A Survey of Techniques Used in Algebraic and Number Theoretic Algorithms

Manindra Agarwal

National University of Singapore
and
IIT Kanpur

Kunming Tutorial, May 2005
OVERVIEW

INTRODUCTION

TWO APPLICATIONS
 Coding Theory Application: Reed-Solomon Codes
 Cryptography Application: RSA Cryptosystem

COMPLEXITY OF BASIC OPERATIONS

TOOLS FOR DESIGNING ALGORITHMS FOR BASIC OPERATIONS

OVERVIEW OF THE TOOLS
Introduction

Two Applications
- Coding Theory Application: Reed-Solomon Codes
- Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools
Algebraic Algorithms

- Algorithms for performing algebraic operations.
- Examples:
 - Matrix operations: addition, multiplication, inverse, determinant, solving a system of linear equations, ...
 - Polynomial operations: addition, multiplication, factoring, ...
 - Abstract algebra operations: order of a group element, discrete log, ...
Introduction

Two Applications

Basic Operations

Tools

Overview of the Tools

Algebraic Algorithms

- Algorithms for performing algebraic operations.
- Examples:
 - Matrix operations: addition, multiplication, inverse, determinant, solving a system of linear equations, ...
 - Polynomial operations: addition, multiplication, factoring, ...
 - Abstract algebra operations: order of a group element, discrete log, ...
Number Theoretical Algorithms

- Algorithms for performing number theoretic operations.
- Examples:
 - Operations on integers and rationals: addition, multiplication, gcd, square roots, primality testing, integer factoring, ...
Number Theoretical Algorithms

- Algorithms for performing number theoretic operations.
- Examples:
 - Operations on integers and rationals: addition, multiplication, gcd, square roots, primality testing, integer factoring, ...
Applications

- In coding theory for efficient coding/decoding.
- In cryptography for design and analysis of cryptographic schemes.
- In computer algebra systems.
Applications

- In coding theory for efficient coding/decoding.
- In cryptography for design and analysis of cryptographic schemes.
- In computer algebra systems.
Applications

- In coding theory for efficient coding/decoding.
- In cryptography for design and analysis of cryptographic schemes.
- In computer algebra systems.
This Talk

- Discusses two major applications where algebraic and number theoretic algorithms are used.
- Surveys some of the important tools for designing these algorithms.
- Designs algorithms for some basic operations using these tools.
This Talk

- Discusses two major applications where algebraic and number theoretic algorithms are used.
- **Surveys some of the important tools for designing these algorithms.**
- Designs algorithms for some basic operations using these tools.
This Talk

- Discusses two major applications where algebraic and number theoretic algorithms are used.
- Surveys some of the important tools for designing these algorithms.
- Designs algorithms for some basic operations using these tools.
Introduction

TWO APPLICATIONS

Coding Theory Application: Reed-Solomon Codes
Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools
OUTLINE

Introduction

TWO APPLICATIONS

Coding Theory Application: Reed-Solomon Codes
Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools
Reed-Soloman Codes

- One of the most important and popular class of codes.
- Used in several applications including **encoding data on CDs and DVDs.**
- Uses polynomial evaluations for coding, linear system solving and polynomial factorization for decoding.
Reed-Soloman Codes

- One of the most important and popular class of codes.
- Used in several applications including encoding data on CDs and DVDs.
- Uses polynomial evaluations for coding, linear system solving and polynomial factorization for decoding.
Reed-Soloman Codes: Coding

- Let m be a string that is to be coded.
- Fix a finite field F, $|F| \geq n$, and split m as a sequence of $k < n$ elements of F: (m_0, \ldots, m_{k-1}).
- Let polynomial $P_m(x) = \sum_{i=0}^{k-1} m_i \cdot x^i$.
- Let $c_j = P_m(e_j)$ for $0 \leq j < n$ with e_0, \ldots, e_{n-1} distinct elements of F. [Requires polynomial evaluation]
- The sequence (c_0, \ldots, c_{n-1}) is the codeword corresponding to m.

Reed-Soloman Codes: Coding

- Let m be a string that is to be coded.
- Fix a finite field F, $|F| \geq n$, and split m as a sequence of $k < n$ elements of F: (m_0, \ldots, m_{k-1}).
- Let polynomial $P_m(x) = \sum_{i=0}^{k-1} m_i \cdot x^i$.
- Let $c_j = P_m(e_j)$ for $0 \leq j < n$ with e_0, \ldots, e_{n-1} distinct elements of F. [Requires polynomial evaluation]
- The sequence (c_0, \ldots, c_{n-1}) is the codeword corresponding to m.
REED-SOLOMAN CODES: CODING

- Let m be a string that is to be coded.
- Fix a finite field F, $|F| \geq n$, and split m as a sequence of $k < n$ elements of F: (m_0, \ldots, m_{k-1}).
- Let polynomial $P_m(x) = \sum_{i=0}^{k-1} m_i \cdot x^i$.
- Let $c_j = P_m(e_j)$ for $0 \leq j < n$ with e_0, \ldots, e_{n-1} distinct elements of F. [Requires polynomial evaluation]
- The sequence (c_0, \ldots, c_{n-1}) is the codeword corresponding to m.
Reed-Soloman Codes: Decoding

- Let \((d_0, \ldots, d_{n-1})\) be a given, possibly corrupted, codeword.
- Assume that the number of un-corrupted elements is at least \(t\).
- Let \(D_0 = \lceil \sqrt{kn} \rceil\) and \(D_1 = \lfloor \sqrt{n/k} \rfloor\).
- Find a non-zero bivariate polynomial \(Q(x, y)\) with \(x\)-degree \(D_0\) and \(y\)-degree \(D_1\) such that \(Q(e_j, d_j) = 0\) for every \(0 \leq j < n\).
- Such a \(Q\) can always be found since \(Q\) has \((1 + D_0) \cdot (1 + D_1) > n\) unknown coefficients that need to satisfy \(n\) homogeneous equations. [Requires solving a system of linear equations]
Reed-Solomon Codes: Decoding

- Let \((d_0, \ldots, d_{n-1})\) be a given, possibly corrupted, codeword.
- Assume that the number of un-corrupted elements is at least \(t\).
- Let \(D_0 = \lceil \sqrt{kn} \rceil\) and \(D_1 = \lfloor \sqrt{n/k} \rfloor\).
- Find a non-zero bivariate polynomial \(Q(x, y)\) with \(x\)-degree \(D_0\) and \(y\)-degree \(D_1\) such that \(Q(e_j, d_j) = 0\) for every \(0 \leq j < n\).
- Such a \(Q\) can always be found since \(Q\) has \((1 + D_0) \cdot (1 + D_1) > n\) unknown coefficients that need to satisfy \(n\) homogeneous equations. [Requires solving a system of linear equations]
Reed-Soloman Codes: Decoding

- Let \((d_0, \ldots, d_{n-1})\) be a given, possibly corrupted, codeword.
- Assume that the number of un-corrupted elements is at least \(t\).
- Let \(D_0 = \lceil \sqrt{kn} \rceil\) and \(D_1 = \lfloor \sqrt{n/k} \rfloor\).
- Find a non-zero bivariate polynomial \(Q(x, y)\) with \(x\)-degree \(D_0\) and \(y\)-degree \(D_1\) such that \(Q(e_j, d_j) = 0\) for every \(0 \leq j < n\).
- Such a \(Q\) can always be found since \(Q\) has \((1 + D_0) \cdot (1 + D_1) > n\) unknown coefficients that need to satisfy \(n\) homogeneous equations. [Requires solving a system of linear equations]
Reed-Solomon Codes: Decoding

- Consider the polynomial $\hat{Q}(x) = Q(x, P_m(x))$.
- We have $\hat{Q}(e_j) = 0$ for at least t different e_j’s by assumption.
 - The degree of $\hat{Q}(x)$ is less than $D_0 + D_1 \cdot k \leq 2\lceil \sqrt{kn} \rceil$.
 - Therefore, if $t \geq 2\lceil \sqrt{kn} \rceil$, $\hat{Q}(x) = 0$.
- If $\hat{Q}(x) = Q(x, P_m(x)) = 0$, then polynomial $y - P_m(x)$ must divide polynomial $Q(x, y)$.
- Therefore, $y - P_m(x)$ divides $Q(x, y)$ whenever $t \geq 2\lceil \sqrt{kn} \rceil$.
REED-SOLOMAN CODES: DECODING

- Consider the polynomial \(\hat{Q}(x) = Q(x, P_m(x)) \).
- We have \(\hat{Q}(e_j) = 0 \) for at least \(t \) different \(e_j \)'s by assumption.
- The degree of \(\hat{Q}(x) \) is less than \(D_0 + D_1 \cdot k \leq 2 \lceil \sqrt{kn} \rceil \).
- Therefore, if \(t \geq 2 \lceil \sqrt{kn} \rceil \), \(\hat{Q}(x) = 0 \).
- If \(\hat{Q}(x) = Q(x, P_m(x)) = 0 \), then polynomial \(y - P_m(x) \) must divide polynomial \(Q(x, y) \).
- Therefore, \(y - P_m(x) \) divides \(Q(x, y) \) whenever \(t \geq 2 \lceil \sqrt{kn} \rceil \).
Reed-Soloman Codes: Decoding

- Consider the polynomial $\hat{Q}(x) = Q(x, P_m(x))$.
- We have $\hat{Q}(e_j) = 0$ for at least t different e_j’s by assumption.
- The degree of $\hat{Q}(x)$ is less than $D_0 + D_1 \cdot k \leq 2\lceil \sqrt{kn} \rceil$.
- Therefore, if $t \geq 2\lceil \sqrt{kn} \rceil$, $\hat{Q}(x) = 0$.
- If $\hat{Q}(x) = Q(x, P_m(x)) = 0$, then polynomial $y - P_m(x)$ must divide polynomial $Q(x, y)$.
- Therefore, $y - P_m(x)$ divides $Q(x, y)$ whenever $t \geq 2\lceil \sqrt{kn} \rceil$.
Reed-Solomon Codes: Decoding

- Factor polynomial $Q(x, y)$ and list all the factors of the form $y - P(x)$. [Requires polynomial factoring]
- Select the polynomial $P(x)$ from these that agrees with the sequence (d_0, \ldots, d_{n-1}) on maximum number of elements.
- This is likely to be the polynomial $P_m(x)$.
- This algorithm decodes up to $n - 2\lceil \sqrt{kn} \rceil$ errors.
- Given by Madhu Sudan (1994).
Reed-Soloman Codes: Decoding

- Factor polynomial $Q(x, y)$ and list all the factors of the form $y - P(x)$. [Requires polynomial factoring]
- Select the polynomial $P(x)$ from these that agrees with the sequence (d_0, \ldots, d_{n-1}) on maximum number of elements.
- This is likely to be the polynomial $P_m(x)$.
- This algorithm decodes up to $n - 2\lceil\sqrt{kn}\rceil$ errors.
- Given by Madhu Sudan (1994).
Reed-Soloman Codes: Decoding

- Factor polynomial $Q(x, y)$ and list all the factors of the form $y - P(x)$. [Requires polynomial factoring]
- Select the polynomial $P(x)$ from these that agrees with the sequence (d_0, \ldots, d_{n-1}) on maximum number of elements.
- This is likely to be the polynomial $P_m(x)$.
- This algorithm decodes up to $n - 2\lceil \sqrt{kn} \rceil$ errors.
- Given by Madhu Sudan (1994).
Reed-Solomon Codes: Decoding

- Factor polynomial $Q(x, y)$ and list all the factors of the form $y - P(x)$. [Requires polynomial factoring]
- Select the polynomial $P(x)$ from these that agrees with the sequence (d_0, \ldots, d_{n-1}) on maximum number of elements.
- This is likely to be the polynomial $P_m(x)$.
- This algorithm decodes up to $n - 2 \lceil \sqrt{kn} \rceil$ errors.
- Given by Madhu Sudan (1994).
OUTLINE

Introduction

TWO APPLICATIONS

Coding Theory Application: Reed-Solomon Codes

Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools
RSA Cryptosystem

- The first and most popular **public-key cryptosystem**.
- Used in secure communication everywhere.
- Uses **modular arithmetic** for encryption and decryption.
- Uses **primality testing** for generating keys.
- Integer factoring dominates cryptanalysis, with **modular equation solving** also playing a role.
RSA Cryptosystem

- The first and most popular public-key cryptosystem.
- Used in secure communication everywhere.
- Uses modular arithmetic for encryption and decryption.
- Uses primality testing for generating keys.
- Integer factoring dominates cryptanalysis, with modular equation solving also playing a role.
RSA Cryptosystem

- The first and most popular public-key cryptosystem.
- Used in secure communication everywhere.
- Uses modular arithmetic for encryption and decryption.
- Uses primality testing for generating keys.
- Integer factoring dominates cryptanalysis, with modular equation solving also playing a role.
RSA: Key Generation

- Fix a key length, say, 2^r bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an e, $3 \leq e < (p - 1)(q - 1)$ and $\gcd(e, (p - 1)(q - 1)) = 1$.
- Find the smallest d such that $d \cdot e = 1 \pmod{(p - 1)(q - 1)}$. [Requires modular inverse computation]
- Let $n = pq$.
- The encryption key is the pair (n, e).
- The decryption key is d.
RSA: Key Generation

- Fix a key length, say, 2^r bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an e, $3 \leq e < (p - 1)(q - 1)$ and $\gcd(e, (p - 1)(q - 1)) = 1$.
- Find the smallest d such that $d \cdot e = 1 \pmod{(p - 1)(q - 1)}$. [Requires modular inverse computation]
- Let $n = pq$.
- The encryption key is the pair (n, e).
- The decryption key is d.
RSA: Key Generation

- Fix a key length, say, 2^r bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an e, $3 \leq e < (p - 1)(q - 1)$ and $\text{gcd}(e, (p - 1)(q - 1)) = 1$.
- Find the smallest d such that $d \cdot e \equiv 1 \pmod{(p - 1)(q - 1)}$. [Requires modular inverse computation]
- Let $n = pq$.
- The encryption key is the pair (n, e).
- The decryption key is d.
RSA: Key Generation

- Fix a key length, say, 2^r bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an e, $3 \leq e < (p - 1)(q - 1)$ and $\gcd(e, (p - 1)(q - 1)) = 1$.
- Find the smallest d such that $d \cdot e = 1 \pmod{(p - 1)(q - 1)}$. [Requires modular inverse computation]
- Let $n = pq$.
- The encryption key is the pair (n, e).
- The decryption key is d.
RSA: Key Generation

- Fix a key length, say, 2^r bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an e, $3 \leq e < (p - 1)(q - 1)$ and $\gcd(e, (p - 1)(q - 1)) = 1$.
- Find the smallest d such that $d \cdot e = 1 \pmod{(p - 1)(q - 1)}$. [Requires modular inverse computation]
- Let $n = pq$.
- The encryption key is the pair (n, e).
- The decryption key is d.
RSA: Encryption and Decryption

- Let m be the message to be encrypted.
- Treat m as a number less than n.
- Compute $c = m^e \pmod{n}$. [Requires modular exponentiation]
- c is the encrypted message.
- Note that $c^d \pmod{n} = m^{ed} \pmod{n} = m$.
- Thus c can be decrypted using key d.
RSA: Encryption and Decryption

- Let m be the message to be encrypted.
- Treat m as a number less than n.
- Compute $c = m^e \pmod{n}$. [Requires modular exponentiation]
- c is the encrypted message.
- Note that $c^d \pmod{n} = m^{ed} \pmod{n} = m$.
- Thus c can be decrypted using key d.
RSA: Encryption and Decryption

- Let m be the message to be encrypted.
- Treat m as a number less than n.
- Compute $c = m^e \pmod{n}$. [Requires modular exponentiation]
- c is the encrypted message.
- Note that $c^d \pmod{n} = m^{ed} \pmod{n} = m$.
- Thus c can be decrypted using key d.
RSA: Cryptanalysis

• If n can be factored, then d can be easily computed using e:

 $$d = e^{-1} \pmod{(p - 1)(q - 1)}.$$

• So efficiency of factoring algorithms determines how safe RSA is.

• It is not the only way to break RSA though.

• We will see a different attack later that works for a special case.
RSA: Cryptanalysis

- If n can be factored, then d can be easily computed using e:

 $$d = e^{-1} \pmod{(p - 1)(q - 1)}.$$

- So efficiency of factoring algorithms determines how safe RSA is.

- It is not the only way to break RSA though.

- We will see a different attack later that works for a special case.
RSA: Cryptanalysis

• If n can be factored, then d can be easily computed using e:
 $$d = e^{-1} \pmod{(p - 1)(q - 1)}.$$

• So efficiency of factoring algorithms determines how safe RSA is.

