
Introduction Two Applications Basic Operations Tools Overview of the Tools

A Survey of Techniques Used in

Algebraic and Number Theoretic

Algorithms

Manindra Agarwal

National University of Singapore
and

IIT Kanpur

Kunming Tutorial, May 2005

Introduction Two Applications Basic Operations Tools Overview of the Tools

Overview

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes
Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic
Operations

Overview of the Tools

Introduction Two Applications Basic Operations Tools Overview of the Tools

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes
Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

Introduction Two Applications Basic Operations Tools Overview of the Tools

Algebraic Algorithms

• Algorithms for performing algebraic operations.

• Examples:
• Matrix operations: addition, multiplication, inverse,

determinant, solving a system of linear equations, ...
• Polynomial operations: addition, multiplication, factoring, ...
• Abstract algebra operations: order of a group element, discrete

log, ...

Introduction Two Applications Basic Operations Tools Overview of the Tools

Algebraic Algorithms

• Algorithms for performing algebraic operations.

• Examples:
• Matrix operations: addition, multiplication, inverse,

determinant, solving a system of linear equations, ...
• Polynomial operations: addition, multiplication, factoring, ...
• Abstract algebra operations: order of a group element, discrete

log, ...

Introduction Two Applications Basic Operations Tools Overview of the Tools

Number Theoretical Algorithms

• Algorithms for performing number theoretic operations.

• Examples:
• Operations on integers and rationals: addition, multiplication,

gcd, square roots, primality testing, integer factoring, ...

Introduction Two Applications Basic Operations Tools Overview of the Tools

Number Theoretical Algorithms

• Algorithms for performing number theoretic operations.

• Examples:
• Operations on integers and rationals: addition, multiplication,

gcd, square roots, primality testing, integer factoring, ...

Introduction Two Applications Basic Operations Tools Overview of the Tools

Applications

• In coding theory for efficient coding/decoding.

• In cryptography for design and analysis of cryptographic
schemes.

• In computer algebra systems.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Applications

• In coding theory for efficient coding/decoding.

• In cryptography for design and analysis of cryptographic
schemes.

• In computer algebra systems.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Applications

• In coding theory for efficient coding/decoding.

• In cryptography for design and analysis of cryptographic
schemes.

• In computer algebra systems.

Introduction Two Applications Basic Operations Tools Overview of the Tools

This Talk

• Discusses two major applications where algebraic and number
theoretic algorithms are used.

• Surveys some of the important tools for designing these
algorithms.

• Designs algorithms for some basic operations using these
tools.

Introduction Two Applications Basic Operations Tools Overview of the Tools

This Talk

• Discusses two major applications where algebraic and number
theoretic algorithms are used.

• Surveys some of the important tools for designing these
algorithms.

• Designs algorithms for some basic operations using these
tools.

Introduction Two Applications Basic Operations Tools Overview of the Tools

This Talk

• Discusses two major applications where algebraic and number
theoretic algorithms are used.

• Surveys some of the important tools for designing these
algorithms.

• Designs algorithms for some basic operations using these
tools.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes
Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

Introduction Two Applications Basic Operations Tools Overview of the Tools

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes
Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes

• One of the most important and popular class of codes.

• Used in several applications including encoding data on CDs
and DVDs.

• Uses polynomial evaluations for coding, linear system solving
and polynomial factorization for decoding.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes

• One of the most important and popular class of codes.

• Used in several applications including encoding data on CDs
and DVDs.

• Uses polynomial evaluations for coding, linear system solving
and polynomial factorization for decoding.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Coding

• Let m be a string that is to be coded.

• Fix a finite field F , |F | ≥ n, and split m as a sequence of
k < n elements of F : (m0, . . . ,mk−1).

• Let polynomial Pm(x) =
∑k−1

i=0 mi · x i .

• Let cj = Pm(ej) for 0 ≤ j < n with e0, . . ., en−1 distinct
elements of F . [Requires polynomial evaluation]

• The sequence (c0, . . . , cn−1) is the codeword corresponding to
m.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Coding

• Let m be a string that is to be coded.

• Fix a finite field F , |F | ≥ n, and split m as a sequence of
k < n elements of F : (m0, . . . ,mk−1).

• Let polynomial Pm(x) =
∑k−1

i=0 mi · x i .

• Let cj = Pm(ej) for 0 ≤ j < n with e0, . . ., en−1 distinct
elements of F . [Requires polynomial evaluation]

• The sequence (c0, . . . , cn−1) is the codeword corresponding to
m.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Coding

• Let m be a string that is to be coded.

• Fix a finite field F , |F | ≥ n, and split m as a sequence of
k < n elements of F : (m0, . . . ,mk−1).

• Let polynomial Pm(x) =
∑k−1

i=0 mi · x i .

• Let cj = Pm(ej) for 0 ≤ j < n with e0, . . ., en−1 distinct
elements of F . [Requires polynomial evaluation]

• The sequence (c0, . . . , cn−1) is the codeword corresponding to
m.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Decoding

• Let (d0, . . . , dn−1) be a given, possibly corrupted, codeword.

• Assume that the number of un-corrupted elements is at least
t.

• Let D0 = d
√

kne and D1 = b
√

n/kc.
• Find a non-zero bivariate polynomial Q(x , y) with x-degree D0

and y -degree D1 such that Q(ej , dj) = 0 for every 0 ≤ j < n.

• Such a Q can always be found since Q has
(1 + D0) · (1 + D1) > n unknown coefficients that need to
satisfy n homogeneous equations. [Requires solving a system
of linear equations]

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Decoding

• Let (d0, . . . , dn−1) be a given, possibly corrupted, codeword.

• Assume that the number of un-corrupted elements is at least
t.

• Let D0 = d
√

kne and D1 = b
√

n/kc.
• Find a non-zero bivariate polynomial Q(x , y) with x-degree D0

and y -degree D1 such that Q(ej , dj) = 0 for every 0 ≤ j < n.

• Such a Q can always be found since Q has
(1 + D0) · (1 + D1) > n unknown coefficients that need to
satisfy n homogeneous equations. [Requires solving a system
of linear equations]

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Decoding

• Let (d0, . . . , dn−1) be a given, possibly corrupted, codeword.

• Assume that the number of un-corrupted elements is at least
t.

• Let D0 = d
√

kne and D1 = b
√

n/kc.
• Find a non-zero bivariate polynomial Q(x , y) with x-degree D0

and y -degree D1 such that Q(ej , dj) = 0 for every 0 ≤ j < n.

• Such a Q can always be found since Q has
(1 + D0) · (1 + D1) > n unknown coefficients that need to
satisfy n homogeneous equations. [Requires solving a system
of linear equations]

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Decoding

• Consider the polynomial Q̂(x) = Q(x ,Pm(x)).

• We have Q̂(ej) = 0 for at least t different ej ’s by assumption.

• The degree of Q̂(x) is less than D0 + D1 · k ≤ 2d
√

kne.
• Therefore, if t ≥ 2d

√
kne, Q̂(x) = 0.

• If Q̂(x) = Q(x ,Pm(x)) = 0, then polynomial y − Pm(x) must
divide polynomial Q(x , y).

• Therefore, y − Pm(x) divides Q(x , y) whenever t ≥ 2d
√

kne.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Decoding

• Consider the polynomial Q̂(x) = Q(x ,Pm(x)).

• We have Q̂(ej) = 0 for at least t different ej ’s by assumption.

• The degree of Q̂(x) is less than D0 + D1 · k ≤ 2d
√

kne.
• Therefore, if t ≥ 2d

√
kne, Q̂(x) = 0.

• If Q̂(x) = Q(x ,Pm(x)) = 0, then polynomial y − Pm(x) must
divide polynomial Q(x , y).

• Therefore, y − Pm(x) divides Q(x , y) whenever t ≥ 2d
√

kne.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Decoding

• Consider the polynomial Q̂(x) = Q(x ,Pm(x)).

• We have Q̂(ej) = 0 for at least t different ej ’s by assumption.

• The degree of Q̂(x) is less than D0 + D1 · k ≤ 2d
√

kne.
• Therefore, if t ≥ 2d

√
kne, Q̂(x) = 0.

• If Q̂(x) = Q(x ,Pm(x)) = 0, then polynomial y − Pm(x) must
divide polynomial Q(x , y).

• Therefore, y − Pm(x) divides Q(x , y) whenever t ≥ 2d
√

kne.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Decoding

• Factor polynomial Q(x , y) and list all the factors of the form
y − P(x). [Requires polynomial factoring]

• Select the polynomial P(x) from these that agrees with the
sequence (d0, . . . , dn−1) on maximum number of elements.

• This is likely to be the polynomial Pm(x).

• This algorithm decodes up to n − 2d
√

kne errors.

• Given by Madhu Sudan (1994).

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Decoding

• Factor polynomial Q(x , y) and list all the factors of the form
y − P(x). [Requires polynomial factoring]

• Select the polynomial P(x) from these that agrees with the
sequence (d0, . . . , dn−1) on maximum number of elements.

• This is likely to be the polynomial Pm(x).

• This algorithm decodes up to n − 2d
√

kne errors.

• Given by Madhu Sudan (1994).

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Decoding

• Factor polynomial Q(x , y) and list all the factors of the form
y − P(x). [Requires polynomial factoring]

• Select the polynomial P(x) from these that agrees with the
sequence (d0, . . . , dn−1) on maximum number of elements.

• This is likely to be the polynomial Pm(x).

• This algorithm decodes up to n − 2d
√

kne errors.

• Given by Madhu Sudan (1994).

Introduction Two Applications Basic Operations Tools Overview of the Tools

Reed-Soloman Codes: Decoding

• Factor polynomial Q(x , y) and list all the factors of the form
y − P(x). [Requires polynomial factoring]

• Select the polynomial P(x) from these that agrees with the
sequence (d0, . . . , dn−1) on maximum number of elements.

• This is likely to be the polynomial Pm(x).

• This algorithm decodes up to n − 2d
√

kne errors.

• Given by Madhu Sudan (1994).

Introduction Two Applications Basic Operations Tools Overview of the Tools

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes
Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA Cryptosystem

• The first and most popular public-key cryptosystem.

• Used in secure communication everywhere.

• Uses modular arithmetic for encryption and decryption.

• Uses primality testing for generating keys.

• Integer factoring dominates cryptanalysis, with modular
equation solving also playing a role.

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA Cryptosystem

• The first and most popular public-key cryptosystem.

• Used in secure communication everywhere.

• Uses modular arithmetic for encryption and decryption.

• Uses primality testing for generating keys.

• Integer factoring dominates cryptanalysis, with modular
equation solving also playing a role.

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA Cryptosystem

• The first and most popular public-key cryptosystem.

• Used in secure communication everywhere.

• Uses modular arithmetic for encryption and decryption.

• Uses primality testing for generating keys.

• Integer factoring dominates cryptanalysis, with modular
equation solving also playing a role.

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA: Key Generation

• Fix a key length, say, 2r bits.

• Randomly select two primes p and q each of 2r−1 bits.
[Requires primality testing]

• Randomly select an e, 3 ≤ e < (p − 1)(q − 1) and
gcd(e, (p − 1)(q − 1)) = 1.

• Find the smallest d such that d · e = 1 (mod (p − 1)(q − 1)).
[Requires modular inverse computation]

• Let n = pq.

• The encryption key is the pair (n, e).

• The decryption key is d .

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA: Key Generation

• Fix a key length, say, 2r bits.

• Randomly select two primes p and q each of 2r−1 bits.
[Requires primality testing]

• Randomly select an e, 3 ≤ e < (p − 1)(q − 1) and
gcd(e, (p − 1)(q − 1)) = 1.

• Find the smallest d such that d · e = 1 (mod (p − 1)(q − 1)).
[Requires modular inverse computation]

• Let n = pq.

• The encryption key is the pair (n, e).

• The decryption key is d .

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA: Key Generation

• Fix a key length, say, 2r bits.

• Randomly select two primes p and q each of 2r−1 bits.
[Requires primality testing]

• Randomly select an e, 3 ≤ e < (p − 1)(q − 1) and
gcd(e, (p − 1)(q − 1)) = 1.

• Find the smallest d such that d · e = 1 (mod (p − 1)(q − 1)).
[Requires modular inverse computation]

• Let n = pq.

• The encryption key is the pair (n, e).

• The decryption key is d .

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA: Key Generation

• Fix a key length, say, 2r bits.

• Randomly select two primes p and q each of 2r−1 bits.
[Requires primality testing]

• Randomly select an e, 3 ≤ e < (p − 1)(q − 1) and
gcd(e, (p − 1)(q − 1)) = 1.

• Find the smallest d such that d · e = 1 (mod (p − 1)(q − 1)).
[Requires modular inverse computation]

• Let n = pq.

• The encryption key is the pair (n, e).

• The decryption key is d .

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA: Key Generation

• Fix a key length, say, 2r bits.

• Randomly select two primes p and q each of 2r−1 bits.
[Requires primality testing]

• Randomly select an e, 3 ≤ e < (p − 1)(q − 1) and
gcd(e, (p − 1)(q − 1)) = 1.

• Find the smallest d such that d · e = 1 (mod (p − 1)(q − 1)).
[Requires modular inverse computation]

• Let n = pq.

• The encryption key is the pair (n, e).

• The decryption key is d .

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA: Encryption and Decryption

• Let m be the message to be encrypted.

• Treat m as a number less than n.

• Compute c = me (mod n). [Requires modular exponentiation]

• c is the encrypted message.

• Note that cd (mod n) = med (mod n) = m.

• Thus c can be decrypted using key d .

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA: Encryption and Decryption

• Let m be the message to be encrypted.

• Treat m as a number less than n.

• Compute c = me (mod n). [Requires modular exponentiation]

• c is the encrypted message.

• Note that cd (mod n) = med (mod n) = m.

• Thus c can be decrypted using key d .

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA: Encryption and Decryption

• Let m be the message to be encrypted.

• Treat m as a number less than n.

• Compute c = me (mod n). [Requires modular exponentiation]

• c is the encrypted message.

• Note that cd (mod n) = med (mod n) = m.

• Thus c can be decrypted using key d .

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA: Cryptanalysis

• If n can be factored, then d can be easily computed using e:
d = e−1 (mod (p − 1)(q − 1)).

• So efficiency of factoring algorithms determines how safe RSA
is.

