6= NP (Proposition 3.5). Can we prove this under a
reasonable assumption? This question was addressed and partially answered by the author in [5],
and subsequently improved by the author and Watanabe [12]:

Theorem 7.1 (Agrawal-Watanabe). If there exists a 1-1, 2n
ε
-secure one-way function for some

ε > 0, then all NP-complete sets are also complete under 1-1, and size-increasing, P/poly-reductions.

In the above theorem, P/poly-functions are those computed by polynomial-size, non-uniform
circuit families.
Proof Sketch. Let A be an NP-complete set and let B ∈ NP. Let f0 be a 1-1, 2n

ε
-secure one-way

function. Recall that we have assumed that |f0(y)| is determined by |y| for all y. H̊astad et. al. [36]
showed how to construct a pseudorandom generator using any one-way function. Pseudorandom
generators are size-increasing functions whose output cannot be distinguished from random strings
by polynomial-time probabilistic TMs. Let G be the pseudorandom generator constructed from f0.
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Without loss of generality, we can assume that |G(y)| = 2|y|+ 1 for all y. We also modify f0 to f
as: f(y, r) = f0(y)rb where |r| = |y| and b = y · r, the inner product of strings y and r. It is known
that the bit b is a hard-core bit, i.e., it cannot be predicted by polynomial-time probabilistic TMs
on input f0(y)r [32].

Define B1 to be the set:

B1 = {(x,w) | x ∈ B ∧ |w| = |x|2/ε} ∪ range(G),

and B2 to be the set:
B2 = {f(z) | z ∈ B1}.

Both the sets are in NP. Let B2 reduce to A via polynomial-time reduction g. Since f is 1-1,
h = g ◦ f is a reduction of B1 to A. We now show that h rarely maps a large number of strings to
a single string. For an odd n, let

pn = Pr
z,z′∈UΣn

[h(z) = h(z′)].

In other words, pn is the collision probability of the function h for strings of length n. Define
function f̄(y, r) = f0(y)rb̄ where b̄ is the complement of the inner product value y · r. Since f0 is
1-1, range(f) and range(f̄) are disjoint and therefore, range(F̄ ) is a subset of B̄2. Let

p̄n = Pr
z,z′∈UΣn

[h(z) = g(f̄(z′))].

Define a probabilistic TM M+ that on input u, |u| = |f(z)| for |z| = n, randomly picks z′ ∈ Σn

and accepts iff g(u) = h(z′). The probability, over random z ∈ Σn, that M+ accepts f(z) is exactly
pn. The probability, over random y, r ∈ Σ

n−1
2 and b ∈ Σ, that M+ accepts u = f0(y)rb is exactly

1
2pn+ 1

2 p̄n (since b is either y ·r or its complement with probability 1
2 each). Hence the gap between

the two probabilities is exactly |12pn −
1
2 p̄n|. If this is large, then M+ can be used to predict the

hard-core bit of f with high probability, which is not possible. Therefore, the difference of pn and
p̄n is small.

To show that p̄n is small, define another TM M− that on input z, |z| = n, randomly picks
z′ ∈ Σn and accepts iff h(z) = g(f̄(z′)). On a random z ∈ Σn, the probability that M− accepts
is exactly p̄n. On input G(x) when x is randomly chosen from Σ

n−1
2 , the probability that M−

accepts is zero since range(G) is contained in B1 and range(f̄) is contained in B̄2. Hence the
difference between the two probabilities is exactly p̄n. This cannot be large as otherwise it violates
the pseudorandomness of G. Therefore, pn is small.

Now define function t as follows. For every n, randomly choose a wn, |wn| = n2/ε; let t(x) =
(x,w|x|). Note that t is a probabilistic function. It can be argued that with high probability (over
the choices of wn), (1) range(t) does not intersect with range(G), and so t is a reduction of B to
B1, and (2) h ◦ t is 1-1, and size-increasing. Non-uniformly fixing a choice of wn for every n, we get
that h ◦ t is a 1-1, size-increasing, non-uniform polynomial-time reduction of B to A.

On hindsight, the above theorem is not surprising since the analogous result for EXP was shown
using diagonalization [20] and one-way functions provide a strong form of diagonalization that
works within NP in contrast to standard diagonalization techniques. It is a little unsatisfactory
though, since it only shows completeness under non-uniform 1-1, size-increasing reductions. It is,
however, sufficient to conclude that:
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Corollary 7.2. If there exists a 1-1, 2n
ε
-secure one-way function for some ε > 0, then all NP-

complete sets are dense.

Proof. By the above theorem, all NP-complete sets are also complete under 1-1, size-increasing,
P/poly-reductions. It is an easy observation that if A is dense and reduces to B via a 1-1 reduction
then B is also dense. The corollary follows from the fact that SAT is dense.

Another suggestion from the previous section is that one-way functions may have easily identi-
fiable dense subsets on which they are p-invertible. This was investigated in [12], where the easy
cylinder property was defined.

