
Classifying Polynomials and Identity Testing

Manindra Agrawal∗ Ramprasad Saptharishi†

August 26, 2009

Abstract

One of the fundamental problems of computational algebra is to classify polynomials ac-
cording to the hardness of computing them. Recently, this problem has been related to another
important problem: Polynomial identity testing. Informally, the problem is to decide if a cer-
tain succinct representation of a polynomial is zero or not. This problem has been extensively
studied owing to its connections with various areas in theoretical computer science.

Several efficient randomized algorithms have been proposed for the identity testing problem
over the last few decades but an efficient deterministic algorithm is yet to be discovered. It
is known that such an algorithm will imply hardness of computing an explicit polynomial. In
the last few years, progress has been made in designing deterministic algorithms for restricted
circuits, and also in understanding why the problem is hard even for small depth.

In this article, we survey important results for the polynomial identity testing problem and
its connection with classification of polynomials.

1 Introduction

The interplay between mathematics and computer science demands algorithmic approaches to var-
ious algebraic constructions. The area of computational algebra addresses precisely this. The most
fundamental objects in algebra are polynomials and it is a natural idea to classify the polynomials
according to their “simplicity”. The algorithmic approach suggests that the simple polynomials are
those that can be computed easily. The ease of computation is measured in terms of the number
of arithmetic operations required to compute the polynomial. This yields a very robust definition
of simple (and hard) polynomials that can be studied analytically.

It is worth remarking that the number of terms in a polynomial is not a good measure of its
simplicity. For example, consider the polynomials

(1 + x1)(1 + x2) · · · (1 + xn)

and
x1x2 · · ·xn.

The former has 2n−1 more terms than the later, however, both are almost equally easy to describe
as well as compute.
∗N Rama Rao Professor, Indian Institute of Technology, Kanpur. Research supported by J C Bose Fellowship

FLW/DST/CS/20060225 and IBM Fellowship DON/IBM/CSE/20080179
†Chennai Mathematical Institute, and Indian Institute of Technology, Kanpur

We use arithmetic circuits (formally defined in the Section 1.1) to represent the computation of
a polynomial. This also allows us to count the number of operations required in computation. A
few examples are the following:

x1 2 x2

× × ×

+

(x1 + x2)2

Example 1

x1 x2

+

×

(x1 + x2)2

Example 2

· · ·x2x11 xn

+ + +· · ·

×

(1 + x1)(1 + x2) · · · (1 + xn)

Example 3

Note that the first two circuits above, although different, compute the same polynomial. The
complexity of a polynomial is defined as the size (the number of operations) of the smallest arith-
metic circuit that computes the polynomial.

Using this definition, we can now classify polynomials according to their complexity. What
would be the class of “simple” polynomials? For this, we need to define the intuitive notion of
“polynomials that can be computed easily”. Following standard ideas from computer science, we
call any polynomial over n variables that can be computed using at most nO(1) operations an easy
polynomial (see next section for the explanation of O(·) notation). Strictly speaking, this definition
is valid only for an infinite family of polynomials that contains one polynomial over n variables for
each n > 0. Any single polynomial can always be computed using O(1) operations rendering the
whole exercise meaningless. However, often we will omit to explicitly mention the infinite family
to which a polynomial belongs when talking about its complexity; the family would be obvious.

The class VP is the class of polynomial families that are easy in the above sense. The polynomials
in VP are essentially represented by the determinant polynomial: the determinant of an n × n
matrix whose entries are affine linear combinations of variables. It is known that determinant
polynomial belongs to the class VP [1] and any polynomial in VP over n variables can be written
as a determinant polynomial of a m×m matrix with m = nO(logn) [2].

This provides a excellent classification of easy polynomials. Hence, any polynomial that cannot
be written as a determinant of a small sized matrix is not easy. A simple counting argument shows
that there exist many such polynomials. However, proving an explicitly given polynomial to be
hard has turned out to be a challenging problem which has not been solved yet. In particular, the
permanent polynomial, the permanent of a matrix with affine linear entries, is believed to be very
hard to compute — requiring 2Ω(n)-size circuits for an n× n matrix in general. However, there is
no proof yet of this. It is not even known if it requires Ω(n3) operations!

A general way of classifying a given polynomial is to design an algorithm that, given a polynomial
in the form of one specific arithmetic circuit as input, outputs the smallest size arithmetic circuit
computing the same polynomial. Such an algorithm is easy to design: given an arithmetic circuit C
as input, the algorithm runs through all circuits smaller than C and checks if any of these computes
the same polynomial as C (this check can be performed easily as we discuss in the next paragraph).
However, this algorithm is not efficient: it will take exponential time (in the size of the input circuit

2

C) to find the classification of a polynomial. No efficient algorithm for this is known; further, it is
believed that no efficient algorithm exists for this problem.

A closely related problem that occurs above is to check if given two arithmetic circuits C and D
compute the same polynomial. The problem is equivalent to asking if the circuit C −D is the zero
polynomial or not. This problem of checking if a circuit computes the zero polynomial is called
polynomial identity testing (PIT). It turns out that this problem is easy to solve algorithmically. We
give later several randomized polynomial time algorithms for solving it. Moreover, in a surprising
connection, it has been found that if there is a deterministic polynomial time algorithm for solving
PIT, then certain explicit polynomials are hard to compute [3, 4]! Therefore, the solution to PIT
problem has a key role in our attempt to computationally classify polynomials. In this article, we
will focus on this connection between PIT and polynomial classification.

We now formally define arithmetic circuits and the identity testing problem.

1.1 Problem definition

Let N and Q denote the set of natural and rational numbers respectively.

Definition 1.1 (Order Notation). Given two functions f and g, f, g : N 7→ N, we write f = O(g)
if there exist constants c, n0 > 0 such that for all n ≥ n0, f(n) ≤ c · g(n). We write g = Ω(f) if
f = O(g).

Some examples are: 10 = O(1), 3n2 + 7 = O(n3), n3 = Ω(n2), n22 = nO(1) etc.

We shall fix an underlying field F.

Definition 1.2 (Arithmetic Circuits and formulas). An arithmetic circuit is a directed acyclic
graph with one sink (which is called the output gate). Each of the source vertices (which are called
input nodes) are either labeled by a variable xi or an element from an underlying field F. Each of
the internal nodes are labeled either by + or × to indicate if it is an addition or multiplication gate
respectively.

Such a circuit naturally computes a multivariate polynomial at every node. The circuit is said
to compute a polynomial f ∈ F[x1, · · · , xn] if the output node computes f .

If the underlying field F = Q, then a circuit is said to be monotone if none of the constants are
negative.

An arithmetic circuit is a formula if every internal node has out-degree 1.

Without loss of generality, the circuit is assumed to be layered, with edges only between successive
layers. Further, it is assumed it consists of alternating layers of addition and multiplication gates.
A layer of addition gates is denoted by Σ and a layer of multiplications by Π.