• It is not the only way to break RSA though.

• We will see a different attack later that works for a special
case.

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA: Cryptanalysis

• If n can be factored, then d can be easily computed using e:
d = e−1 (mod (p − 1)(q − 1)).

• So efficiency of factoring algorithms determines how safe RSA
is.

• It is not the only way to break RSA though.

• We will see a different attack later that works for a special
case.

Introduction Two Applications Basic Operations Tools Overview of the Tools

RSA: Cryptanalysis

• If n can be factored, then d can be easily computed using e:
d = e−1 (mod (p − 1)(q − 1)).

• So efficiency of factoring algorithms determines how safe RSA
is.

• It is not the only way to break RSA though.

• We will see a different attack later that works for a special
case.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes
Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Polynomial Algebra

• Efficient algorithms are known for most of the operations.
• Degree n Polynomial addition: O(n) arithmetic operations.
• Degree n Polynomial multiplication: MP(n) = O(n log n)

arithmetic operations.

• Several other operations reduce to polynomial multiplication:
• Polynomial division: O(MP(n)),
• Polynomial gcd: O(MP(n) log n).
• Polynomial evaluation and interpolation: O(MP(n) log n).

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Polynomial Algebra

• Efficient algorithms are known for most of the operations.
• Degree n Polynomial addition: O(n) arithmetic operations.
• Degree n Polynomial multiplication: MP(n) = O(n log n)

arithmetic operations.

• Several other operations reduce to polynomial multiplication:
• Polynomial division: O(MP(n)),
• Polynomial gcd: O(MP(n) log n).
• Polynomial evaluation and interpolation: O(MP(n) log n).

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Polynomial Algebra

• Polynomial factorization over finite field Fp: O (̃n2 log p)
randomized.

• O (̃t(n)) = O(t(n) · (log t(n))c) for some constant c ≥ 0.

• Polynomial factorization over rationals:
O (̃n10 + n8 log2 ‖f ‖2), ‖f ‖2 square-root of the sum of square
of coefficients of f .

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Polynomial Algebra

• Polynomial factorization over finite field Fp: O (̃n2 log p)
randomized.

• O (̃t(n)) = O(t(n) · (log t(n))c) for some constant c ≥ 0.

• Polynomial factorization over rationals:
O (̃n10 + n8 log2 ‖f ‖2), ‖f ‖2 square-root of the sum of square
of coefficients of f .

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Arithmetic

• Very similar to polynomial algebra.
• Addition: O(n),
• Multiplication: MI (n) = O(n log n log log n),
• Gcd: O(n2).

• A number of operations can be transformed to multiplication:
• Division, Modular arithmetic, computing integer roots:

O(MI (n)).

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Arithmetic

• Very similar to polynomial algebra.
• Addition: O(n),
• Multiplication: MI (n) = O(n log n log log n),
• Gcd: O(n2).

• A number of operations can be transformed to multiplication:
• Division, Modular arithmetic, computing integer roots:

O(MI (n)).

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Arithmetic

• Primality testing: O (̃n6) deterministic, O (̃n2) randomized.

• Integer factoring:

• eO((log n)1/2(log log n)1/2) randomized.
• eO((log n)1/3(log log n)2/3) heuristic.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Arithmetic

• Primality testing: O (̃n6) deterministic, O (̃n2) randomized.

• Integer factoring:

• eO((log n)1/2(log log n)1/2) randomized.
• eO((log n)1/3(log log n)2/3) heuristic.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Linear Algebra

• The central problem is matrix multiplication.

• Coppersmith and Winograd (1986) showed that time
complexity of multiplying two n × n matrices is
MM(n) = O(n2.376) arithmetic operations.

• Several problems reduce to matrix multiplication:
• Matrix inverse: O(MM(n)),
• Determinant, Characteristic polynomial: O(MM(n)),
• Solving a system of linear equations in n variables: O(MM(n)).

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Linear Algebra

• The central problem is matrix multiplication.

• Coppersmith and Winograd (1986) showed that time
complexity of multiplying two n × n matrices is
MM(n) = O(n2.376) arithmetic operations.

• Several problems reduce to matrix multiplication:
• Matrix inverse: O(MM(n)),
• Determinant, Characteristic polynomial: O(MM(n)),
• Solving a system of linear equations in n variables: O(MM(n)).

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Abstract Algebra

• Computing order of an element in finite group G :
• Complexity depends on the group.
• Trivial for some groups, e.g., (Zn,+).
• As hard as integer factoring for some groups, e.g., Z∗

n .

• Computing discrete log of an element in finite cyclic group G :
given generator g for G , and element e, find m such that
e = gm.

• Easy for some groups, e.g., (Zn,+). [requires modular inverse
and multiplication]

• Similar in hardness to integer factoring for groups, e.g., Z∗
p .

• Very hard (time = 2O(n)) for some groups, e.g., groups of
points on elliptic curve Ep.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Abstract Algebra

• Computing order of an element in finite group G :
• Complexity depends on the group.
• Trivial for some groups, e.g., (Zn,+).
• As hard as integer factoring for some groups, e.g., Z∗

n .

• Computing discrete log of an element in finite cyclic group G :
given generator g for G , and element e, find m such that
e = gm.

• Easy for some groups, e.g., (Zn,+). [requires modular inverse
and multiplication]

• Similar in hardness to integer factoring for groups, e.g., Z∗
p .

• Very hard (time = 2O(n)) for some groups, e.g., groups of
points on elliptic curve Ep.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Basic Operations: Abstract Algebra

• Computing order of an element in finite group G :
• Complexity depends on the group.
• Trivial for some groups, e.g., (Zn,+).
• As hard as integer factoring for some groups, e.g., Z∗

n .

• Computing discrete log of an element in finite cyclic group G :
given generator g for G , and element e, find m such that
e = gm.

• Easy for some groups, e.g., (Zn,+). [requires modular inverse
and multiplication]

• Similar in hardness to integer factoring for groups, e.g., Z∗
p .

• Very hard (time = 2O(n)) for some groups, e.g., groups of
points on elliptic curve Ep.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes
Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic
Operations

Overview of the Tools

Introduction Two Applications Basic Operations Tools Overview of the Tools

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic
computations.

2. Discrete Fourier Transform: Used in polynomial and integer
multiplication.

3. Automorphisms: Used in polynomial and integer factorization
and irreducibility testing.

4. Hensel Lifting: Used in polynomial factorization and division.

5. Short Vectors in a Lattice: Used in polynomial factorization
(over fields and rings) and breaking cryptosystems.

6. Smooth Numbers: Used in integer factorization and discrete
log problem.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic
computations.

2. Discrete Fourier Transform: Used in polynomial and integer
multiplication.

3. Automorphisms: Used in polynomial and integer factorization
and irreducibility testing.

4. Hensel Lifting: Used in polynomial factorization and division.

5. Short Vectors in a Lattice: Used in polynomial factorization
(over fields and rings) and breaking cryptosystems.

6. Smooth Numbers: Used in integer factorization and discrete
log problem.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic
computations.

2. Discrete Fourier Transform: Used in polynomial and integer
multiplication.

3. Automorphisms: Used in polynomial and integer factorization
and irreducibility testing.

4. Hensel Lifting: Used in polynomial factorization and division.

5. Short Vectors in a Lattice: Used in polynomial factorization
(over fields and rings) and breaking cryptosystems.

6. Smooth Numbers: Used in integer factorization and discrete
log problem.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic
computations.

2. Discrete Fourier Transform: Used in polynomial and integer
multiplication.

3. Automorphisms: Used in polynomial and integer factorization
and irreducibility testing.

4. Hensel Lifting: Used in polynomial factorization and division.

5. Short Vectors in a Lattice: Used in polynomial factorization
(over fields and rings) and breaking cryptosystems.

6. Smooth Numbers: Used in integer factorization and discrete
log problem.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic
computations.

2. Discrete Fourier Transform: Used in polynomial and integer
multiplication.

3. Automorphisms: Used in polynomial and integer factorization
and irreducibility testing.

4. Hensel Lifting: Used in polynomial factorization and division.

5. Short Vectors in a Lattice: Used in polynomial factorization
(over fields and rings) and breaking cryptosystems.

6. Smooth Numbers: Used in integer factorization and discrete
log problem.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic
computations.

2. Discrete Fourier Transform: Used in polynomial and integer
multiplication.

3. Automorphisms: Used in polynomial and integer factorization
and irreducibility testing.

4. Hensel Lifting: Used in polynomial factorization and division.

5. Short Vectors in a Lattice: Used in polynomial factorization
(over fields and rings) and breaking cryptosystems.

6. Smooth Numbers: Used in integer factorization and discrete
log problem.

Introduction Two Applications Basic Operations Tools Overview of the Tools

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes
Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

Introduction Two Applications Basic Operations Tools Overview of the Tools

Chinese Remaindering

Definition

Example: Determinant Computation

Introduction Two Applications Basic Operations Tools Overview of the Tools

Discrete Fourier Transform

Definition

Fast Fourier Transform

Example: Polynomial Multiplication

Introduction Two Applications Basic Operations Tools Overview of the Tools

Automorphisms

Definition

Example: Polynomial Factoring over Finite
Fields

Example: Primality Testing

Example: Integer Factoring

Introduction Two Applications Basic Operations Tools Overview of the Tools

Hensel Lifting

Definition

Example: Polynomial Division

Introduction Two Applications Basic Operations Tools Overview of the Tools

Short Vectors in a Lattice

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals

Introduction Two Applications Basic Operations Tools Overview of the Tools

Smooth Numbers

Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index
Calculus

Definition Determinant

Tool 1: Chinese Remaindering

Definition Determinant

Outline

Definition

Example: Determinant Computation

Definition Determinant

Chinese Remaindering Theorem

Theorem
Let R = Z or F [x], and m0, m1, . . ., mr−1 ∈ R be pairwise
coprime. Let m =

∏r−1
i=0 mi . Then,

R/(m) ∼= R/(m0)⊕ R/(m1)⊕ · · · ⊕ R/(mr−1).

• An element of ring R/(m) can be uniquely written as an
r -tuple with ith component belonging to ring R/(mi).

• Addition and multiplication operations act component-wise.

Definition Determinant

Chinese Remaindering Theorem

Theorem
Let R = Z or F [x], and m0, m1, . . ., mr−1 ∈ R be pairwise
coprime. Let m =

∏r−1
i=0 mi . Then,

R/(m) ∼= R/(m0)⊕ R/(m1)⊕ · · · ⊕ R/(mr−1).

• An element of ring R/(m) can be uniquely written as an
r -tuple with ith component belonging to ring R/(mi).

• Addition and multiplication operations act component-wise.

Definition Determinant

Chinese Remaindering Applications

• Fundamental theorem used in arguing about rings everywhere.

• Used for speeding up computations over integers and
polynomials.

• Based on the fact that it is much faster to compute modulo a
small number (or small degree polynomial) than over integers
(or polynomial ring):

• Given a bound, say A, on the output of a computation, choose
small m0, . . ., mr−1 such that

∏r−1
i=0 mi > A and do the

computations modulo each of mi ’s.
• At the end, combine the results of computations to get the

desired result.

• Also lends itself to parallelization.

Definition Determinant

Chinese Remaindering Applications

• Fundamental theorem used in arguing about rings everywhere.

• Used for speeding up computations over integers and
polynomials.

• Based on the fact that it is much faster to compute modulo a
small number (or small degree polynomial) than over integers
(or polynomial ring):

• Given a bound, say A, on the output of a computation, choose
small m0, . . ., mr−1 such that

∏r−1
i=0 mi > A and do the

computations modulo each of mi ’s.
• At the end, combine the results of computations to get the

desired result.

• Also lends itself to parallelization.

Definition Determinant

Chinese Remaindering Applications

• Fundamental theorem used in arguing about rings everywhere.

• Used for speeding up computations over integers and
polynomials.

• Based on the fact that it is much faster to compute modulo a
small number (or small degree polynomial) than over integers
(or polynomial ring):

• Given a bound, say A, on the output of a computation, choose
small m0, . . ., mr−1 such that

∏r−1
i=0 mi > A and do the

computations modulo each of mi ’s.
• At the end, combine the results of computations to get the

desired result.

• Also lends itself to parallelization.

Definition Determinant

Chinese Remaindering Applications

• Fundamental theorem used in arguing about rings everywhere.

• Used for speeding up computations over integers and
polynomials.

• Based on the fact that it is much faster to compute modulo a
small number (or small degree polynomial) than over integers
(or polynomial ring):

• Given a bound, say A, on the output of a computation, choose
small m0, . . ., mr−1 such that

∏r−1
i=0 mi > A and do the

computations modulo each of mi ’s.
• At the end, combine the results of computations to get the

desired result.

• Also lends itself to parallelization.

Definition Determinant

Outline

Definition

Example: Determinant Computation

Definition Determinant

Computing Determinant via CRT

• Let M be a n × n matrix over integers with A bounding the
largest absolute value of its elements.

• Hadamard’s inequality implies that | det M| ≤ nn/2An.

• Let B = nn/2An and r = dlog(2B + 1)e.
• Let m0, . . ., mr−1 be first r primes and m =

∏r−1
i=0 mi .

• Compute vi = detM (mod mi) for each i .

• Compute αi such that αi · m
mi

= 1 (mod mi) for each i .

• Output
∑r−1

i=0 αi · m
mi
· vi (mod m).

Definition Determinant

Computing Determinant via CRT

• Let M be a n × n matrix over integers with A bounding the
largest absolute value of its elements.

• Hadamard’s inequality implies that | det M| ≤ nn/2An.

• Let B = nn/2An and r = dlog(2B + 1)e.
• Let m0, . . ., mr−1 be first r primes and m =

∏r−1
i=0 mi .

• Compute vi = detM (mod mi) for each i .

• Compute αi such that αi · m
mi

= 1 (mod mi) for each i .

• Output
∑r−1

i=0 αi · m
mi
· vi (mod m).

Definition Determinant

Computing Determinant via CRT

• Let M be a n × n matrix over integers with A bounding the
largest absolute value of its elements.

• Hadamard’s inequality implies that | det M| ≤ nn/2An.

• Let B = nn/2An and r = dlog(2B + 1)e.
• Let m0, . . ., mr−1 be first r primes and m =

∏r−1
i=0 mi .