• It is not the only way to break RSA though.

• We will see a different attack later that works for a special case.
Outline

Introduction

Two Applications
 Coding Theory Application: Reed-Solomon Codes
 Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools
Basic Operations: Polynomial Algebra

- Efficient algorithms are known for most of the operations.
 - Degree n Polynomial addition: $O(n)$ arithmetic operations.
 - Degree n Polynomial multiplication: $M_P(n) = O(n \log n)$ arithmetic operations.

- Several other operations reduce to polynomial multiplication:
 - Polynomial division: $O(M_P(n))$,
 - Polynomial gcd: $O(M_P(n) \log n)$.
 - Polynomial evaluation and interpolation: $O(M_P(n) \log n)$.
Basic Operations: Polynomial Algebra

- Efficient algorithms are known for most of the operations.
 - Degree n Polynomial addition: $O(n)$ arithmetic operations.
 - Degree n Polynomial multiplication: $MP(n) = O(n \log n)$ arithmetic operations.
- Several other operations reduce to polynomial multiplication:
 - Polynomial division: $O(MP(n))$,
 - Polynomial gcd: $O(MP(n) \log n)$.
 - Polynomial evaluation and interpolation: $O(MP(n) \log n)$.
Basic Operations: Polynomial Algebra

- Polynomial factorization over finite field F_p: $O^\sim(n^2 \log p)$ randomized.
 - $O^\sim(t(n)) = O(t(n) \cdot (\log t(n))^c)$ for some constant $c \geq 0$.
- Polynomial factorization over rationals: $O^\sim(n^{10} + n^8 \log^2 \|f\|_2)$, $\|f\|_2$ square-root of the sum of square of coefficients of f.
Basic Operations: Polynomial Algebra

- Polynomial factorization over finite field \mathbb{F}_p: $O^\sim(n^2 \log p)$ randomized.
 - $O^\sim(t(n)) = O(t(n) \cdot (\log t(n))^c)$ for some constant $c \geq 0$.
- Polynomial factorization over rationals: $O^\sim(n^{10} + n^8 \log^2 \|f\|_2)$, $\|f\|_2$ square-root of the sum of square of coefficients of f.

Basic Operations: Arithmetic

- Very similar to polynomial algebra.
 - Addition: $O(n)$,
 - Multiplication: $M_i(n) = O(n \log n \log \log n)$,
 - Gcd: $O(n^2)$.

- A number of operations can be transformed to multiplication:
 - Division, Modular arithmetic, computing integer roots: $O(M_i(n))$.
Basic Operations: Arithmetic

- Very similar to polynomial algebra.
 - Addition: $O(n)$,
 - Multiplication: $M_l(n) = O(n \log n \log \log n)$,
 - Gcd: $O(n^2)$.

- A number of operations can be transformed to multiplication:
 - Division, Modular arithmetic, computing integer roots: $O(M_l(n))$.
Basic Operations: Arithmetic

- Primality testing: $O^\sim(n^6)$ deterministic, $O^\sim(n^2)$ randomized.
- Integer factoring:
 - $e^{O((\log n)^{1/2}(\log \log n)^{1/2})}$ randomized.
 - $e^{O((\log n)^{1/3}(\log \log n)^{2/3})}$ heuristic.
Basic Operations: Arithmetic

- Primality testing: $O^{\sim}(n^6)$ deterministic, $O^{\sim}(n^2)$ randomized.
- Integer factoring:
 - $e^{O((\log n)^{1/2}(\log \log n)^{1/2})}$ randomized.
 - $e^{O((\log n)^{1/3}(\log \log n)^{2/3})}$ heuristic.
Basic Operations: Linear Algebra

- The central problem is matrix multiplication.
- Coppersmith and Winograd (1986) showed that time complexity of multiplying two $n \times n$ matrices is $M_M(n) = O(n^{2.376})$ arithmetic operations.
- Several problems reduce to matrix multiplication:
 - Matrix inverse: $O(M_M(n))$,
 - Determinant, Characteristic polynomial: $O(M_M(n))$,
 - Solving a system of linear equations in n variables: $O(M_M(n))$.
Basic Operations: Linear Algebra

- The central problem is matrix multiplication.
- Coppersmith and Winograd (1986) showed that time complexity of multiplying two $n \times n$ matrices is $M_M(n) = O(n^{2.376})$ arithmetic operations.
- Several problems reduce to matrix multiplication:
 - Matrix inverse: $O(M_M(n))$,
 - Determinant, Characteristic polynomial: $O(M_M(n))$,
 - Solving a system of linear equations in n variables: $O(M_M(n))$.
Basic Operations: Abstract Algebra

- Computing order of an element in finite group G:
 - Complexity depends on the group.
 - Trivial for some groups, e.g., $(Z_n, +)$.
 - As hard as integer factoring for some groups, e.g., Z_n^*.

- Computing discrete log of an element in finite cyclic group G:
 - given generator g for G, and element e, find m such that $e = g^m$.
 - Easy for some groups, e.g., $(Z_n, +)$. [requires modular inverse and multiplication]
 - Similar in hardness to integer factoring for groups, e.g., Z_p^*.
 - Very hard (time $= 2^{O(n)}$) for some groups, e.g., groups of points on elliptic curve E_p.
Basic Operations: Abstract Algebra

- Computing order of an element in finite group G:
 - Complexity depends on the group.
 - Trivial for some groups, e.g., $(\mathbb{Z}_n, +)$.
 - As hard as integer factoring for some groups, e.g., \mathbb{Z}_n^*.

- Computing discrete log of an element in finite cyclic group G:
 given generator g for G, and element e, find m such that $e = g^m$.
 - Easy for some groups, e.g., $(\mathbb{Z}_n, +)$. [requires modular inverse and multiplication]
 - Similar in hardness to integer factoring for groups, e.g., \mathbb{Z}_p^*.
 - Very hard (time $= 2^{O(n)}$) for some groups, e.g., groups of points on elliptic curve E_p.
Basic Operations: Abstract Algebra

- Computing order of an element in finite group G:
 - Complexity depends on the group.
 - Trivial for some groups, e.g., $(Z_n, +)$.
 - As hard as integer factoring for some groups, e.g., Z_n^*.

- Computing discrete log of an element in finite cyclic group G:
 - Given generator g for G, and element e, find m such that $e = g^m$.
 - Easy for some groups, e.g., $(Z_n, +)$. [requires modular inverse and multiplication]
 - Similar in hardness to integer factoring for groups, e.g., Z_p^*.
 - Very hard (time $= 2^{O(n)}$) for some groups, e.g., groups of points on elliptic curve E_p.

OUTLINE

Introduction

Two Applications
 Coding Theory Application: Reed-Solomon Codes
 Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

TOOLS FOR DESIGNING ALGORITHMS FOR BASIC OPERATIONS

Overview of the Tools
Tools for Designing Algorithms

1. **Chinese Remaindering:** Used in speeding integer and algebraic computations.

2. Discrete Fourier Transform: Used in polynomial and integer multiplication.

3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.

5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.

TOOLS FOR DESIGNING ALGORITHMS

2. Discrete Fourier Transform: Used in polynomial and integer multiplication.

3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.

5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.

Tools for Designing Algorithms

2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
Tools for Designing Algorithms

2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
TOOLS FOR DESIGNING ALGORITHMS

2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
Tools for Designing Algorithms

2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
Introduction

Two Applications
 Coding Theory Application: Reed-Solomon Codes
 Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools
Chinese remaindering

Definition

Example: Determinant Computation
Discrete Fourier Transform

Definition

Fast Fourier Transform

Example: Polynomial Multiplication
Automorphisms

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring
HENSEL LIFTING

DEFINITION

EXAMPLE: POLYNOMIAL DIVISION
Short Vectors in a Lattice

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals
Smooth Numbers

Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index Calculus
Tool 1: Chinese Remaindering
Outline

Definition

Example: Determinant Computation
Chinese Remaindering Theorem

Theorem

Let $R = \mathbb{Z}$ or $F[x]$, and $m_0, m_1, \ldots, m_{r-1} \in R$ be pairwise coprime. Let $m = \prod_{i=0}^{r-1} m_i$. Then,

$$R/(m) \cong R/(m_0) \oplus R/(m_1) \oplus \cdots \oplus R/(m_{r-1}).$$

- An element of ring $R/(m)$ can be uniquely written as an r-tuple with ith component belonging to ring $R/(m_i)$.
- Addition and multiplication operations act component-wise.
Chinese Remaindering Theorem

Theorem
Let $R = \mathbb{Z}$ or $F[x]$, and $m_0, m_1, \ldots, m_{r-1} \in R$ be pairwise coprime. Let $m = \prod_{i=0}^{r-1} m_i$. Then,

$$R/(m) \cong R/(m_0) \oplus R/(m_1) \oplus \cdots \oplus R/(m_{r-1}).$$

- An element of ring $R/(m)$ can be uniquely written as an r-tuple with ith component belonging to ring $R/(m_i)$.
- Addition and multiplication operations act component-wise.
Chinese Remaindering Applications

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
 - Given a bound, say A, on the output of a computation, choose small m_0, \ldots, m_{r-1} such that $\prod_{i=0}^{r-1} m_i > A$ and do the computations modulo each of m_i's.
 - At the end, combine the results of computations to get the desired result.
- Also lends itself to parallelization.
Chinese Remaindering Applications

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
 - Given a bound, say A, on the output of a computation, choose small m_0, \ldots, m_{r-1} such that $\prod_{i=0}^{r-1} m_i > A$ and do the computations modulo each of m_i’s.
 - At the end, combine the results of computations to get the desired result.
- Also lends itself to parallelization.
Chinese Remaindering Applications

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
 - Given a bound, say A, on the output of a computation, choose small m_0, \ldots, m_{r-1} such that $\prod_{i=0}^{r-1} m_i > A$ and do the computations modulo each of m_i's.
 - At the end, combine the results of computations to get the desired result.
- Also lends itself to parallelization.
Chinese Remaindering Applications

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
 - Given a bound, say A, on the output of a computation, choose small m_0, \ldots, m_{r-1} such that $\prod_{i=0}^{r-1} m_i > A$ and do the computations modulo each of m_i's.
 - At the end, combine the results of computations to get the desired result.
- Also lends itself to parallelization.
Outline

Definition

Example: Determinant Computation
Computing Determinant via CRT

- Let M be a $n \times n$ matrix over integers with A bounding the largest absolute value of its elements.
- Hadamard’s inequality implies that $|\det M| \leq n^{n/2}A^n$.
- Let $B = n^{n/2}A^n$ and $r = \lceil \log(2B + 1) \rceil$.
- Let m_0, \ldots, m_{r-1} be first r primes and $m = \prod_{i=0}^{r-1} m_i$.
- Compute $v_i = \det M \pmod{m_i}$ for each i.
- Compute α_i such that $\alpha_i \cdot \frac{m}{m_i} = 1 \pmod{m_i}$ for each i.
- Output $\sum_{i=0}^{r-1} \alpha_i \cdot \frac{m}{m_i} \cdot v_i \pmod{m}$.
Computing Determinant via CRT

- Let M be a $n \times n$ matrix over integers with A bounding the largest absolute value of its elements.
- Hadamard’s inequality implies that $|\det M| \leq n^{n/2}A^n$.
- Let $B = n^{n/2}A^n$ and $r = \lceil \log(2B + 1) \rceil$.
- Let m_0, \ldots, m_{r-1} be first r primes and $m = \prod_{i=0}^{r-1} m_i$.
- Compute $v_i = \det M \pmod{m_i}$ for each i.
- Compute α_i such that $\alpha_i \cdot \frac{m}{m_i} = 1 \pmod{m_i}$ for each i.
- Output $\sum_{i=0}^{r-1} \alpha_i \cdot \frac{m}{m_i} \cdot v_i \pmod{m}$.
Computing Determinant via CRT

- Let M be a $n \times n$ matrix over integers with A bounding the largest absolute value of its elements.

- Hadamard’s inequality implies that $|\det M| \leq n^{n/2}A^n$.

- Let $B = n^{n/2}A^n$ and $r = \lceil \log(2B + 1) \rceil$.

- Let m_0, \ldots, m_{r-1} be first r primes and $m = \prod_{i=0}^{r-1} m_i$.

- Compute $v_i = \det M \pmod{m_i}$ for each i.

- Compute α_i such that $\alpha_i \cdot \frac{m}{m_i} = 1 \pmod{m_i}$ for each i.

- Output $\sum_{i=0}^{r-1} \alpha_i \cdot \frac{m}{m_i} \cdot v_i \pmod{m}$.
Computing Determinant via CRT

- Let M be a $n \times n$ matrix over integers with A bounding the largest absolute value of its elements.

- Hadamard’s inequality implies that $|\det M| \leq n^{n/2}A^n$.

- Let $B = n^{n/2}A^n$ and $r = \lceil \log(2B + 1) \rceil$.

- Let m_0, \ldots, m_{r-1} be first r primes and $m = \prod_{i=0}^{r-1} m_i$.

- Compute $v_i = \det M \pmod{m_i}$ for each i.

- Compute α_i such that $\alpha_i \cdot \frac{m}{m_i} = 1 \pmod{m_i}$ for each i.

- Output $\sum_{i=0}^{r-1} \alpha_i \cdot \frac{m}{m_i} \cdot v_i \pmod{m}$.
Computing Determinant via CRT

- Let M be a $n \times n$ matrix over integers with A bounding the largest absolute value of its elements.
- Hadamard’s inequality implies that $|\det M| \leq n^{n/2}A^n$.
- Let $B = n^{n/2}A^n$ and $r = \lceil \log(2B + 1) \rceil$.
- Let m_0, \ldots, m_{r-1} be first r primes and $m = \prod_{i=0}^{r-1} m_i$.
- Compute $v_i = \det M \pmod{m_i}$ for each i.
- Compute α_i such that $\alpha_i \cdot \frac{m}{m_i} = 1 \pmod{m_i}$ for each i.
- Output $\sum_{i=0}^{r-1} \alpha_i \cdot \frac{m}{m_i} \cdot v_i \pmod{m}$.
Tool 2: Discrete Fourier Transform
OUTLINE

DEFINITION

Fast Fourier Transform

Example: Polynomial Multiplication
Discrete Fourier Transform

- Discrete Fourier Transform is the discrete variant of Fourier transform.
- It is used in polynomial multiplication, integer multiplication, image compression, and many other applications.
Discrete Fourier Transform

- **Discrete Fourier Transform** is the discrete variant of Fourier transform.
- It is used in polynomial multiplication, integer multiplication, image compression, and many other applications.
Discrete Fourier Transform

- Let $f : [0, n - 1] \mapsto F$ be a function ‘selecting’ n elements of field F.
- Let ω be a principle nth root of unity, i.e., $\omega^n = 1$, and $\omega^t \neq 1$ for $0 < t < n$.
- The DFT of f is $\mathcal{F}_f : [0, n - 1] \mapsto F[\omega]$:

\[
\mathcal{F}_f(j) = \sum_{i=0}^{n-1} f(i) \omega^{ij}.
\]
Discrete Fourier Transform

- Let $f : [0, n - 1] \mapsto F$ be a function ‘selecting’ n elements of field F.
- Let ω be a principle nth root of unity, i.e., $\omega^n = 1$, and $\omega^t \neq 1$ for $0 < t < n$.
- The DFT of f is $F_f : [0, n - 1] \mapsto F[\omega]$:
 $F_f(j) = \sum_{i=0}^{n-1} f(i)\omega^{ij}$.
Discrete Fourier Transform

- Let $f : [0, n - 1] \mapsto F$ be a function ‘selecting’ n elements of field F.
- Let ω be a principle nth root of unity, i.e., $\omega^n = 1$, and $\omega^t \neq 1$ for $0 < t < n$.
- The DFT of f is $\mathcal{F}_f : [0, n - 1] \mapsto F[\omega]$:

$$\mathcal{F}_f(j) = \sum_{i=0}^{n-1} f(i)\omega^{ij}.$$
Outline

Definition

Fast Fourier Transform

Example: Polynomial Multiplication
Fast Fourier Transform: An Algorithm for Computing DFT

- A straightforward algorithm takes $O(n^2)$ arithmetic operations.
- An $O(n \log n)$ time algorithm for DFT was (re)discovered by Cooley and Tukey (1965).
- It was first found by Gauss (1805).
- The algorithm is called Fast Fourier Transform and uses divide-and-conquer technique to recursively compute DFT.
Fast Fourier Transform: An Algorithm for Computing DFT

