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Algebraic Algorithms

• Algorithms for performing algebraic operations.

• Examples:
• Matrix operations: addition, multiplication, inverse,

determinant, solving a system of linear equations, ...
• Polynomial operations: addition, multiplication, factoring, ...
• Abstract algebra operations: order of a group element, discrete

log, ...
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Number Theoretical Algorithms

• Algorithms for performing number theoretic operations.

• Examples:
• Operations on integers and rationals: addition, multiplication,

gcd, square roots, primality testing, integer factoring, ...
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Applications

• In coding theory for efficient coding/decoding.

• In cryptography for design and analysis of cryptographic
schemes.

• In computer algebra systems.
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This Talk

• Discusses two major applications where algebraic and number
theoretic algorithms are used.

• Surveys some of the important tools for designing these
algorithms.

• Designs algorithms for some basic operations using these
tools.
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Reed-Soloman Codes

• One of the most important and popular class of codes.

• Used in several applications including encoding data on CDs
and DVDs.

• Uses polynomial evaluations for coding, linear system solving
and polynomial factorization for decoding.
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Reed-Soloman Codes: Coding

• Let m be a string that is to be coded.

• Fix a finite field F , |F | ≥ n, and split m as a sequence of
k < n elements of F : (m0, . . . ,mk−1).

• Let polynomial Pm(x) =
∑k−1

i=0 mi · x i .

• Let cj = Pm(ej) for 0 ≤ j < n with e0, . . ., en−1 distinct
elements of F . [Requires polynomial evaluation]

• The sequence (c0, . . . , cn−1) is the codeword corresponding to
m.
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Reed-Soloman Codes: Decoding

• Let (d0, . . . , dn−1) be a given, possibly corrupted, codeword.

• Assume that the number of un-corrupted elements is at least
t.

• Let D0 = d
√

kne and D1 = b
√

n/kc.
• Find a non-zero bivariate polynomial Q(x , y) with x-degree D0

and y -degree D1 such that Q(ej , dj) = 0 for every 0 ≤ j < n.

• Such a Q can always be found since Q has
(1 + D0) · (1 + D1) > n unknown coefficients that need to
satisfy n homogeneous equations. [Requires solving a system
of linear equations]
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Reed-Soloman Codes: Decoding

• Consider the polynomial Q̂(x) = Q(x ,Pm(x)).

• We have Q̂(ej) = 0 for at least t different ej ’s by assumption.

• The degree of Q̂(x) is less than D0 + D1 · k ≤ 2d
√

kne.
• Therefore, if t ≥ 2d

√
kne, Q̂(x) = 0.

• If Q̂(x) = Q(x ,Pm(x)) = 0, then polynomial y − Pm(x) must
divide polynomial Q(x , y).

• Therefore, y − Pm(x) divides Q(x , y) whenever t ≥ 2d
√

kne.
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Reed-Soloman Codes: Decoding

• Factor polynomial Q(x , y) and list all the factors of the form
y − P(x). [Requires polynomial factoring]

• Select the polynomial P(x) from these that agrees with the
sequence (d0, . . . , dn−1) on maximum number of elements.

• This is likely to be the polynomial Pm(x).

• This algorithm decodes up to n − 2d
√

kne errors.

• Given by Madhu Sudan (1994).
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RSA Cryptosystem

• The first and most popular public-key cryptosystem.

• Used in secure communication everywhere.

• Uses modular arithmetic for encryption and decryption.

• Uses primality testing for generating keys.

• Integer factoring dominates cryptanalysis, with modular
equation solving also playing a role.
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RSA: Key Generation

• Fix a key length, say, 2r bits.

• Randomly select two primes p and q each of 2r−1 bits.
[Requires primality testing]

• Randomly select an e, 3 ≤ e < (p − 1)(q − 1) and
gcd(e, (p − 1)(q − 1)) = 1.

• Find the smallest d such that d · e = 1 (mod (p − 1)(q − 1)).
[Requires modular inverse computation]

• Let n = pq.

• The encryption key is the pair (n, e).

• The decryption key is d .
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RSA: Encryption and Decryption

• Let m be the message to be encrypted.