• Compute vi = detM (mod mi) for each i .

• Compute αi such that αi · m
mi

= 1 (mod mi) for each i .

• Output
∑r−1

i=0 αi · m
mi
· vi (mod m).

Definition Determinant

Computing Determinant via CRT

• Let M be a n × n matrix over integers with A bounding the
largest absolute value of its elements.

• Hadamard’s inequality implies that | det M| ≤ nn/2An.

• Let B = nn/2An and r = dlog(2B + 1)e.
• Let m0, . . ., mr−1 be first r primes and m =

∏r−1
i=0 mi .

• Compute vi = detM (mod mi) for each i .

• Compute αi such that αi · m
mi

= 1 (mod mi) for each i .

• Output
∑r−1

i=0 αi · m
mi
· vi (mod m).

Definition Determinant

Computing Determinant via CRT

• Let M be a n × n matrix over integers with A bounding the
largest absolute value of its elements.

• Hadamard’s inequality implies that | det M| ≤ nn/2An.

• Let B = nn/2An and r = dlog(2B + 1)e.
• Let m0, . . ., mr−1 be first r primes and m =

∏r−1
i=0 mi .

• Compute vi = detM (mod mi) for each i .

• Compute αi such that αi · m
mi

= 1 (mod mi) for each i .

• Output
∑r−1

i=0 αi · m
mi
· vi (mod m).

Definition FFT Polynomial Multiplication

Tool 2: Discrete Fourier Transform

Definition FFT Polynomial Multiplication

Outline

Definition

Fast Fourier Transform

Example: Polynomial Multiplication

Definition FFT Polynomial Multiplication

Discrete Fourier Transform

• Discrete Fourier Transform is the discrete variant of Fourier
transform.

• It is used in polynomial multiplication, integer multiplication,
image compression, and many other applications.

Definition FFT Polynomial Multiplication

Discrete Fourier Transform

• Discrete Fourier Transform is the discrete variant of Fourier
transform.

• It is used in polynomial multiplication, integer multiplication,
image compression, and many other applications.

Definition FFT Polynomial Multiplication

Discrete Fourier Transform

• Let f : [0, n − 1] 7→ F be a function ‘selecting’ n elements of
field F .

• Let ω be a principle nth root of unity, i.e., ωn = 1, and
ωt 6= 1 for 0 < t < n.

• The DFT of f is Ff : [0, n − 1] 7→ F [ω]:

Ff (j) =
n−1∑
i=0

f (i)ωij .

Definition FFT Polynomial Multiplication

Discrete Fourier Transform

• Let f : [0, n − 1] 7→ F be a function ‘selecting’ n elements of
field F .

• Let ω be a principle nth root of unity, i.e., ωn = 1, and
ωt 6= 1 for 0 < t < n.

• The DFT of f is Ff : [0, n − 1] 7→ F [ω]:

Ff (j) =
n−1∑
i=0

f (i)ωij .

Definition FFT Polynomial Multiplication

Discrete Fourier Transform

• Let f : [0, n − 1] 7→ F be a function ‘selecting’ n elements of
field F .

• Let ω be a principle nth root of unity, i.e., ωn = 1, and
ωt 6= 1 for 0 < t < n.

• The DFT of f is Ff : [0, n − 1] 7→ F [ω]:

Ff (j) =
n−1∑
i=0

f (i)ωij .

Definition FFT Polynomial Multiplication

Outline

Definition

Fast Fourier Transform

Example: Polynomial Multiplication

Definition FFT Polynomial Multiplication

Fast Fourier Transform: An Algorithm for

Computing DFT

• A straightforward algorithm takes O(n2) arithmetic
operations.

• An O(n log n) time algorithm for DFT was (re)discovered by
Cooley and Tukey (1965).

• It was first found by Gauss (1805).

• The algorithm is called Fast Fourier Transform and uses
divide-and-conquer technique to recursively compute DFT.

Definition FFT Polynomial Multiplication

Fast Fourier Transform: An Algorithm for

Computing DFT

• A straightforward algorithm takes O(n2) arithmetic
operations.

• An O(n log n) time algorithm for DFT was (re)discovered by
Cooley and Tukey (1965).

• It was first found by Gauss (1805).

• The algorithm is called Fast Fourier Transform and uses
divide-and-conquer technique to recursively compute DFT.

Definition FFT Polynomial Multiplication

FFT

• Let f , f : [0, n − 1] 7→ F for field field F , and assume n = 2k .

• Note that for 0 ≤ j < n/2,

Ff (2j) =
n−1∑
i=0

f (i)ω2ij =

n/2−1∑
i=0

(f (i) + f (n/2 + i))(ω2)ij .

• Similarly,

Ff (2j+1) =
n−1∑
i=0

f (i)ωi(2j+1) =

n/2−1∑
i=0

(f (i)ωi−f (n/2+i)ωi)(ω2)ij .

• Thus the problem reduces to computing DFT of two functions
with n

2 domain size.

Definition FFT Polynomial Multiplication

FFT

• Let f , f : [0, n − 1] 7→ F for field field F , and assume n = 2k .

• Note that for 0 ≤ j < n/2,

Ff (2j) =
n−1∑
i=0

f (i)ω2ij =

n/2−1∑
i=0

(f (i) + f (n/2 + i))(ω2)ij .

• Similarly,

Ff (2j+1) =
n−1∑
i=0

f (i)ωi(2j+1) =

n/2−1∑
i=0

(f (i)ωi−f (n/2+i)ωi)(ω2)ij .

• Thus the problem reduces to computing DFT of two functions
with n

2 domain size.

Definition FFT Polynomial Multiplication

FFT

• Let f , f : [0, n − 1] 7→ F for field field F , and assume n = 2k .

• Note that for 0 ≤ j < n/2,

Ff (2j) =
n−1∑
i=0

f (i)ω2ij =

n/2−1∑
i=0

(f (i) + f (n/2 + i))(ω2)ij .

• Similarly,

Ff (2j+1) =
n−1∑
i=0

f (i)ωi(2j+1) =

n/2−1∑
i=0

(f (i)ωi−f (n/2+i)ωi)(ω2)ij .

• Thus the problem reduces to computing DFT of two functions
with n

2 domain size.

Definition FFT Polynomial Multiplication

FFT

• The functions are: f0(i) = f (i) + f (n/2 + i) and
f1(i) = (f (i)− f (n/2 + i))ωi for 0 ≤ i < n/2.

• These functions can be computed using O(n) operations from
f .

• Setting the recurrence and solving, we get the time to
compute DFT is O(n log n).

Definition FFT Polynomial Multiplication

FFT

• The functions are: f0(i) = f (i) + f (n/2 + i) and
f1(i) = (f (i)− f (n/2 + i))ωi for 0 ≤ i < n/2.

• These functions can be computed using O(n) operations from
f .

• Setting the recurrence and solving, we get the time to
compute DFT is O(n log n).

Definition FFT Polynomial Multiplication

FFT

• The functions are: f0(i) = f (i) + f (n/2 + i) and
f1(i) = (f (i)− f (n/2 + i))ωi for 0 ≤ i < n/2.

• These functions can be computed using O(n) operations from
f .

• Setting the recurrence and solving, we get the time to
compute DFT is O(n log n).

Definition FFT Polynomial Multiplication

Outline

Definition

Fast Fourier Transform

Example: Polynomial Multiplication

Definition FFT Polynomial Multiplication

Polynomial Multiplication via FFT

• Let P be a polynomial over field F of degree < n:

P(x) =
n−1∑
i=0

cix
i .

• Associate function P̂ with P, P̂ : [0, n − 1] 7→ F , P̂(i) = ci .

• DFT of P is defined to be

FP(j) = FP̂(j) =
n−1∑
i=0

ciω
ij = P(ωj).

Definition FFT Polynomial Multiplication

Polynomial Multiplication via FFT

• Let P be a polynomial over field F of degree < n:

P(x) =
n−1∑
i=0

cix
i .

• Associate function P̂ with P, P̂ : [0, n − 1] 7→ F , P̂(i) = ci .

• DFT of P is defined to be

FP(j) = FP̂(j) =
n−1∑
i=0

ciω
ij = P(ωj).

Definition FFT Polynomial Multiplication

Polynomial Multiplication via FFT

• Let P be a polynomial over field F of degree < n:

P(x) =
n−1∑
i=0

cix
i .

• Associate function P̂ with P, P̂ : [0, n − 1] 7→ F , P̂(i) = ci .

• DFT of P is defined to be

FP(j) = FP̂(j) =
n−1∑
i=0

ciω
ij = P(ωj).

Definition FFT Polynomial Multiplication

Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree < n = 2k .

1. Treat both P and Q as polynomials of degree 2n − 1 and
compute their DFT, FP and FQ .

2. Multiply FP and FQ component-wise.

3. Compute the inverse-DFT of resulting function by using the
root ω−1 instead of ω.

4. The resulting polynomial is P · Q.

The time complexity of each step is bounded by O(n log n).

Definition FFT Polynomial Multiplication

Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree < n = 2k .

1. Treat both P and Q as polynomials of degree 2n − 1 and
compute their DFT, FP and FQ .

2. Multiply FP and FQ component-wise.

3. Compute the inverse-DFT of resulting function by using the
root ω−1 instead of ω.

4. The resulting polynomial is P · Q.

The time complexity of each step is bounded by O(n log n).

Definition FFT Polynomial Multiplication

Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree < n = 2k .

1. Treat both P and Q as polynomials of degree 2n − 1 and
compute their DFT, FP and FQ .

2. Multiply FP and FQ component-wise.

3. Compute the inverse-DFT of resulting function by using the
root ω−1 instead of ω.

4. The resulting polynomial is P · Q.

The time complexity of each step is bounded by O(n log n).

Definition FFT Polynomial Multiplication

Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree < n = 2k .

1. Treat both P and Q as polynomials of degree 2n − 1 and
compute their DFT, FP and FQ .

2. Multiply FP and FQ component-wise.

3. Compute the inverse-DFT of resulting function by using the
root ω−1 instead of ω.

4. The resulting polynomial is P · Q.

The time complexity of each step is bounded by O(n log n).

Definition FFT Polynomial Multiplication

Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree < n = 2k .

1. Treat both P and Q as polynomials of degree 2n − 1 and
compute their DFT, FP and FQ .

2. Multiply FP and FQ component-wise.

3. Compute the inverse-DFT of resulting function by using the
root ω−1 instead of ω.

4. The resulting polynomial is P · Q.

The time complexity of each step is bounded by O(n log n).

Definition Polynomial Factoring Primality Testing Integer Factoring

Tool 3: Automorphisms

Definition Polynomial Factoring Primality Testing Integer Factoring

Outline

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring

Definition Polynomial Factoring Primality Testing Integer Factoring

Definition

• Automorphism of an algebraic structure is a mapping of the
structure to itself that preserves all the operations.

• Automorphisms of finite rings and fields play a crucial role in
polynomial factoring and primality testing.

Definition Polynomial Factoring Primality Testing Integer Factoring

Definition

• Let R = Zn[X]/(f (X)) be a finite ring, f a polynomial of
degree d .

• An automorphism φ of R preserves both addition and
multiplication in the ring.

• It is easy to see that φ is completely specified by its action on
X : for any element e(X) ∈ R, φ(e(X)) = e(φ(X)).

• In addition, φ(f (X)) = f (φ(X)) = 0 in the ring.

Definition Polynomial Factoring Primality Testing Integer Factoring

Definition

• Let R = Zn[X]/(f (X)) be a finite ring, f a polynomial of
degree d .

• An automorphism φ of R preserves both addition and
multiplication in the ring.

• It is easy to see that φ is completely specified by its action on
X : for any element e(X) ∈ R, φ(e(X)) = e(φ(X)).

• In addition, φ(f (X)) = f (φ(X)) = 0 in the ring.

Definition Polynomial Factoring Primality Testing Integer Factoring

Definition

• Let R = Zn[X]/(f (X)) be a finite ring, f a polynomial of
degree d .

• An automorphism φ of R preserves both addition and
multiplication in the ring.

• It is easy to see that φ is completely specified by its action on
X : for any element e(X) ∈ R, φ(e(X)) = e(φ(X)).

• In addition, φ(f (X)) = f (φ(X)) = 0 in the ring.

Definition Polynomial Factoring Primality Testing Integer Factoring

Definition

• If R is a field, i.e., n is prime and f is irreducible over Fp, then
the automorphisms of R are precisely ψ, ψ2, . . ., ψd = id
where ψ(X) = X p.

• In general, R is a direct sum of fields (by CRT) and its
automorphisms are compositions of automorphisms of fields in
the sum.

Definition Polynomial Factoring Primality Testing Integer Factoring

Definition

• If R is a field, i.e., n is prime and f is irreducible over Fp, then
the automorphisms of R are precisely ψ, ψ2, . . ., ψd = id
where ψ(X) = X p.

• In general, R is a direct sum of fields (by CRT) and its
automorphisms are compositions of automorphisms of fields in
the sum.

Definition Polynomial Factoring Primality Testing Integer Factoring

Outline

Definition

Example: Polynomial Factoring over Finite
Fields

Example: Primality Testing

Example: Integer Factoring

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• The algorithms developed by Berlekemp and others (1980s).

• Let f be a degree n monic polynomial over finite field Fp.

• We wish to compute all irreducible factors of f .

• If f is not square-free, i.e., g2 divides f for some g , then f
can be factored easily:

• Compute gcd(f , df
dx).

• Since g divides both f and df
dx , the gcd will be non-trivial.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• The algorithms developed by Berlekemp and others (1980s).

• Let f be a degree n monic polynomial over finite field Fp.

• We wish to compute all irreducible factors of f .

• If f is not square-free, i.e., g2 divides f for some g , then f
can be factored easily:

• Compute gcd(f , df
dx).

• Since g divides both f and df
dx , the gcd will be non-trivial.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• The algorithms developed by Berlekemp and others (1980s).

• Let f be a degree n monic polynomial over finite field Fp.

• We wish to compute all irreducible factors of f .

• If f is not square-free, i.e., g2 divides f for some g , then f
can be factored easily:

• Compute gcd(f , df
dx).

• Since g divides both f and df
dx , the gcd will be non-trivial.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• The algorithms developed by Berlekemp and others (1980s).