- A straightforward algorithm takes $O(n^2)$ arithmetic operations.
- An $O(n \log n)$ time algorithm for DFT was (re)discovered by Cooley and Tukey (1965).
- It was first found by Gauss (1805).
- The algorithm is called Fast Fourier Transform and uses divide-and-conquer technique to recursively compute DFT.
• Let $f, f : [0, n - 1] \mapsto F$ for field field F, and assume $n = 2^k$.
• Note that for $0 \leq j < n/2$,
 \[
 \mathcal{F}_f(2j) = \sum_{i=0}^{n-1} f(i) \omega^{2ij} = \sum_{i=0}^{n/2-1} (f(i) + f(n/2 + i))(\omega^2)^{ij}.
 \]
• Similarly,
 \[
 \mathcal{F}_f(2j+1) = \sum_{i=0}^{n-1} f(i) \omega^{i(2j+1)} = \sum_{i=0}^{n/2-1} (f(i)\omega^i - f(n/2+i)\omega^i)(\omega^2)^{ij}.
 \]
• Thus the problem reduces to computing DFT of two functions with $\frac{n}{2}$ domain size.
• Let $f, f : [0, n - 1] \mapsto F$ for field field F, and assume $n = 2^k$.
• Note that for $0 \leq j < n/2$,

$$
\mathcal{F}_f(2j) = \sum_{i=0}^{n-1} f(i)\omega^{2ij} = \sum_{i=0}^{n/2-1} (f(i) + f(n/2 + i))(\omega^2)^{ij}.
$$

• Similarly,

$$
\mathcal{F}_f(2j+1) = \sum_{i=0}^{n-1} f(i)\omega^{i(2j+1)} = \sum_{i=0}^{n/2-1} (f(i)\omega^i - f(n/2+i)\omega^i)(\omega^2)^{ij}.
$$

• Thus the problem reduces to computing DFT of two functions with $\frac{n}{2}$ domain size.
FFT

- Let $f, f : [0, n - 1] \mapsto F$ for field field F, and assume $n = 2^k$.
- Note that for $0 \leq j < n/2$,

$$\mathcal{F}_f(2j) = \sum_{i=0}^{n-1} f(i)\omega^{2ij} = \sum_{i=0}^{n/2-1} (f(i) + f(n/2 + i))(\omega^2)^{ij}. $$

- Similarly,

$$\mathcal{F}_f(2j+1) = \sum_{i=0}^{n-1} f(i)\omega^{i(2j+1)} = \sum_{i=0}^{n/2-1} (f(i)\omega^i - f(n/2 + i)\omega^i)(\omega^2)^{ij}. $$

- Thus the problem reduces to computing DFT of two functions with $\frac{n}{2}$ domain size.
The functions are: $f_0(i) = f(i) + f(n/2 + i)$ and $f_1(i) = (f(i) - f(n/2 + i))\omega^i$ for $0 \leq i < n/2$.

These functions can be computed using $O(n)$ operations from f.

Setting the recurrence and solving, we get the time to compute DFT is $O(n \log n)$.
The functions are: $f_0(i) = f(i) + f(n/2 + i)$ and $f_1(i) = (f(i) - f(n/2 + i))\omega^i$ for $0 \leq i < n/2$.

These functions can be computed using $O(n)$ operations from f.

Setting the recurrence and solving, we get the time to compute DFT is $O(n \log n)$.
FFT

- The functions are: $f_0(i) = f(i) + f(n/2 + i)$ and $f_1(i) = (f(i) - f(n/2 + i))\omega^i$ for $0 \leq i < n/2$.
- These functions can be computed using $O(n)$ operations from f.
- Setting the recurrence and solving, we get the time to compute DFT is $O(n \log n)$.
OUTLINE

Definition

Fast Fourier Transform

Example: Polynomial Multiplication
Polynomial Multiplication via FFT

- Let P be a polynomial over field F of degree $< n$:

 \[P(x) = \sum_{i=0}^{n-1} c_i x^i. \]

- Associate function \hat{P} with P, $\hat{P} : [0, n-1] \mapsto F$, $\hat{P}(i) = c_i$.

- DFT of P is defined to be

 \[\mathcal{F}_P(j) = \mathcal{F}_{\hat{P}}(j) = \sum_{i=0}^{n-1} c_i \omega^{ij} = P(\omega^j). \]
Polynomial Multiplication via FFT

- Let P be a polynomial over field F of degree $< n$:
 \[P(x) = \sum_{i=0}^{n-1} c_i x^i. \]

- Associate function \hat{P} with P, $\hat{P} : [0, n-1] \mapsto F$, $\hat{P}(i) = c_i$.

- DFT of P is defined to be
 \[\mathcal{F}_P(j) = \mathcal{F}_{\hat{P}}(j) = \sum_{i=0}^{n-1} c_i \omega^{ij} = P(\omega^j). \]
Polynomial Multiplication via FFT

- Let \(P \) be a polynomial over field \(F \) of degree \(< n\):

 \[
P(x) = \sum_{i=0}^{n-1} c_i x^i.
 \]

- Associate function \(\hat{P} \) with \(P \), \(\hat{P} : [0, n-1] \mapsto F \), \(\hat{P}(i) = c_i \).

- DFT of \(P \) is defined to be

 \[
 \mathcal{F}_P(j) = \mathcal{F}_{\hat{P}}(j) = \sum_{i=0}^{n-1} c_i \omega^{ij} = P(\omega^j).
 \]
Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree $< n = 2^k$.

1. Treat both P and Q as polynomials of degree $2n - 1$ and compute their DFT, F_P and F_Q.
3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω.
4. The resulting polynomial is $P \cdot Q$.

The time complexity of each step is bounded by $O(n \log n)$.
Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree $< n = 2^k$.

1. Treat both P and Q as polynomials of degree $2n - 1$ and compute their DFT, F_P and F_Q.
3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω.
4. The resulting polynomial is $P \cdot Q$.

The time complexity of each step is bounded by $O(n \log n)$.
Polynomial Multiplication via FFT

Let \(P \) and \(Q \) be two polynomials of degree \(< n = 2^k \).

1. Treat both \(P \) and \(Q \) as polynomials of degree \(2n - 1 \) and compute their DFT, \(\mathcal{F}_P \) and \(\mathcal{F}_Q \).
2. Multiply \(\mathcal{F}_P \) and \(\mathcal{F}_Q \) component-wise.
3. Compute the inverse-DFT of resulting function by using the root \(\omega^{-1} \) instead of \(\omega \).
4. The resulting polynomial is \(P \cdot Q \).

The time complexity of each step is bounded by \(O(n \log n) \).
Polynomial Multiplication via FFT

Let \(P \) and \(Q \) be two polynomials of degree \(< n = 2^k \).

1. Treat both \(P \) and \(Q \) as polynomials of degree \(2n - 1 \) and compute their DFT, \(F_P \) and \(F_Q \).
2. Multiply \(F_P \) and \(F_Q \) component-wise.
3. Compute the inverse-DFT of resulting function by using the root \(\omega^{-1} \) instead of \(\omega \).
4. The resulting polynomial is \(P \cdot Q \).

The time complexity of each step is bounded by \(O(n \log n) \).
Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree $< n = 2^k$.

1. Treat both P and Q as polynomials of degree $2n - 1$ and compute their DFT, \mathcal{F}_P and \mathcal{F}_Q.

2. Multiply \mathcal{F}_P and \mathcal{F}_Q component-wise.

3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω.

4. The resulting polynomial is $P \cdot Q$.

The time complexity of each step is bounded by $O(n \log n)$.
Tool 3: Automorphisms
Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring
Definition

- **Automorphism** of an algebraic structure is a mapping of the structure to itself that preserves all the operations.
- Automorphisms of finite rings and fields play a crucial role in polynomial factoring and primality testing.
Definition

• Let $R = \mathbb{Z}_n[X]/(f(X))$ be a finite ring, f a polynomial of degree d.

• An automorphism ϕ of R preserves both addition and multiplication in the ring.

• It is easy to see that ϕ is completely specified by its action on X: for any element $e(X) \in R$, $\phi(e(X)) = e(\phi(X))$.

• In addition, $\phi(f(X)) = f(\phi(X)) = 0$ in the ring.
Definition

- Let \(R = \mathbb{Z}_n[X] / (f(X)) \) be a finite ring, \(f \) a polynomial of degree \(d \).
- An automorphism \(\phi \) of \(R \) preserves both addition and multiplication in the ring.
- It is easy to see that \(\phi \) is completely specified by its action on \(X \): for any element \(e(X) \in R \), \(\phi(e(X)) = e(\phi(X)) \).
- In addition, \(\phi(f(X)) = f(\phi(X)) = 0 \) in the ring.
• Let $R = \mathbb{Z}_n[X]/(f(X))$ be a finite ring, f a polynomial of degree d.

• An automorphism ϕ of R preserves both addition and multiplication in the ring.

• It is easy to see that ϕ is completely specified by its action on X: for any element $e(X) \in R$, $\phi(e(X)) = e(\phi(X))$.

• In addition, $\phi(f(X)) = f(\phi(X)) = 0$ in the ring.
Definition

• If R is a field, i.e., n is prime and f is irreducible over F_p, then the automorphisms of R are precisely $\psi, \psi^2, \ldots, \psi^d = id$ where $\psi(X) = X^p$.

• In general, R is a direct sum of fields (by CRT) and its automorphisms are compositions of automorphisms of fields in the sum.
Definition

• If R is a field, i.e., n is prime and f is irreducible over F_p, then the automorphisms of R are precisely $\psi, \psi^2, \ldots, \psi^d = id$ where $\psi(X) = X^p$.

• In general, R is a direct sum of fields (by CRT) and its automorphisms are compositions of automorphisms of fields in the sum.
Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring
Polynomial Factoring Over Finite Fields

- The algorithms developed by Berlekemp and others (1980s).
- Let f be a degree n monic polynomial over finite field F_p.
- We wish to compute all irreducible factors of f.
- If f is not square-free, i.e., g^2 divides f for some g, then f can be factored easily:
 - Compute $\text{gcd}(f, \frac{df}{dx})$.
 - Since g divides both f and $\frac{df}{dx}$, the gcd will be non-trivial.
Polynomial Factoring Over Finite Fields

- The algorithms developed by Berlekemp and others (1980s).
- Let f be a degree n monic polynomial over finite field F_p.
- We wish to compute all irreducible factors of f.
- If f is not square-free, i.e., g^2 divides f for some g, then f can be factored easily:
 - Compute $\gcd(f, \frac{df}{dx})$.
 - Since g divides both f and $\frac{df}{dx}$, the gcd will be non-trivial.
Polynomial Factoring Over Finite Fields

- The algorithms developed by Berlekemp and others (1980s).
- Let f be a degree n monic polynomial over finite field F_p.
- We wish to compute all irreducible factors of f.
- If f is not square-free, i.e., g^2 divides f for some g, then f can be factored easily:
 - Compute $\gcd(f, \frac{df}{dx})$.
 - Since g divides both f and $\frac{df}{dx}$, the gcd will be non-trivial.
Polynomial Factoring Over Finite Fields

- The algorithms developed by Berlekemp and others (1980s).
- Let f be a degree n monic polynomial over finite field F_p.
- We wish to compute all irreducible factors of f.
- If f is not square-free, i.e., g^2 divides f for some g, then f can be factored easily:
 - Compute $\gcd(f, \frac{df}{dx})$.
 - Since g divides both f and $\frac{df}{dx}$, the gcd will be non-trivial.
Polynomial Factoring Over Finite Fields

- We now assume that f is square-free.
- Let $f = \prod_{i=1}^{t} f_i$, each f_i is irreducible and has degree d_i.
- Let $d_1 \leq d_2 \leq \ldots \leq d_t$.
- Consider ring $R = F_p[X]/(f) = \bigoplus_{i=1}^{t} F_p[X]/(f_i)$. [by CRT]
- Clearly, ψ^{d_1} is trivial in $F_p[X]/(f_1)$ but not in $F_p[X]/(f_j)$ when $d_j > d_1$.
Polynomial Factoring Over Finite Fields

- We now assume that f is square-free.
- Let $f = \prod_{i=1}^{t} f_i$, each f_i is irreducible and has degree d_i.
- Let $d_1 \leq d_2 \leq \cdots \leq d_t$.
- Consider ring $R = F_p[X]/(f) = \bigoplus_{i=1}^{t} F_p[X]/(f_i)$. [by CRT]
- Clearly, ψ^{d_1} is trivial in $F_p[X]/(f_1)$ but not in $F_p[X]/(f_j)$ when $d_j > d_1$.
Polynomial Factoring Over Finite Fields

- Therefore, $X^{p^{d_1}} = X$ in $F_p[X]/(f_1)$ but not in $F_p[X]/(f_j)$.
- So f_1 divides $\gcd(X^{p^{d_1}} - X, f(X))$ but not f_j.
- Computing $\gcd(X^{p^d} - X, f(X))$ starting from $d = 1$ to $d = n/2$ will factor f into equal degree factors.
- That is, each factor we get is a product of all the f_j’s of the same degree.
- This also allows us to test if f is irreducible: all the gcds are 1 iff f is irreducible.
Polynomial Factoring Over Finite Fields

- Therefore, $X^{p^{d_1}} = X$ in $F_p[X]/(f_1)$ but not in $F_p[X]/(f_j)$.
- So f_1 divides $\gcd(X^{p^{d_1}} - X, f(X))$ but not f_j.
- Computing $\gcd(X^{p^d} - X, f(X))$ starting from $d = 1$ to $d = n/2$ will factor f into equal degree factors.
- That is, each factor we get is a product of all the f_j’s of the same degree.
- This also allows us to test if f is irreducible: all the gcds are 1 iff f is irreducible.
Polynomial Factoring Over Finite Fields

- Therefore, $X^{p^{d_1}} = X$ in $F_p[X]/(f_1)$ but not in $F_p[X]/(f_j)$.
- So f_1 divides $\gcd(X^{p^{d_1}} - X, f(X))$ but not f_j.
- Computing $\gcd(X^{p^d} - X, f(X))$ starting from $d = 1$ to $d = n/2$ will factor f into equal degree factors.
- That is, each factor we get is a product of all the f_j’s of the same degree.
- This also allows us to test if f is irreducible: all the gcds are 1 iff f is irreducible.
Polynomial Factoring Over Finite Fields

- Now suppose \(f \) is such that \(d_1 = d_2 = \cdots = d_t \).
- Then the above method does not give any factor of \(f \).
- To handle this, we convert the problem to finding roots of a polynomial in \(F_p \).
- Let

\[
S = \{ e(X) \in R \mid \psi(e(X)) = e(X^p) = e(X) \}.
\]

- \(S \) is a subring of \(R \), \(S = \bigoplus_{i=1}^t F_p \).
- \(S \) can be computed using linear algebra.
Polynomial Factoring Over Finite Fields

- Now suppose f is such that $d_1 = d_2 = \cdots = d_t$.
- Then the above method does not give any factor of f.
- To handle this, we convert the problem to finding roots of a polynomial in \mathbb{F}_p.
- Let
 \[S = \{ e(X) \in R \mid \psi(e(X)) = e(X^p) = e(X) \}. \]
 - S is a subring of R, $S = \bigoplus_{i=1}^{t} \mathbb{F}_p$.
 - S can be computed using linear algebra.
Polynomial Factoring Over Finite Fields

- Choose \(e(X) \in S - F_p\).
- We must have \(e(X) \pmod{f_i(X)} = c_i \in F_p\) for each \(i\).
- Since \(e(X) \not\in F_p\), there exists \(i\) and \(j\) such that \(c_i \neq c_j\).
- Therefore, \(\gcd(e(X) - c_i, f(X))\) is divisible by \(f_i\) but not by \(f_j\).
- Thus we get a factor of \(f\).
- How do we compute a \(c_i\)?
Polynomial Factoring Over Finite Fields

- Choose \(e(X) \in S - F_p \).
- We must have \(e(X) \mod f_i(X)) = c_i \in F_p \) for each \(i \).
- Since \(e(X) \not\in F_p \), there exists \(i \) and \(j \) such that \(c_i \neq c_j \).
- Therefore, \(\gcd(e(X) - c_i, f(X)) \) is divisible by \(f_i \) but not by \(f_j \).
- Thus we get a factor of \(f \).
- How do we compute a \(c_i \)?
Polynomial Factoring Over Finite Fields

- Choose $e(X) \in S - F_p$.
- We must have $e(X) \pmod{f_i(X)} = c_i \in F_p$ for each i.
- Since $e(X) \not\in F_p$, there exists i and j such that $c_i \neq c_j$.
- Therefore, $\gcd(e(X) - c_i, f(X))$ is divisible by f_i but not by f_j.
- Thus we get a factor of f.
- How do we compute a c_i?
Polynomial Factoring Over Finite Fields