• Treat m as a number less than n.

• Compute c = me (mod n). [Requires modular exponentiation]

• c is the encrypted message.

• Note that cd (mod n) = med (mod n) = m.

• Thus c can be decrypted using key d .
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RSA: Cryptanalysis

• If n can be factored, then d can be easily computed using e:
d = e−1 (mod (p − 1)(q − 1)).

• So efficiency of factoring algorithms determines how safe RSA
is.

• It is not the only way to break RSA though.

• We will see a different attack later that works for a special
case.
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Basic Operations: Polynomial Algebra

• Efficient algorithms are known for most of the operations.
• Degree n Polynomial addition: O(n) arithmetic operations.
• Degree n Polynomial multiplication: MP(n) = O(n log n)

arithmetic operations.

• Several other operations reduce to polynomial multiplication:
• Polynomial division: O(MP(n)),
• Polynomial gcd: O(MP(n) log n).
• Polynomial evaluation and interpolation: O(MP(n) log n).
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Basic Operations: Polynomial Algebra

• Polynomial factorization over finite field Fp: O (̃n2 log p)
randomized.

• O (̃t(n)) = O(t(n) · (log t(n))c) for some constant c ≥ 0.

• Polynomial factorization over rationals:
O (̃n10 + n8 log2 ‖f ‖2), ‖f ‖2 square-root of the sum of square
of coefficients of f .
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Basic Operations: Arithmetic

• Very similar to polynomial algebra.
• Addition: O(n),
• Multiplication: MI (n) = O(n log n log log n),
• Gcd: O(n2).

• A number of operations can be transformed to multiplication:
• Division, Modular arithmetic, computing integer roots:

O(MI (n)).
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Basic Operations: Arithmetic

• Primality testing: O (̃n6) deterministic, O (̃n2) randomized.

• Integer factoring:

• eO((log n)1/2(log log n)1/2) randomized.
• eO((log n)1/3(log log n)2/3) heuristic.
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Basic Operations: Linear Algebra

• The central problem is matrix multiplication.

• Coppersmith and Winograd (1986) showed that time
complexity of multiplying two n × n matrices is
MM(n) = O(n2.376) arithmetic operations.

• Several problems reduce to matrix multiplication:
• Matrix inverse: O(MM(n)),
• Determinant, Characteristic polynomial: O(MM(n)),
• Solving a system of linear equations in n variables: O(MM(n)).
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Basic Operations: Abstract Algebra

• Computing order of an element in finite group G :
• Complexity depends on the group.
• Trivial for some groups, e.g., (Zn,+).
• As hard as integer factoring for some groups, e.g., Z∗

n .

• Computing discrete log of an element in finite cyclic group G :
given generator g for G , and element e, find m such that
e = gm.

• Easy for some groups, e.g., (Zn,+). [requires modular inverse
and multiplication]

• Similar in hardness to integer factoring for groups, e.g., Z∗
p .

• Very hard (time = 2O(n)) for some groups, e.g., groups of
points on elliptic curve Ep.
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Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic
computations.

2. Discrete Fourier Transform: Used in polynomial and integer
multiplication.

3. Automorphisms: Used in polynomial and integer factorization
and irreducibility testing.

4. Hensel Lifting: Used in polynomial factorization and division.

5. Short Vectors in a Lattice: Used in polynomial factorization
(over fields and rings) and breaking cryptosystems.

6. Smooth Numbers: Used in integer factorization and discrete
log problem.
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Chinese Remaindering Theorem

Theorem
Let R = Z or F [x ], and m0, m1, . . ., mr−1 ∈ R be pairwise
coprime. Let m =

∏r−1
i=0 mi . Then,

R/(m) ∼= R/(m0)⊕ R/(m1)⊕ · · · ⊕ R/(mr−1).

• An element of ring R/(m) can be uniquely written as an
r -tuple with ith component belonging to ring R/(mi ).

• Addition and multiplication operations act component-wise.
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Chinese Remaindering Applications

• Fundamental theorem used in arguing about rings everywhere.

• Used for speeding up computations over integers and
polynomials.