Some important parameters of an arithmetic circuit are the following:

• Size: the number of gates in the circuit

• Depth: the longest path from a leaf gate to the output gate

• Degree: the syntactic degree of the polynomial computed at the output gate. This is computed
recursively at every gate in the most natural way (max of the degrees of children at an addition
gate, and the sum of the degrees at a multiplication gate).

This needn’t be the degree of the polynomial computed at the output gate (owing to cancel-
lations) but this is certainly an upper bound.

3

A circuit evaluating a polynomial provides a succinct representation of the polynomial. For
instance, in Example 3, though the polynomial has 2n terms, we have a circuit size O(n) computing
the polynomial. The PIT problem is deciding if a given succinct representation is zero or not.

Also, a circuit of size s can potentially compute a polynomial of exponential degree. But usually
in identity testing, it is assumed that the degree of the polynomial is O(n) where n is the number of
variables. Most interesting polynomials, like the determinant or permanent, satisfy this property.

Problem 1.3 (Polynomial Identity Testing). Given an arithmetic circuit C with input variables
x1, . . . , xn and constants taken from a field F, check if the polynomial computed is identically zero.

The goal is to design a deterministic algorithm for PIT that runs in time polynomial in n, size
of C and |F|. A much stronger algorithm is one that doesn’t look into the structure of the circuit
at all, but just evaluates it at chosen input points. Such an algorithm that just uses the circuit as
a “black box” is hence called a black-box algorithm.

1.2 Current Status

A likely candidate of a hard polynomial is the permanent polynomial. It is widely believed that
it requires circuits of exponential size, but this is still open. However, progress has been made in
restricted settings. Raz and Yehudayoff [5] showed that monotone circuits for permanent require
exponential size. Nisan and Wigderson [6] showed that “homogeneous” depth 3 circuits for the
2d-th symmetric polynomial requires

(
n
4d

)Ω(d) size. Shpilka and Wigderson [7] showed that depth
3 circuits for determinant or permanent over Q require quadratic size. Over finite fields, Grigoriev
and Karpinsky [8] showed that determinant or permanent required exponential sized depth 3 circuit.

As for PIT, the problem has drawn significant attention due to its role in various fields of
theoretical computer science. Besides being a natural problem in algebraic computation, identity
testing has found applications in various fundamental results like Shamir’s IP = PSPACE [9], the
PCP Theorem [10] etc. Many other important results, such as the AKS Primality Test [11], check
if some special polynomials are identically zero or not. Algorithms for graph matchings [12] and
multivariate polynomial interpolation [13] also involve identity testing. Another promising role
of PIT is its connection to the question of “hardness of polynomials”. It is known that strong
algorithms for PIT can be used to construct polynomials that are very hard [3, 4].

There is a score of randomized algorithms proposed for PIT. The first randomized polyno-
mial time algorithm for identity testing was given by Schwartz and Zippel [14, 15]. Several other
randomness-efficient algorithms [16, 17, 18, 19] came up subsequently, resulting in a significant
improvement in the number of random bits used. However, despite numerous attempts a determin-
istic polynomial time algorithm has remained unknown. Nevertheless, important progress has been
made both in the designing of deterministic algorithms for special circuits, and in the understanding
of why a general deterministic solution could be hard to get.

Kayal and Saxena [20] gave a deterministic polynomial time identity testing algorithm for depth
3 (ΣΠΣ) circuits with constant top fan-in (the top addition gate has only constantly many chil-
dren). When the underlying field is Q, this was further improved to a black-box algorithm by Kayal
and Sharaf [21]. Saxena gave a polynomial time algorithm for a restricted form of depth 3 circuits
called “diagonal circuits”. As such, no polynomial time PIT algorithm is known for general depth
3 circuits.

4

Most of the progress made appears to stop at around depth 3. A “justification” behind the
hardness of PIT even for small depth circuits was provided recently by Agrawal and Vinay [22].
They showed that a deterministic polynomial time black-box identity test for depth 4 (ΣΠΣΠ)
circuits would imply a quasi-polynomial (O(nlogn)) time deterministic PIT algorithm for any circuit
computing a polynomial of low degree1. Thus, PIT for depth 4 circuits over a field is almost the
general case.

Thus we see that the non-trivial case for identity testing starts with depth 3 circuits; whereas
circuits of depth 4 are almost the general case. A natural first step to design an algorithm for PIT
of ΣΠΣ circuits. In this article, we survey some important results in identity testing and possible
approaches to attack depth 3 circuits.

1.3 Organization

Section 2 discusses the connection between PIT and circuit lower bounds. Section 3 looks at PIT
and lower bounds for depth 4 and why this is almost the general case. In Section 4 we look at
some randomized algorithms for PIT and in Section 5 we sketch some deterministic algorithms for
special cases.

2 Connecting PIT to lower bounds

The polynomial identity testing problem is very closely connected to lower bounds in the arithmetic
settings. A well studied polynomial in this context is the symbolic permanent polynomial.

permn(x11, x12, · · · , x1n, x21, · · · , xnn) =
∑
σ∈Sn

n∏
i=1

xiσ(i)

Though the polynomial is very close to the determinant polynomial2, it is widely believed that they
are very different in complexity. It is a long standing open problem to show that the permanent
polynomial requires exponential sized arithmetic circuits.

The quest for an explicit polynomial with large circuit complexity is one for “hardness” in terms
of circuits. Polynomial identity testing on the other hand is a quest for “easiness”. While the two
seem orthogonal, they are indeed very closely related. Kabanets and Impagliazzo [3] showed that
“subexponential” algorithms for identity testing does in fact yield circuit lower bounds.

Theorem 2.1. [3] If PIT can be solved in polynomial time, or even in
⋂
ε>0 NTIME(nε), then one

of the following statements is true:

• NEXP * P/poly

• Permanent requires super-polynomial sized arithmetic circuits.

As a partial converse, they also show that explicit circuit lower bounds give quasi-polynomial
algorithms for PIT.

1A polynomial is said to have low degree if its degree is less than the size of the circuit
2In the determinant polynomial, each term in the summation has a sign associated which is determined by the

permutation σ.

5

Theorem 2.2. [3] Let {qm}m≥1 be a family of multilinear polynomials over F computable in expo-
nential time and that cannot be computed by subexponential sized arithmetic circuits. Then identity
testing of low degree polynomials can be solved in time nO(logn).

Dvir, Shpilka and Yehudayoff [32] proved similar results in the constant depth domain.

Theorem 2.3. [32] If PIT of depth d circuits can be solved in polynomial time, or even in⋂
ε>0 NTIME(nε), then one of the following statements is true:

• NEXP * P/poly

• Permanent requires super-polynomial sized depth d arithmetic circuits.

Theorem 2.4. [32] Let {qm}m≥1 be a family of multilinear polynomials over F computable in
exponential time and that cannot be computed by subexponential sized arithmetic circuits of depth
d. Then identity testing of depth d′ = d − δ, for some absolute constant δ, circuits computing low
degree polynomials can be solved in time nO(polylogn).