- Let $g(y) = \text{Res}(e(X) - y, f(X))$.
- Res is the resultant of two polynomials.
- For any $c \in F_p$, we have $g(c) = 0$ iff $\gcd(e(X) - c, f(X))$ is non-trivial giving a factor of f.
- So, if we can find roots of g in F_p, we can factor f!
Polynomial Factoring Over Finite Fields

- Let \(g(y) = \text{Res}(e(X) - y, f(X)) \).
- \(\text{Res} \) is the resultant of two polynomials.
- For any \(c \in F_p \), we have \(g(c) = 0 \) iff \(\gcd(e(X) - c, f(X)) \) is non-trivial giving a factor of \(f \).
- So, if we can find roots of \(g \) in \(F_p \), we can factor \(f \)!
Polynomial Factoring Over Finite Fields

• Let $g(y) = \text{Res}(e(X) - y, f(X))$.
• Res is the resultant of two polynomials.
• For any $c \in F_p$, we have $g(c) = 0$ iff $\gcd(e(X) - c, f(X))$ is non-trivial giving a factor of f.
• So, if we can find roots of g in F_p, we can factor f!
Polynomial Factoring Over Finite Fields

- Compute \(\hat{g}(y) = \gcd(g(y), \psi(y) - y) \).
 - \(\hat{g} \) factors completely in \(F_p \) and its roots are roots of \(g \) in \(F_p \).
- Let \(\hat{g}(y) = \prod_{i=0}^{k} (y - c_i) \).
- Compute \(h(y) = \hat{g}(y^2 - r) \) for a randomly chosen \(r \in F_p \).
- So, \(h(y) = \prod_{i=0}^{k} (y^2 - (c_i + r)) \).
- \(y^2 - (c_i + r) \) factors over \(F_p \) iff \(c_i + r \) is a quadratic residue.
Polynomial Factoring Over Finite Fields

- Compute \(\hat{g}(y) = \gcd(g(y), \psi(y) - y) \).
 - \(\hat{g} \) factors completely in \(F_p \) and its roots are roots of \(g \) in \(F_p \).
- Let \(\hat{g}(y) = \prod_{i=0}^{k} (y - c_i) \).
- Compute \(h(y) = \hat{g}(y^2 - r) \) for a randomly chosen \(r \in F_p \).
- So, \(h(y) = \prod_{i=0}^{k} (y^2 - (c_i + r)) \).
- \(y^2 - (c_i + r) \) factors over \(F_p \) iff \(c_i + r \) is a quadratic residue.
Polynomial Factoring Over Finite Fields

- Compute $\hat{g}(y) = \gcd(g(y), \psi(y) - y)$.
 - \hat{g} factors completely in F_p and its roots are roots of g in F_p.
- Let $\hat{g}(y) = \prod_{i=0}^{k} (y - c_i)$.
- Compute $h(y) = \hat{g}(y^2 - r)$ for a randomly chosen $r \in F_p$.
- So, $h(y) = \prod_{i=0}^{k} (y^2 - (c_i + r))$.
- $y^2 - (c_i + r)$ factors over F_p iff $c_i + r$ is a quadratic residue.
Polynomial Factoring Over Finite Fields

- For any i and j, $i \neq j$, the probability that exactly one of $c_i + r$ and $c_j + r$ is a quadratic residue in F_p, is at least $\frac{1}{2}$.
- Therefore, using the equal degree factorization algorithm above factors $h(y)$ with probability at least $\frac{1}{2}$.
 - Let $h(y) = h_1(y) \cdot h_2(y)$.
 - Both h_1 and h_2 will have only even powers of y.
 - Then, $g(y) = h(\sqrt{y} + r) = h_1(\sqrt{y} + r) \cdot h_2(\sqrt{y} + r)$.
 - Iterate this to completely factor g.
Polynomial Factoring Over Finite Fields

- For any i and j, $i \neq j$, the probability that exactly one of $c_i + r$ and $c_j + r$ is a quadratic residue in F_p, is at least $\frac{1}{2}$.
- Therefore, using the equal degree factorization algorithm above factors $h(y)$ with probability at least $\frac{1}{2}$.
- Let $h(y) = h_1(y) \cdot h_2(y)$.
- Both h_1 and h_2 will have only even powers of y.
- Then, $g(y) = h(\sqrt{y} + r) = h_1(\sqrt{y} + r) \cdot h_2(\sqrt{y} + r)$.
- Iterate this to completely factor g.
Polynomial Factoring Over Finite Fields

- For any i and j, $i \neq j$, the probability that exactly one of $c_i + r$ and $c_j + r$ is a quadratic residue in F_p, is at least $\frac{1}{2}$.
- Therefore, using the equal degree factorization algorithm above factors $h(y)$ with probability at least $\frac{1}{2}$.
- Let $h(y) = h_1(y) \cdot h_2(y)$.
- Both h_1 and h_2 will have only even powers of y.
- Then, $g(y) = h(\sqrt{y} + r) = h_1(\sqrt{y} + r) \cdot h_2(\sqrt{y} + r)$.
- Iterate this to completely factor g.
Outline

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring
Primality Testing

- **Fermat’s Little Theorem** states that if n is prime then for every a: $a^n = a \pmod{n}$.
- In other words: mapping $\phi(x) = x^n$ is the trivial automorphism of the ring \mathbb{Z}_n.
- The converse of the statement is not true: there are composite n such that ϕ is the trivial automorphism of \mathbb{Z}_n.
- Even if it were true, checking if ϕ is the trivial automorphism requires $\Omega(n)$ steps.
- So the theorem cannot be used for testing primality efficiently.
Primality Testing

• Fermat’s Little Theorem states that if n is prime then for every a: $a^n = a \ (mod \ n)$.

• In other words: mapping $\phi(x) = x^n$ is the trivial automorphism of the ring \mathbb{Z}_n.

• The converse of the statement is not true: there are composite n such that ϕ is the trivial automorphism of \mathbb{Z}_n.

• Even if it were true, checking if ϕ is the trivial automorphism requires $\Omega(n)$ steps.

• So the theorem cannot be used for testing primality efficiently.
Primality Testing

• Fermat’s Little Theorem states that if n is prime then for every a: $a^n = a \pmod{n}$.
• In other words: mapping $\phi(x) = x^n$ is the trivial automorphism of the ring \mathbb{Z}_n.
• The converse of the statement is not true: there are composite n such that ϕ is the trivial automorphism of \mathbb{Z}_n.
• Even if it were true, checking if ϕ is the trivial automorphism requires $\Omega(n)$ steps.
• So the theorem cannot be used for testing primality efficiently.
Primality Testing

- Both the problems can be eliminated using a generalization of the theorem.
- This was shown by A, Kayal and Saxena (2004) who obtained a deterministic $O^*(n^{15/2})$ algorithm for primality testing.
- Earlier, there were algorithms known for primality testing but they were either randomized or not polynomial-time.
Both the problems can be eliminated using a generalization of the theorem.

This was shown by A, Kayal and Saxena (2004) who obtained a deterministic $O^\sim(n^{15/2})$ algorithm for primality testing.

Earlier, there were algorithms known for primality testing but they were either randomized or not polynomial-time.
Primality Testing

- Fix $r > 0$ such that $O_r(n) > 4 \log^2 n$ ($O_r(n)$ is order of n modulo r).
 - It is easy to see that such an r exists in $[4 \log^2 n, 16 \log^5 n]$.
- Let ring $R = \mathbb{Z}_n[X]/(X^{2r} - X^r)$.
- Clearly we have:

Theorem (Generalized FLT)

If n is prime then ϕ is an automorphism of R.
Primality Testing

- Fix $r > 0$ such that $O_r(n) > 4 \log^2 n$ ($O_r(n)$ is order of n modulo r).
 - It is easy to see that such an r exists in $[4 \log^2 n, 16 \log^5 n]$.
- Let ring $R = \mathbb{Z}_n[X]/(X^{2r} - X^r)$.
- Clearly we have:

Theorem (Generalized FLT)

If n is prime then ϕ is an automorphism of R.
Primality Testing

- Does the converse also hold?
- Yes, it does!

Theorem (AKS, 2004)

If ϕ is an automorphism of R then n is prime.
Primality Testing

- Does the converse also hold?
- Yes, it does!

Theorem (AKS, 2004)

If \(\phi \) is an automorphism of \(R \) then \(n \) is prime.
Primality Testing

- What about efficiency?
- Testing that ϕ is an automorphism naively requires exponential time.
- This can be eliminated too:

Theorem (AKS, 2004)

ϕ is an automorphism of R iff $\phi(X + a) = \phi(X) + a$ in R for $1 \leq a \leq 2\sqrt{r \log n}$.
Primality Testing

• What about efficiency?
• Testing that ϕ is an automorphism naively requires exponential time.
• This can be eliminated too:

Theorem (AKS, 2004)

ϕ is an automorphism of R iff $\phi(X + a) = \phi(X) + a$ in R for $1 \leq a \leq 2\sqrt{r} \log n$.
Primality Testing

• What about efficiency?
• Testing that ϕ is an automorphism naively requires exponential time.
• This can be eliminated too:

Theorem (AKS, 2004)

ϕ is an automorphism of R iff $\phi(X + a) = \phi(X) + a$ in R for $1 \leq a \leq 2\sqrt{r \log n}$.
• Since \(r = O(\log^5 n) \), testing if \(\phi(X + a) = \phi(X) + a \) takes time \(\tilde{O}(\log^7 n) \).
• So total time taken is \(\tilde{O}(\log^7 n \cdot \log^{7/2} n) = \tilde{O}(\log^{21/2} n) \).
• Using an analytic number theory result by Fouvry (1985), it can be shown that \(r = O(\log^3 n) \).
• This brings down time complexity to \(\tilde{O}(\log^{15/2} n) \).
• Lenstra and Pomerance (2003) further bring it down to \(\tilde{O}(\log^6 n) \).
Primality Testing

- Since $r = O(\log^5 n)$, testing if $\phi(X + a) = \phi(X) + a$ takes time $O^\sim(\log^7 n)$.
- So total time taken is $O^\sim(\log^7 n \cdot \log^{7/2} n) = O^\sim(\log^{21/2} n)$.
- Using an analytic number theory result by Fouvry (1985), it can be shown that $r = O(\log^3 n)$.
- This brings down time complexity to $O^\sim(\log^{15/2} n)$.
- Lenstra and Pomerance (2003) further bring it down to $O^\sim(\log^6 n)$.
Primality Testing

• Since $r = O(\log^5 n)$, testing if $\phi(X + a) = \phi(X) + a$ takes time $O^{\sim}(\log^7 n)$.

• So total time taken is $O^{\sim}(\log^7 n \cdot \log^{7/2} n) = O^{\sim}(\log^{21/2} n)$.

• Using an analytic number theory result by Fouvry (1985), it can be shown that $r = O(\log^3 n)$.

• This brings down time complexity to $O^{\sim}(\log^{15/2} n)$.

• Lenstra and Pomerance (2003) further bring it down to $O^{\sim}(\log^6 n)$.
• Since $r = O(\log^5 n)$, testing if $\phi(X + a) = \phi(X) + a$ takes time $O^\sim(\log^7 n)$.
• So total time taken is $O^\sim(\log^7 n \cdot \log^{7/2} n) = O^\sim(\log^{21/2} n)$.
• Using an analytic number theory result by Fouvry (1985), it can be shown that $r = O(\log^3 n)$.
• This brings down time complexity to $O^\sim(\log^{15/2} n)$.
• Lenstra and Pomerance (2003) further bring it down to $O^\sim(\log^6 n)$.
Outline

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring
Kayal and Saxena (2004) show that integer factoring reduces to several questions about automorphisms of rings. They show n can be factored if

- A non-trivial automorphism of ring $\mathbb{Z}_n[X]/(X^2 - 1)$ can be computed.
- The number of automorphisms of ring $\mathbb{Z}_n[X]/(X^2)$ can be computed.
• Kayal and Saxena (2004) show that integer factoring reduces to several questions about automorphisms of rings.

• They show n can be factored if
 • A non-trivial automorphism of ring $\mathbb{Z}_n[X]/(X^2 - 1)$ can be computed.
 • The number of automorphisms of ring $\mathbb{Z}_n[X]/(X^2)$ can be computed.
Integer Factoring

- **Kayal and Saxena (2004)** show that integer factoring reduces to several questions about automorphisms of rings.
- They show n can be factored if
 - A non-trivial automorphism of ring $\mathbb{Z}_n[X]/(X^2 - 1)$ can be computed.
 - The number of automorphisms of ring $\mathbb{Z}_n[X]/(X^2)$ can be computed.
Integer Factoring

Theorem (Kayal and Saxena, 2004)

An odd number n can be factored efficiently iff a non-trivial automorphism of ring $\mathbb{Z}_n[X]/(X^2 - 1)$ can be computed efficiently.
Integer Factoring

Proof.

- First observe that n can be factored iff a non-trivial solution of $y^2 - 1 \pmod{n}$ can be found in \mathbb{Z}_n:
 - If $y_0 \neq \pm 1 \pmod{n}$ is a non-trivial solution, then $\gcd(y_0 + 1, n)$ gives a factor.
 - If $n = n_1 n_2$, then a $y_0 < n$ with $y_0 = 1 \pmod{n_1}$ and $y_0 = -1 \pmod{n_2}$ exists (by CRT) and is therefore a non-trivial solution.
Proof.

- First observe that n can be factored iff a non-trivial solution of $y^2 - 1 \pmod{n}$ can be found in \mathbb{Z}_n:
 - If $y_0 \neq \pm 1 \pmod{n}$ is a non-trivial solution, then $\gcd(y_0 + 1, n)$ gives a factor.
 - If $n = n_1 n_2$, then a $y_0 < n$ with $y_0 = 1 \pmod{n_1}$ and $y_0 = -1 \pmod{n_2}$ exists (by CRT) and is therefore a non-trivial solution.
Integer Factoring

Proof.

- First observe that n can be factored iff a non-trivial solution of $y^2 - 1 \pmod{n}$ can be found in \mathbb{Z}_n:
 - If $y_0 \neq \pm 1 \pmod{n}$ is a non-trivial solution, then $\gcd(y_0 + 1, n)$ gives a factor.
 - If $n = n_1 n_2$, then a $y_0 < n$ with $y_0 = 1 \pmod{n_1}$ and $y_0 = -1 \pmod{n_2}$ exists (by CRT) and is therefore a non-trivial solution.
Integer Factoring

• Let $\phi(X) = a \cdot X + b$ be a non-trivial automorphism of $R = \mathbb{Z}_n[X]/(X^2 - 1)$.
• Let $d = \gcd(a, n)$.
• Consider $\phi\left(\frac{n}{d}X\right) = \frac{n}{d} \cdot a \cdot X + \frac{n}{d} \cdot b = \frac{n}{d} \cdot b$.
• Since ϕ is a 1-1 map, this is only possible when $d = \gcd(a, n) = 1$.

Let \(\phi(X) = a \cdot X + b \) be a non-trivial automorphism of \(R = \mathbb{Z}_n[X]/(X^2 - 1) \).

Let \(d = \gcd(a, n) \).

Consider \(\phi\left(\frac{n}{d}X\right) = \frac{n}{d} \cdot a \cdot X + \frac{n}{d} \cdot b = \frac{n}{d} \cdot b \).

Since \(\phi \) is a 1-1 map, this is only possible when \(d = \gcd(a, n) = 1 \).
Integer Factoring

- Let $\phi(X) = a \cdot X + b$ be a non-trivial automorphism of $R = \mathbb{Z}_n[X]/(X^2 - 1)$.
- Let $d = \gcd(a, n)$.
- Consider $\phi\left(\frac{n}{d}X\right) = \frac{n}{d} \cdot a \cdot X + \frac{n}{d} \cdot b = \frac{n}{d} \cdot b$.
- Since ϕ is a 1-1 map, this is only possible when $d = \gcd(a, n) = 1$.
We have:

\[0 = \phi(X^2 - 1) = (aX + b)^2 - 1 = 2abX + a^2 + b^2 - 1 \]

in the ring.

This gives \(2ab = 0 = a^2 + b^2 - 1 \mod n \).

Since \(n \) is odd and \(\gcd(a, n) = 1 \), we get \(b = 0 \mod n \) and \(a^2 = 1 \mod n \).

Therefore, \(\phi(X) = a \cdot X \) with \(a^2 = 1 \mod n \).

As \(\phi \) is non-trivial, \(a \neq \pm1 \mod n \).

So, given \(\phi \), we can use \(a \) to factor \(n \).
We have:

\[0 = \phi(X^2 - 1) = (aX + b)^2 - 1 = 2abX + a^2 + b^2 - 1 \]

in the ring.