• Based on the fact that it is much faster to compute modulo a
small number (or small degree polynomial) than over integers
(or polynomial ring):

• Given a bound, say A, on the output of a computation, choose
small m0, . . ., mr−1 such that

∏r−1
i=0 mi > A and do the

computations modulo each of mi ’s.
• At the end, combine the results of computations to get the

desired result.

• Also lends itself to parallelization.
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Computing Determinant via CRT

• Let M be a n × n matrix over integers with A bounding the
largest absolute value of its elements.

• Hadamard’s inequality implies that | det M| ≤ nn/2An.

• Let B = nn/2An and r = dlog(2B + 1)e.
• Let m0, . . ., mr−1 be first r primes and m =

∏r−1
i=0 mi .

• Compute vi = detM (mod mi ) for each i .

• Compute αi such that αi · m
mi

= 1 (mod mi ) for each i .

• Output
∑r−1

i=0 αi · m
mi
· vi (mod m).
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Discrete Fourier Transform

• Discrete Fourier Transform is the discrete variant of Fourier
transform.

• It is used in polynomial multiplication, integer multiplication,
image compression, and many other applications.
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Discrete Fourier Transform

• Let f : [0, n − 1] 7→ F be a function ‘selecting’ n elements of
field F .

• Let ω be a principle nth root of unity, i.e., ωn = 1, and
ωt 6= 1 for 0 < t < n.

• The DFT of f is Ff : [0, n − 1] 7→ F [ω]:

Ff (j) =
n−1∑
i=0

f (i)ωij .
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Fast Fourier Transform: An Algorithm for

Computing DFT

• A straightforward algorithm takes O(n2) arithmetic
operations.

• An O(n log n) time algorithm for DFT was (re)discovered by
Cooley and Tukey (1965).

• It was first found by Gauss (1805).

• The algorithm is called Fast Fourier Transform and uses
divide-and-conquer technique to recursively compute DFT.
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FFT

• Let f , f : [0, n − 1] 7→ F for field field F , and assume n = 2k .

• Note that for 0 ≤ j < n/2,

Ff (2j) =
n−1∑
i=0

f (i)ω2ij =

n/2−1∑
i=0

(f (i) + f (n/2 + i))(ω2)ij .

• Similarly,

Ff (2j+1) =
n−1∑
i=0

f (i)ωi(2j+1) =

n/2−1∑
i=0

(f (i)ωi−f (n/2+i)ωi )(ω2)ij .

• Thus the problem reduces to computing DFT of two functions
with n

2 domain size.
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• The functions are: f0(i) = f (i) + f (n/2 + i) and
f1(i) = (f (i)− f (n/2 + i))ωi for 0 ≤ i < n/2.

• These functions can be computed using O(n) operations from
f .

• Setting the recurrence and solving, we get the time to
compute DFT is O(n log n).
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Polynomial Multiplication via FFT

• Let P be a polynomial over field F of degree < n:

P(x) =
n−1∑
i=0

cix
i .

• Associate function P̂ with P, P̂ : [0, n − 1] 7→ F , P̂(i) = ci .

• DFT of P is defined to be

FP(j) = FP̂(j) =
n−1∑
i=0

ciω
ij = P(ωj).
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Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree < n = 2k .

1. Treat both P and Q as polynomials of degree 2n − 1 and
compute their DFT, FP and FQ .

2. Multiply FP and FQ component-wise.

3. Compute the inverse-DFT of resulting function by using the
root ω−1 instead of ω.

4. The resulting polynomial is P · Q.

The time complexity of each step is bounded by O(n log n).
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Definition

• Automorphism of an algebraic structure is a mapping of the
structure to itself that preserves all the operations.

• Automorphisms of finite rings and fields play a crucial role in
polynomial factoring and primality testing.
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• Let R = Zn[X ]/(f (X )) be a finite ring, f a polynomial of
degree d .

• An automorphism φ of R preserves both addition and
multiplication in the ring.

• It is easy to see that φ is completely specified by its action on
X : for any element e(X ) ∈ R, φ(e(X )) = e(φ(X )).