2.1 Black-box PITs and lower bounds

Black-box algorithms for PIT imply much stronger implications in terms of circuit lower bounds.
Agrawal showed a “hardness-randomness” dichotomy in this setting, using the following definition
of pseudorandom generators for arithmetic circuits that captures black-box PITs.

Definition 2.5. [4][Pseudorandom generators for arithmetic circuits] Let F be a field and C be a
class of low degree arithmetic circuits over F. A function f : N −→ (F[y])∗ is a s(n)-pseudorandom
generator against C if

• f(n) = (p1(y), p2(y), · · · , pn(y)) where each pi(y) is a univariate polynomial over F whose
degree is bounded by s(n) and computable in time polynomial in s(n)

• For any arithmetic circuit C ∈ C of size n,

C(x1, · · · , xn) = 0 if and only if C(p1(y), p2(y), · · · , pn(y)) = 0

It is clear that given a s(n)-pseudorandom generator f against C, we can solve the PIT problem
for circuits in C in time (s(n))O(1) by just evaluating the univariate polynomial. A polynomial time
derandomization is obtained if s(n) is nO(1) and such generators are called optimal pseudorandom
generators. The following lemma shows that existence of pseudorandom generators give lower
bounds.

Theorem 2.6. [4] Let f : N −→ (F(y))∗ be a s(n)-pseudorandom generator against a class C of
arithmetic circuit computing a polynomials of degree at most n. If n · s(n) ≤ 2n, then there is a
multilinear polynomial computed in 2O(n) time that cannot be computed by C.

This, coupled with Theorem 2.2, show that explicit “hard” polynomials and pseudorandom
generators go hand in hand.

6

3 Chasm at depth 4

The previous section shows that strong lower bounds can be obtained by giving a suitable deter-
ministic algorithm for PIT. However, attempts to obtain such an algorithm have failed so far. At
present, we know deterministic algorithms for only restricted kind of depth three PITs (we will see
this in section 5). In fact, as already observed above, direct attempts to obtain lower bounds for
certain polynomials also stop at depth three. This seems to suggest that we are very far away from
obtaining lower bounds for arbitrary depth circuits. However, a recent depth reduction result by
Agrawal and Vinay [22] shows that the gap is not that large. Informally, their result states that
exponential sized circuits do not gain anything if the depth is beyond 4. Formally, the main result
can be stated as follows:

Theorem 3.1. [22] If a polynomial P (x1, · · · , xn) of degree d = O(n) can be computed by an
arithmetic circuit of size 2o(d+d log n

d
), it can be computed by a depth 4 circuit of size 2o(d+d log n

d
) as

well.

It is a simple observation that any polynomial p(x1, · · · , xn) of degree d has at most
(
n+d
d

)
monomials and hence can be trivially computed by a ΣΠ circuit of size

(
n+d
d

)
= 2O(d+d log n

d
).

Hence, the above theorem implies that if we have subexponential lower bounds for depth 4 circuits,
we have subexponential lower bounds for any depth!

Corollary 3.2. Let p(x1, · · · , xn) be a multivariate polynomial. Suppose there are no 2o(n) sized
depth 4 arithmetic circuits that can compute p. Then there is no 2o(n) sized arithmetic circuit (of
arbitrary depth) that can compute p.

These results have very strong implications on PITs for depth 4 circuits.

Proposition 3.3. If there is a PIT algorithm for depth 4 circuit running in deterministic polyno-
mial time, then there is a PIT algorithm for any general circuit computing a low degree polynomial
running in deterministic 2o(n) time.

Proof. Given any circuit computing a low degree polynomial, we can convert it to a depth 4 circuit
of size 2o(n). Further, this conversion can be done in time 2o(n) as well. Therefore, a polynomial
time PIT algorithm for depth 4 would yield a 2o(n) algorithm for general circuits.

If the PIT on depth 4 circuits was black-box, then we get stronger results for general circuits.

Theorem 3.4. [22] If there is a deterministic black-box PIT algorithm for depth 4 circuit running
in polynomial time, then there is a deterministic nO(logn) algorithm for PIT on general circuits
computing a low degree polynomial.

Proof. Suppose there does indeed exist an optimal pseudorandom generator against depth 4 circuits.
By Theorem 2.6 we know that we have a subexponential lower bound in depth 4 circuits for a family
of multilinear polynomials {qm}. By Corollary 3.2 we know that this implies a subexponential lower
bound for {qm} in arithmetic circuits of any depth. To finish, Theorem 2.2 implies such a family
{qm} can be used to give a nO(logn) algorithm for PIT.

Therefore, in essence, solving PIT for depth 4 circuits or proving lower bounds for depth 4
circuits would translate to general circuits as well.

7

We now present a sketch of the proof of Theorem 3.1. The depth reduction is achieved in two
stages. The first stage reduces the depth to O(log d) by the construction of Allender, Jiao, Mahajan
and Vinay [33]. Using a careful analysis of this reduction, the circuit is further reduced to a depth
4 circuit.

3.1 Reduction to depth O(log d)

Given as input is a circuit C computing a polynomial p(x1, · · · , xn) of degree d = O(n). Without
loss of generality, we can assume that the circuit is layered with alternative layers of addition
and multiplication gates. Further, we shall assume that each multiplication gate has exactly two
children.

Computing degrees

Though the polynomial computed by the circuit is of degree less than d, it could be possible that the
intermediate gates compute larger degree polynomials which are somehow canceled later. However,
we can make sure that each gate computes a polynomial of degree at most d. Further, we can label
each gate by the formal degree of the polynomial computed there.

Each gate gi of the circuit is now replaced by d + 1 gates gi0, gi1, · · · , gid. The gate gis would
compute the degree s homogeneous part of the polynomial computed at gi.

If g0 was an addition gate with g0 = h1 + h2 + · · · + hk, then we set g0i = h0i + · · · + hki for
each i. If g0 was a multiplication gate with two children h1 and h2, we set g0i =

∑i
j=0 h1jh2(i−j).

Thus, every gate is naturally labeled by its degree. As a convention, we shall assume that the
degree of the left child of any multiplication gate is smaller than or equal to the degree of the right
child.

If the tree was “balanced”, that is, the two children of every multiplication gate have roughly
the same degree, then the tree would have depth at most O(log d). Else, we just need to reorient
the tree properly by digging deep enough where the degree is halved. This is done through proof
trees.

Evaluation through proof trees

A proof tree rooted at a gate g is a sub-circuit of C that is obtained as follows:

• start with the sub-circuit in C that has gate g at the top and computes the polynomial
associated with gate g,

• for every addition gate in this sub-circuit, retain only one of the inputs to this gate and delete
the other input lines,

• for any multiplication gate, retain both the inputs.

A simple observation is that a single proof tree computes one monomial of the formal expression
computed at g. And the polynomial computed at g is just the sum of the polynomial computed
at every proof tree rooted at g. We shall denote the polynomial computed by a proof tree T as p(T).