• Let f be a degree n monic polynomial over finite field Fp.

• We wish to compute all irreducible factors of f .

• If f is not square-free, i.e., g2 divides f for some g , then f
can be factored easily:

• Compute gcd(f , df
dx).

• Since g divides both f and df
dx , the gcd will be non-trivial.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• We now assume that f is square-free.

• Let f =
∏t

i=1 fi , each fi is irreducible and has degree di .

• Let d1 ≤ d2 ≤ · · · ≤ dt .

• Consider ring R = Fp[X]/(f) = ⊕t
i=1Fp[X]/(fi). [by CRT]

• Clearly, ψd1 is trivial in Fp[X]/(f1) but not in Fp[X]/(fj) when
dj > d1.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• We now assume that f is square-free.

• Let f =
∏t

i=1 fi , each fi is irreducible and has degree di .

• Let d1 ≤ d2 ≤ · · · ≤ dt .

• Consider ring R = Fp[X]/(f) = ⊕t
i=1Fp[X]/(fi). [by CRT]

• Clearly, ψd1 is trivial in Fp[X]/(f1) but not in Fp[X]/(fj) when
dj > d1.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Therefore, X pd1 = X in Fp[X]/(f1) but not in Fp[X]/(fj).

• So f1 divides gcd(X pd1 − X , f (X)) but not fj .

• Computing gcd(X pd − X , f (X)) starting from d = 1 to
d = n/2 will factor f into equal degree factors.

• That is, each factor we get is a product of all the fj ’s of the
same degree.

• This also allows us to test if f is irreducible: all the gcds are 1
iff f is irreducible.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Therefore, X pd1 = X in Fp[X]/(f1) but not in Fp[X]/(fj).

• So f1 divides gcd(X pd1 − X , f (X)) but not fj .

• Computing gcd(X pd − X , f (X)) starting from d = 1 to
d = n/2 will factor f into equal degree factors.

• That is, each factor we get is a product of all the fj ’s of the
same degree.

• This also allows us to test if f is irreducible: all the gcds are 1
iff f is irreducible.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Therefore, X pd1 = X in Fp[X]/(f1) but not in Fp[X]/(fj).

• So f1 divides gcd(X pd1 − X , f (X)) but not fj .

• Computing gcd(X pd − X , f (X)) starting from d = 1 to
d = n/2 will factor f into equal degree factors.

• That is, each factor we get is a product of all the fj ’s of the
same degree.

• This also allows us to test if f is irreducible: all the gcds are 1
iff f is irreducible.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Now suppose f is such that d1 = d2 = · · · = dt .

• Then the above method does not give any factor of f .

• To handle this, we convert the problem to finding roots of a
polynomial in Fp.

• Let
S = {e(X) ∈ R | ψ(e(X)) = e(X p) = e(X)}.

• S is a subring of R, S = ⊕t
i=1Fp.

• S can be computed using linear algebra.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Now suppose f is such that d1 = d2 = · · · = dt .

• Then the above method does not give any factor of f .

• To handle this, we convert the problem to finding roots of a
polynomial in Fp.

• Let
S = {e(X) ∈ R | ψ(e(X)) = e(X p) = e(X)}.

• S is a subring of R, S = ⊕t
i=1Fp.

• S can be computed using linear algebra.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Choose e(X) ∈ S − Fp.

• We must have e(X) (mod fi (X)) = ci ∈ Fp for each i .

• Since e(X) 6∈ Fp, there exists i and j such that ci 6= cj .

• Therefore, gcd(e(X)− ci , f (X)) is divisible by fi but not by fj .

• Thus we get a factor of f .

• How do we compute a ci?

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Choose e(X) ∈ S − Fp.

• We must have e(X) (mod fi (X)) = ci ∈ Fp for each i .

• Since e(X) 6∈ Fp, there exists i and j such that ci 6= cj .

• Therefore, gcd(e(X)− ci , f (X)) is divisible by fi but not by fj .

• Thus we get a factor of f .

• How do we compute a ci?

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Choose e(X) ∈ S − Fp.

• We must have e(X) (mod fi (X)) = ci ∈ Fp for each i .

• Since e(X) 6∈ Fp, there exists i and j such that ci 6= cj .

• Therefore, gcd(e(X)− ci , f (X)) is divisible by fi but not by fj .

• Thus we get a factor of f .

• How do we compute a ci?

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Let g(y) = Res(e(X)− y , f (X)).

• Res is the resultant of two polynomials.

• For any c ∈ Fp, we have g(c) = 0 iff gcd(e(X)− c , f (X)) is
non-trivial giving a factor of f .

• So, if we can find roots of g in Fp, we can factor f !

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Let g(y) = Res(e(X)− y , f (X)).

• Res is the resultant of two polynomials.

• For any c ∈ Fp, we have g(c) = 0 iff gcd(e(X)− c , f (X)) is
non-trivial giving a factor of f .

• So, if we can find roots of g in Fp, we can factor f !

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Let g(y) = Res(e(X)− y , f (X)).

• Res is the resultant of two polynomials.

• For any c ∈ Fp, we have g(c) = 0 iff gcd(e(X)− c , f (X)) is
non-trivial giving a factor of f .

• So, if we can find roots of g in Fp, we can factor f !

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Compute ĝ(y) = gcd(g(y), ψ(y)− y).
• ĝ factors completely in Fp and its roots are roots of g in Fp.

• Let ĝ(y) =
∏k

i=0(y − ci).

• Compute h(y) = ĝ(y2 − r) for a randomly chosen r ∈ Fp.

• So, h(y) =
∏k

i=0(y
2 − (ci + r)).

• y2 − (ci + r) factors over Fp iff ci + r is a quadratic residue.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Compute ĝ(y) = gcd(g(y), ψ(y)− y).
• ĝ factors completely in Fp and its roots are roots of g in Fp.

• Let ĝ(y) =
∏k

i=0(y − ci).

• Compute h(y) = ĝ(y2 − r) for a randomly chosen r ∈ Fp.

• So, h(y) =
∏k

i=0(y
2 − (ci + r)).

• y2 − (ci + r) factors over Fp iff ci + r is a quadratic residue.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• Compute ĝ(y) = gcd(g(y), ψ(y)− y).
• ĝ factors completely in Fp and its roots are roots of g in Fp.

• Let ĝ(y) =
∏k

i=0(y − ci).

• Compute h(y) = ĝ(y2 − r) for a randomly chosen r ∈ Fp.

• So, h(y) =
∏k

i=0(y
2 − (ci + r)).

• y2 − (ci + r) factors over Fp iff ci + r is a quadratic residue.

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• For any i and j , i 6= j , the probability that exactly one of
ci + r and cj + r is a quadratic residue in Fp, is at least 1

2 .

• Therefore, using the equal degree factorization algorithm
above factors h(y) with probability at least 1

2 .

• Let h(y) = h1(y) · h2(y).

• Both h1 and h2 will have only even powers of y .

• Then, g(y) = h(
√

y + r) = h1(
√

y + r) · h2(
√

y + r).

• Iterate this to completely factor g .

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• For any i and j , i 6= j , the probability that exactly one of
ci + r and cj + r is a quadratic residue in Fp, is at least 1

2 .

• Therefore, using the equal degree factorization algorithm
above factors h(y) with probability at least 1

2 .

• Let h(y) = h1(y) · h2(y).

• Both h1 and h2 will have only even powers of y .

• Then, g(y) = h(
√

y + r) = h1(
√

y + r) · h2(
√

y + r).

• Iterate this to completely factor g .

Definition Polynomial Factoring Primality Testing Integer Factoring

Polynomial Factoring Over Finite Fields

• For any i and j , i 6= j , the probability that exactly one of
ci + r and cj + r is a quadratic residue in Fp, is at least 1

2 .

• Therefore, using the equal degree factorization algorithm
above factors h(y) with probability at least 1

2 .

• Let h(y) = h1(y) · h2(y).

• Both h1 and h2 will have only even powers of y .

• Then, g(y) = h(
√

y + r) = h1(
√

y + r) · h2(
√

y + r).

• Iterate this to completely factor g .

Definition Polynomial Factoring Primality Testing Integer Factoring

Outline

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Fermat’s Little Theorem states that if n is prime then for
every a: an = a (mod n).

• In other words: mapping φ(x) = xn is the trivial
automorphism of the ring Zn.

• The converse of the statement is not true: there are
composite n such that φ is the trivial automorphism of Zn.

• Even if it were true, checking if φ is the trivial automorphism
requires Ω(n) steps.

• So the theorem cannot be used for testing primality efficiently.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Fermat’s Little Theorem states that if n is prime then for
every a: an = a (mod n).

• In other words: mapping φ(x) = xn is the trivial
automorphism of the ring Zn.

• The converse of the statement is not true: there are
composite n such that φ is the trivial automorphism of Zn.

• Even if it were true, checking if φ is the trivial automorphism
requires Ω(n) steps.

• So the theorem cannot be used for testing primality efficiently.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Fermat’s Little Theorem states that if n is prime then for
every a: an = a (mod n).

• In other words: mapping φ(x) = xn is the trivial
automorphism of the ring Zn.

• The converse of the statement is not true: there are
composite n such that φ is the trivial automorphism of Zn.

• Even if it were true, checking if φ is the trivial automorphism
requires Ω(n) steps.

• So the theorem cannot be used for testing primality efficiently.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Both the problems can be eliminated using a generalization of
the theorem.

• This was shown by A, Kayal and Saxena (2004) who obtained
a deterministic O (̃n15/2) algorithm for primality testing.

• Earlier, there were algorithms known for primality testing but
they were either randomized or not polynomial-time.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Both the problems can be eliminated using a generalization of
the theorem.

• This was shown by A, Kayal and Saxena (2004) who obtained
a deterministic O (̃n15/2) algorithm for primality testing.

• Earlier, there were algorithms known for primality testing but
they were either randomized or not polynomial-time.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Fix r > 0 such that Or (n) > 4 log2 n (Or (n) is order of n
modulo r).

• It is easy to see that such an r exists in [4 log2 n, 16 log5 n].

• Let ring R = Zn[X]/(X 2r − X r).

• Clearly we have:

Theorem (Generalized FLT)

If n is prime then φ is an automorphism of R.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Fix r > 0 such that Or (n) > 4 log2 n (Or (n) is order of n
modulo r).

• It is easy to see that such an r exists in [4 log2 n, 16 log5 n].

• Let ring R = Zn[X]/(X 2r − X r).

• Clearly we have:

Theorem (Generalized FLT)

If n is prime then φ is an automorphism of R.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Does the converse also hold?

• Yes, it does!

Theorem (AKS, 2004)

If φ is an automorphism of R then n is prime.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Does the converse also hold?

• Yes, it does!

Theorem (AKS, 2004)

If φ is an automorphism of R then n is prime.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• What about efficiency?

• Testing that φ is an automorphism naively requires
exponential time.

• This can be eliminated too:

Theorem (AKS, 2004)

φ is an automorphism of R iff φ(X + a) = φ(X) + a in R for
1 ≤ a ≤ 2

√
r log n.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• What about efficiency?

• Testing that φ is an automorphism naively requires
exponential time.

• This can be eliminated too:

Theorem (AKS, 2004)

φ is an automorphism of R iff φ(X + a) = φ(X) + a in R for
1 ≤ a ≤ 2

√
r log n.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• What about efficiency?

• Testing that φ is an automorphism naively requires
exponential time.

• This can be eliminated too:

Theorem (AKS, 2004)

φ is an automorphism of R iff φ(X + a) = φ(X) + a in R for
1 ≤ a ≤ 2

√
r log n.

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Since r = O(log5 n), testing if φ(X + a) = φ(X) + a takes
time O (̃log7 n).

• So total time taken is O (̃log7 n · log7/2 n) = O (̃log21/2 n).

• Using an analytic number theory result by Fouvry (1985), it
can be shown that r = O(log3 n).

• This brings down time complexity to O (̃log15/2 n).

• Lenstra and Pomerance (2003) further bring it down to
O (̃log6 n).

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Since r = O(log5 n), testing if φ(X + a) = φ(X) + a takes
time O (̃log7 n).

• So total time taken is O (̃log7 n · log7/2 n) = O (̃log21/2 n).

• Using an analytic number theory result by Fouvry (1985), it
can be shown that r = O(log3 n).

• This brings down time complexity to O (̃log15/2 n).

• Lenstra and Pomerance (2003) further bring it down to
O (̃log6 n).

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Since r = O(log5 n), testing if φ(X + a) = φ(X) + a takes
time O (̃log7 n).

• So total time taken is O (̃log7 n · log7/2 n) = O (̃log21/2 n).

• Using an analytic number theory result by Fouvry (1985), it
can be shown that r = O(log3 n).

• This brings down time complexity to O (̃log15/2 n).

• Lenstra and Pomerance (2003) further bring it down to
O (̃log6 n).

Definition Polynomial Factoring Primality Testing Integer Factoring

Primality Testing

• Since r = O(log5 n), testing if φ(X + a) = φ(X) + a takes
time O (̃log7 n).

• So total time taken is O (̃log7 n · log7/2 n) = O (̃log21/2 n).

• Using an analytic number theory result by Fouvry (1985), it
can be shown that r = O(log3 n).

• This brings down time complexity to O (̃log15/2 n).

• Lenstra and Pomerance (2003) further bring it down to
O (̃log6 n).

Definition Polynomial Factoring Primality Testing Integer Factoring

Outline

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• Kayal and Saxena (2004) show that integer factoring reduces
to several questions about automorphisms of rings.

• They show n can be factored if
• A non-trivial automorphism of ring Zn[X]/(X 2 − 1) can be

computed.
• The number of automorphisms of ring Zn[X]/(X 2) can be

computed.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• Kayal and Saxena (2004) show that integer factoring reduces
to several questions about automorphisms of rings.

• They show n can be factored if
• A non-trivial automorphism of ring Zn[X]/(X 2 − 1) can be

computed.
• The number of automorphisms of ring Zn[X]/(X 2) can be

computed.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• Kayal and Saxena (2004) show that integer factoring reduces
to several questions about automorphisms of rings.

• They show n can be factored if
• A non-trivial automorphism of ring Zn[X]/(X 2 − 1) can be

computed.
• The number of automorphisms of ring Zn[X]/(X 2) can be

computed.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

Theorem (Kayal and Saxena, 2004)

An odd number n can be factored efficiently iff a non-trivial
automorphism of ring Zn[X]/(X 2 − 1) can be computed efficiently.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

Proof.