• In addition, φ(f (X )) = f (φ(X )) = 0 in the ring.
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• If R is a field, i.e., n is prime and f is irreducible over Fp, then
the automorphisms of R are precisely ψ, ψ2, . . ., ψd = id
where ψ(X ) = X p.

• In general, R is a direct sum of fields (by CRT) and its
automorphisms are compositions of automorphisms of fields in
the sum.
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Polynomial Factoring Over Finite Fields

• The algorithms developed by Berlekemp and others (1980s).

• Let f be a degree n monic polynomial over finite field Fp.

• We wish to compute all irreducible factors of f .

• If f is not square-free, i.e., g2 divides f for some g , then f
can be factored easily:

• Compute gcd(f , df
dx ).

• Since g divides both f and df
dx , the gcd will be non-trivial.
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Polynomial Factoring Over Finite Fields

• We now assume that f is square-free.

• Let f =
∏t

i=1 fi , each fi is irreducible and has degree di .

• Let d1 ≤ d2 ≤ · · · ≤ dt .

• Consider ring R = Fp[X ]/(f ) = ⊕t
i=1Fp[X ]/(fi ). [by CRT]

• Clearly, ψd1 is trivial in Fp[X ]/(f1) but not in Fp[X ]/(fj) when
dj > d1.
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Polynomial Factoring Over Finite Fields

• Therefore, X pd1 = X in Fp[X ]/(f1) but not in Fp[X ]/(fj).

• So f1 divides gcd(X pd1 − X , f (X )) but not fj .

• Computing gcd(X pd − X , f (X )) starting from d = 1 to
d = n/2 will factor f into equal degree factors.

• That is, each factor we get is a product of all the fj ’s of the
same degree.

• This also allows us to test if f is irreducible: all the gcds are 1
iff f is irreducible.
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Polynomial Factoring Over Finite Fields

• Now suppose f is such that d1 = d2 = · · · = dt .

• Then the above method does not give any factor of f .

• To handle this, we convert the problem to finding roots of a
polynomial in Fp.

• Let
S = {e(X ) ∈ R | ψ(e(X )) = e(X p) = e(X )}.

• S is a subring of R, S = ⊕t
i=1Fp.

• S can be computed using linear algebra.
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Polynomial Factoring Over Finite Fields

• Choose e(X ) ∈ S − Fp.

• We must have e(X ) (mod fi (X )) = ci ∈ Fp for each i .

• Since e(X ) 6∈ Fp, there exists i and j such that ci 6= cj .

• Therefore, gcd(e(X )− ci , f (X )) is divisible by fi but not by fj .

• Thus we get a factor of f .

• How do we compute a ci?
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• Thus we get a factor of f .
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• Compute ĝ(y) = gcd(g(y), ψ(y)− y).
• ĝ factors completely in Fp and its roots are roots of g in Fp.

• Let ĝ(y) =
∏k

i=0(y − ci ).

• Compute h(y) = ĝ(y2 − r) for a randomly chosen r ∈ Fp.

• So, h(y) =
∏k

i=0(y
2 − (ci + r)).

• y2 − (ci + r) factors over Fp iff ci + r is a quadratic residue.
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• For any i and j , i 6= j , the probability that exactly one of
ci + r and cj + r is a quadratic residue in Fp, is at least 1

2 .

• Therefore, using the equal degree factorization algorithm
above factors h(y) with probability at least 1

2 .

• Let h(y) = h1(y) · h2(y).

• Both h1 and h2 will have only even powers of y .

• Then, g(y) = h(
√

y + r) = h1(
√

y + r) · h2(
√

y + r).

• Iterate this to completely factor g .
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Primality Testing

• Fermat’s Little Theorem states that if n is prime then for
every a: an = a (mod n).

• In other words: mapping φ(x) = xn is the trivial
automorphism of the ring Zn.

• The converse of the statement is not true: there are
composite n such that φ is the trivial automorphism of Zn.

• Even if it were true, checking if φ is the trivial automorphism
requires Ω(n) steps.

• So the theorem cannot be used for testing primality efficiently.
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• Both the problems can be eliminated using a generalization of
the theorem.