8

For every gate g, define [g] to be the polynomial computed at gate g. Also, for every pair of
gates g and h, define [g, h] =

∑
T p(T, h) where T runs over all proof trees rooted at g with h

occurring on its rightmost path and p(T, h) is the polynomial computed by the proof tree T when
the last occurrence of h is replaced by the constant 1. If h does not occur on the right most path,
then [g, h] is zero. The gates of the new circuits are [g], [g, h] and [xi] for gates g, h ∈ C and
variables xi. We shall now describe the connections between the gates.

Firstly, [g] =
∑

i[g, xi][xi]. Also, if g is an addition gate with children g1, · · · , gk, then [g, h] =∑
i[gi, h]. If g is a multiplication gate, it is a little tricker. If the rightmost path from g to h consists

of just addition gates, then [g, h] = [gL], the left child of g. Otherwise, for any fixed rightmost path,
there must be at least a unique intermediate multiplication gate p on this path such that

deg(pR) ≤ 1
2

(deg g + deg h) ≤ deg p

Since there could be rightmost paths between g and h, we just run over all gates p that satisfy the
above equation. Then, [g, h] =

∑
p[g, p][pL][pR, h]. We want to ensure that the degree of each child

of [g, h] is at most (deg(g)− deg(h))/2.

• deg([g, p]) = deg(g)− deg(p) ≤ 1
2 (deg g − deg h)

• deg([pR, h]) = deg(pR)− deg(h) ≤ 1
2(deg(g)− deg(h))

• deg(pL) ≤ deg(p) ≤ 1
2 deg(g)

Also, deg(pL) ≤ deg(pL) + deg(pR)− deg(h) ≤ deg(g)− deg(h)

Unfortunately, pL’s degree has not dropped by a factor of 2 and hence this doesn’t directly
give the depth reduction. However, we know that deg(pL) ≤ deg(g)/2. By expanding the gate pL
further, we can obtain an expression of the form

[g, h] =
∑

[g, p][pL,j , q][qL][qR, xi][pR, h]

each of the children have degree at most (deg(g)− deg(h)) /2. This completes the description of
the new circuit. It is clear that the depth of the circuit is O(log d) and the fan-in of multiplication
gates is 6. The size of the new circuit is polynomial bounded by size of C.

3.2 Reduction to depth 4

We now construct an equivalent depth 4 circuit from the reduced circuit. Let t be a parameter
that will be appropriately fixed. The circuit is cut into two two parts: the top has exactly t layers
of multiplication gates and the rest of the layers belonging to the bottom. Let g1, · · · , gk (where
k ≤ S) be the output gates at the bottom layer. Thus, we can think of the top half as computing
a polynomial Ptop in new variables y1, · · · , yk and each of the gi computing a polynomial Pi over
the input variables. The polynomial computed by the circuit equals

Ptop(P1(x1, · · · , xn), P2(x1, · · · , xn), · · · , Pk(x1, · · · , xn))

Since the top half consists of t levels of multiplication gates, and each multiplication gate has at
most 6 children, deg(Ptop) is bounded by 6t. And since the degree drops by a factor of two across

9

multiplication gates, we also have deg(Pi) ≤ d
2t . Expressing each of these as a sum of product, we

have a depth 4 circuit computing the same polynomial. The size of this circuit is(
S + 6t

6t

)
+ S

(
n+ d

2t

d
2t

)
The parameter t can be chosen appropriately to make the size 2o(d+d log n

d
), as Theorem 3.1 claimed.

4 Randomized Algorithms for PIT

Though deterministic algorithms for PIT have remained elusive, a number of randomized solutions
are available. Quite an extensive study has been made on reducing the number of random bits. In
this section, we inspect a few of them, starting with the oldest, simplest and the most natural test.

4.1 The Schwarz-Zippel test

The Schwarz-Zippel test is the oldest algorithm for PIT. The idea is the following: if the polynomial
computed is non-zero then the value of the polynomial cannot be zero at too many places. This
intuition is indeed true.

Lemma 4.1. [14, 15]Let p(x1, · · · , xn) be a non-zero polynomial over F of total degree d. Let S be
any subset of F and let a1, · · · , an be chosen independently from S with the uniform distribution.
Then, Pr[p(a1, a2, · · · , an) = 0] ≤ d

|S| .

To get the error less than ε, we need a set S that is as large as d
ε . Hence, the total number of

random bits required would be n · log d
ε . If the field F is not large enough, then we may move to an

appropriate extension field.

4.2 Chen-Kao: Evaluating at irrationals

The Chen-Kao test is works on circuits computing an integer polynomial and can be thought of as
a “partial derandomization” of the Schwarz-Zippel test. The main idea can be described as follows:

Suppose we consider only univariate integer polynomials, can we find out a single point on which
all non-zero univariate integer polynomial evaluate to non-zero values? Indeed, if we evaluate it at
some transcendental number like π; p(π) = 0 for an integer polynomial if and only if p = 0. More
generally, if we can find suitable irrational that is not a root of any degree d polynomial, we can
use that point to evaluate and test if a given degree d polynomial is zero or not. This is the basic
idea in Chen-Kao’s paper [16].

However, it is infeasible to actually evaluate at irrational points since they have infinitely many
bits to represent them. Chen and Kao worked with approximations of the numbers, and introduced
randomness to make their algorithm work with high probability.

4.2.1 Algebraically d-independent numbers

The goal is to design an identity test for all n-variate polynomials whose degree in each variable is
less than d. The following definition is precisely what we want for the identity test.

10

Definition 4.2 (Algebraically d-independence). A set of number {π1, · · · , πn} is said to be alge-
braically d-independent over F if there exists no polynomial relation p(π1, · · · , πn) = 0 over F with
the degree of p(x1, · · · , xn) in each variable bounded by d.

It is clear that if we can find such a set of numbers then this is a single point that would be
non-zero at all non-zero polynomials with degree bounded by d. The following lemma gives an
explicit construction of such a point.

Lemma 4.3. Set k = log(d+ 1) and K = nk. Let p11, p12, · · · , p1k, p2k, · · · , pnk be first K distinct
primes and let πi =

∑k
j=1
√
pij. Then {π1, · · · , πn} is algebraically d-independent.

As remarked earlier, it is not possible to actually evaluate the polynomial at these irrational
points. Instead we consider approximations of these irrational points and evaluate them. However,
we can no longer have the guarantee that all non-zero polynomials will be non-zero at this truncated
value. Chen and Kao solved this problem by introducing randomness in the construction of the πi.

It is easy to observe that Lemma 4.3 is true even if each πi =
∑k

j=1 αij
√
pij where each αij = ±1.

Randomness is introduced by setting each αij to ±1 independently and uniformly at random, and
then we evaluate the polynomial at the πi truncated to ` decimal places.

Chen and Kao showed that if we want the error to be less than ε, we would have to choose
` ≥ dO(1) log n. Randomness used in this algorithm is for choosing the αij ’s and hence n log d
random bits are used3; this is independent of ε! Therefore, to get better accuracy, we don’t need
to use a single additional bit of randomness but just need to look at better approximations of πi’s.