• First observe that n can be factored iff a non-trivial solution
of y2 − 1 (mod n) can be found in Zn:

• If y0 6= ±1 (mod n) is a non-trivial solution, then
gcd(y0 + 1, n) gives a factor.

• If n = n1n2, then a y0 < n with y0 = 1 (mod n1) and
y0 = −1 (mod n2) exists (by CRT) and is therefore a
non-trivial solution.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

Proof.

• First observe that n can be factored iff a non-trivial solution
of y2 − 1 (mod n) can be found in Zn:

• If y0 6= ±1 (mod n) is a non-trivial solution, then
gcd(y0 + 1, n) gives a factor.

• If n = n1n2, then a y0 < n with y0 = 1 (mod n1) and
y0 = −1 (mod n2) exists (by CRT) and is therefore a
non-trivial solution.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

Proof.

• First observe that n can be factored iff a non-trivial solution
of y2 − 1 (mod n) can be found in Zn:

• If y0 6= ±1 (mod n) is a non-trivial solution, then
gcd(y0 + 1, n) gives a factor.

• If n = n1n2, then a y0 < n with y0 = 1 (mod n1) and
y0 = −1 (mod n2) exists (by CRT) and is therefore a
non-trivial solution.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• Let φ(X) = a · X + b be a non-trivial automorphism of
R = Zn[X]/(X 2 − 1).

• Let d = gcd(a, n).

• Consider φ(n
d X) = n

d · a · X + n
d · b = n

d · b.

• Since φ is a 1-1 map, this is only possible when
d = gcd(a, n) = 1.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• Let φ(X) = a · X + b be a non-trivial automorphism of
R = Zn[X]/(X 2 − 1).

• Let d = gcd(a, n).

• Consider φ(n
d X) = n

d · a · X + n
d · b = n

d · b.

• Since φ is a 1-1 map, this is only possible when
d = gcd(a, n) = 1.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• Let φ(X) = a · X + b be a non-trivial automorphism of
R = Zn[X]/(X 2 − 1).

• Let d = gcd(a, n).

• Consider φ(n
d X) = n

d · a · X + n
d · b = n

d · b.

• Since φ is a 1-1 map, this is only possible when
d = gcd(a, n) = 1.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• We have:

0 = φ(X 2 − 1) = (aX + b)2 − 1 = 2abX + a2 + b2 − 1

in the ring.

• This gives 2ab = 0 = a2 + b2 − 1 (mod n).

• Since n is odd and gcd(a, n) = 1, we get b = 0 (mod n) and
a2 = 1 (mod n).

• Therefore, φ(X) = a · X with a2 = 1 (mod n).

• As φ is non-trivial, a 6= ±1 (mod n).

• So, given φ, we can use a to factor n.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• We have:

0 = φ(X 2 − 1) = (aX + b)2 − 1 = 2abX + a2 + b2 − 1

in the ring.

• This gives 2ab = 0 = a2 + b2 − 1 (mod n).

• Since n is odd and gcd(a, n) = 1, we get b = 0 (mod n) and
a2 = 1 (mod n).

• Therefore, φ(X) = a · X with a2 = 1 (mod n).

• As φ is non-trivial, a 6= ±1 (mod n).

• So, given φ, we can use a to factor n.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• We have:

0 = φ(X 2 − 1) = (aX + b)2 − 1 = 2abX + a2 + b2 − 1

in the ring.

• This gives 2ab = 0 = a2 + b2 − 1 (mod n).

• Since n is odd and gcd(a, n) = 1, we get b = 0 (mod n) and
a2 = 1 (mod n).

• Therefore, φ(X) = a · X with a2 = 1 (mod n).

• As φ is non-trivial, a 6= ±1 (mod n).

• So, given φ, we can use a to factor n.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• We have:

0 = φ(X 2 − 1) = (aX + b)2 − 1 = 2abX + a2 + b2 − 1

in the ring.

• This gives 2ab = 0 = a2 + b2 − 1 (mod n).

• Since n is odd and gcd(a, n) = 1, we get b = 0 (mod n) and
a2 = 1 (mod n).

• Therefore, φ(X) = a · X with a2 = 1 (mod n).

• As φ is non-trivial, a 6= ±1 (mod n).

• So, given φ, we can use a to factor n.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• Conversely, assume that we know a number a such that
a 6= ±1 (mod n) and a2 = 1 (mod n).

• This a defines a non-trivial automorphism of R.

Definition Polynomial Factoring Primality Testing Integer Factoring

Integer Factoring

• Conversely, assume that we know a number a such that
a 6= ±1 (mod n) and a2 = 1 (mod n).

• This a defines a non-trivial automorphism of R.

Definition Example: Polynomial Division

Tool 4: Hensel Lifting

Definition Example: Polynomial Division

Outline

Definition

Example: Polynomial Division

Definition Example: Polynomial Division

Hensel Lifting

• Let R = Z or F [x], and m ∈ R.

• Hensel (1918) designed a method to compute factorization of
any element of R modulo m` given its factorization modulo m.

• The method is called Hensel Lifting.

• It is used in several places: polynomial division, polynomial
factorization etc.

Definition Example: Polynomial Division

Hensel Lifting

• Suppose we are given f , g , h, s, t ∈ R such that
f = g · h (mod m), gcd(g , h) = 1 (mod m), and
sg + th = 1 (mod m).

• Compute e = f − gh (mod m2), g ′ = g + te (mod m2),
h′ = h + se (mod m2).

• Then we get:

g ′h′ (mod m2) = gh + sge + the + ste2 (mod m2)

= gh + (sg + th)(f − gh) (mod m2)

= f (mod m2).

Definition Example: Polynomial Division

Hensel Lifting

• Suppose we are given f , g , h, s, t ∈ R such that
f = g · h (mod m), gcd(g , h) = 1 (mod m), and
sg + th = 1 (mod m).

• Compute e = f − gh (mod m2), g ′ = g + te (mod m2),
h′ = h + se (mod m2).

• Then we get:

g ′h′ (mod m2) = gh + sge + the + ste2 (mod m2)

= gh + (sg + th)(f − gh) (mod m2)

= f (mod m2).

Definition Example: Polynomial Division

Hensel Lifting

• Suppose we are given f , g , h, s, t ∈ R such that
f = g · h (mod m), gcd(g , h) = 1 (mod m), and
sg + th = 1 (mod m).

• Compute e = f − gh (mod m2), g ′ = g + te (mod m2),
h′ = h + se (mod m2).

• Then we get:

g ′h′ (mod m2) = gh + sge + the + ste2 (mod m2)

= gh + (sg + th)(f − gh) (mod m2)

= f (mod m2).

Definition Example: Polynomial Division

Hensel Lifting

• Also compute d = sg ′ + th′ − 1 (mod m2),
s ′ = s(1− d) (mod m2), t ′ = t(1− d) (mod m2).

• Then:

s ′g ′ + t ′h′ (mod m2) = sg ′(1− d) + th′(1− d) (mod m2)

= (1 + d)(1− d) (mod m2)

= 1 (mod m2).

• Thus we can ‘lift’ the factorization to modulo m2.

• Iterating this log ` times gives factorization modulo m`.

Definition Example: Polynomial Division

Hensel Lifting

• Also compute d = sg ′ + th′ − 1 (mod m2),
s ′ = s(1− d) (mod m2), t ′ = t(1− d) (mod m2).

• Then:

s ′g ′ + t ′h′ (mod m2) = sg ′(1− d) + th′(1− d) (mod m2)

= (1 + d)(1− d) (mod m2)

= 1 (mod m2).

• Thus we can ‘lift’ the factorization to modulo m2.

• Iterating this log ` times gives factorization modulo m`.

Definition Example: Polynomial Division

Hensel Lifting

• Also compute d = sg ′ + th′ − 1 (mod m2),
s ′ = s(1− d) (mod m2), t ′ = t(1− d) (mod m2).

• Then:

s ′g ′ + t ′h′ (mod m2) = sg ′(1− d) + th′(1− d) (mod m2)

= (1 + d)(1− d) (mod m2)

= 1 (mod m2).

• Thus we can ‘lift’ the factorization to modulo m2.

• Iterating this log ` times gives factorization modulo m`.

Definition Example: Polynomial Division

Outline

Definition

Example: Polynomial Division

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• Let f (x) and g(x) be two monic polynomials over field F ,
deg f = n, deg g = m < n.

• We wish to compute d(x) and r(x) such that f = dg + r and
deg r < m.

• A naive algorithm takes O(n2) field operations.

• Using Hensel Lifting, we can do it in O(n log n) operations.

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• Let f (x) and g(x) be two monic polynomials over field F ,
deg f = n, deg g = m < n.

• We wish to compute d(x) and r(x) such that f = dg + r and
deg r < m.

• A naive algorithm takes O(n2) field operations.

• Using Hensel Lifting, we can do it in O(n log n) operations.

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• For any polynomial p(x) of degree d , define p̃(x) = xdp(1
x).

• The coefficients of p̃ are ‘reversed’.

• If f (x) = d(x)g(x) + r(x), then

f̃ (x) = d̃(x)g̃(x) + xn−m+1r̃(x).

• Therefore,

f̃ (x) = d̃(x)g̃(x) (mod xn−m+1).

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• For any polynomial p(x) of degree d , define p̃(x) = xdp(1
x).

• The coefficients of p̃ are ‘reversed’.

• If f (x) = d(x)g(x) + r(x), then

f̃ (x) = d̃(x)g̃(x) + xn−m+1r̃(x).

• Therefore,

f̃ (x) = d̃(x)g̃(x) (mod xn−m+1).

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• Since g̃(x) has degree zero coefficient 1, it is invertible
modulo xn−m+1.

• So, d̃(x) = f̃ (x) · g̃−1(x) (mod xn−m+1).

• So if we can compute g̃−1(x) (mod xn−m+1), then one
multiplication would give d̃(x) from which d(x) and then
r(x) = f (x)− d(x)g(x) can be easily recovered.

• We use Hensel Lifting to compute g̃−1(x) (mod xn−m+1).

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• Since g̃(x) has degree zero coefficient 1, it is invertible
modulo xn−m+1.

• So, d̃(x) = f̃ (x) · g̃−1(x) (mod xn−m+1).

• So if we can compute g̃−1(x) (mod xn−m+1), then one
multiplication would give d̃(x) from which d(x) and then
r(x) = f (x)− d(x)g(x) can be easily recovered.

• We use Hensel Lifting to compute g̃−1(x) (mod xn−m+1).

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• Since g̃(x) has degree zero coefficient 1, it is invertible
modulo xn−m+1.

• So, d̃(x) = f̃ (x) · g̃−1(x) (mod xn−m+1).

• So if we can compute g̃−1(x) (mod xn−m+1), then one
multiplication would give d̃(x) from which d(x) and then
r(x) = f (x)− d(x)g(x) can be easily recovered.

• We use Hensel Lifting to compute g̃−1(x) (mod xn−m+1).

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• Let h(x) = g̃−1(x) (mod xn−m+1).

• So, h(x) · g̃(x) = 1 (mod xn−m+1).

• Notice that g̃(x) (mod x) = 1 and so h(x) (mod x) = 1.

• Let s(x) = 1 and t(x) = 0 so s · h + t · g̃ = 1 (mod x).

• Use Hensel Lifting iteratively ` = dlog(n −m + 1)e times to

compute h(x) (mod x2`
) such that h(x) · g̃(x) = 1 (mod x2`

).

• As we start with t = 0, t will remain zero through all the
iterations.

• Therefore, function g̃ will also not change, as required.

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• Let h(x) = g̃−1(x) (mod xn−m+1).

• So, h(x) · g̃(x) = 1 (mod xn−m+1).

• Notice that g̃(x) (mod x) = 1 and so h(x) (mod x) = 1.

• Let s(x) = 1 and t(x) = 0 so s · h + t · g̃ = 1 (mod x).

• Use Hensel Lifting iteratively ` = dlog(n −m + 1)e times to

compute h(x) (mod x2`
) such that h(x) · g̃(x) = 1 (mod x2`

).

• As we start with t = 0, t will remain zero through all the
iterations.

• Therefore, function g̃ will also not change, as required.

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• This gives the inverse of g̃(x) (mod xn−m+1).

• The algorithm uses only multiplication and addition.

• The kth iteration uses a constant number of multiplication
and addition of polynomials of degree 2k .

• Therefore, the whole algorithm requires
O(

∑`
k=1 MP(2k)) = O(MP(2`) = O(MP(n)) = O(n log n)

operations.

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• This gives the inverse of g̃(x) (mod xn−m+1).

• The algorithm uses only multiplication and addition.

• The kth iteration uses a constant number of multiplication
and addition of polynomials of degree 2k .

• Therefore, the whole algorithm requires
O(

∑`
k=1 MP(2k)) = O(MP(2`) = O(MP(n)) = O(n log n)

operations.

Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• This gives the inverse of g̃(x) (mod xn−m+1).

• The algorithm uses only multiplication and addition.

• The kth iteration uses a constant number of multiplication
and addition of polynomials of degree 2k .

• Therefore, the whole algorithm requires
O(

∑`
k=1 MP(2k)) = O(MP(2`) = O(MP(n)) = O(n log n)

operations.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Tool 5: Short Vectors in a Lattice

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Outline

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Lattices

• Let v̂1, . . ., v̂n ∈ Rn be linearly independent vectors.

• Then,

L = {
n∑

i=1

αi v̂i | α1, . . . , αn ∈ Z}

is lattice generated by v̂1, . . ., v̂n.

• Vector v̂ is shortest vector in lattice L if ‖v̂‖2 is minimum.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Lattices

• Let v̂1, . . ., v̂n ∈ Rn be linearly independent vectors.

• Then,

L = {
n∑

i=1

αi v̂i | α1, . . . , αn ∈ Z}

is lattice generated by v̂1, . . ., v̂n.

• Vector v̂ is shortest vector in lattice L if ‖v̂‖2 is minimum.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Lattices

• Let v̂1, . . ., v̂n ∈ Rn be linearly independent vectors.

• Then,

L = {
n∑

i=1

αi v̂i | α1, . . . , αn ∈ Z}

is lattice generated by v̂1, . . ., v̂n.