• This was shown by A, Kayal and Saxena (2004) who obtained
a deterministic O (̃n15/2) algorithm for primality testing.

• Earlier, there were algorithms known for primality testing but
they were either randomized or not polynomial-time.
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Primality Testing

• Fix r > 0 such that Or (n) > 4 log2 n (Or (n) is order of n
modulo r).

• It is easy to see that such an r exists in [4 log2 n, 16 log5 n].

• Let ring R = Zn[X ]/(X 2r − X r ).

• Clearly we have:

Theorem (Generalized FLT)

If n is prime then φ is an automorphism of R.
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• What about efficiency?

• Testing that φ is an automorphism naively requires
exponential time.

• This can be eliminated too:

Theorem (AKS, 2004)

φ is an automorphism of R iff φ(X + a) = φ(X ) + a in R for
1 ≤ a ≤ 2

√
r log n.
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• Since r = O(log5 n), testing if φ(X + a) = φ(X ) + a takes
time O (̃log7 n).

• So total time taken is O (̃log7 n · log7/2 n) = O (̃log21/2 n).

• Using an analytic number theory result by Fouvry (1985), it
can be shown that r = O(log3 n).

• This brings down time complexity to O (̃log15/2 n).

• Lenstra and Pomerance (2003) further bring it down to
O (̃log6 n).
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• Kayal and Saxena (2004) show that integer factoring reduces
to several questions about automorphisms of rings.

• They show n can be factored if
• A non-trivial automorphism of ring Zn[X ]/(X 2 − 1) can be

computed.
• The number of automorphisms of ring Zn[X ]/(X 2) can be

computed.
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Theorem (Kayal and Saxena, 2004)

An odd number n can be factored efficiently iff a non-trivial
automorphism of ring Zn[X ]/(X 2 − 1) can be computed efficiently.
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Proof.

• First observe that n can be factored iff a non-trivial solution
of y2 − 1 (mod n) can be found in Zn:

• If y0 6= ±1 (mod n) is a non-trivial solution, then
gcd(y0 + 1, n) gives a factor.

• If n = n1n2, then a y0 < n with y0 = 1 (mod n1) and
y0 = −1 (mod n2) exists (by CRT) and is therefore a
non-trivial solution.
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• Let φ(X ) = a · X + b be a non-trivial automorphism of
R = Zn[X ]/(X 2 − 1).

• Let d = gcd(a, n).

• Consider φ( n
d X ) = n

d · a · X + n
d · b = n

d · b.

• Since φ is a 1-1 map, this is only possible when
d = gcd(a, n) = 1.
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• We have:

0 = φ(X 2 − 1) = (aX + b)2 − 1 = 2abX + a2 + b2 − 1

in the ring.

• This gives 2ab = 0 = a2 + b2 − 1 (mod n).

• Since n is odd and gcd(a, n) = 1, we get b = 0 (mod n) and
a2 = 1 (mod n).

• Therefore, φ(X ) = a · X with a2 = 1 (mod n).

• As φ is non-trivial, a 6= ±1 (mod n).

• So, given φ, we can use a to factor n.
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• Conversely, assume that we know a number a such that
a 6= ±1 (mod n) and a2 = 1 (mod n).

• This a defines a non-trivial automorphism of R.
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Definition Example: Polynomial Division

Hensel Lifting

• Let R = Z or F [x ], and m ∈ R.

• Hensel (1918) designed a method to compute factorization of
any element of R modulo m` given its factorization modulo m.

• The method is called Hensel Lifting.

• It is used in several places: polynomial division, polynomial
factorization etc.



Definition Example: Polynomial Division

Hensel Lifting

• Suppose we are given f , g , h, s, t ∈ R such that
f = g · h (mod m), gcd(g , h) = 1 (mod m), and
sg + th = 1 (mod m).

• Compute e = f − gh (mod m2), g ′ = g + te (mod m2),
h′ = h + se (mod m2).