This gives \(2ab = 0 = a^2 + b^2 - 1 \) (mod \(n \)).

Since \(n \) is odd and \(\gcd(a, n) = 1 \), we get \(b = 0 \) (mod \(n \)) and \(a^2 = 1 \) (mod \(n \)).

Therefore, \(\phi(X) = a \cdot X \) with \(a^2 = 1 \) (mod \(n \)).

As \(\phi \) is non-trivial, \(a \neq \pm 1 \) (mod \(n \)).

So, given \(\phi \), we can use \(a \) to factor \(n \).
We have:

\[0 = \phi(X^2 - 1) = (aX + b)^2 - 1 = 2abX + a^2 + b^2 - 1 \]

in the ring.

- This gives \(2ab = 0 = a^2 + b^2 - 1 \pmod{n} \).
- Since \(n \) is odd and \(\gcd(a, n) = 1 \), we get \(b = 0 \pmod{n} \) and \(a^2 = 1 \pmod{n} \).
- Therefore, \(\phi(X) = a \cdot X \) with \(a^2 = 1 \pmod{n} \).
- As \(\phi \) is non-trivial, \(a \neq \pm1 \pmod{n} \).
- So, given \(\phi \), we can use \(a \) to factor \(n \).
We have:

$$0 = \phi(X^2 - 1) = (aX + b)^2 - 1 = 2abX + a^2 + b^2 - 1$$

in the ring.

- This gives $2ab = 0 = a^2 + b^2 - 1 \pmod{n}$.
- Since n is odd and $\gcd(a, n) = 1$, we get $b = 0 \pmod{n}$ and $a^2 = 1 \pmod{n}$.
- Therefore, $\phi(X) = a \cdot X$ with $a^2 = 1 \pmod{n}$.
- As ϕ is non-trivial, $a \neq \pm 1 \pmod{n}$.
- So, given ϕ, we can use a to factor n.
Conversely, assume that we know a number a such that $a \neq \pm 1 \ (mod \ n)$ and $a^2 = 1 \ (mod \ n)$.

This a defines a non-trivial automorphism of R.
Conversely, assume that we know a number a such that $a \neq \pm 1 \pmod{n}$ and $a^2 = 1 \pmod{n}$.

This a defines a non-trivial automorphism of R.

\[\square \]
Tool 4: Hensel Lifting
Outline

Definition

Example: Polynomial Division
Hensel Lifting

- Let $R = \mathbb{Z}$ or $F[x]$, and $m \in R$.
- Hensel (1918) designed a method to compute factorization of any element of R modulo m^ℓ given its factorization modulo m.
- The method is called **Hensel Lifting**.
- It is used in several places: polynomial division, polynomial factorization etc.
Hensel Lifting

- Suppose we are given $f, g, h, s, t \in R$ such that $f = g \cdot h \pmod{m}$, $\gcd(g, h) = 1 \pmod{m}$, and $sg + th = 1 \pmod{m}$.
- Compute $e = f - gh \pmod{m^2}$, $g' = g + te \pmod{m^2}$, $h' = h + se \pmod{m^2}$.
- Then we get:

 $$g'h' \pmod{m^2} = gh + sge + the + ste^2 \pmod{m^2}$$
 $$= gh + (sg + th)(f - gh) \pmod{m^2}$$
 $$= f \pmod{m^2}.$$
Hensel Lifting

- Suppose we are given \(f, g, h, s, t \in R \) such that \(f = g \cdot h \pmod{m} \), \(\gcd(g, h) = 1 \pmod{m} \), and \(sg + th = 1 \pmod{m} \).
- Compute \(e = f - gh \pmod{m^2} \), \(g' = g + te \pmod{m^2} \), \(h' = h + se \pmod{m^2} \).
- Then we get:

\[
g'h' \pmod{m^2} = gh + sge + the + ste^2 \pmod{m^2}
\]
\[
= gh + (sg + th)(f - gh) \pmod{m^2}
\]
\[
= f \pmod{m^2}.
\]
Definition

Example: Polynomial Division

HENSEL LIFTING

- Suppose we are given \(f, g, h, s, t \in R \) such that
 \[f = g \cdot h \pmod{m}, \quad \gcd(g, h) = 1 \pmod{m}, \quad \text{and} \quad sg + th = 1 \pmod{m}. \]
- Compute \(e = f - gh \pmod{m^2}, \quad g' = g + te \pmod{m^2}, \quad h' = h + se \pmod{m^2}. \)
- Then we get:

\[
g' h' \pmod{m^2} = gh + sge + the + ste^2 \pmod{m^2} \\
= gh + (sg + th)(f - gh) \pmod{m^2} \\
= f \pmod{m^2}. \]
Hensel Lifting

- Also compute \(d = sg' + th' - 1 \pmod{m^2} \),
 \[s' = s(1 - d) \pmod{m^2}, \quad t' = t(1 - d) \pmod{m^2}. \]
- Then:

 \[
 s'g' + t'h' \pmod{m^2} = sg'(1 - d) + th'(1 - d) \pmod{m^2}
 = (1 + d)(1 - d) \pmod{m^2}
 = 1 \pmod{m^2}.
 \]

- Thus we can ‘lift’ the factorization to modulo \(m^2 \).
- Iterating this \(\log \ell \) times gives factorization modulo \(m^\ell \).
Hensel Lifting

- Also compute $d = sg' + th' - 1 \pmod{m^2}$,
 $s' = s(1 - d) \pmod{m^2}$, $t' = t(1 - d) \pmod{m^2}$.
- Then:

 $$s'g' + t'h' \pmod{m^2} = sg'(1 - d) + th'(1 - d) \pmod{m^2}$$
 $$= (1 + d)(1 - d) \pmod{m^2}$$
 $$= 1 \pmod{m^2}.$$

- Thus we can ‘lift’ the factorization to modulo m^2.
- Iterating this $\log \ell$ times gives factorization modulo m^ℓ.
Hensel Lifting

- Also compute $d = sg' + th' - 1 \pmod{m^2}$,

 $s' = s(1 - d) \pmod{m^2}$, $t' = t(1 - d) \pmod{m^2}$.

- Then:

 \[
 s'g' + t'h' \pmod{m^2} = sg'(1 - d) + th'(1 - d) \pmod{m^2} = (1 + d)(1 - d) \pmod{m^2} = 1 \pmod{m^2}.
 \]

- Thus we can ‘lift’ the factorization to modulo m^2.

- Iterating this $\log \ell$ times gives factorization modulo m^ℓ.
Definition

Example: Polynomial Division

Outline

Definition

Example: Polynomial Division
Polynomial Division via Hensel Lifting

- Let $f(x)$ and $g(x)$ be two monic polynomials over field F, $\deg f = n$, $\deg g = m < n$.
- We wish to compute $d(x)$ and $r(x)$ such that $f = dg + r$ and $\deg r < m$.
- A naive algorithm takes $O(n^2)$ field operations.
- Using Hensel Lifting, we can do it in $O(n \log n)$ operations.
Polynomial Division via Hensel Lifting

- Let $f(x)$ and $g(x)$ be two monic polynomials over field F, $\deg f = n$, $\deg g = m < n$.
- We wish to compute $d(x)$ and $r(x)$ such that $f = dg + r$ and $\deg r < m$.
- A naive algorithm takes $O(n^2)$ field operations.
- Using Hensel Lifting, we can do it in $O(n \log n)$ operations.
Polynomial Division via Hensel Lifting

- For any polynomial $p(x)$ of degree d, define $\tilde{p}(x) = x^d p(\frac{1}{x})$.
- The coefficients of \tilde{p} are ‘reversed’.
- If $f(x) = d(x)g(x) + r(x)$, then

 $$\tilde{f}(x) = \tilde{d}(x)\tilde{g}(x) + x^{n-m+1}\tilde{r}(x).$$

- Therefore,

 $$\tilde{f}(x) = \tilde{d}(x)\tilde{g}(x) \ (mod \ x^{n-m+1}).$$
Polynomial Division via Hensel Lifting

• For any polynomial $p(x)$ of degree d, define $\tilde{p}(x) = x^d p \left(\frac{1}{x} \right)$.
• The coefficients of \tilde{p} are ‘reversed’.
• If $f(x) = d(x)g(x) + r(x)$, then

$$\tilde{f}(x) = \tilde{d}(x)\tilde{g}(x) + x^{n-m+1}\tilde{r}(x).$$

• Therefore,

$$\tilde{f}(x) = \tilde{d}(x)\tilde{g}(x) (mod x^{n-m+1}).$$
Polynomial Division via Hensel Lifting

- Since $\tilde{g}(x)$ has degree zero coefficient 1, it is invertible modulo x^{n-m+1}.
- So, $\tilde{d}(x) = \tilde{f}(x) \cdot \tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.
- So if we can compute $\tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$, then one multiplication would give $\tilde{d}(x)$ from which $d(x)$ and then $r(x) = f(x) - d(x)g(x)$ can be easily recovered.
- We use Hensel Lifting to compute $\tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.
Polynomial Division via Hensel Lifting

- Since $\tilde{g}(x)$ has degree zero coefficient 1, it is invertible modulo x^{n-m+1}.
- So, $\tilde{d}(x) = \tilde{f}(x) \cdot \tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.
- So if we can compute $\tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$, then one multiplication would give $\tilde{d}(x)$ from which $d(x)$ and then $r(x) = f(x) - d(x)g(x)$ can be easily recovered.
- We use Hensel Lifting to compute $\tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.
Polynomial Division via Hensel Lifting

• Since \(\tilde{g}(x)\) has degree zero coefficient 1, it is invertible modulo \(x^{n-m+1}\).
• So, \(\tilde{d}(x) = \tilde{f}(x) \cdot \tilde{g}^{-1}(x) \pmod{x^{n-m+1}}\).
• So if we can compute \(\tilde{g}^{-1}(x) \pmod{x^{n-m+1}}\), then one multiplication would give \(\tilde{d}(x)\) from which \(\tilde{d}(x)\) and then \(r(x) = f(x) - d(x)g(x)\) can be easily recovered.
• We use Hensel Lifting to compute \(\tilde{g}^{-1}(x) \pmod{x^{n-m+1}}\).
Polynomial Division via Hensel Lifting

- Let $h(x) = \tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.
- So, $h(x) \cdot \tilde{g}(x) = 1 \pmod{x^{n-m+1}}$.
- Notice that $\tilde{g}(x) \pmod{x} = 1$ and so $h(x) \pmod{x} = 1$.
- Let $s(x) = 1$ and $t(x) = 0$ so $s \cdot h + t \cdot \tilde{g} = 1 \pmod{x}$.
- Use Hensel Lifting iteratively $\ell = \lceil \log(n-m+1) \rceil$ times to compute $h(x) \pmod{x^{2^\ell}}$ such that $h(x) \cdot \tilde{g}(x) = 1 \pmod{x^{2^\ell}}$.

- As we start with $t = 0$, t will remain zero through all the iterations.
- Therefore, function \tilde{g} will also not change, as required.
Polynomial Division via Hensel Lifting

- Let $h(x) = \tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.
- So, $h(x) \cdot \tilde{g}(x) = 1 \pmod{x^{n-m+1}}$.
- Notice that $\tilde{g}(x) \pmod{x} = 1$ and so $h(x) \pmod{x} = 1$.
- Let $s(x) = 1$ and $t(x) = 0$ so $s \cdot h + t \cdot \tilde{g} = 1 \pmod{x}$.
- Use Hensel Lifting iteratively $\ell = \lceil \log(n - m + 1) \rceil$ times to compute $h(x) \pmod{x^{2^\ell}}$ such that $h(x) \cdot \tilde{g}(x) = 1 \pmod{x^{2^\ell}}$.

 - As we start with $t = 0$, t will remain zero through all the iterations.
 - Therefore, function \tilde{g} will also not change, as required.
Polynomial Division via Hensel Lifting

- This gives the inverse of $\tilde{g}(x) \pmod{x^{n-m+1}}$.
- The algorithm uses only multiplication and addition.
- The kth iteration uses a constant number of multiplication and addition of polynomials of degree 2^k.
- Therefore, the whole algorithm requires $O(\sum_{k=1}^{\ell} MP(2^k)) = O(MP(2^\ell)) = O(MP(n)) = O(n \log n)$ operations.
Polynomial Division via Hensel Lifting

- This gives the inverse of \(\tilde{g}(x) \pmod{x^{n-m+1}} \).
- The algorithm uses only multiplication and addition.
- The \(k \)th iteration uses a constant number of multiplication and addition of polynomials of degree \(2^k \).
- Therefore, the whole algorithm requires
 \[
 O\left(\sum_{k=1}^{\ell} M_P(2^k)\right) = O\left(M_P(2^\ell)\right) = O\left(M_P(n)\right) = O\left(n \log n\right)
 \]
 operations.
Polynomial Division via Hensel Lifting

- This gives the inverse of $\widetilde{g}(x) \pmod{x^{n-m+1}}$.
- The algorithm uses only multiplication and addition.
- The kth iteration uses a constant number of multiplication and addition of polynomials of degree 2^k.
- Therefore, the whole algorithm requires $O(\sum_{k=1}^{\ell} MP(2^k)) = O(MP(2^\ell)) = O(MP(n)) = O(n \log n)$ operations.
Tool 5: Short Vectors in a Lattice
Outline

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals
Lattices

- Let \(\hat{v}_1, \ldots, \hat{v}_n \in \mathbb{R}^n \) be linearly independent vectors.
- Then, \(L = \left\{ \sum_{i=1}^{n} \alpha_i \hat{v}_i \mid \alpha_1, \ldots, \alpha_n \in \mathbb{Z} \right\} \) is lattice generated by \(\hat{v}_1, \ldots, \hat{v}_n \).
- Vector \(\hat{v} \) is shortest vector in lattice \(L \) if \(\|\hat{v}\|_2 \) is minimum.
Lattices

- Let $\hat{v}_1, \ldots, \hat{v}_n \in \mathbb{R}^n$ be linearly independent vectors.
- Then,
 \[\mathcal{L} = \left\{ \sum_{i=1}^{n} \alpha_i \hat{v}_i \mid \alpha_1, \ldots, \alpha_n \in \mathbb{Z} \right\} \]
 is lattice generated by $\hat{v}_1, \ldots, \hat{v}_n$.
- Vector \hat{v} is shortest vector in lattice \mathcal{L} if $\|\hat{v}\|_2$ is minimum.
LATTICES

- Let $\hat{v}_1, \ldots, \hat{v}_n \in \mathbb{R}^n$ be linearly independent vectors.
- Then,
 \[\mathcal{L} = \left\{ \sum_{i=1}^{n} \alpha_i \hat{v}_i \mid \alpha_1, \ldots, \alpha_n \in \mathbb{Z} \right\} \]
 is lattice generated by $\hat{v}_1, \ldots, \hat{v}_n$.
- Vector \hat{v} is shortest vector in lattice \mathcal{L} if $\|\hat{v}\|_2$ is minimum.
For lattice \mathcal{L}, its norm $|\mathcal{L}|$ is defined to be $\det(\hat{v}_1 \hat{v}_2 \ldots \hat{v}_n)$.

$|\mathcal{L}|$ is independent of the choice of basis of \mathcal{L}.

Theorem (Minkowski, 1896)

The length of shortest vector of \mathcal{L} is at most $\sqrt{n} \cdot |\mathcal{L}|^{1/n}$.

LATTICES

- For lattice \mathcal{L}, its norm $|\mathcal{L}|$ is defined to be $\det(\hat{v}_1 \hat{v}_2 \ldots \hat{v}_n)$.
- $|\mathcal{L}|$ is independent of the choice of basis of \mathcal{L}.

Theorem (Minkowski, 1896)

The length of shortest vector of \mathcal{L} is at most $\sqrt{n} \cdot |\mathcal{L}|^{1/n}$.
LLL Algorithm

• Lenstra, Lenstra and Lovasz (1982) designed a polynomial-time algorithm for computing a short vector in any lattice.

• The algorithm computes a vector whose length is at most $2^{\frac{n-1}{2}}$ times the length of shortest vector in the lattice.