• Vector v̂ is shortest vector in lattice L if ‖v̂‖2 is minimum.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Lattices

• For lattice L, its norm |L| is defined to be det(v̂1 v̂2 . . . v̂n).

• |L| is independent of the choice of basis of L.

Theorem (Minkowski, 1896)

The length of shortest vector of L is at most
√

n · |L|1/n.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Lattices

• For lattice L, its norm |L| is defined to be det(v̂1 v̂2 . . . v̂n).

• |L| is independent of the choice of basis of L.

Theorem (Minkowski, 1896)

The length of shortest vector of L is at most
√

n · |L|1/n.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

LLL Algorithm

• Lenstra, Lenstra and Lovasz (1982) designed a
polynomial-time algorithm for computing a short vector in any
lattice.

• The algorithm computes a vector whose length is at most

2
n−1

2 times the length of shortest vector in the lattice.

• It is now known that finding a vector within a
√

2 factor of
shortest vector length is NP-hard.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

LLL Algorithm

• Lenstra, Lenstra and Lovasz (1982) designed a
polynomial-time algorithm for computing a short vector in any
lattice.

• The algorithm computes a vector whose length is at most

2
n−1

2 times the length of shortest vector in the lattice.

• It is now known that finding a vector within a
√

2 factor of
shortest vector length is NP-hard.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

LLL Algorithm

• Lenstra, Lenstra and Lovasz (1982) designed a
polynomial-time algorithm for computing a short vector in any
lattice.

• The algorithm computes a vector whose length is at most

2
n−1

2 times the length of shortest vector in the lattice.

• It is now known that finding a vector within a
√

2 factor of
shortest vector length is NP-hard.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Outline

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Finding Small Solutions of Modular

Equations

• Modular equations for prime moduli can be solved using
polynomial factorization.

• But this does not work for composite moduli.

• For this, short lattice vectors can be used to find small
solutions.

• Small = solutions much smaller than the moduli in absolute
value

• An example is breaking low-exponent RSA when part of the
message is known.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Finding Small Solutions of Modular

Equations

• Modular equations for prime moduli can be solved using
polynomial factorization.

• But this does not work for composite moduli.

• For this, short lattice vectors can be used to find small
solutions.

• Small = solutions much smaller than the moduli in absolute
value

• An example is breaking low-exponent RSA when part of the
message is known.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Finding Small Solutions of Modular

Equations

• Modular equations for prime moduli can be solved using
polynomial factorization.

• But this does not work for composite moduli.

• For this, short lattice vectors can be used to find small
solutions.

• Small = solutions much smaller than the moduli in absolute
value

• An example is breaking low-exponent RSA when part of the
message is known.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Let (n, 3) be the public-key of an RSA cryptosystem.

• Notice that the exponent of encryption is set to 3.

• Let c = m3 (mod n) be a ciphertext.

• Suppose that leading 11
12 |n| bits of m are known.

• This is possible in certain situations, e.g., when there is a
fixed 11

12 |n|-bit header appended to each message.

• Let m = h · 2|n|/12 + x where h is known.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Let (n, 3) be the public-key of an RSA cryptosystem.

• Notice that the exponent of encryption is set to 3.

• Let c = m3 (mod n) be a ciphertext.

• Suppose that leading 11
12 |n| bits of m are known.

• This is possible in certain situations, e.g., when there is a
fixed 11

12 |n|-bit header appended to each message.

• Let m = h · 2|n|/12 + x where h is known.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Let (n, 3) be the public-key of an RSA cryptosystem.

• Notice that the exponent of encryption is set to 3.

• Let c = m3 (mod n) be a ciphertext.

• Suppose that leading 11
12 |n| bits of m are known.

• This is possible in certain situations, e.g., when there is a
fixed 11

12 |n|-bit header appended to each message.

• Let m = h · 2|n|/12 + x where h is known.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Let (n, 3) be the public-key of an RSA cryptosystem.

• Notice that the exponent of encryption is set to 3.

• Let c = m3 (mod n) be a ciphertext.

• Suppose that leading 11
12 |n| bits of m are known.

• This is possible in certain situations, e.g., when there is a
fixed 11

12 |n|-bit header appended to each message.

• Let m = h · 2|n|/12 + x where h is known.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Therefore,
c = (h ·2|n|/12 + x)3 (mod n) = x3 + a2x

2 + a1x + a0 (mod n).

• So if we can find all the roots of the above polynomial that
are less than 2|n|/12 = n1/12 then m can be recovered.

• For a vector v̂ ∈ Zd , v̂ = [vd−1 vd−2 · · · v0], let
v(x) =

∑d−1
i=0 vix

i and vice-versa.

• Let p3(x) = x3 + a2x
2 + a1x + (a0 − c).

• Then p̂3 = [0 0 1 a2 a1 a0 − c] ∈ Z6.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Therefore,
c = (h ·2|n|/12 + x)3 (mod n) = x3 + a2x

2 + a1x + a0 (mod n).

• So if we can find all the roots of the above polynomial that
are less than 2|n|/12 = n1/12 then m can be recovered.

• For a vector v̂ ∈ Zd , v̂ = [vd−1 vd−2 · · · v0], let
v(x) =

∑d−1
i=0 vix

i and vice-versa.

• Let p3(x) = x3 + a2x
2 + a1x + (a0 − c).

• Then p̂3 = [0 0 1 a2 a1 a0 − c] ∈ Z6.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Therefore,
c = (h ·2|n|/12 + x)3 (mod n) = x3 + a2x

2 + a1x + a0 (mod n).

• So if we can find all the roots of the above polynomial that
are less than 2|n|/12 = n1/12 then m can be recovered.

• For a vector v̂ ∈ Zd , v̂ = [vd−1 vd−2 · · · v0], let
v(x) =

∑d−1
i=0 vix

i and vice-versa.

• Let p3(x) = x3 + a2x
2 + a1x + (a0 − c).

• Then p̂3 = [0 0 1 a2 a1 a0 − c] ∈ Z6.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Let p4(x) = x · p3(x), p5(x) = x2 · p3(x), p0(x) = n,
p1(x) = n · x , and p2(x) = n · x2.

• Let L be the lattice generated by vectors p̂0, . . ., p̂5.

• Let vector v̂ ∈ L, v̂ =
∑5

i=0 αi p̂i .

• Notice that polynomial
v(x) =

∑5
i=0 αipi (x) = p3(x) · q(x) (mod n) for some q(x) of

degree two.

• Hence, every root of p3(x) (mod n) is also a root of
v(x) (mod n).

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Let p4(x) = x · p3(x), p5(x) = x2 · p3(x), p0(x) = n,
p1(x) = n · x , and p2(x) = n · x2.

• Let L be the lattice generated by vectors p̂0, . . ., p̂5.

• Let vector v̂ ∈ L, v̂ =
∑5

i=0 αi p̂i .

• Notice that polynomial
v(x) =

∑5
i=0 αipi (x) = p3(x) · q(x) (mod n) for some q(x) of

degree two.

• Hence, every root of p3(x) (mod n) is also a root of
v(x) (mod n).

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Let p4(x) = x · p3(x), p5(x) = x2 · p3(x), p0(x) = n,
p1(x) = n · x , and p2(x) = n · x2.

• Let L be the lattice generated by vectors p̂0, . . ., p̂5.

• Let vector v̂ ∈ L, v̂ =
∑5

i=0 αi p̂i .

• Notice that polynomial
v(x) =

∑5
i=0 αipi (x) = p3(x) · q(x) (mod n) for some q(x) of

degree two.

• Hence, every root of p3(x) (mod n) is also a root of
v(x) (mod n).

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• We have |L| = n3.

• By the property of lattices, L has a shortest vector of length
at most

√
6n3/6 =

√
6n.

• Run LLL algorithm to find a short vector û in L.

• The length of û is at most 25/2
√

6n = 4
√

12n.

• Let u(x) =
∑5

i=0 βix
i .

• We have |βi | ≤ 4
√

12n.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• We have |L| = n3.

• By the property of lattices, L has a shortest vector of length
at most

√
6n3/6 =

√
6n.

• Run LLL algorithm to find a short vector û in L.

• The length of û is at most 25/2
√

6n = 4
√

12n.

• Let u(x) =
∑5

i=0 βix
i .

• We have |βi | ≤ 4
√

12n.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• We have |L| = n3.

• By the property of lattices, L has a shortest vector of length
at most

√
6n3/6 =

√
6n.

• Run LLL algorithm to find a short vector û in L.

• The length of û is at most 25/2
√

6n = 4
√

12n.

• Let u(x) =
∑5

i=0 βix
i .

• We have |βi | ≤ 4
√

12n.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Consider a root γ of p3(x) (mod n) with γ ≤ n1/12.

• As argued above, γ is a root of u(x) (mod n) too.

• Now, |u(γ)| ≤ 24
√

12n · γ5 < n for n > (24
√

12)12.

• Therefore, u(γ) = 0 over rationals!

• Factor u(x) over rationals to compute all its roots.

• Identify the root that yields the ciphertext.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Consider a root γ of p3(x) (mod n) with γ ≤ n1/12.

• As argued above, γ is a root of u(x) (mod n) too.

• Now, |u(γ)| ≤ 24
√

12n · γ5 < n for n > (24
√

12)12.

• Therefore, u(γ) = 0 over rationals!

• Factor u(x) over rationals to compute all its roots.

• Identify the root that yields the ciphertext.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• Consider a root γ of p3(x) (mod n) with γ ≤ n1/12.

• As argued above, γ is a root of u(x) (mod n) too.

• Now, |u(γ)| ≤ 24
√

12n · γ5 < n for n > (24
√

12)12.

• Therefore, u(γ) = 0 over rationals!

• Factor u(x) over rationals to compute all its roots.

• Identify the root that yields the ciphertext.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• This breaks exponent-3 RSA when first 11
12 -fraction of bits of

plaintext are known.

• This can be improved to first 1
2 -fraction.

• Also generalizes to any small exponent.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• This breaks exponent-3 RSA when first 11
12 -fraction of bits of

plaintext are known.

• This can be improved to first 1
2 -fraction.

• Also generalizes to any small exponent.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Breaking Low Exponent RSA

• This breaks exponent-3 RSA when first 11
12 -fraction of bits of

plaintext are known.

• This can be improved to first 1
2 -fraction.

• Also generalizes to any small exponent.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Outline

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

The Problem

• Given a monic polynomial f (x) of degree n, factor f over
rationals.

• A deterministic polynomial time algorithm for this was given
by Lenstra, Lenstra, Lovasz (1982).

• The algorithm uses Hensel Lifting and short vectors in lattices.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

The Problem

• Given a monic polynomial f (x) of degree n, factor f over
rationals.

• A deterministic polynomial time algorithm for this was given
by Lenstra, Lenstra, Lovasz (1982).

• The algorithm uses Hensel Lifting and short vectors in lattices.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• Choose a small prime p, and factor f over Fp.

• Let f = g1 · g2 (mod p) with g1 being irreducible.

• Let ` be the smallest integer greater than
3
2(n2 − 1) + (2n + 1) log ‖f ‖2.

• Use Hensel Lifting to compute factors of f modulo p`.

• Let f = g ′1 · g ′2 (mod p`).

• Note that g ′1 remains irreducible modulo p`.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• Choose a small prime p, and factor f over Fp.

• Let f = g1 · g2 (mod p) with g1 being irreducible.

• Let ` be the smallest integer greater than
3
2(n2 − 1) + (2n + 1) log ‖f ‖2.

• Use Hensel Lifting to compute factors of f modulo p`.

• Let f = g ′1 · g ′2 (mod p`).

• Note that g ′1 remains irreducible modulo p`.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• Without loss of generality, assume g ′1 is monic and
deg(g ′1) = d .

• Define polynomials hi (x) = p`x i for 0 ≤ i < d .

• Define polynomials hd+i (x) = x i · g ′1(x) for 0 ≤ i < n − d .

• As before, let L be the n-dimensional lattice generated by
vectors ĥ0, . . ., ĥn−1.

• The lattice contains precisely degree n − 1 polynomials that
are multiples of g ′1 modulo p`.

• This lattice has a shortest vector of length at most
√

npd`/n.

• So, LLL algorithm produces a vector of length at most

2
n−1

2
√

npd`/n.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• Without loss of generality, assume g ′1 is monic and
deg(g ′1) = d .

• Define polynomials hi (x) = p`x i for 0 ≤ i < d .

• Define polynomials hd+i (x) = x i · g ′1(x) for 0 ≤ i < n − d .

• As before, let L be the n-dimensional lattice generated by
vectors ĥ0, . . ., ĥn−1.

• The lattice contains precisely degree n − 1 polynomials that
are multiples of g ′1 modulo p`.

• This lattice has a shortest vector of length at most
√

npd`/n.

• So, LLL algorithm produces a vector of length at most

2
n−1

2
√

npd`/n.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• Without loss of generality, assume g ′1 is monic and
deg(g ′1) = d .

• Define polynomials hi (x) = p`x i for 0 ≤ i < d .

• Define polynomials hd+i (x) = x i · g ′1(x) for 0 ≤ i < n − d .

• As before, let L be the n-dimensional lattice generated by
vectors ĥ0, . . ., ĥn−1.

• The lattice contains precisely degree n − 1 polynomials that
are multiples of g ′1 modulo p`.

• This lattice has a shortest vector of length at most
√

npd`/n.

• So, LLL algorithm produces a vector of length at most

2
n−1

2
√

npd`/n.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• But we can do better!

• Suppose f = f1 · f2 over rationals.

• Since f = g ′1 · g ′2 (mod p`), g ′1 is irreducible and Zp` [x] is a

UFD, g ′1 divides either f1 or f2 modulo p`.

• Without loss of generality, assume that f1 = f ′1 · g ′1 (mod p`).

• Then the vector f̂1 is in the lattice L.

• What is the length of f̂1?

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• But we can do better!

• Suppose f = f1 · f2 over rationals.

• Since f = g ′1 · g ′2 (mod p`), g ′1 is irreducible and Zp` [x] is a

UFD, g ′1 divides either f1 or f2 modulo p`.

• Without loss of generality, assume that f1 = f ′1 · g ′1 (mod p`).

• Then the vector f̂1 is in the lattice L.

• What is the length of f̂1?