4.2.2 Chen-Kao over finite fields

Though the algorithm that is described seems specific to polynomials over Q, they can be extended
to finite fields as well. Lewin and Vadhan [17] showed how use the same idea over finite fields.
Instead of using square root of prime numbers in Q, they use square roots of irreducible polynomials.
The infinite decimal expansion is paralleled by the infinite power series expansion of the square
roots, with the approximation to ` decimal places replaced by taking residues modulo x`.

Lewin and Vadhan result achieves more or less the exact same parameters as in Chen-Kao and
involves far less error analysis as it works over a finite field. They also present another algorithm
that works over integers by considering approximations over p-adic numbers, i.e. solutions modulo
p`. This again has the advantage that little error analysis is required.

4.3 Agrawal-Biswas: Chinese Remaindering

Agrawal and Biswas [18] presented a new approach to identity testing via Chinese remaindering.
This algorithm works in randomized polynomial time in the size of the circuit and also achieves
the time-error tradeoff as in the algorithm by Chen and Kao. This algorithm can be made to work
over all fields but we present the case when it is a finite field Fq.

The algorithm proceeds in two steps. The first is a deterministic conversion to a univariate
polynomial of exponential degree. The second part is a novel construction a sample space of
“almost coprime” polynomials that is used for Chinese remaindering.

3In fact, if the degree in xi is bounded by di, then
∑

i log(di + 1) random bits would be sufficient

11

4.3.1 Univariate substitution

Let f(x1, · · · , xn) be the polynomial given as a circuit of size s. Let the degree of f in each variable
be less than d. The first step is a well-known conversion to a univariate polynomial of exponential
degree that maps distinct monomials to distinct monomials. The following substitution achieves
this

xi = yd
i

Claim 4.4. Under this substitution, distinct monomials go to distinct monomials.

Denote the univariate polynomial thus produced by P (x) and let the degree be D. We now wish
to test whether this univariate polynomial is non-zero. This is achieved by picking a polynomial
g(x) from a suitable sample space and doing all computations in the circuit modulo g(x) and return
zero if the polynomial is zero modulo g(x).

Suppose these g(x)’s came from a set such that the lcm of any ε fraction of them has degree at
least D, then the probability of success would be 1−ε. One way of achieving this is to choose a very
large set of mutually coprime polynomials say {(x− α) : α ∈ Fq}. But if every epsilon fraction of
them must have an lcm of degree D, then the size of the sample space must be at least D

ε . This
might force us to go to an extension field of Fq and thus require additional random bits. Instead,
Agrawal and Biswas construct a sample space of polynomials that share very few common factors
between them which satisfies the above property.

4.3.2 Polynomials sharing few factors

We are working with the field Fq of characteristic p. For a prime number r, let Qr(x) denote the
r-th cyclotomic polynomial, i.e Qr(x) = 1 + x + · · · + xr−1. Let ` ≥ 0 be a parameter that would
be fixed soon. For a sequence of bits b0, · · · , b`−1 ∈ {0, 1} and an integer t ≥ `, define

Ab,t(x) = xt +
`−1∑
i=0

bix
i

Tr,b,t(x) = Qr(Ab,t(x))

The space of polynomials consists of Tr,b,t for all values of b, having suitably fixed r and t.

Lemma 4.5. Let r be a prime such that r 6= p and r does not divide any of q−1, q2−1, · · · ,q`−1−1
and let t be a fixed parameter. Then, the lcm of any K polynomials from the set {Tr,b,t(x)}b has
degree at least K · t.

The algorithm is now straightforward:

1. Set parameters ` = logD and t = max
{
`, 1
ε

}
.

2. Let r is chosen as the smallest prime that doesn’t divide any of p, q− 1, q2− 1, · · · , q`−1− 1.

3. Let b0, b1, · · · , b`−1 be randomly and uniformly chosen from {0, 1}.

4. Compute P (x) modulo Tr,b,t(x) and accept if and only if P (x) = 0 mod Tr,b,t(x).

12

Since P (x) was obtained from a circuit of size S, we have D ≤ 2s. It is easy to see that the
algorithm runs in time poly

(
s, 1

ε , q
)
, uses logD random bits and is correct with probability at least

1− ε.

Remark: Saha [23] observed that there is a deterministic algorithm to find an irreducible polyno-
mial g(x) over Fq of degree roughly d in poly(d, log q) time. Therefore, by going to a suitable field
extension, we may even use a sample space of coprime polynomials of the form xt + α and choose
t = 1

ε to bound the error probability by ε. This also uses only logD random bits and achieves a
slightly better time complexity.

4.4 Klivans-Spielman: Random univariate substitution

All the previous randomized algorithms use Ω(n) random bits. It is easy to see that identity testing
for n-variate polynomials of total degree bounded by d needs Ω(d log n) random bits. For poly-
nomials with m monomials, one can prove a lower bound of Ω(logm). Klivans and Spielman [19]
present a randomized identity test that uses O(log(mnd)) random bits which works better than the
earlier algorithms if m is subexponential.

The idea is to reduce the given multivariate polynomial f(x1, · · · , xn) to a univariate polynomial
whose degree is not too large. This reduction will be randomized and the resulting univariate
polynomial would be non-zero with probability 1− ε if the polynomial was non-zero to begin with.

One possible approach is to just substitute xi = yri for each i where ri’s are randomly chosen
in a suitable range. This indeed works due to the following lemma. The original version of the
Isolation lemma was by Mulmuley, Vazirani and Vazirani. Their lemma was extended by Chari,
Rohatgi and Srinivasan [24], and the parameters improved by Klivans and Spielman [19].

Lemma 4.6 (Isolation Lemma). [25, 24, 19] Let F be a family of distinct linear forms {
∑n

i=1 cixi}
where each ci is an integer less than C. If each xi is randomly set to a value in {1, · · · , Cn/ε},
then with probability at least 1− ε there is a unique linear form of minimum value.

The isolation lemma gives a simple randomized algorithm for identity testing of polynomials
whose degree in each variable is bounded by d: make the substitution xi = yri for ri ∈ {1, · · · , dn/ε}.
Each monomial xd11 · · ·xdn

n is now mapped to y
∑
diri . Since ri’s are chosen at random, there is a

unique monomial which has least degree and hence is never canceled.
However, the number of random bits required is n log

(
dn
ε

)
. Klivans and Spielman use a different

reduction to univariate polynomials which uses O
(
log
(
mnd
ε

))
random bits where m is the number

of monomials.

4.4.1 Reduction to univariate polynomials

Let t be a parameter that shall be fixed later. Pick a prime p larger than t and d. The reduction
picks a k at random from {0, · · · , p− 1} and makes the following substitution:

xi = yai where ai = ki mod p

Lemma 4.7. Let f(x1, · · · , xn) be a non-zero polynomial whose degree is bounded by d. Then, each
monomial of f is mapped to different monomials under the above substitution, with probability at
least

(
1− m2n

t

)
.