• It is now known that finding a vector within a $\sqrt{2}$ factor of shortest vector length is NP-hard.
LLL Algorithm

- The algorithm computes a vector whose length is at most $2^{n-1}/2$ times the length of shortest vector in the lattice.
- It is now known that finding a vector within a $\sqrt{2}$ factor of shortest vector length is NP-hard.
LLL Algorithm

- The algorithm computes a vector whose length is at most \(2^{\frac{n-1}{2}} \) times the length of shortest vector in the lattice.
- It is now known that finding a vector within a \(\sqrt{2} \) factor of shortest vector length is NP-hard.
Outline

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals
Finding Small Solutions of Modular Equations

- Modular equations for prime moduli can be solved using polynomial factorization.
- But this does not work for composite moduli.
- For this, short lattice vectors can be used to find small solutions.
 - Small = solutions much smaller than the moduli in absolute value
- An example is breaking low-exponent RSA when part of the message is known.
Finding Small Solutions of Modular Equations

- Modular equations for prime moduli can be solved using polynomial factorization.
- But this does not work for composite moduli.
- For this, short lattice vectors can be used to find small solutions.
 - Small = solutions much smaller than the moduli in absolute value
- An example is breaking low-exponent RSA when part of the message is known.
Finding Small Solutions of Modular Equations

- Modular equations for prime moduli can be solved using polynomial factorization.
- But this does not work for composite moduli.
- For this, short lattice vectors can be used to find small solutions.
 - Small = solutions much smaller than the moduli in absolute value
- An example is breaking low-exponent RSA when part of the message is known.
Breaking Low Exponent RSA

• Let \((n, 3)\) be the public-key of an RSA cryptosystem.
• Notice that the exponent of encryption is set to 3.
• Let \(c = m^3 \pmod{n}\) be a ciphertext.
• Suppose that leading \(\frac{11}{12}|n|\) bits of \(m\) are known.
• This is possible in certain situations, e.g., when there is a fixed \(\frac{11}{12}|n|\)-bit header appended to each message.
• Let \(m = h \cdot 2^{|n|/12} + x\) where \(h\) is known.
Breaking Low Exponent RSA

• Let \((n, 3)\) be the public-key of an RSA cryptosystem.
• Notice that the exponent of encryption is set to 3.
• Let \(c = m^3 \pmod{n}\) be a ciphertext.
• Suppose that leading \(\frac{11}{12}n\) bits of \(m\) are known.
• This is possible in certain situations, e.g., when there is a fixed \(\frac{11}{12}n\)-bit header appended to each message.
• Let \(m = h \cdot 2^{\lfloor n/12 \rfloor} + x\) where \(h\) is known.
Breaking Low Exponent RSA

- Let $(n, 3)$ be the public-key of an RSA cryptosystem.
- Notice that the exponent of encryption is set to 3.
- Let $c = m^3 \pmod{n}$ be a ciphertext.
- Suppose that leading $\frac{11}{12}|n|$ bits of m are known.
- This is possible in certain situations, e.g., when there is a fixed $\frac{11}{12}|n|$-bit header appended to each message.
- Let $m = h \cdot 2^{|n|/12} + x$ where h is known.
Breaking Low Exponent RSA

- Let \((n, 3)\) be the public-key of an RSA cryptosystem.
- Notice that the exponent of encryption is set to 3.
- Let \(c = m^3 \pmod{n}\) be a ciphertext.
- Suppose that leading \(\frac{11}{12}|n|\) bits of \(m\) are known.
- This is possible in certain situations, e.g., when there is a fixed \(\frac{11}{12}|n|\)-bit header appended to each message.
- Let \(m = h \cdot 2^{|n|/12} + x\) where \(h\) is known.
Breaking Low Exponent RSA

• Therefore,
 \[c = (h \cdot 2^{|n|/12} + x)^3 \pmod{n} = x^3 + a_2x^2 + a_1x + a_0 \pmod{n}. \]

• So if we can find all the roots of the above polynomial that are less than \(2^{|n|/12} = n^{1/12}\) then \(m\) can be recovered.

• For a vector \(\hat{\nu} \in \mathbb{Z}^d\), \(\hat{\nu} = [v_{d-1} \ v_{d-2} \ \cdots \ v_0]\), let \(\nu(x) = \sum_{i=0}^{d-1} v_i x^i\) and vice-versa.

• Let \(p_3(x) = x^3 + a_2x^2 + a_1x + (a_0 - c)\).

• Then \(\hat{p}_3 = [0 \ 0 \ 1 \ a_2 \ a_1 \ a_0 - c] \in \mathbb{Z}^6\).
Breaking Low Exponent RSA

- Therefore,
 \[c = (h \cdot 2^{|n|/12} + x)^3 \pmod{n} = x^3 + a_2 x^2 + a_1 x + a_0 \pmod{n}. \]
- So if we can find all the roots of the above polynomial that are less than \(2^{|n|/12} = n^{1/12} \) then \(m \) can be recovered.
- For a vector \(\hat{v} \in \mathbb{Z}^d \), \(\hat{v} = [v_{d-1} \ v_{d-2} \ \cdots \ v_0] \), let \(v(x) = \sum_{i=0}^{d-1} v_i x^i \) and vice-versa.
- Let \(p_3(x) = x^3 + a_2 x^2 + a_1 x + (a_0 - c). \)
- Then \(\hat{p}_3 = [0 \ 0 \ 1 \ a_2 \ a_1 \ a_0 - c] \in \mathbb{Z}^6. \)
Breaking Low Exponent RSA

- Therefore,
 \[c = (h \cdot 2^{|n|/12} + x)^3 \pmod{n} = x^3 + a_2x^2 + a_1x + a_0 \pmod{n}. \]
- So if we can find all the roots of the above polynomial that are less than \(2^{|n|/12} = n^{1/12} \) then \(m \) can be recovered.
- For a vector \(\hat{v} \in \mathbb{Z}^d \), \(\hat{v} = [v_{d-1} \ v_{d-2} \ \cdots \ v_0] \), let \(v(x) = \sum_{i=0}^{d-1} v_i x^i \) and vice-versa.
- Let \(p_3(x) = x^3 + a_2x^2 + a_1x + (a_0 - c) \).
- Then \(\hat{p}_3 = [0 \ 0 \ 1 \ a_2 \ a_1 \ a_0 - c] \in \mathbb{Z}^6 \).
Breaking Low Exponent RSA

• Let $p_4(x) = x \cdot p_3(x)$, $p_5(x) = x^2 \cdot p_3(x)$, $p_0(x) = n$, $p_1(x) = n \cdot x$, and $p_2(x) = n \cdot x^2$.

• Let \mathcal{L} be the lattice generated by vectors \hat{p}_0, \ldots, \hat{p}_5.

• Let vector $\hat{v} \in \mathcal{L}$, $\hat{v} = \sum_{i=0}^{5} \alpha_i \hat{p}_i$.

• Notice that polynomial $v(x) = \sum_{i=0}^{5} \alpha_i p_i(x) = p_3(x) \cdot q(x) \pmod{n}$ for some $q(x)$ of degree two.

• Hence, every root of $p_3(x) \pmod{n}$ is also a root of $v(x) \pmod{n}$.
Breaking Low Exponent RSA

Let \(p_4(x) = x \cdot p_3(x) \), \(p_5(x) = x^2 \cdot p_3(x) \), \(p_0(x) = n \), \(p_1(x) = n \cdot x \), and \(p_2(x) = n \cdot x^2 \).

Let \(\mathcal{L} \) be the lattice generated by vectors \(\hat{p}_0, \ldots, \hat{p}_5 \).

Let vector \(\hat{v} \in \mathcal{L} \), \(\hat{v} = \sum_{i=0}^{5} \alpha_i \hat{p}_i \).

Notice that polynomial
\[
\nu(x) = \sum_{i=0}^{5} \alpha_i p_i(x) = p_3(x) \cdot q(x) \pmod{n}
\]
for some \(q(x) \) of degree two.

Hence, every root of \(p_3(x) \pmod{n} \) is also a root of \(\nu(x) \pmod{n} \).
Breaking Low Exponent RSA

• Let \(p_4(x) = x \cdot p_3(x), \ p_5(x) = x^2 \cdot p_3(x), \ p_0(x) = n, \ p_1(x) = n \cdot x, \text{ and } p_2(x) = n \cdot x^2. \)

• Let \(\mathcal{L} \) be the lattice generated by vectors \(\hat{p}_0, \ldots, \hat{p}_5. \)

• Let vector \(\hat{\nu} \in \mathcal{L}, \hat{\nu} = \sum_{i=0}^{5} \alpha_i \hat{p}_i. \)

• Notice that polynomial
 \[v(x) = \sum_{i=0}^{5} \alpha_i p_i(x) = p_3(x) \cdot q(x) \pmod{n} \]
 for some \(q(x) \) of degree two.

• Hence, every root of \(p_3(x) \pmod{n} \) is also a root of \(v(x) \pmod{n}. \)
Breaking Low Exponent RSA

• We have \(|\mathcal{L}| = n^3\).
• By the property of lattices, \(\mathcal{L}\) has a shortest vector of length at most \(\sqrt{6n^3/6} = \sqrt{6n}\).
• Run LLL algorithm to find a short vector \(\hat{u}\) in \(\mathcal{L}\).
• The length of \(\hat{u}\) is at most \(2^{5/2}\sqrt{6n} = 4\sqrt{12n}\).
• Let \(u(x) = \sum_{i=0}^{5} \beta_i x^i\).
• We have \(|\beta_i| \leq 4\sqrt{12n}|.\)
Breaking Low Exponent RSA

- We have $|L| = n^3$.
- By the property of lattices, L has a shortest vector of length at most $\sqrt{6n^3/6} = \sqrt{6n}$.
- Run LLL algorithm to find a short vector \hat{u} in L.
- The length of \hat{u} is at most $2^{5/2} \sqrt{6n} = 4\sqrt{12n}$.
- Let $u(x) = \sum_{i=0}^{5} \beta_i x^i$.
- We have $|\beta_i| \leq 4\sqrt{12n}$.
Breaking Low Exponent RSA

- We have $|\mathcal{L}| = n^3$.
- By the property of lattices, \mathcal{L} has a shortest vector of length at most $\sqrt{6}n^{3/2} = \sqrt{6}n$.
- Run LLL algorithm to find a short vector \hat{u} in \mathcal{L}.
- The length of \hat{u} is at most $2^{5/2} \sqrt{6}n = 4 \sqrt{12}n$.
- Let $u(x) = \sum_{i=0}^{5} \beta_i x^i$.
- We have $|\beta_i| \leq 4 \sqrt{12}n$.
Breaking Low Exponent RSA

- Consider a root γ of $p_3(x) \pmod{n}$ with $\gamma \leq n^{1/12}$.
- As argued above, γ is a root of $u(x) \pmod{n}$ too.
- Now, $|u(\gamma)| \leq 24\sqrt{12n} \cdot \gamma^5 < n$ for $n > (24\sqrt{12})^{12}$.
- Therefore, $u(\gamma) = 0$ over rationals!
- Factor $u(x)$ over rationals to compute all its roots.
- Identify the root that yields the ciphertext.
Breaking Low Exponent RSA

- Consider a root γ of $p_3(x) \pmod{n}$ with $\gamma \leq n^{1/12}$.
- As argued above, γ is a root of $u(x) \pmod{n}$ too.
- Now, $|u(\gamma)| \leq 24\sqrt{12n} \cdot \gamma^5 < n$ for $n > (24\sqrt{12})^{12}$.
- Therefore, $u(\gamma) = 0$ over rationals!
- Factor $u(x)$ over rationals to compute all its roots.
- Identify the root that yields the ciphertext.
Breaking Low Exponent RSA

- Consider a root γ of $p_3(x) \pmod{n}$ with $\gamma \leq n^{1/12}$.
- As argued above, γ is a root of $u(x) \pmod{n}$ too.
- Now, $|u(\gamma)| \leq 24\sqrt{12n} \cdot \gamma^5 < n$ for $n > (24\sqrt{12})^{12}$.
- Therefore, $u(\gamma) = 0$ over rationals!
- Factor $u(x)$ over rationals to compute all its roots.
- Identify the root that yields the ciphertext.
Breaking Low Exponent RSA

• This breaks exponent-3 RSA when first $\frac{11}{12}$-fraction of bits of plaintext are known.
• This can be improved to first $\frac{1}{2}$-fraction.
• Also generalizes to any small exponent.
Breaking Low Exponent RSA

- This breaks exponent-3 RSA when first $\frac{11}{12}$-fraction of bits of plaintext are known.
- This can be improved to first $\frac{1}{2}$-fraction.
- Also generalizes to any small exponent.
BREAKING LOW EXPONENT RSA

- This breaks exponent-3 RSA when first $\frac{11}{12}$-fraction of bits of plaintext are known.
- This can be improved to first $\frac{1}{2}$-fraction.
- Also generalizes to any small exponent.
Outline

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals
THE PROBLEM

- Given a monic polynomial $f(x)$ of degree n, factor f over rationals.
- A deterministic polynomial time algorithm for this was given by Lenstra, Lenstra, Lovasz (1982).
- The algorithm uses Hensel Lifting and short vectors in lattices.
The Problem

- Given a monic polynomial $f(x)$ of degree n, factor f over rationals.
- A deterministic polynomial time algorithm for this was given by Lenstra, Lenstra, Lovasz (1982).
- The algorithm uses Hensel Lifting and short vectors in lattices.
Factoring Polynomials Over Rationals

- Choose a small prime p, and factor f over F_p.
- Let $f = g_1 \cdot g_2 \pmod{p}$ with g_1 being irreducible.
- Let ℓ be the smallest integer greater than $\frac{3}{2} (n^2 - 1) + (2n + 1) \log \|f\|_2$.
- Use Hensel Lifting to compute factors of f modulo p^ℓ.
- Let $f = g'_1 \cdot g'_2 \pmod{p^\ell}$.
- Note that g'_1 remains irreducible modulo p^ℓ.
Factoring Polynomials Over Rationals

• Choose a small prime p, and factor f over F_p.
• Let $f = g_1 \cdot g_2 \pmod{p}$ with g_1 being irreducible.
• Let ℓ be the smallest integer greater than $\frac{3}{2} (n^2 - 1) + (2n + 1) \log ||f||_2$.
• Use Hensel Lifting to compute factors of f modulo p^ℓ.
• Let $f = g_1' \cdot g_2' \pmod{p^\ell}$.
• Note that g_1' remains irreducible modulo p^ℓ.
Factoring Polynomials Over Rationals

- Without loss of generality, assume \(g_1' \) is monic and \(\operatorname{deg}(g_1') = d \).
- Define polynomials \(h_i(x) = p^\ell x^i \) for \(0 \leq i < d \).
- Define polynomials \(h_{d+i}(x) = x^i \cdot g_1'(x) \) for \(0 \leq i < n - d \).
- As before, let \(\mathcal{L} \) be the \(n \)-dimensional lattice generated by vectors \(\hat{h}_0, \ldots, \hat{h}_{n-1} \).
- The lattice contains precisely degree \(n - 1 \) polynomials that are multiples of \(g_1' \) modulo \(p^\ell \).
- This lattice has a shortest vector of length at most \(\sqrt{np^{d\ell}/n} \).
- So, LLL algorithm produces a vector of length at most \(2^{\frac{n-1}{2}} \sqrt{np^{d\ell}/n} \).
Factoring Polynomials Over Rationals

- Without loss of generality, assume g'_1 is monic and $\deg(g'_1) = d$.
- Define polynomials $h_i(x) = p^\ell x^i$ for $0 \leq i < d$.
- Define polynomials $h_{d+i}(x) = x^i \cdot g'_1(x)$ for $0 \leq i < n - d$.
- As before, let \mathcal{L} be the n-dimensional lattice generated by vectors $\hat{h}_0, \ldots, \hat{h}_{n-1}$.
- The lattice contains precisely degree $n-1$ polynomials that are multiples of g'_1 modulo p^ℓ.
- This lattice has a shortest vector of length at most $\sqrt{np^{d\ell}/n}$.
- So, LLL algorithm produces a vector of length at most $2^{\frac{n-1}{2}} \sqrt{np^{d\ell}/n}$.
Factoring Polynomials Over Rationals

• Without loss of generality, assume g'_1 is monic and $\text{deg}(g'_1) = d$.
• Define polynomials $h_i(x) = p^\ell x^i$ for $0 \leq i < d$.
• Define polynomials $h_{d+i}(x) = x^i \cdot g'_1(x)$ for $0 \leq i < n - d$.
• As before, let \mathcal{L} be the n-dimensional lattice generated by vectors $\hat{h}_0, \ldots, \hat{h}_{n-1}$.
• The lattice contains precisely degree $n - 1$ polynomials that are multiples of g'_1 modulo p^ℓ.
• This lattice has a shortest vector of length at most $\sqrt{np^{d\ell/n}}$.
• So, LLL algorithm produces a vector of length at most $2^{\frac{n-1}{2}} \sqrt{np^{d\ell/n}}$.
Factoring Polynomials Over Rationals