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• But we can do better!

• Suppose f = f1 · f2 over rationals.

• Since f = g ′1 · g ′2 (mod p`), g ′1 is irreducible and Zp` [x] is a

UFD, g ′1 divides either f1 or f2 modulo p`.

• Without loss of generality, assume that f1 = f ′1 · g ′1 (mod p`).

• Then the vector f̂1 is in the lattice L.

• What is the length of f̂1?

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• Mignotte’s bound shows that ‖f1‖2 ≤ 2n−1‖f ‖2.

• Therefore, length of f̂1 = ‖f1‖2 ≤ 2n−1‖f ‖2.

• So, the LLL algorithm will produce a vector v̂ of length at

most 2
3(n−1)

2 ‖f ‖2.

• Consider polynomial v(x).

• Since v̂ ∈ L, g ′1(x) divides v(x) modulo p`.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• Mignotte’s bound shows that ‖f1‖2 ≤ 2n−1‖f ‖2.

• Therefore, length of f̂1 = ‖f1‖2 ≤ 2n−1‖f ‖2.

• So, the LLL algorithm will produce a vector v̂ of length at

most 2
3(n−1)

2 ‖f ‖2.

• Consider polynomial v(x).

• Since v̂ ∈ L, g ′1(x) divides v(x) modulo p`.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• Mignotte’s bound shows that ‖f1‖2 ≤ 2n−1‖f ‖2.

• Therefore, length of f̂1 = ‖f1‖2 ≤ 2n−1‖f ‖2.

• So, the LLL algorithm will produce a vector v̂ of length at

most 2
3(n−1)

2 ‖f ‖2.

• Consider polynomial v(x).

• Since v̂ ∈ L, g ′1(x) divides v(x) modulo p`.

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• Therefore, gcd(v(x), f (x)) > 1 (mod p`).

• Using the resultant , we can say Res(v(x), f (x)) = 0 (mod p`).

• Resultant of v(x) and f (x) is an (2n + 1)× (2n + 1) matrix
whose columns are essentially vectors v̂ and f̂ .

• From Hadamard’s Inequality it follows that

Res(v(x), f (x)) ≤ ‖v‖n+1
2 ‖f ‖n

2 ≤ 2
3(n2−1)

2 ‖f ‖2n+1
2 .

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• Therefore, gcd(v(x), f (x)) > 1 (mod p`).

• Using the resultant , we can say Res(v(x), f (x)) = 0 (mod p`).

• Resultant of v(x) and f (x) is an (2n + 1)× (2n + 1) matrix
whose columns are essentially vectors v̂ and f̂ .

• From Hadamard’s Inequality it follows that

Res(v(x), f (x)) ≤ ‖v‖n+1
2 ‖f ‖n

2 ≤ 2
3(n2−1)

2 ‖f ‖2n+1
2 .

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• By the choice of `, ` > 3
2(n2 − 1) + (2n + 1) log ‖f ‖2, it

follows that
Res(v(x), f (x)) < p`.

• Coupled with the fact that Res(v(x), f (x)) = 0 (mod p`), we
get

Res(v(x), f (x)) = 0

over rationals.

• In other words, gcd(v(x), f (x)) > 1 over rationals and thus
we get a factor of f .

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• By the choice of `, ` > 3
2(n2 − 1) + (2n + 1) log ‖f ‖2, it

follows that
Res(v(x), f (x)) < p`.

• Coupled with the fact that Res(v(x), f (x)) = 0 (mod p`), we
get

Res(v(x), f (x)) = 0

over rationals.

• In other words, gcd(v(x), f (x)) > 1 over rationals and thus
we get a factor of f .

Lattices and LLL Algorithm Modular Equations Polynomial Factoring

Factoring Polynomials Over Rationals

• By the choice of `, ` > 3
2(n2 − 1) + (2n + 1) log ‖f ‖2, it

follows that
Res(v(x), f (x)) < p`.

• Coupled with the fact that Res(v(x), f (x)) = 0 (mod p`), we
get

Res(v(x), f (x)) = 0

over rationals.

• In other words, gcd(v(x), f (x)) > 1 over rationals and thus
we get a factor of f .

Definition Integer Factoring Discrete Log

Tool 6: Smooth Numbers

Definition Integer Factoring Discrete Log

Outline

Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index Calculus

Definition Integer Factoring Discrete Log

Smooth Numbers

• Number n > 0 is m-smooth if all prime divisors of n are ≤ m.

• Let Ψ(x , y) denote the size of the set of numbers ≤ x that
are y -smooth.

Theorem (Density of Smooth Numbers)

Ψ(x , y) = x · r−r(1+o(1)) where r = ln x
ln y , and y = Ω(ln2 x).

Definition Integer Factoring Discrete Log

Smooth Numbers

• Number n > 0 is m-smooth if all prime divisors of n are ≤ m.

• Let Ψ(x , y) denote the size of the set of numbers ≤ x that
are y -smooth.

Theorem (Density of Smooth Numbers)

Ψ(x , y) = x · r−r(1+o(1)) where r = ln x
ln y , and y = Ω(ln2 x).

Definition Integer Factoring Discrete Log

Smooth Numbers

• Number n > 0 is m-smooth if all prime divisors of n are ≤ m.

• Let Ψ(x , y) denote the size of the set of numbers ≤ x that
are y -smooth.

Theorem (Density of Smooth Numbers)

Ψ(x , y) = x · r−r(1+o(1)) where r = ln x
ln y , and y = Ω(ln2 x).

Definition Integer Factoring Discrete Log

Smooth Numbers

• Smooth numbers are used in Elliptic Curve Factoring,
Quadratic Sieve and Number Field Sieve, the three most
popular integer factoring algorithms.

• They are also used in index calculus method for discrete log
problem.

Definition Integer Factoring Discrete Log

Outline

Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index Calculus

Definition Integer Factoring Discrete Log

Quadratic Sieve

• Designed by Carl Pomerance (1983).

• Let n be an odd number with at least two distinct prime
factors.

• n can be factored if non-trivial solution of the equation
x2 = y2 (mod n) can be computed.

• A non-trivial solution is (x0, y0) such that x2
0 = y2

0 (mod n)
and x0 6= ±y0 (mod n).

• Given such a solution, gcd(x0 + y0, n) gives a factor of n.

• We will use this approach for factoring n.

Definition Integer Factoring Discrete Log

Quadratic Sieve

• Designed by Carl Pomerance (1983).

• Let n be an odd number with at least two distinct prime
factors.

• n can be factored if non-trivial solution of the equation
x2 = y2 (mod n) can be computed.

• A non-trivial solution is (x0, y0) such that x2
0 = y2

0 (mod n)
and x0 6= ±y0 (mod n).

• Given such a solution, gcd(x0 + y0, n) gives a factor of n.

• We will use this approach for factoring n.

Definition Integer Factoring Discrete Log

Quadratic Sieve

• Designed by Carl Pomerance (1983).

• Let n be an odd number with at least two distinct prime
factors.

• n can be factored if non-trivial solution of the equation
x2 = y2 (mod n) can be computed.

• A non-trivial solution is (x0, y0) such that x2
0 = y2

0 (mod n)
and x0 6= ±y0 (mod n).

• Given such a solution, gcd(x0 + y0, n) gives a factor of n.

• We will use this approach for factoring n.

Definition Integer Factoring Discrete Log

Quadratic Sieve

1. Let m = d
√

ne, B = e
1
2

√
ln n ln ln n, and p1, . . ., pt the set of all

primes ≤ B.

2. For k = 1, 2, 3, . . . do the following:

2.1 Let v = m + k.
2.2 Let u = v2 (mod n), 0 < u < n.
2.3 Check if u is B-smooth.
2.4 If yes, compute complete factorization of u =

∏t
i=1 p

e[i]
i .

2.5 Store the triple (u, v , ê) where ê = (e[1] e[2] · · · e[t]).

Definition Integer Factoring Discrete Log

Quadratic Sieve

1. Let m = d
√

ne, B = e
1
2

√
ln n ln ln n, and p1, . . ., pt the set of all

primes ≤ B.

2. For k = 1, 2, 3, . . . do the following:

2.1 Let v = m + k.
2.2 Let u = v2 (mod n), 0 < u < n.
2.3 Check if u is B-smooth.
2.4 If yes, compute complete factorization of u =

∏t
i=1 p

e[i]
i .

2.5 Store the triple (u, v , ê) where ê = (e[1] e[2] · · · e[t]).

Definition Integer Factoring Discrete Log

Quadratic Sieve

1. Let m = d
√

ne, B = e
1
2

√
ln n ln ln n, and p1, . . ., pt the set of all

primes ≤ B.

2. For k = 1, 2, 3, . . . do the following:

2.1 Let v = m + k.
2.2 Let u = v2 (mod n), 0 < u < n.
2.3 Check if u is B-smooth.
2.4 If yes, compute complete factorization of u =

∏t
i=1 p

e[i]
i .

2.5 Store the triple (u, v , ê) where ê = (e[1] e[2] · · · e[t]).

Definition Integer Factoring Discrete Log

Quadratic Sieve

3. Exit the previous step after t + 1 triples are stored.

4. Let these be {uj , vj , êj}1≤j≤t+1.

5. Find αj ∈ {0, 1} for 1 ≤ j ≤ t + 1 such that∑t+1
j=1 αj êj = 0 (mod 2) and not all αj ’s are zero. [always

possible]

6. Let

x =
t+1∏
j=1

v
αj

j

and

y =
t∏

i=1

p
1
2

Pt+1
j=1 αjej [i]

i =
t+1∏
j=1

t∏
i=1

p
1
2
αjej [i]

i =
t+1∏
j=1

u
1
2
αj

j .

Definition Integer Factoring Discrete Log

Quadratic Sieve

3. Exit the previous step after t + 1 triples are stored.

4. Let these be {uj , vj , êj}1≤j≤t+1.

5. Find αj ∈ {0, 1} for 1 ≤ j ≤ t + 1 such that∑t+1
j=1 αj êj = 0 (mod 2) and not all αj ’s are zero. [always

possible]

6. Let

x =
t+1∏
j=1

v
αj

j

and

y =
t∏

i=1

p
1
2

Pt+1
j=1 αjej [i]

i =
t+1∏
j=1

t∏
i=1

p
1
2
αjej [i]

i =
t+1∏
j=1

u
1
2
αj

j .

Definition Integer Factoring Discrete Log

Quadratic Sieve

3. Exit the previous step after t + 1 triples are stored.

4. Let these be {uj , vj , êj}1≤j≤t+1.

5. Find αj ∈ {0, 1} for 1 ≤ j ≤ t + 1 such that∑t+1
j=1 αj êj = 0 (mod 2) and not all αj ’s are zero. [always

possible]

6. Let

x =
t+1∏
j=1

v
αj

j

and

y =
t∏

i=1

p
1
2

Pt+1
j=1 αjej [i]

i =
t+1∏
j=1

t∏
i=1

p
1
2
αjej [i]

i =
t+1∏
j=1

u
1
2
αj

j .

Definition Integer Factoring Discrete Log

Quadratic Sieve

7. Compute gcd(x + y , n) and check if a proper factor of n is
obtained.

8. If not, generate more triples and repeat.

Definition Integer Factoring Discrete Log

Quadratic Sieve Analysis

• First note that for each j ,
∑t+1

j=1 αjej [i] is divisible by two and
so y is an integer.

• We have
x2 =

∏t+1
j=1{v2

j }αj =
∏t+1

j=1 u
αj

j (mod n) = y2 (mod n).

• Since x and y are computed using very different numbers (x is
a product of numbers of the form m + k and y is a product of
powers of pi ’s), it is likely that x 6= ±y (mod n).

• This results in a factor of n.

Definition Integer Factoring Discrete Log

Quadratic Sieve Analysis

• First note that for each j ,
∑t+1

j=1 αjej [i] is divisible by two and
so y is an integer.

• We have
x2 =

∏t+1
j=1{v2

j }αj =
∏t+1

j=1 u
αj

j (mod n) = y2 (mod n).

• Since x and y are computed using very different numbers (x is
a product of numbers of the form m + k and y is a product of
powers of pi ’s), it is likely that x 6= ±y (mod n).

• This results in a factor of n.

Definition Integer Factoring Discrete Log

Quadratic Sieve Analysis

• First note that for each j ,
∑t+1

j=1 αjej [i] is divisible by two and
so y is an integer.

• We have
x2 =

∏t+1
j=1{v2

j }αj =
∏t+1

j=1 u
αj

j (mod n) = y2 (mod n).

• Since x and y are computed using very different numbers (x is
a product of numbers of the form m + k and y is a product of
powers of pi ’s), it is likely that x 6= ±y (mod n).

• This results in a factor of n.

Definition Integer Factoring Discrete Log

Quadratic Sieve Analysis

• So how many k’s are required to generate t + 1 triples?

• Number u = (m + k)2 (mod n) ≈ 2
√

nk + k2 ≈ 2
√

nk when
k is small compared to

√
n.

• Assume that u is uniformly distributed over [1, 2
√

nk] as k
varies.

• Then the probability that u is B-smooth is around

(ln n
2 lnB)−

ln n
2 ln B ∼ e−

1
2

√
ln n ln ln n = 1

B .

• So we need B2+o(1) k’s to generate required triples.

Definition Integer Factoring Discrete Log

Quadratic Sieve Analysis

• So how many k’s are required to generate t + 1 triples?

• Number u = (m + k)2 (mod n) ≈ 2
√

nk + k2 ≈ 2
√

nk when
k is small compared to

√
n.

• Assume that u is uniformly distributed over [1, 2
√

nk] as k
varies.

• Then the probability that u is B-smooth is around

(ln n
2 lnB)−

ln n
2 ln B ∼ e−

1
2

√
ln n ln ln n = 1

B .

• So we need B2+o(1) k’s to generate required triples.

Definition Integer Factoring Discrete Log

Quadratic Sieve Analysis

• So how many k’s are required to generate t + 1 triples?

• Number u = (m + k)2 (mod n) ≈ 2
√

nk + k2 ≈ 2
√

nk when
k is small compared to

√
n.

• Assume that u is uniformly distributed over [1, 2
√

nk] as k
varies.

• Then the probability that u is B-smooth is around

(ln n
2 lnB)−

ln n
2 ln B ∼ e−

1
2

√
ln n ln ln n = 1

B .