13

If we want the error to be less than ε, then choose t ≥ m2n
ε . This would make the final degree

of the polynomial bounded by m2nd
ε on which we can use a Schwarz-Zippel test by going to a large

enough extension. Klivans and Spielman deal with this large degree (since it depends on m) by
using the Isolation Lemma. We now sketch the idea.

4.4.2 Degree reduction (a sketch)

The previous algorithm described how a multivariate polynomial can be converted to a univariate
polynomial while still keeping each monomial separated. Now we look at a small modification of
that construction that uses the Isolation lemma to isolate a single non-zero monomial, if present.

The earlier algorithm made the substitution xi = yai for some suitable choice of ai. Let us
assume that each ai is a q bit number and let ` = O(log(dn)). The modified substitution is the
following:

1. Pick k at random from {0, · · · , p− 1} and let ai = ki mod p.

2. Represent ai in base 2` as

ai = bi0 + bi12` + · · ·+ bi(q
`
−1)2(q

`
−1)`

3. Pick r0, · · · , r q
`
−1 values independently and uniformly at random from a small range {1, · · · , R}.

4. Make the substitution xi = yci where ci = bi0r0 + bi1r1 + · · ·+ bi(q
`
−1)r q

`
−1.

After this substitution, each monomial in the polynomial is mapped to a power of y where the
power is a linear function over ri’s.

Claim 4.8. Assume that the choice of k is a positive candidate in Lemma 4.7. Then, under
the modified substitution, different monomials are mapped to exponents that are different linear
functions of the ri’s.

Therefore, each exponent of y in the resulting polynomial is a distinct linear function of the ri’s.
It is a simple calculation to check that the coefficients involved are poly(n, d) and we can choose
our range {1, · · · , R} appropriately to make sure that the Isolation Lemma guarantees a unique
minimum value linear form with high probability. This means that the exponent of least degree
will be contributed by a unique monomial and hence the resulting polynomial is non-zero. The
degree of the resulting polynomial is poly

(
n, d, 1

ε

)
and the entire reduction uses only O

(
log
(
mnd
ε

))
random bits.

5 Deterministic Algorithms for PIT

In this section we look at deterministic algorithms for PIT for certain restricted circuits. As
mentioned above, progress has been made only for restricted versions of depth 3 circuits. Hopefully,
some of the techniques developed here would also be useful for designing a deterministic algorithm
for depth four PITs.

14

Easy cases

Depth 2 circuits can only compute “sparse” polynomials, i.e. polynomials with few monomials in
them. PIT of polynomials where the number of monomials is a polynomial in n can be solved
efficiently. The following observation can be directly translated to a polynomial time algorithm.

Observation 5.1. Let p(x1, · · · , xn) be a non-zero polynomial whose degree in each variable is less
than d and the number of monomials is n. Then there exists an r ≤ (mn log d)2 such that

p
(

1, y, yd, · · · , ydn−1
)
6= 0 mod yr − 1

Several black-box tests have also been devised for depth 2 circuits but considerable progress has
been made for restricted depth 3 circuits as well.

The case when root is a multiplication gate is easy to solve. This is because the polynomial
computed by a ΠΣΠ circuit is zero if and only if one of the addition gates computes the zero
polynomial. Therefore, the problem reduces to depth 2 circuits. Thus, the non-trivial case is ΣΠΣ
circuits. PIT for general ΣΠΣ circuits is still open but polynomial time algorithms are known for
restricted versions.

5.1 The Kayal-Saxena test

Let C be a ΣΠΣ circuit over n variables and degree d such that the top addition gate has k
children. For the sake of brevity, we shall refer to such circuits as ΣΠΣ(n, k, d) circuits. Kayal and
Saxena [20] presented a poly(n, dk, |F|) algorithm for PIT. Hence, for the case when the top fan-in
is bounded, this algorithm runs in polynomial time.

5.1.1 The idea

By fixing an ordering of the variables, let � be the induced total order on the monomials. For any
polynomial g, let LM(g) denote the leading monomial of g.

Let C be the given ΣΠΣ(n, k, d) circuit that computes a polynomial f . Therefore, f = T1 +
· · · + Tk where each Ti =

∏d
j=1 Lij is a product of the linear forms Lij ’s. We can assume without

loss of generality that
LM(T1) � LM(T2) � · · · � LM(Tk)

If f is zero then the coefficient of the LM(f) must be zero, and this can be checked easily. Further,
if we are able to show that f ≡ 0 mod T1, then f = 0. And this would be done by induction on k.

Suppose T1 consists of distinct linear forms. Then, by the Chinese Remainder Theorem, f ≡
0 mod T1 if and only if f ≡ 0 mod L1i for each i. To check if f ≡ 0 mod L for some linear form
L, we replace L by the variable x1 and transform the rest to make it an invertible transformation.
Thus the equation reduces to the form f mod x1 ∈ F[x1,··· ,xn]

x1
= F[x2, · · · , xn]. The polynomial

f mod x1 is now a ΣΠΣ(n − 1, k − 1, d) circuit and using induction, can be checked if it is zero.
Repeating this for every L1i, we can check if f = 0 mod T1, and hence check if it is identically zero
or not.

This method fails if T1 happens to have repeated factors. For example, if T1 = x5
1x

3
2, we should

instead be checking if f mod x5
1 and f mod x3

2 are zero or not. Here f mod x5
1 ∈

F[x1,··· ,xn]
x5
1

=

15

(
F[x1]
x5
1

)
[x2, · · · , xn] is a polynomial over a local ring, not a field. Thus, in the recursive calls, the

computations would be over a local ring rather than over the field. Therefore, we need to make
sure that Chinese Remaindering works over local rings; Kayal and Saxena showed that it indeed
does.

We are now set to look at the identity test.

5.1.2 The identity test

Let C be a ΣΠΣ arithmetic circuit, with top fan-in k and degree d computing a polynomial f . The
algorithm is recursive where each recursive call decreases k but increases the dimension of the base
ring (which is F to begin with).

Input:

The algorithm takes three inputs:

• A local ring R over a field F with the maximal idealM of R presented in its basis form. The
initial setting is R = F and M = 〈0〉.

• A set of k coefficients 〈β1, · · · , βk〉, with βi ∈ R for all i.

• A set of k terms 〈T1, · · · , Tk〉. Each Ti is a product of d linear functions in n variables over
R. That is, Ti =

∏d
j=1 Lij .

Output:

Let p(x1, · · · , xn) = β1T1 + · · · , βkTk. The output, ID(R, 〈β1, · · · , βk〉 , 〈T1, · · · , Tk〉) is YES if
and only if p(x1, · · · , xn) = 0 in R.

Algorithm:

Assume without loss of generality that LM(T1) � · · · � LM(Tk).

Step 1: Check if the coefficient of LM(T1) is a unit.

Step 2: (Single multiplication gate) If k = 1, we need to test if β1T1 = 0 in R. Check if β1 = 0.