• But we can do better!
• Suppose $f = f_1 \cdot f_2$ over rationals.
• Since $f = g'_1 \cdot g'_2 \pmod{p^\ell}$, g'_1 is irreducible and $\mathbb{Z}_{p^\ell}[x]$ is a UFD, g'_1 divides either f_1 or f_2 modulo p^ℓ.
• Without loss of generality, assume that $f_1 = f'_1 \cdot g'_1 \pmod{p^\ell}$.
• Then the vector \hat{f}_1 is in the lattice \mathcal{L}.
• What is the length of \hat{f}_1?
Factoring Polynomials Over Rationals

- But we can do better!
- Suppose $f = f_1 \cdot f_2$ over rationals.
- Since $f = g'_1 \cdot g'_2 \pmod{p^\ell}$, g'_1 is irreducible and $\mathbb{Z}_{p^\ell}[x]$ is a UFD, g'_1 divides either f_1 or f_2 modulo p^ℓ.
- Without loss of generality, assume that $f_1 = f'_1 \cdot g'_1 \pmod{p^\ell}$.
- Then the vector \hat{f}_1 is in the lattice \mathcal{L}.
- What is the length of \hat{f}_1?
Factoring Polynomials Over Rationals

• But we can do better!
• Suppose \(f = f_1 \cdot f_2 \) over rationals.
• Since \(f = g_1' \cdot g_2' \pmod{p^\ell} \), \(g_1' \) is irreducible and \(\mathbb{Z}_{p^\ell}[x] \) is a UFD, \(g_1' \) divides either \(f_1 \) or \(f_2 \) modulo \(p^\ell \).
• Without loss of generality, assume that \(f_1 = f_1' \cdot g_1' \pmod{p^\ell} \).
• Then the vector \(\hat{f}_1 \) is in the lattice \(\mathcal{L} \).
• What is the length of \(\hat{f}_1 \)?
Factoring Polynomials Over Rationals

- Mignotte’s bound shows that \(\|f_1\|_2 \leq 2^{n-1}\|f\|_2 \).
- Therefore, length of \(\hat{f}_1 = \|f_1\|_2 \leq 2^{n-1}\|f\|_2 \).
- So, the LLL algorithm will produce a vector \(\hat{v} \) of length at most \(2^{3(n-1)/2}\|f\|_2 \).
- Consider polynomial \(v(x) \).
- Since \(\hat{v} \in \mathcal{L}, g'_1(x) \) divides \(v(x) \) modulo \(p^\ell \).
Factoring Polynomials Over Rationals

- Mignotte’s bound shows that $\|f_1\|_2 \leq 2^{n-1}\|f\|_2$.
- Therefore, length of $\hat{f}_1 = \|f_1\|_2 \leq 2^{n-1}\|f\|_2$.
- So, the LLL algorithm will produce a vector \hat{v} of length at most $2^{\frac{3(n-1)}{2}}\|f\|_2$.
- Consider polynomial $v(x)$.
- Since $\hat{v} \in \mathcal{L}$, $g_1'(x)$ divides $v(x)$ modulo p^ℓ.
Factoring Polynomials Over Rationals

- Mignotte’s bound shows that $\|f_1\|_2 \leq 2^{n-1}\|f\|_2$.
- Therefore, length of $\hat{f}_1 = \|f_1\|_2 \leq 2^{n-1}\|f\|_2$.
- So, the LLL algorithm will produce a vector \hat{v} of length at most $2^{\frac{3(n-1)}{2}}\|f\|_2$.
- Consider polynomial $v(x)$.
- Since $\hat{v} \in \mathcal{L}$, $g_1'(x)$ divides $v(x)$ modulo p^ℓ.
Factoring Polynomials Over Rationals

- Therefore, $\gcd(v(x), f(x)) > 1 \ (mod \ p^\ell)$.
- Using the resultant, we can say $\text{Res}(v(x), f(x)) = 0 \ (mod \ p^\ell)$.
- Resultant of $v(x)$ and $f(x)$ is an $(2n + 1) \times (2n + 1)$ matrix whose columns are essentially vectors \hat{v} and \hat{f}.
- From Hadamard’s Inequality it follows that

$$
\text{Res}(v(x), f(x)) \leq \|v\|_{2}^{n+1} \|f\|_{2}^{n} \leq 2^{\frac{3(n^2 - 1)}{2}} \|f\|_{2}^{2n+1}.
$$
Factoring Polynomials Over Rationals

• Therefore, \(\gcd(v(x), f(x)) > 1 \pmod{p^\ell} \).
• Using the resultant, we can say \(\text{Res}(v(x), f(x)) = 0 \pmod{p^\ell} \).
• Resultant of \(v(x) \) and \(f(x) \) is an \((2n + 1) \times (2n + 1) \) matrix whose columns are essentially vectors \(\hat{v} \) and \(\hat{f} \).
• From Hadamard’s Inequality it follows that

\[
\text{Res}(v(x), f(x)) \leq \|v\|_2^{n+1} \|f\|_2^n \leq 2 \frac{3(n^2-1)}{2} \|f\|_2^{2n+1}.
\]
Factoring Polynomials Over Rationals

• By the choice of ℓ, $\ell > \frac{3}{2}(n^2 - 1) + (2n + 1) \log \| f \|_2$, it follows that

$$\text{Res}(v(x), f(x)) < p^\ell.$$

• Coupled with the fact that $\text{Res}(v(x), f(x)) = 0 \pmod{p^\ell}$, we get

$$\text{Res}(v(x), f(x)) = 0$$

over rationals.

• In other words, $\gcd(v(x), f(x)) > 1$ over rationals and thus we get a factor of f.
FACTORIZING POLYNOMIALS OVER RATIONALS

• By the choice of ℓ, $\ell > \frac{3}{2} (n^2 - 1) + (2n + 1) \log \|f\|_2$, it follows that

$$\text{Res}(v(x), f(x)) < p^\ell.$$

• Coupled with the fact that $\text{Res}(v(x), f(x)) = 0 \pmod{p^\ell}$, we get

$$\text{Res}(v(x), f(x)) = 0$$

over rationals.

• In other words, $\gcd(v(x), f(x)) > 1$ over rationals and thus we get a factor of f.
Factoring Polynomials Over Rationals

- By the choice of ℓ, $\ell > \frac{3}{2}(n^2 - 1) + (2n + 1) \log \|f\|_2$, it follows that
 \[\text{Res}(\nu(x), f(x)) < p^\ell. \]

- Coupled with the fact that $\text{Res}(\nu(x), f(x)) = 0 \pmod{p^\ell}$, we get
 \[\text{Res}(\nu(x), f(x)) = 0 \]
 over rationals.

- In other words, $\gcd(\nu(x), f(x)) > 1$ over rationals and thus we get a factor of f.
Tool 6: Smooth Numbers
Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index Calculus
Smooth Numbers

- Number $n > 0$ is m-smooth if all prime divisors of n are $\leq m$.
- Let $\Psi(x, y)$ denote the size of the set of numbers $\leq x$ that are y-smooth.

Theorem (Density of Smooth Numbers)

$$\Psi(x, y) = x \cdot r^{-r(1+o(1))} \text{ where } r = \frac{\ln x}{\ln y}, \text{ and } y = \Omega(\ln^2 x).$$
Smooth Numbers

- Number $n > 0$ is m-smooth if all prime divisors of n are $\leq m$.
- Let $\Psi(x, y)$ denote the size of the set of numbers $\leq x$ that are y-smooth.

Theorem (Density of Smooth Numbers)

$\Psi(x, y) = x \cdot r^{-r(1+o(1))}$ where $r = \frac{\ln x}{\ln y}$, and $y = \Omega(\ln^2 x)$.
Smooth Numbers

- Number $n > 0$ is m-smooth if all prime divisors of n are $\leq m$.
- Let $\Psi(x, y)$ denote the size of the set of numbers $\leq x$ that are y-smooth.

Theorem (Density of Smooth Numbers)

$$\Psi(x, y) = x \cdot r^{-r(1+o(1))} \quad \text{where} \quad r = \frac{\ln x}{\ln y}, \quad \text{and} \quad y = \Omega(\ln^2 x).$$
Smooth Numbers

• Smooth numbers are used in Elliptic Curve Factoring, Quadratic Sieve and Number Field Sieve, the three most popular integer factoring algorithms.

• They are also used in index calculus method for discrete log problem.
Outline

Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index Calculus
Quadratic Sieve

- Designed by Carl Pomerance (1983).
- Let n be an odd number with at least two distinct prime factors.
 - n can be factored if non-trivial solution of the equation $x^2 = y^2 \pmod{n}$ can be computed.
 - A non-trivial solution is (x_0, y_0) such that $x_0^2 = y_0^2 \pmod{n}$ and $x_0 \neq \pm y_0 \pmod{n}$.
 - Given such a solution, $\gcd(x_0 + y_0, n)$ gives a factor of n.
- We will use this approach for factoring n.
Quadratic Sieve

• Designed by Carl Pomerance (1983).
• Let n be an odd number with at least two distinct prime factors.
• n can be factored if non-trivial solution of the equation $x^2 = y^2 \pmod{n}$ can be computed.
 • A non-trivial solution is (x_0, y_0) such that $x_0^2 = y_0^2 \pmod{n}$ and $x_0 \neq \pm y_0 \pmod{n}$.
 • Given such a solution, $\gcd(x_0 + y_0, n)$ gives a factor of n.
• We will use this approach for factoring n.
Quadratic Sieve

- Designed by Carl Pomerance (1983).
- Let n be an odd number with at least two distinct prime factors.
- n can be factored if non-trivial solution of the equation $x^2 = y^2 \pmod{n}$ can be computed.
 - A non-trivial solution is (x_0, y_0) such that $x_0^2 = y_0^2 \pmod{n}$ and $x_0 \neq \pm y_0 \pmod{n}$.
 - Given such a solution, $\gcd(x_0 + y_0, n)$ gives a factor of n.
- We will use this approach for factoring n.
Quadratic Sieve

1. Let \(m = \lceil \sqrt{n} \rceil \), \(B = e^{\frac{1}{2} \sqrt{\ln n \ln \ln n}} \), and \(p_1, \ldots, p_t \) the set of all primes \(\leq B \).

2. For \(k = 1, 2, 3, \ldots \) do the following:
 2.1 Let \(v = m + k \).
 2.2 Let \(u = v^2 \pmod{n}, \ 0 < u < n \).
 2.3 Check if \(u \) is \(B \)-smooth.
 2.4 If yes, compute complete factorization of \(u = \prod_{i=1}^{t} p_i^{e[i]} \).
 2.5 Store the triple \((u, v, \hat{e})\) where \(\hat{e} = (e[1] \ e[2] \ \cdots \ e[t]) \).
Quadratic Sieve

1. Let $m = \lceil \sqrt{n} \rceil$, $B = e^{\frac{1}{2} \sqrt{\ln n \ln \ln n}}$, and p_1, \ldots, p_t the set of all primes $\leq B$.

2. For $k = 1, 2, 3, \ldots$ do the following:
 2.1 Let $v = m + k$.
 2.2 Let $u = v^2 \pmod{n}$, $0 < u < n$.
 2.3 Check if u is B-smooth.
 2.4 If yes, compute complete factorization of $u = \prod_{i=1}^{t} p_i^{e[i]}$.
 2.5 Store the triple (u, v, \hat{e}) where $\hat{e} = (e[1] \ e[2] \ \cdots \ e[t])$.
1. Let $m = \lceil \sqrt{n} \rceil$, $B = e^{\frac{1}{2} \sqrt{\ln n \ln \ln n}}$, and p_1, \ldots, p_t the set of all primes $\leq B$.

2. For $k = 1, 2, 3, \ldots$ do the following:
 2.1 Let $v = m + k$.
 2.2 Let $u = v^2 \pmod{n}$, $0 < u < n$.
 2.3 Check if u is B-smooth.
 2.4 If yes, compute complete factorization of $u = \prod_{i=1}^{t} p_i^{e[i]}$.
 2.5 Store the triple (u, v, \hat{e}) where $\hat{e} = (e[1] \ e[2] \ \cdots \ e[t])$.

Quadratic Sieve
3. Exit the previous step after \(t + 1 \) triples are stored.

4. Let these be \(\{u_j, v_j, \hat{e}_j\}_{1 \leq j \leq t+1} \).

5. Find \(\alpha_j \in \{0, 1\} \) for \(1 \leq j \leq t + 1 \) such that
 \[\sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{2} \]
 and not all \(\alpha_j \)'s are zero. [always possible]

6. Let
 \[x = \prod_{j=1}^{t+1} v_j^{\alpha_j} \]
 and
 \[y = \prod_{i=1}^{t} p_i^{\frac{1}{2}} \sum_{j=1}^{t+1} \alpha_j e_j[i] = \prod_{j=1}^{t+1} \prod_{i=1}^{t} p_i^{\frac{1}{2}} \alpha_j e_j[i] = \prod_{j=1}^{t+1} u_j^{\frac{1}{2}} \alpha_j. \]
3. Exit the previous step after $t + 1$ triples are stored.

4. Let these be $\{u_j, v_j, \hat{e}_j\}_{1 \leq j \leq t+1}$.

5. Find $\alpha_j \in \{0, 1\}$ for $1 \leq j \leq t + 1$ such that
$$\sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{2}$$
and not all α_j's are zero. [always possible]

6. Let
$$x = \prod_{j=1}^{t+1} v_j^{\alpha_j}$$
and
$$y = \prod_{i=1}^{t} p_i^{\frac{1}{2}} \sum_{j=1}^{t+1} \alpha_j e_j[i] = \prod_{j=1}^{t+1} \prod_{i=1}^{t} p_i^{\frac{1}{2}} \alpha_j e_j[i] = \prod_{j=1}^{t+1} u_j^{\frac{1}{2}} \alpha_j.$$
Quadratic Sieve

3. Exit the previous step after $t + 1$ triples are stored.

4. Let these be $\{u_j, v_j, \hat{e}_j\}_{1 \leq j \leq t+1}$.

5. Find $\alpha_j \in \{0, 1\}$ for $1 \leq j \leq t + 1$ such that
$$\sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{2}$$
and not all α_j's are zero. [always possible]

6. Let
$$x = \prod_{j=1}^{t+1} v_j^{\alpha_j}$$
and
$$y = \prod_{i=1}^{t} p_i^{\frac{1}{2}} \sum_{j=1}^{t+1} \alpha_j e_j[i] = \prod_{j=1}^{t+1} \prod_{i=1}^{t} p_i^{\frac{1}{2}} \alpha_j e_j[i] = \prod_{j=1}^{t+1} u_j^{\frac{1}{2}} \alpha_j.$$
7. Compute $\gcd(x + y, n)$ and check if a proper factor of n is obtained.
8. If not, generate more triples and repeat.
Quadratic Sieve Analysis

- First note that for each j, $\sum_{j=1}^{t+1} \alpha_j e_j[i]$ is divisible by two and so y is an integer.
- We have
 $$x^2 = \prod_{j=1}^{t+1} \{v_j^2\}^{\alpha_j} = \prod_{j=1}^{t+1} u_j^{\alpha_j} \pmod{n} = y^2 \pmod{n}.$$
- Since x and y are computed using very different numbers (x is a product of numbers of the form $m + k$ and y is a product of powers of p_i's), it is likely that $x \neq \pm y \pmod{n}$.
- This results in a factor of n.
Quadratic Sieve Analysis

- First note that for each \(j \), \(\sum_{j=1}^{t+1} \alpha_j e_j[i] \) is divisible by two and so \(y \) is an integer.

- We have
 \[
 x^2 = \prod_{j=1}^{t+1} \{ v_j^2 \} \alpha_j = \prod_{j=1}^{t+1} u_j^{\alpha_j} \pmod{n} = y^2 \pmod{n}.
 \]

- Since \(x \) and \(y \) are computed using very different numbers (\(x \) is a product of numbers of the form \(m + k \) and \(y \) is a product of powers of \(p_i \)'s), it is likely that \(x \neq \pm y \pmod{n} \).

- This results in a factor of \(n \).
Quadratic Sieve Analysis

• First note that for each j, $\sum_{j=1}^{t+1} \alpha_j e_j[i]$ is divisible by two and so y is an integer.

• We have

 $$x^2 = \prod_{j=1}^{t+1} \{v_j^2\}^\alpha_j = \prod_{j=1}^{t+1} u_j^{\alpha_j} \pmod{n} = y^2 \pmod{n}.$$

• Since x and y are computed using very different numbers (x is a product of numbers of the form $m + k$ and y is a product of powers of p_i’s), it is likely that $x \neq \pm y \pmod{n}$.