Definition 7.3. Let f be a 1-1, size-increasing, P/poly-function. The function f has an easy
cylinder if there exist

• polynomials q(·), q′(·), and `(·) with `(n) ≥ 2q(q′(n) + n+ dlog(q′(n) + n)e), and

• a P/poly embedding function e, computable by circuits of size ≤ q(|e(y)|) on input y,

such that for every n and for every string u of length `(n), there exists a polynomial size circuit
Cu, and string su, |su| ≤ q′(n), such that Cu(f(u, e(su, x))) = x for all x ∈ Σn.

Intuitively, a function f has an easy cylinder if there exists a parametrized (on u) dense subset
in its domain on which it is easy to invert, and the dense subset depends on the parameter in a
simple way (via the string su). Note that the circuit Cu can be chosen depending on f as well as
u but the embedding function e must be independent of u.

Define set K as:

K = {(p, y) | p is a code of an NTM Mp such that Mp accepts y in at most |py|2 steps}.

K is easily seen to be NP-complete. The author and Watanabe [12] showed that:

Theorem 7.4 (Agrawal-Watanabe). Suppose K reduces to A via f and f is a 1-1, size-increasing,
P/poly-reduction with an easy cylinder. Then K is P/poly-isomorphic to A.

Proof Sketch. Suppose f has an easy cylinder with embedding function e. We define a P/poly-
reduction h from K to K such that f is easy to invert on the range of h. Fix any n, and consider
a nondeterministic Turing machine M that executes as follows:

Input (u, y). Guess x, s, |x| = n, |s| ≤ q′(n), and check whether e(s, x) equals y; if not,
reject; if yes, accept if and only if x is in K.

Here we note that the advice of size q(q′(n) + n + dlog(q′(n) + n)e) for computing e on
Σq′(n)+n+dlog(q′(n)+n)e is hardwired in M . Further, from the complexity of e, M(y) halts within
2q(q′(n) + n + dlog(q′(n) + n)e) steps. Thus, by letting pn be a code of this machine M that is
(with some padding) of size `(n) ≥ 2q(q′(n) + n + dlog(q′(n) + n)e), we have that Mpn halts and
accepts (pn, e(s, x)) in |pne(s, x)|2 steps iff M accepts (pn, e(s, x)) iff x ∈ K for all x ∈ Σn.

With these machine codes pn for all n, the reduction h of K to itself is defined as follows for
each n and each x ∈ Σn.

h(x) = (pn, e(spn , x)).
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It follows from the above argument that h is a reduction of K to K. Furthermore, h is P/poly-
function.

Let g = f ◦ h. Function g is clearly a 1-1, size-increasing P/poly-reduction of K to A. We
show that g is also P/poly-invertible. This follows from the existence of circuit Cpn such that
x = Cpn(f(pn, e(spn , x))) for all x ∈ Σn.

Finally, [12] showed that many of the candidate one-way functions do have easy cylinders. For
example, the function Mult defined above:

Mult has two inputs numbers x and y. Fix polynomials q′(n) = 0, q(n) = n, and
`(n) = 2(n + dlog ne). Fix su = ε and the embedding function e(su, z) = (su, z) = zt
where |t| = dlog |z|e and t equals the number |z| in binary. Therefore, Mult(u, e(su, z)) =
Mult(u, zt). Since |u| ≥ |zt|, fixing u fixes the first number x and z determines the
second number y. Therefore, given u, it is trivial to invert Mult(u, zt).

The function MMult also has an easy cylinder: use u to fix all but the second string of the last
pair. It is also proved in [12] that all 1-1, size-increasing, AC0-functions have easy cylinders. The
notion of easy cylinders is a formalization of the property of AC0 functions identified at the end of
the last section. As already observed, many well-known candidate one-way functions do have easy
cylinders. Based on this, [12] conjectured that:

Easy Cylinder Conjecture. All 1-1, size-increasing, P/poly-functions have an easy cylinder.

The following corollary follows from the above two theorems.

Corollary 7.5. If there exists a 2n
ε
-secure one-way function and the Easy Cylinder Conjecture is

true, then all sets complete for NP under P/poly-reductions are P/poly-isomorphic to each other.

It is not clear if the Easy Cylinder Conjecture is true. The only indication we have is that the
conjecture is true when translated to AC0 settings, and that many well-known candidate one-way
functions have easy cylinders. Goldreich [31] argued against the conjecture by defining a candidate
one-way function of the form fn where f is a candidate one-way function in NC0 based on expander
graphs. He argued that it is not clear whether fn has an easy cylinder, and conjectured that it
does not.

8 Future Directions

The results of previous two sections suggest that the Isomorphism Conjecture is true. However,
the evidence is far from overwhelming. Answers to the following questions should make the picture
clearer:

• Can one prove the r-Complete Degree Conjecture for other reducibilities, for example, AC0[2]
(computed by constant depth circuits with AND and PARITY gates)?

• Does Goldreich’s function have an easy cylinder? Can one prove it does not under a reasonable
hypothesis?
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• Even if the Easy Cylinder Conjecture is true and strong one-way functions exist, the Isomor-
phism Conjecture is true only for P/poly-reductions. Can one define alternative and plausible
conjecture(s) from which the Isomorphism Conjecture for p-reductions follows?

Acknowledgement. The author wishes to thank the anonymous referee whose suggestions helped
improve the the paper substantially.
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