• So we need B2+o(1) k’s to generate required triples.

Definition Integer Factoring Discrete Log

Quadratic Sieve Analysis

• Using a clever sieving trick, it can be shown that time taken
to compute all the triples remains B2+o(1).

• αj ’s can be computed by solving a system of t + 1 linear
equations.

• Time taken to compute these can be shown to be
O(t2) = O(B2).

• Therefore, the time complexity of the whole algorithm is

B2+o(1) = e(1+o(1))
√

ln n ln ln n.

Definition Integer Factoring Discrete Log

Quadratic Sieve Analysis

• Using a clever sieving trick, it can be shown that time taken
to compute all the triples remains B2+o(1).

• αj ’s can be computed by solving a system of t + 1 linear
equations.

• Time taken to compute these can be shown to be
O(t2) = O(B2).

• Therefore, the time complexity of the whole algorithm is

B2+o(1) = e(1+o(1))
√

ln n ln ln n.

Definition Integer Factoring Discrete Log

Quadratic Sieve Analysis

• Using a clever sieving trick, it can be shown that time taken
to compute all the triples remains B2+o(1).

• αj ’s can be computed by solving a system of t + 1 linear
equations.

• Time taken to compute these can be shown to be
O(t2) = O(B2).

• Therefore, the time complexity of the whole algorithm is

B2+o(1) = e(1+o(1))
√

ln n ln ln n.

Definition Integer Factoring Discrete Log

Number Field Sieve

• Designed by Pollard, Pomerance, Lenstra, ... (1990s).

• Uses arithmetic in a number field instead of Q.

• This allows one to reduce the size of u’s thus increasing the
chances of finding a smooth number.

• The time complexity comes down to ec(ln n)1/3(ln ln n)2/3
,

c ≈ 1.903.

Definition Integer Factoring Discrete Log

Number Field Sieve

• Designed by Pollard, Pomerance, Lenstra, ... (1990s).

• Uses arithmetic in a number field instead of Q.

• This allows one to reduce the size of u’s thus increasing the
chances of finding a smooth number.

• The time complexity comes down to ec(ln n)1/3(ln ln n)2/3
,

c ≈ 1.903.

Definition Integer Factoring Discrete Log

Outline

Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index
Calculus

Definition Integer Factoring Discrete Log

Discrete Log Problem Over Finite Fields

• Let p be a large prime.

• Let g ∈ Fp be a generator of F ∗
p and γ ∈ F ∗

p .

• The discrete log problem over finite fields is: given p, g , and
γ, compute m such that gm = γ (mod p).

• The hardness of this problem is the basis for security of El
Gamal type encryption algorithms over finite fields and
Diffie-Hellman key exchange scheme.

Definition Integer Factoring Discrete Log

Discrete Log Problem Over Finite Fields

• Let p be a large prime.

• Let g ∈ Fp be a generator of F ∗
p and γ ∈ F ∗

p .

• The discrete log problem over finite fields is: given p, g , and
γ, compute m such that gm = γ (mod p).

• The hardness of this problem is the basis for security of El
Gamal type encryption algorithms over finite fields and
Diffie-Hellman key exchange scheme.

Definition Integer Factoring Discrete Log

Index Calculus Method

• Compute r and s such that g rγs = 1 (mod p) and
gcd(s, p − 1) = 1.

• Then g r+ms = 1 (mod p) giving m = −rs−1 (mod p − 1).

• How does one quickly find such r and s?

• We use a method similar to one used for integer factoring.

Definition Integer Factoring Discrete Log

Index Calculus Method

• Compute r and s such that g rγs = 1 (mod p) and
gcd(s, p − 1) = 1.

• Then g r+ms = 1 (mod p) giving m = −rs−1 (mod p − 1).

• How does one quickly find such r and s?

• We use a method similar to one used for integer factoring.

Definition Integer Factoring Discrete Log

Index Calculus Method

• Compute r and s such that g rγs = 1 (mod p) and
gcd(s, p − 1) = 1.

• Then g r+ms = 1 (mod p) giving m = −rs−1 (mod p − 1).

• How does one quickly find such r and s?

• We use a method similar to one used for integer factoring.

Definition Integer Factoring Discrete Log

Index Calculus Method

1. Let B = e
1
2

√
ln p ln ln p and p1, . . ., pt be all primes ≤ B.

2. Randomly select r and s, 0 < r , s < p − 1.

3. Compute u = g rγs (mod p).

4. Check if u is B-smooth.

5. If yes, compute complete factorization of u =
∏t

i=1 p
e[i]
i .

6. Store the 4-tuple (r , s, u, ê) where ê = (e[1] e[2] · · · e[t]).

Definition Integer Factoring Discrete Log

Index Calculus Method

1. Let B = e
1
2

√
ln p ln ln p and p1, . . ., pt be all primes ≤ B.

2. Randomly select r and s, 0 < r , s < p − 1.

3. Compute u = g rγs (mod p).

4. Check if u is B-smooth.

5. If yes, compute complete factorization of u =
∏t

i=1 p
e[i]
i .

6. Store the 4-tuple (r , s, u, ê) where ê = (e[1] e[2] · · · e[t]).

Definition Integer Factoring Discrete Log

Index Calculus Method

1. Let B = e
1
2

√
ln p ln ln p and p1, . . ., pt be all primes ≤ B.

2. Randomly select r and s, 0 < r , s < p − 1.

3. Compute u = g rγs (mod p).

4. Check if u is B-smooth.

5. If yes, compute complete factorization of u =
∏t

i=1 p
e[i]
i .

6. Store the 4-tuple (r , s, u, ê) where ê = (e[1] e[2] · · · e[t]).

Definition Integer Factoring Discrete Log

Index Calculus Method

7. Exit the previous step after t + 1 4-tuples are stored.

8. Let these be {rj , sj , uj , êj}1≤j≤t+1.

9. Find αj ∈ Zp−1 for 1 ≤ j ≤ t + 1 such that∑t+1
j=1 αj êj = 0 (mod p − 1) and not all αj ’s are zero.

10. Let

r =
t+1∑
j=1

αj rj (mod p − 1)

and

s =
t+1∑
j=1

αjsj (mod p − 1).

Definition Integer Factoring Discrete Log

Index Calculus Method

7. Exit the previous step after t + 1 4-tuples are stored.

8. Let these be {rj , sj , uj , êj}1≤j≤t+1.

9. Find αj ∈ Zp−1 for 1 ≤ j ≤ t + 1 such that∑t+1
j=1 αj êj = 0 (mod p − 1) and not all αj ’s are zero.

10. Let

r =
t+1∑
j=1

αj rj (mod p − 1)

and

s =
t+1∑
j=1

αjsj (mod p − 1).

Definition Integer Factoring Discrete Log

Index Calculus Method

7. Exit the previous step after t + 1 4-tuples are stored.

8. Let these be {rj , sj , uj , êj}1≤j≤t+1.

9. Find αj ∈ Zp−1 for 1 ≤ j ≤ t + 1 such that∑t+1
j=1 αj êj = 0 (mod p − 1) and not all αj ’s are zero.

10. Let

r =
t+1∑
j=1

αj rj (mod p − 1)

and

s =
t+1∑
j=1

αjsj (mod p − 1).

Definition Integer Factoring Discrete Log

Index Calculus Method

11. Check if gcd(s, p − 1) = 1.

12. If yes, m = −rs−1 (mod p − 1) is the answer.

Definition Integer Factoring Discrete Log

Analysis of Index Calculus Method

• Note that

g rγs =
t+1∏
j=1

(g rjγsj)αj (mod p)

=
t+1∏
j=1

u
αj

j (mod p)

=
t+1∏
j=1

t∏
i=1

p
αjej [i]
i (mod p)

=
t∏

i=1

p
Pt+1

j=1 αjej [i]

i (mod p)

= 1 (mod p).

Definition Integer Factoring Discrete Log

Analysis of Index Calculus Method

• In addition, the probability that gcd(s, p − 1) = 1 is high since
sj ’s are randomly chosen.

• Therefore, the algorithm computes discrete log with high
probability.

• For time complexity we proceed exactly as before.

• The probability that u is B-smooth is
Ψ(p−1,B)

p−1 ∼ (ln p
ln B)−

ln p
ln B ∼ e− ln p ln ln p = 1

B2 .

Definition Integer Factoring Discrete Log

Analysis of Index Calculus Method

• In addition, the probability that gcd(s, p − 1) = 1 is high since
sj ’s are randomly chosen.

• Therefore, the algorithm computes discrete log with high
probability.

• For time complexity we proceed exactly as before.

• The probability that u is B-smooth is
Ψ(p−1,B)

p−1 ∼ (ln p
ln B)−

ln p
ln B ∼ e− ln p ln ln p = 1

B2 .

Definition Integer Factoring Discrete Log

Analysis of Index Calculus Method

• Therefore, we need to generate B3+o(1) u’s.

• Testing each u for smoothness takes B1+o(1) steps (no savings
here!).

• Also, solving the system of linear equation takes O(B3) steps.

• This gives the total complexity of
B4+o(1) = e(2+o(1))

√
ln p ln ln p.

Definition Integer Factoring Discrete Log

Analysis of Index Calculus Method

• Therefore, we need to generate B3+o(1) u’s.

• Testing each u for smoothness takes B1+o(1) steps (no savings
here!).

• Also, solving the system of linear equation takes O(B3) steps.

• This gives the total complexity of
B4+o(1) = e(2+o(1))

√
ln p ln ln p.

Definition Integer Factoring Discrete Log

Analysis of Index Calculus Method

• Therefore, we need to generate B3+o(1) u’s.

• Testing each u for smoothness takes B1+o(1) steps (no savings
here!).

• Also, solving the system of linear equation takes O(B3) steps.

• This gives the total complexity of
B4+o(1) = e(2+o(1))

√
ln p ln ln p.

Definition Integer Factoring Discrete Log

Comments

• As in case of factoring, number fields can be used to bring the
time complexity down to ec(ln n)1/3(ln ln n)2/3

.

• The index calculus method can be generalized to work for any
finite commutative group.

• However, it does not work well in groups with no good notion
of ‘smoothness’.

• For example, in group of points on an elliptic curve Ep.

Definition Integer Factoring Discrete Log

Comments

• As in case of factoring, number fields can be used to bring the
time complexity down to ec(ln n)1/3(ln ln n)2/3

.

• The index calculus method can be generalized to work for any
finite commutative group.

• However, it does not work well in groups with no good notion
of ‘smoothness’.

• For example, in group of points on an elliptic curve Ep.

Definition Integer Factoring Discrete Log

Comments

• As in case of factoring, number fields can be used to bring the
time complexity down to ec(ln n)1/3(ln ln n)2/3

.

• The index calculus method can be generalized to work for any
finite commutative group.

• However, it does not work well in groups with no good notion
of ‘smoothness’.

• For example, in group of points on an elliptic curve Ep.

Definition Integer Factoring Discrete Log

Thank You!

Resultants

• Let f and v be two polynomials over field F of degree n and
m respectively.

• We have gcd(f (x), v(x)) > 1 iff there exist r(x) and s(x), of
degrees < m and < n respectively, such that
r(x)f (x) + s(x)v(x) = 0.

• Define map T (r(x), s(x)) = r(x)f (x) + s(x)v(x) for
deg(r) < m and deg(s) < n.

• T is a bilinear map and so can be represented by a
(n + m)× (n + m) matrix, Mf ,v .

• Further, T is invertible iff gcd(f (x), v(x)) = 1.

• Let Res(f , v) = det Mf ,v .

Resultants

• Let f and v be two polynomials over field F of degree n and
m respectively.

• We have gcd(f (x), v(x)) > 1 iff there exist r(x) and s(x), of
degrees < m and < n respectively, such that
r(x)f (x) + s(x)v(x) = 0.

• Define map T (r(x), s(x)) = r(x)f (x) + s(x)v(x) for
deg(r) < m and deg(s) < n.

• T is a bilinear map and so can be represented by a
(n + m)× (n + m) matrix, Mf ,v .

• Further, T is invertible iff gcd(f (x), v(x)) = 1.

• Let Res(f , v) = det Mf ,v .

Resultants

• Let f and v be two polynomials over field F of degree n and
m respectively.

• We have gcd(f (x), v(x)) > 1 iff there exist r(x) and s(x), of
degrees < m and < n respectively, such that
r(x)f (x) + s(x)v(x) = 0.

• Define map T (r(x), s(x)) = r(x)f (x) + s(x)v(x) for
deg(r) < m and deg(s) < n.

• T is a bilinear map and so can be represented by a
(n + m)× (n + m) matrix, Mf ,v .

• Further, T is invertible iff gcd(f (x), v(x)) = 1.

• Let Res(f , v) = det Mf ,v .

Resultants

• Let f and v be two polynomials over field F of degree n and
m respectively.

• We have gcd(f (x), v(x)) > 1 iff there exist r(x) and s(x), of
degrees < m and < n respectively, such that
r(x)f (x) + s(x)v(x) = 0.

• Define map T (r(x), s(x)) = r(x)f (x) + s(x)v(x) for
deg(r) < m and deg(s) < n.

• T is a bilinear map and so can be represented by a
(n + m)× (n + m) matrix, Mf ,v .

• Further, T is invertible iff gcd(f (x), v(x)) = 1.

• Let Res(f , v) = det Mf ,v .

Back

	Introduction
	Two Applications
	Reed-Solomon Codes
	RSA Cryptosystem

	Complexity of Basic Operations
	Tools for Designing Algorithms for Basic Operations
	Overview of the Tools
	Tools: Chinese Remaindering
	Tools: Discrete Fourier Transform
	Tools: Automorphisms
	Tools: Hensel Lifting
	Tools: Short Vectors in a Lattice
	Tools: Smooth Numbers

	Definition
	Example: Determinant Computation
	Definition
	Fast Fourier Transform
	Example: Polynomial Multiplication
	Definition
	Example: Polynomial Factoring over Finite Fields
	Example: Primality Testing
	Example: Integer Factoring
	Definition
	Example: Polynomial Division
	Lattices and LLL Algorithm
	Example: Solving Modular Equations
	Example: Polynomial Factoring Over Rationals
	Definition
	Example: Integer Factoring via Quadratic Sieve
	Example: Discrete Log Computation via Index Calculus