• This results in a factor of n.
Quadratic Sieve Analysis

- So how many k’s are required to generate $t + 1$ triples?
- Number $u = (m + k)^2 \pmod{n} \approx 2\sqrt{n}k + k^2 \approx 2\sqrt{n}k$ when k is small compared to \sqrt{n}.
- Assume that u is uniformly distributed over $[1, 2\sqrt{n}k]$ as k varies.
- Then the probability that u is B-smooth is around $(\frac{\ln n}{2\ln B})^{\frac{\ln n}{2\ln B}} \approx e^{-\frac{1}{2} \sqrt{\ln n \ln \ln n}} = \frac{1}{B}$.
- So we need $B^{2+o(1)}$ k’s to generate required triples.
Quadratic Sieve Analysis

- So how many k’s are required to generate $t + 1$ triples?
- Number $u = (m + k)^2 \pmod{n} \approx 2\sqrt{nk} + k^2 \approx 2\sqrt{nk}$ when k is small compared to \sqrt{n}.
- Assume that u is uniformly distributed over $[1, 2\sqrt{nk}]$ as k varies.
- Then the probability that u is B-smooth is around $(\frac{\ln n}{2 \ln B})^{-\frac{\ln n}{2 \ln B}} \approx e^{-\frac{1}{2} \sqrt{\ln n \ln \ln n}} = \frac{1}{B}$.
- So we need $B^{2+o(1)}$ k’s to generate required triples.
Quadratic Sieve Analysis

- So how many k’s are required to generate $t + 1$ triples?
- Number $u = (m + k)^2 \pmod{n} \approx 2\sqrt{n}k + k^2 \approx 2\sqrt{n}k$ when k is small compared to \sqrt{n}.
- Assume that u is uniformly distributed over $[1, 2\sqrt{n}k]$ as k varies.
- Then the probability that u is B-smooth is around $(\frac{\ln n}{2 \ln B})^{-\frac{\ln n}{2 \ln B}} \sim e^{-\frac{1}{2} \sqrt{\ln n \ln \ln n}} = \frac{1}{B}$.
- So we need $B^{2+o(1)}$ k’s to generate required triples.
Quadratic Sieve Analysis

- Using a clever sieving trick, it can be shown that time taken to compute all the triples remains $B^{2+o(1)}$.
- α_j's can be computed by solving a system of $t + 1$ linear equations.
- Time taken to compute these can be shown to be $O(t^2) = O(B^2)$.
- Therefore, the time complexity of the whole algorithm is $B^{2+o(1)} = e^{(1+o(1))\sqrt{\ln n \ln \ln n}}$.
Quadratic Sieve Analysis

- Using a clever sieving trick, it can be shown that time taken to compute all the triples remains $B^{2+o(1)}$.
- α_j’s can be computed by solving a system of $t + 1$ linear equations.
- Time taken to compute these can be shown to be $O(t^2) = O(B^2)$.
- Therefore, the time complexity of the whole algorithm is $B^{2+o(1)} = e^{(1+o(1))\sqrt{\ln n \ln \ln n}}$.
Quadratic Sieve Analysis

- Using a clever sieving trick, it can be shown that time taken to compute all the triples remains $B^{2+o(1)}$.
- α_j’s can be computed by solving a system of $t + 1$ linear equations.
- Time taken to compute these can be shown to be $O(t^2) = O(B^2)$.
- Therefore, the time complexity of the whole algorithm is $B^{2+o(1)} = e^{(1+o(1))\sqrt{\ln n \ln \ln n}}$.
Number Field Sieve

- Designed by Pollard, Pomerance, Lenstra, ... (1990s).
- Uses arithmetic in a number field instead of \(\mathbb{Q} \).
- This allows one to reduce the size of \(u \)'s thus increasing the chances of finding a smooth number.
- The time complexity comes down to \(e^{c(\ln n)^{1/3}(\ln \ln n)^{2/3}} \), \(c \approx 1.903 \).
Number Field Sieve

- Designed by Pollard, Pomerance, Lenstra, ... (1990s).
- Uses arithmetic in a number field instead of \mathbb{Q}.
- This allows one to reduce the size of u’s thus increasing the chances of finding a smooth number.
- The time complexity comes down to $e^{c(\ln n)^{1/3}(\ln \ln n)^{2/3}}$, $c \approx 1.903$.
Outline

Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index Calculus
Discrete Log Problem Over Finite Fields

• Let p be a large prime.
• Let $g \in F_p$ be a generator of F_p^* and $\gamma \in F_p^*$.
• The discrete log problem over finite fields is: given p, g, and γ, compute m such that $g^m = \gamma \pmod{p}$.
• The hardness of this problem is the basis for security of ElGamal type encryption algorithms over finite fields and Diffie-Hellman key exchange scheme.
Discrete Log Problem Over Finite Fields

- Let p be a large prime.
- Let $g \in F_p$ be a generator of F_p^* and $\gamma \in F_p^*$.
- The discrete log problem over finite fields is: given p, g, and γ, compute m such that $g^m = \gamma \pmod{p}$.
- The hardness of this problem is the basis for security of ElGamal type encryption algorithms over finite fields and Diffie-Hellman key exchange scheme.
Index Calculus Method

- Compute \(r \) and \(s \) such that \(g^r \gamma^s = 1 \pmod{p} \) and \(\gcd(s, p - 1) = 1 \).
- Then \(g^{r+ms} = 1 \pmod{p} \) giving \(m = -rs^{-1} \pmod{p - 1} \).
- How does one quickly find such \(r \) and \(s \)?
- We use a method similar to one used for integer factoring.
Index Calculus Method

- Compute r and s such that $g^r \gamma^s = 1 \pmod{p}$ and $\gcd(s, p - 1) = 1$.
- Then $g^{r+ms} = 1 \pmod{p}$ giving $m = -rs^{-1} \pmod{p - 1}$.
- How does one quickly find such r and s?
- We use a method similar to one used for integer factoring.
Index Calculus Method

- Compute r and s such that $g^r \gamma^s = 1 \pmod{p}$ and $\gcd(s, p - 1) = 1$.
- Then $g^{r+ms} = 1 \pmod{p}$ giving $m = -rs^{-1} \pmod{p-1}$.
- How does one quickly find such r and s?
- We use a method similar to one used for integer factoring.
1. Let $B = e^{\frac{1}{2}\sqrt{\ln p \ln \ln p}}$ and p_1, \ldots, p_t be all primes $\leq B$.
2. Randomly select r and s, $0 < r, s < p - 1$.
3. Compute $u = g^r \gamma^s \pmod{p}$.
4. Check if u is B-smooth.
5. If yes, compute complete factorization of $u = \prod_{i=1}^{t} p_i^{e[i]}$.
6. Store the 4-tuple (r, s, u, \hat{e}) where $\hat{e} = (e[1] \ e[2] \ \cdots \ e[t])$.

Index Calculus Method

Definition

Integer Factoring

Discrete Log
Index Calculus Method

1. Let $B = e^{\frac{1}{2}\sqrt{\ln p \ln \ln p}}$ and p_1, \ldots, p_t be all primes $\leq B$.
2. Randomly select r and s, $0 < r, s < p - 1$.
3. Compute $u = g^r \gamma^s \pmod{p}$.
4. Check if u is B-smooth.
5. If yes, compute complete factorization of $u = \prod_{i=1}^{t} p_i^{e[i]}$.
6. Store the 4-tuple (r, s, u, \hat{e}) where $\hat{e} = (e[1] \ e[2] \ \cdots \ e[t])$.
Index Calculus Method

1. Let $B = e^{\frac{1}{2}\sqrt{\ln p \ln \ln p}}$ and p_1, \ldots, p_t be all primes $\leq B$.
2. Randomly select r and s, $0 < r, s < p - 1$.
3. Compute $u = g^r \gamma^s \pmod{p}$.
4. Check if u is B-smooth.
5. If yes, compute complete factorization of $u = \prod_{i=1}^{t} p_i^{e[i]}$.
6. Store the 4-tuple (r, s, u, \hat{e}) where $\hat{e} = (e[1] \ e[2] \cdots \ e[t])$.
Index Calculus Method

7. Exit the previous step after \(t + 1 \) 4-tuples are stored.

8. Let these be \(\{r_j, s_j, u_j, \hat{e}_j\}_{1 \leq j \leq t+1} \).

9. Find \(\alpha_j \in \mathbb{Z}_{p-1} \) for \(1 \leq j \leq t + 1 \) such that
\[
\sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{p-1}
\] and not all \(\alpha_j \)'s are zero.

10. Let
\[
r = \sum_{j=1}^{t+1} \alpha_j r_j \pmod{p-1}
\]
and
\[
s = \sum_{j=1}^{t+1} \alpha_j s_j \pmod{p-1}.
\]
INDEX CALCULUS METHOD

7. Exit the previous step after $t + 1$ 4-tuples are stored.
8. Let these be \(\{r_j, s_j, u_j, \hat{e}_j\}_{1 \leq j \leq t+1} \).
9. Find $\alpha_j \in \mathbb{Z}_{p-1}$ for $1 \leq j \leq t + 1$ such that
 \[
 \sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{p-1}
 \]
 and not all α_j’s are zero.
10. Let
 \[
 r = \sum_{j=1}^{t+1} \alpha_j r_j \pmod{p-1}
 \]
 and
 \[
 s = \sum_{j=1}^{t+1} \alpha_j s_j \pmod{p-1}.
 \]
Definition

Index Calculus Method

7. Exit the previous step after \(t + 1 \) 4-tuples are stored.

8. Let these be \(\{r_j, s_j, u_j, \hat{e}_j\}_{1 \leq j \leq t+1} \).

9. Find \(\alpha_j \in \mathbb{Z}_{p-1} \) for \(1 \leq j \leq t + 1 \) such that
\[
\sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{p-1}
\]
and not all \(\alpha_j \)'s are zero.

10. Let
\[
r = \sum_{j=1}^{t+1} \alpha_j r_j \pmod{p-1}
\]
and
\[
s = \sum_{j=1}^{t+1} \alpha_j s_j \pmod{p-1}.
\]
11. Check if $\gcd(s, p - 1) = 1$.

12. If yes, $m = -rs^{-1} \pmod{p - 1}$ is the answer.
ANALYSIS OF INDEX CALCULUS METHOD

- Note that

\[g^r \gamma^s = \prod_{j=1}^{t+1} (g^{r_j} \gamma^{s_j})^{\alpha_j} \pmod{p} \]

\[= \prod_{j=1}^{t+1} u_j^{\alpha_j} \pmod{p} \]

\[= \prod_{j=1}^{t+1} \prod_{i=1}^{t} p_i^{\alpha_j e_j[i]} \pmod{p} \]

\[= \prod_{i=1}^{t} p_i^{\sum_{j=1}^{t+1} \alpha_j e_j[i]} \pmod{p} \]

\[= 1 \pmod{p}. \]
Analysis of Index Calculus Method

- In addition, the probability that $\gcd(s, p - 1) = 1$ is high since s_j's are randomly chosen.
- Therefore, the algorithm computes discrete log with high probability.
- For time complexity we proceed exactly as before.
- The probability that u is B-smooth is

$$
\frac{\Psi(p-1,B)}{p-1} \sim \left(\frac{\ln p}{\ln B}\right)^{\frac{\ln p}{\ln B}} \sim e^{-\ln p \ln \ln p} = \frac{1}{B^2}.
$$
Analysis of Index Calculus Method

- In addition, the probability that $\gcd(s, p - 1) = 1$ is high since s_j’s are randomly chosen.
- Therefore, the algorithm computes discrete log with high probability.
- For time complexity we proceed exactly as before.
- The probability that u is B-smooth is
 $$\frac{\psi(p-1,B)}{p-1} \sim \left(\frac{\ln p}{\ln B} \right)^{-\ln p / \ln B} \sim e^{-\ln p \ln \ln p} = \frac{1}{B^2}.$$
Analysis of Index Calculus Method

- Therefore, we need to generate $B^{3+ o(1)}$ u’s.
- Testing each u for smoothness takes $B^{1+ o(1)}$ steps (no savings here!).
- Also, solving the system of linear equation takes $O(B^3)$ steps.
- This gives the total complexity of $B^{4+ o(1)} = e^{(2+ o(1))\sqrt{\ln p \ln \ln p}}$.
Analysis of Index Calculus Method

- Therefore, we need to generate $B^{3+o(1)}$ u's.
- Testing each u for smoothness takes $B^{1+o(1)}$ steps (no savings here!).
- Also, solving the system of linear equation takes $O(B^3)$ steps.
- This gives the total complexity of $B^{4+o(1)} = e^{(2+o(1))\sqrt{\ln p \ln \ln p}}$.
Analysis of Index Calculus Method

- Therefore, we need to generate $B^{3+o(1)}$ u's.
- Testing each u for smoothness takes $B^{1+o(1)}$ steps (no savings here!).
- Also, solving the system of linear equation takes $O(B^3)$ steps.
- This gives the total complexity of $B^{4+o(1)} = e^{(2+o(1))\sqrt{\ln p \ln \ln p}}$.
As in case of factoring, number fields can be used to bring the time complexity down to $e^{c(\ln n)^{1/3} (\ln \ln n)^{2/3}}$.

The index calculus method can be generalized to work for any finite commutative group.

However, it does not work well in groups with no good notion of ‘smoothness’.

For example, in group of points on an elliptic curve E_p.
Comments

- As in case of factoring, number fields can be used to bring the time complexity down to $e^{c(\ln n)^{1/3} (\ln \ln n)^{2/3}}$.
- The index calculus method can be generalized to work for any finite commutative group.
 - However, it does not work well in groups with no good notion of ‘smoothness’.
 - For example, in group of points on an elliptic curve E_p.
• As in case of factoring, number fields can be used to bring the time complexity down to $e^{c(\ln n)^{1/3}(\ln \ln n)^{2/3}}$.
• The index calculus method can be generalized to work for any finite commutative group.
• However, it does not work well in groups with no good notion of ‘smoothness’.
• For example, in group of points on an elliptic curve E_p.
Thank You!
Resultants

- Let f and v be two polynomials over field F of degree n and m respectively.
- We have $\gcd(f(x), v(x)) > 1$ iff there exist $r(x)$ and $s(x)$, of degrees $< m$ and $< n$ respectively, such that $r(x)f(x) + s(x)v(x) = 0$.
- Define map $T(r(x), s(x)) = r(x)f(x) + s(x)v(x)$ for $\deg(r) < m$ and $\deg(s) < n$.
- T is a bilinear map and so can be represented by a $(n + m) \times (n + m)$ matrix, $M_{f,v}$.
- Further, T is invertible iff $\gcd(f(x), v(x)) = 1$.
- Let $\text{Res}(f, v) = \det M_{f,v}$.
Resultants

- Let \(f \) and \(v \) be two polynomials over field \(F \) of degree \(n \) and \(m \) respectively.
- We have \(\gcd(f(x), v(x)) > 1 \) iff there exist \(r(x) \) and \(s(x) \), of degrees \(< m \) and \(< n \) respectively, such that
 \[
 r(x)f(x) + s(x)v(x) = 0.
 \]
- Define map \(T(r(x), s(x)) = r(x)f(x) + s(x)v(x) \) for \(\deg(r) < m \) and \(\deg(s) < n \).
- \(T \) is a bilinear map and so can be represented by a \((n + m) \times (n + m) \) matrix, \(M_{f,v} \).
- Further, \(T \) is invertible iff \(\gcd(f(x), v(x)) = 1 \).
- Let \(\text{Res}(f, v) = \det M_{f,v} \).
Resultants

- Let f and v be two polynomials over field F of degree n and m respectively.
- We have $\gcd(f(x), v(x)) > 1$ iff there exist $r(x)$ and $s(x)$, of degrees $< m$ and $< n$ respectively, such that $r(x)f(x) + s(x)v(x) = 0$.
- Define map $T(r(x), s(x)) = r(x)f(x) + s(x)v(x)$ for $\deg(r) < m$ and $\deg(s) < n$.
- T is a bilinear map and so can be represented by a $(n + m) \times (n + m)$ matrix, $M_{f,v}$.
- Further, T is invertible iff $\gcd(f(x), v(x)) = 1$.
- Let $\text{Res}(f, v) = \det M_{f,v}$.
Let f and v be two polynomials over field F of degree n and m respectively.

We have $\gcd(f(x), v(x)) > 1$ iff there exist $r(x)$ and $s(x)$, of degrees $< m$ and $< n$ respectively, such that $r(x)f(x) + s(x)v(x) = 0$.

Define map $T(r(x), s(x)) = r(x)f(x) + s(x)v(x)$ for $\deg(r) < m$ and $\deg(s) < n$.

T is a bilinear map and so can be represented by a $(n + m) \times (n + m)$ matrix, $M_{f,v}$.

Further, T is invertible iff $\gcd(f(x), v(x)) = 1$.

Let $\text{Res}(f, v) = \det M_{f,v}$.