Step 3: (Checking if p = 0 mod T1) Write T1 as a product of coprime factors, where each factor is
of the form

S = (l +m1)(l +m2) · · · (l +mt)

with l ∈ F[x1, · · · , xn] and mi ∈M for all i.

For each such factor S, do the following:

Step 3.1: (Change of variables) With a suitable invertible linear transformation σ on the
variables, make convert l to x1.

Step 3.2: (Recursive calls) The new ring R′ = R[x1]/(σ(S)) which is a local ring as well. For
2 ≤ i ≤ k, the transformation σ might convert some of the factors of Ti to an element of R′. Collect
all such ring elements of σ(Ti) as γi ∈ R′ and write σ(Ti) = γiT

′
i .

16

Recursively call ID(R′, 〈β2γ2, · · · , βkγk〉 , 〈T ′2, · · · , T ′k〉). If the call returns NO, exit and output
NO.

Step 4: Output YES.

It is fairly straight-forward to check that the algorithm is indeed right, and runs in time
poly(n, dk, |F|). This completes the Kayal-Saxena identity test for ΣΠΣ circuits with bounded
top fan-in.

5.2 Black-box algorithm for ΣΠΣ(n, k, d) circuits over Q

The rank approach asks the following question: if C is a ΣΠΣ circuit that indeed computes the
zero polynomial, then how many variables does it really depend on? To give a reasonable answer,
we need to assume that the given circuit is not “redundant” in some ways.

Definition 5.2 (Minimal and simple circuits). A ΣΠΣ circuit C = P1 + · · · + Pk is said to be
minimal if no proper subset of {Pi}1≤i≤k sums to zero.

The circuit is said to be simple there is no non-trivial common factor between all the Pi’s.

Definition 5.3 (Rank of a circuit). For a given circuit ΣΠΣ circuit, the rank of the circuit is the
maximum number of independent linear functions that appear as a factor of any product gate.

Suppose we can get an upper-bound R on the rank of any minimal and simple ΣΠΣ(n, k, d) circuit
computing the zero polynomial. Then we have a partial approach towards identity testing.

1. Without loss of generality, we may assume that the circuit is simple and minimal.

2. Compute the rank r of the circuit C.

3. If the r < R is small, then the circuit is essentially a circuit on just R variables. We can
check in dR time if C is zero or not.

4. If the rank is larger than the upper-bound then the circuit computes a non-zero polynomial.

This was in fact the idea in Dvir and Shpilka’s nO(logn) algorithm [26] for ΣΠΣ circuits of
bounded top fan-in (before the algorithm by Kayal and Saxena [20]). Saxena and Seshadri recently
showed rank upper bounds that are almost tight.

Theorem 5.4. [27] Let C be a minimal, simple ΣΠΣ(n, k, d) circuit that is identically zero. Then,
rank(C) = O(k3 log d). And there exist identities with rank Ω(k log d).

Karnin and Shpilka showed how rank bounds can be turned into black-box identity tests. Using
the bound by Saxena and Seshadri, this gave a nO(logn) black-box test for depth 3 circuits with
bounded top fan-in.

Theorem 5.5. [28] Fix a field F. Let R(k, d) be an integer such that every minimal, simple
ΣΠΣ(n, k, d) circuit computing the zero polynomial has rank at most R(k, d). Then, there is a
black-box algorithm to test if a given ΣΠΣ(n, k, d) circuit is zero or not, in deterministic time
poly(dR(k,d), n).

17

It was conjectured by Dvir and Shpilka [26] that R(k, d) is a polynomial function of k alone.
However, Kayal and Saxena [20] provided a counter-example over finite fields. The question re-
mained if R(k, d) is a function of k alone over Q or R. This was answered in the affirmative by
Kayal and Saraf [21] very recently.

Theorem 5.6. [21] Every minimal, simple ΣΠΣ(n, k, d) circuit with coefficients from R that com-
putes the zero polynomial has rank bounded by 3k((k + 1)!) = 2O(k log k).

This, along with Theorem 5.5, gives a black-box algorithm for ΣΠΣ circuits with bounded top
fan-in.

Theorem 5.7. [21] There is a deterministic black-box algorithm for ΣΠΣ(n, k, d) circuits over Q,
running in time poly(d2O(k log k)

, n).

5.3 Saxena’s test for diagonal circuits

In this section we shall look at yet another restricted version of depth 3 circuits.

Definition 5.8. A ΣΠΣ circuit C is said to be diagonal if it is of the form

C(x1, · · · , xn) =
k∑
i=1

`ei
i where `i is a linear function over the variables

The idea is to reduce this problem to a PIT problem of a formula over non-commuting variables.
In the setting of formulas over non-commuting variables, Raz and Shpilka [29] showed that PIT
can be solved in deterministic polynomial time.

The reduction to a non-commutative formula is by a conversion to express a multiplication gate
(a0 + a1x1 + · · · anxn)d in a dual form:

(a0 + a1x1 + · · · anxn)d =
∑
j

fj1(x1)fj2(x2) · · · fjn(xn)

The advantage of using the expression on the RHS is that the variables can be assumed to be non-
commuting. Therefore if the above conversion can achieved in polynomial time, then we have a
polynomial algorithm for identity testing of diagonal circuits by just making this transformation and
using the algorithm by Raz and Shpilka. Saxena provides a simple way to convert a multiplication
gate to its dual. We present the case when F is a field of characteristic zero though it may be
achieved over any field.

Lemma 5.9. [30] Let a0, · · · , an be elements of a field F of characteristic zero. Then, in poly(n, d)
many field operations, we can compute univariate polynomials fi,j’s such that

(a0 + a1x1 + · · · anxn)d =
nd+d+1∑
i=1

fi1(x1)fi2(x2) · · · fin(xn)

18

Once we obtain such a transformation, we can think of the transformed circuit as computing a
non-commuting polynomial and employ the test by Raz and Shpilka. Thus, we get a deterministic
polynomial time PIT for diagonal circuits.

The lemma can be extended to restricted forms of depth 4 circuits as well, giving the following
theorem.

Theorem 5.10. [30] Given a circuit C over a field F with

C =
k∑
i=1

Lei1
i1 · · ·L

eis
is

where each Lij is a sum of univariate polynomials. We can test if C is identically zero or not in
deterministic time poly(size(C),maxi≤k {(1 + ei1) · · · (1 + eis)}).

Though (1 + ei1) · · · (1 + eis) could be exponential in general circuits, they perform well if the
multiplication gates have “few” distinct factors.

5.4 Circuits over algebras

A possible approach towards a deterministic polynomial time algorithm for general ΣΠΣ circuits
is to look at generalizations of PIT to other algebras (where the underlying constants come, not
from F, but an algebra over F). Saha, Saptharishi and Saxena [31] showed that ΠΣ circuits over
algebras are strongly connected to PIT for ΣΠΣ circuits over fields.

Theorem 5.11. [31] PIT for ΣΠΣ circuits over fields is polynomial time equivalent to PIT for
ΠΣ circuits over U2(F), the algebra of 2× 2 upper-triangular matrices.

