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Fermat’s Last Theorem

Theorem

There are no non-zero integer solutions of the equation xn + yn = zn

when n > 2.
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Fermat’s Last Theorem

Towards the end of his life, Pierre de Fermat (1601-1665) wrote in the
margin of a book:

I have discovered a truely remarkable proof of this theorem, but this
margin is too small to write it down.

After more than 300 years, when the proof was finally written, it did take a
little more than a margin to write.
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A Brief History

1660s: Fermat proved the theorem for n = 4.

1753: Euler proved the theorem for n = 3.

1825: Dirichlet and Legendre proved the theorem for n = 5.

1839: Lame proved the theorem for n = 7.

1857: Kummer proved the theorem for all n ≤ 100.
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A Brief History

1983: Faltings proved that for any n > 2, the equation
xn + yn = zn can have at most finitely many integer
solutions.

1994: Wiles proved the theorem.
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When n = 2

The equation is x2 + y2 = z2.

The solutions to this equation are Pythagorian triples.

The smallest one is x = 3, y = 4 and z = 5.

The general solution is given by x = 2ab, y = a2 − b2, z = a2 + b2 for
integers a > b > 0.
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When n = 4

Suppose u4 + v4 = w4 for some relatively prime integers u, v , w .

So we must have coprime integers a and b such that u2 = 2ab,
v2 = a2 − b2 and w2 = a2 + b2.

Since a, b are coprime, there exist coprime integers α and β such that
u = αβ and

2a = α2, b = β2 or a = α2, 2b = β2.

Similarly, there exist coprime integers γ and δ such that v = γδ and

a− b = γ2, a + b = δ2.
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When n = 4

Suppose the first case: 2a = α2.

Then,
γ2 + δ2 = (a− b) + (a + b) = 2a = α2.

In addition, 2 divides α and α, γ, δ are coprime to each other.

So both γ and δ are odd numbers.

Let γ = 2k + 1 and δ = 2` + 1 and consider the equation modulo 4:

0 = α2 (mod 4) = (2k + 1)2 + (2` + 1)2 (mod 4) = 2 (mod 4).

This is impossible.

The second case can be handled similarly, using infinite descent
method. [Try it!]
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A More General Approach

Approach for n = 4 does not generalize.

Different approaches can be used to prove n = 3, 5, . . . cases.

However, none of these approaches generalized.

A different idea was needed to make it work for all n.

This came in the form of rational points on curves.
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Rational Points on Curves

Let f (x , y) = 0 be a curve of degree n with rational coefficients.

We wish to know how many rational points lie on this curve.

Consider the curve Fn(x , y) = xn + yn − 1 = 0.

Let Fn(α, β) = 0 where α = a
c and β = b

c are rational numbers.

Then, an + bn = cn giving an integer solution to Fermat’s equation.

Conversely, any integer solution to Fermat’s equation yields a rational
point on the curve Fn(x , y) = 0.
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Faltings Theorem

Theorem (Faltings)

For any curve except for lines, conic sections, and elliptic curves, the
number of rational points on the curve is finite.

This implies that the equation xn + yn = zn will have at most finitely
many solutions for any n > 4 (equations for n = 3, 4 can be
transformed to elliptic curves).

Not strong enough!
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A Different Approach

One idea is to transform the curves xn + yn = 1 to a family of curves
that have no rational points on it.

The eventual solution came by a similar approach – the problem was
transformed to a problem on elliptic curves.

Interestingly, elliptic curves can have infinitely many rational points!
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Elliptic Curves

Definition

An elliptic curve is given by equation:

y2 = x3 + Ax + B

for numbers A and B satisfying 4A3 + 27B2 6= 0.

We will be interested in curves for which both A and B are rational
numbers.

Elliptic curves have truly amazing properties as we shall see.
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Elliptic Curve Examples
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Elliptic Curve Examples
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Discriminant of an Elliptic Curve

Let E be an elliptic curve given by equation y2 = x3 + Ax + B.

Discriminant ∆ of E is the number 4A3 + 27B2.

We require the discriminant of E to be non-zero.

This condition is equivalent to the condition that the three (perhaps
complex) roots of the polynomial x3 + Ax + B are distinct. [Verify!]

If x3 + Ax + B = (x − α)(x − β)(x − γ) then

∆ = (α− β)2(β − γ)2(γ − α)2.
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A Special Elliptic Curve

Let (a, b, c) be a solution of the equation xn + yn = zn for some n > 2.

Definition

Define an elliptic curve En by the equation:

y2 = x(x − an)(x + bn).

Discriminant of this curve is:

∆n = (an)2 · (bn)2 · (an + bn)2 = (abc)2n.

So the discriminant is 2nth power of an integer.