• Then we get:

g ′h′ (mod m2) = gh + sge + the + ste2 (mod m2)

= gh + (sg + th)(f − gh) (mod m2)

= f (mod m2).
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Hensel Lifting

• Also compute d = sg ′ + th′ − 1 (mod m2),
s ′ = s(1− d) (mod m2), t ′ = t(1− d) (mod m2).

• Then:

s ′g ′ + t ′h′ (mod m2) = sg ′(1− d) + th′(1− d) (mod m2)

= (1 + d)(1− d) (mod m2)

= 1 (mod m2).

• Thus we can ‘lift’ the factorization to modulo m2.

• Iterating this log ` times gives factorization modulo m`.
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Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• Let f (x) and g(x) be two monic polynomials over field F ,
deg f = n, deg g = m < n.

• We wish to compute d(x) and r(x) such that f = dg + r and
deg r < m.

• A naive algorithm takes O(n2) field operations.

• Using Hensel Lifting, we can do it in O(n log n) operations.
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Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• For any polynomial p(x) of degree d , define p̃(x) = xdp( 1
x ).

• The coefficients of p̃ are ‘reversed’.

• If f (x) = d(x)g(x) + r(x), then

f̃ (x) = d̃(x)g̃(x) + xn−m+1r̃(x).

• Therefore,

f̃ (x) = d̃(x)g̃(x) (mod xn−m+1).
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Polynomial Division via Hensel Lifting

• Since g̃(x) has degree zero coefficient 1, it is invertible
modulo xn−m+1.

• So, d̃(x) = f̃ (x) · g̃−1(x) (mod xn−m+1).

• So if we can compute g̃−1(x) (mod xn−m+1), then one
multiplication would give d̃(x) from which d(x) and then
r(x) = f (x)− d(x)g(x) can be easily recovered.

• We use Hensel Lifting to compute g̃−1(x) (mod xn−m+1).
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• Let h(x) = g̃−1(x) (mod xn−m+1).

• So, h(x) · g̃(x) = 1 (mod xn−m+1).

• Notice that g̃(x) (mod x) = 1 and so h(x) (mod x) = 1.

• Let s(x) = 1 and t(x) = 0 so s · h + t · g̃ = 1 (mod x).

• Use Hensel Lifting iteratively ` = dlog(n −m + 1)e times to

compute h(x) (mod x2`
) such that h(x) · g̃(x) = 1 (mod x2`

).

• As we start with t = 0, t will remain zero through all the
iterations.

• Therefore, function g̃ will also not change, as required.
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Definition Example: Polynomial Division

Polynomial Division via Hensel Lifting

• This gives the inverse of g̃(x) (mod xn−m+1).

• The algorithm uses only multiplication and addition.

• The kth iteration uses a constant number of multiplication
and addition of polynomials of degree 2k .

• Therefore, the whole algorithm requires
O(

∑`
k=1 MP(2k)) = O(MP(2`) = O(MP(n)) = O(n log n)

operations.
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Lattices

• Let v̂1, . . ., v̂n ∈ Rn be linearly independent vectors.

• Then,

L = {
n∑

i=1

αi v̂i | α1, . . . , αn ∈ Z}

is lattice generated by v̂1, . . ., v̂n.

• Vector v̂ is shortest vector in lattice L if ‖v̂‖2 is minimum.
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Lattices

• For lattice L, its norm |L| is defined to be det(v̂1 v̂2 . . . v̂n).

• |L| is independent of the choice of basis of L.

Theorem (Minkowski, 1896)

The length of shortest vector of L is at most
√

n · |L|1/n.
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LLL Algorithm

• Lenstra, Lenstra and Lovasz (1982) designed a
polynomial-time algorithm for computing a short vector in any
lattice.

• The algorithm computes a vector whose length is at most

2
n−1

2 times the length of shortest vector in the lattice.

• It is now known that finding a vector within a
√

2 factor of
shortest vector length is NP-hard.
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Finding Small Solutions of Modular

Equations

• Modular equations for prime moduli can be solved using
polynomial factorization.

• But this does not work for composite moduli.

• For this, short lattice vectors can be used to find small
solutions.

• Small = solutions much smaller than the moduli in absolute
value

• An example is breaking low-exponent RSA when part of the
message is known.
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Breaking Low Exponent RSA

• Let (n, 3) be the public-key of an RSA cryptosystem.