The above theorem can also be re-written in terms of algebraic branching programs as follows:

Corollary 5.12. PIT for ΣΠΣ circuits over fields is polynomial time equivalent to PIT on restricted
width 2 algebraic branching program.

But why should ΠΣ circuits over algebras be easier to attack than ΣΠΣ circuits? Saha, Sapthar-
ishi and Saxena further showed that the problem is tractable if the underlying algebra was a constant
dimensional commutative algebra over F.

Theorem 5.13. [31] PIT for ΠΣ circuits over k-dimensional commutative algebras can be solved
in O(nk) time.

The proof decomposes uses a decomposition of the underlying algebra into local rings to reduce
the problem into smaller subproblems. Perhaps similar mathematical tools can be used to attack
U2(F) and hence depth 3 circuits.

6 Conclusions

Finding a deterministic algorithm for PIT for depth three and four circuits remains a very chal-
lenging problem and is being investigated actively. There is a hope that in near future we would be
able to find such algorithms and use them to show that permanent polynomial is hard to compute.

19

References

[1] Stuart J. Berkowitz. On computing the determinant in small parallel time using a small number
of processors. Inf. Process. Lett., 18(3):147–150, 1984.

[2] Leslie G. Valiant. Completeness Classes in Algebra. In STOC, pages 249–261, 1979.

[3] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. In STOC, pages 355–364, 2003.

[4] Manindra Agrawal. Proving Lower Bounds Via Pseudo-random Generators. In FSTTCS,
pages 92–105, 2005.

[5] Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition discrepancy and
mixed-sources extractors. In FOCS ’08: Proceedings of the 2008 49th Annual IEEE Symposium
on Foundations of Computer Science, pages 273–282, Washington, DC, USA, 2008. IEEE
Computer Society.

[6] N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial derivatives. In
FOCS ’95: Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
page 16, Washington, DC, USA, 1995. IEEE Computer Society.

[7] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic formulae over fields of characteristic
zero. In COCO ’99: Proceedings of the Fourteenth Annual IEEE Conference on Computational
Complexity, page 87, Washington, DC, USA, 1999. IEEE Computer Society.

[8] Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth 3 arithmetic
circuits. In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 577–582, New York, NY, USA, 1998. ACM.

[9] Adi Shamir. IP=PSPACE. In FOCS, pages 11–15, 1990.

[10] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
Verification and the Hardness of Approximation Problems. Journal of the ACM, 45(3):501–
555, 1998.

[11] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Ann. of Math,
160(2):781–793, 2004.

[12] László Lovász. On determinants, matchings, and random algorithms. In FCT, pages 565–574,
1979.

[13] Michael Clausen, Andreas W. M. Dress, Johannes Grabmeier, and Marek Karpinski. On Zero-
Testing and Interpolation of k-Sparse Multivariate Polynomials Over Finite Fields. Theor.
Comput. Sci., 84(2):151–164, 1991.

[14] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. J.
ACM, 27(4):701–717, 1980.

[15] Richard Zippel. Probabilistic algorithms for sparse polynomials. EUROSAM, pages 216–226,
1979.

20

[16] Zhi-Zhong Chen and Ming-Yang Kao. Reducing Randomness via Irrational Numbers. In
STOC, pages 200–209, 1997.

[17] Daniel Lewin and Salil P. Vadhan. Checking Polynomial Identities over any Field: Towards a
Derandomization? In STOC, pages 438–447, 1998.

[18] Manindra Agrawal and Somenath Biswas. Primality and Identity Testing via Chinese Remain-
dering. In FOCS, pages 202–209, 1999.

[19] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In STOC, pages 216–223, 2001.

[20] Neeraj Kayal and Nitin Saxena. Polynomial Identity Testing for Depth 3 Circuits. Computa-
tional Complexity, 16(2), 2007.

[21] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 circuits.
Electronic Colloquium on Computational Complexity (ECCC), 2009.

[22] Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four. In FOCS, pages
67–75, 2008.

[23] Chandan Saha. A note on irreducible polynomials and identity testing. (Manuscript) http:
//www.cse.iitk.ac.in/users/csaha/PID_CR.pdf, 2008.

[24] Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Randomness-optimal unique element
isolation with applications to perfect matching and related problems. SIAM J. Comput.,
24(5):1036–1050, 1995.

[25] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. In STOC ’87: Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 345–354, New York, NY, USA, 1987. ACM.

[26] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and polynomial identity
testing for depth 3 circuits. In STOC ’05: Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pages 592–601, New York, NY, USA, 2005. ACM.

[27] Nitin Saxena and C. Seshadhri. An almost optimal rank bound for depth 3 identities. In
Conference on Computational Complexity, 2009.

[28] Zohar S. Karnin and Amir Shpilka. Black box polynomial identity testing of generalized
depth-3 arithmetic circuits with bounded top fan-in. In CCC ’08: Proceedings of the 2008
IEEE 23rd Annual Conference on Computational Complexity, pages 280–291, Washington,
DC, USA, 2008. IEEE Computer Society.

[29] Ran Raz and Amir Shpilka. Deterministic Polynomial Identity Testing in Non-Commutative
Models. In IEEE Conference on Computational Complexity, pages 215–222, 2004.

[30] Nitin Saxena. Diagonal circuit identity testing and lower bounds. In ICALP ’08: Proceedings
of the 35th international colloquium on Automata, Languages and Programming, Part I, pages
60–71, Berlin, Heidelberg, 2008. Springer-Verlag.

21

http://www.cse.iitk.ac.in/users/csaha/PID_CR.pdf
http://www.cse.iitk.ac.in/users/csaha/PID_CR.pdf

[31] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. The power of depth 2 circuits over
algebras. (Manuscript) http://arxiv.org/abs/0904.2058, 2009.

[32] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. In STOC ’08: Proceedings of the 40th annual ACM symposium on
Theory of computing, pages 741–748, New York, NY, USA, 2008. ACM.

[33] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-Commutative Arithmetic Circuits:
Depth Reduction and Size Lower Bounds. Theor. Comput. Sci., 209(1-2):47–86, 1998.

22

http://arxiv.org/abs/0904.2058

	Introduction
	Problem definition
	Current Status
	Organization

	Connecting PIT to lower bounds
	Black-box PITs and lower bounds

	Chasm at depth 4
	Reduction to depth O(logd)
	Reduction to depth 4

	Randomized Algorithms for PIT
	The Schwarz-Zippel test
	Chen-Kao: Evaluating at irrationals
	Algebraically d-independent numbers
	Chen-Kao over finite fields

	Agrawal-Biswas: Chinese Remaindering
	Univariate substitution
	Polynomials sharing few factors

	Klivans-Spielman: Random univariate substitution
	Reduction to univariate polynomials
	Degree reduction (a sketch)

	Deterministic Algorithms for PIT
	The Kayal-Saxena test
	The idea
	The identity test

	Black-box algorithm for (n,k,d) circuits over Q
	Saxena's test for diagonal circuits
	Circuits over algebras

	Conclusions