We aim to show that no elliptic curve exists whose discriminant is a
6th or higher power.
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Rational Points on an Elliptic Curve

Let E (Q) be the set of rational points on the curve E .

We add a “point at infinity,” called O, to this set.

Amazing Fact.

We can define an “addition” operation on the set of points in E (Q) just
like integer addition.
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Addition of Points on E
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Addition of Points on E

Observe that if points P and Q on E are rational, then point P + Q
is also rational. [Verify!]

The point addition obeys same laws as integer addition with point at
infinity O acting as the “zero” of point addition.

The point addition has some additional interesting properties too.
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Addition of Points on E
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Counting Rational Points on E

The nice additive structure of rational points in E (Q) allows us to
“count” them.

For each prime p, define E (Fp) to be the set of points (u, v) such
that 0 ≤ u, v < p and

v2 = u3 + Au + B (mod p).

A point in E (Q) yields a point in E (Fp).

The set E (Fp) is clearly finite: |E (Fp)| ≤ p2.
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Hasse’s Theorem

Theorem (Hasse)

p + 1− 2
√

p ≤ |E (Fp)| ≤ p + 1 + 2
√

p.

Let ap = p + 1− |E (Fp)|, ap measures the difference from the mean
value.

Thus we get an infinite sequence of numbers a2, a3, a5, a7, a11, . . .,
one for each prime.
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Generating Function for Rational Points

For the sake of completeness, we define a’s for non-prime indices too:

an =
k∏

i=1

ap
ei
i
,

where n =
∏k

i=1 pei
i .

Numbers apei are defined from ap using certain symmetry
considerations, e.g., ap2 = a2

p − p.

We can now define a generating function for this sequence:

GE (z) =
∑
n>0

an · zn.

By studying properties of GE (z), we hope to infer properties of curve
E .
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Modular Functions

Definition

A function f , defined over complex numbers, is modular of level ` and
conductance N if for every 2× 2 matrix M =

[
a b
c d

]
such that all its entries

are integers, det M = 1 and N divides c ,

f (
ay + b

cy + d
) = (cy + d)` · f (y)

for all complex numbers y with =(y) > 0.

Manindra Agarwal (IIT Kanpur) Fermat’s Last Theorem December 2005 24 / 30



Some Properties of Modular Functions

Choose M = [ 1 1
0 1 ]. Then:

f (y + 1) = f (y).

Thus, f is periodic.

Choose M =
[

1 0
kN 1

]
. Then:

f (
y

kNy + 1
) = (kNy + 1)` · f (y).

So f (y) →∞ as |y | → 0.

Manindra Agarwal (IIT Kanpur) Fermat’s Last Theorem December 2005 25 / 30



Some Properties of Modular Functions

Choose M = [ 1 1
0 1 ]. Then:

f (y + 1) = f (y).

Thus, f is periodic.

Choose M =
[

1 0
kN 1

]
. Then:

f (
y

kNy + 1
) = (kNy + 1)` · f (y).

So f (y) →∞ as |y | → 0.

Manindra Agarwal (IIT Kanpur) Fermat’s Last Theorem December 2005 25 / 30



Generating Functions for En are Not

Modular

Define a special generating function derived from GE (z):

SGE (y) = GE (e2πiy ) =
∑
n>0

an · e2πiy .

Recall that curve En was defined by a solution of Fermat’s equation:

y2 = x(x − an)(x + bn).

Theorem (Ribet)

Functions SGEn are not modular for n > 2.
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Wiles Theorem

Theorem (Wiles)

Function SGE for any elliptic curve is modular.
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Remarks

In mathematics, answers to problems are often found in unexpected
ways.

Elliptic curves have found applications in a number of places:
I In factoring integers.
I In designing cryptosystems.

Manindra Agarwal (IIT Kanpur) Fermat’s Last Theorem December 2005 28 / 30



Remarks

In mathematics, answers to problems are often found in unexpected
ways.

Elliptic curves have found applications in a number of places:
I In factoring integers.
I In designing cryptosystems.

Manindra Agarwal (IIT Kanpur) Fermat’s Last Theorem December 2005 28 / 30



Remarks

In mathematics, answers to problems are often found in unexpected
ways.

Elliptic curves have found applications in a number of places:
I In factoring integers.
I In designing cryptosystems.

Manindra Agarwal (IIT Kanpur) Fermat’s Last Theorem December 2005 28 / 30



Remarks

In mathematics, answers to problems are often found in unexpected
ways.

Elliptic curves have found applications in a number of places:
I In factoring integers.
I In designing cryptosystems.

Manindra Agarwal (IIT Kanpur) Fermat’s Last Theorem December 2005 28 / 30



A Fun Problem
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A Fun Problem

Find a non-trivial value of n (n 6= 0, 1) for which the number of balls
needed is a perfect square.
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