• Notice that the exponent of encryption is set to 3.

• Let c = m3 (mod n) be a ciphertext.

• Suppose that leading 11
12 |n| bits of m are known.

• This is possible in certain situations, e.g., when there is a
fixed 11

12 |n|-bit header appended to each message.

• Let m = h · 2|n|/12 + x where h is known.
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Breaking Low Exponent RSA

• Therefore,
c = (h ·2|n|/12 + x)3 (mod n) = x3 + a2x

2 + a1x + a0 (mod n).

• So if we can find all the roots of the above polynomial that
are less than 2|n|/12 = n1/12 then m can be recovered.

• For a vector v̂ ∈ Zd , v̂ = [vd−1 vd−2 · · · v0], let
v(x) =

∑d−1
i=0 vix

i and vice-versa.

• Let p3(x) = x3 + a2x
2 + a1x + (a0 − c).

• Then p̂3 = [0 0 1 a2 a1 a0 − c] ∈ Z6.
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Breaking Low Exponent RSA

• Let p4(x) = x · p3(x), p5(x) = x2 · p3(x), p0(x) = n,
p1(x) = n · x , and p2(x) = n · x2.

• Let L be the lattice generated by vectors p̂0, . . ., p̂5.

• Let vector v̂ ∈ L, v̂ =
∑5

i=0 αi p̂i .

• Notice that polynomial
v(x) =

∑5
i=0 αipi (x) = p3(x) · q(x) (mod n) for some q(x) of

degree two.

• Hence, every root of p3(x) (mod n) is also a root of
v(x) (mod n).
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Breaking Low Exponent RSA

• We have |L| = n3.

• By the property of lattices, L has a shortest vector of length
at most

√
6n3/6 =

√
6n.

• Run LLL algorithm to find a short vector û in L.

• The length of û is at most 25/2
√

6n = 4
√

12n.

• Let u(x) =
∑5

i=0 βix
i .

• We have |βi | ≤ 4
√

12n.
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Breaking Low Exponent RSA

• Consider a root γ of p3(x) (mod n) with γ ≤ n1/12.

• As argued above, γ is a root of u(x) (mod n) too.

• Now, |u(γ)| ≤ 24
√

12n · γ5 < n for n > (24
√

12)12.

• Therefore, u(γ) = 0 over rationals!

• Factor u(x) over rationals to compute all its roots.

• Identify the root that yields the ciphertext.
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Breaking Low Exponent RSA

• This breaks exponent-3 RSA when first 11
12 -fraction of bits of

plaintext are known.

• This can be improved to first 1
2 -fraction.

• Also generalizes to any small exponent.
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The Problem

• Given a monic polynomial f (x) of degree n, factor f over
rationals.

• A deterministic polynomial time algorithm for this was given
by Lenstra, Lenstra, Lovasz (1982).

• The algorithm uses Hensel Lifting and short vectors in lattices.
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Factoring Polynomials Over Rationals

• Choose a small prime p, and factor f over Fp.

• Let f = g1 · g2 (mod p) with g1 being irreducible.

• Let ` be the smallest integer greater than
3
2(n2 − 1) + (2n + 1) log ‖f ‖2.

• Use Hensel Lifting to compute factors of f modulo p`.

• Let f = g ′1 · g ′2 (mod p`).

• Note that g ′1 remains irreducible modulo p`.
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Factoring Polynomials Over Rationals

• Without loss of generality, assume g ′1 is monic and
deg(g ′1) = d .

• Define polynomials hi (x) = p`x i for 0 ≤ i < d .

• Define polynomials hd+i (x) = x i · g ′1(x) for 0 ≤ i < n − d .

• As before, let L be the n-dimensional lattice generated by
vectors ĥ0, . . ., ĥn−1.

• The lattice contains precisely degree n − 1 polynomials that
are multiples of g ′1 modulo p`.

• This lattice has a shortest vector of length at most
√

npd`/n.

• So, LLL algorithm produces a vector of length at most

2
n−1

2
√

npd`/n.
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Factoring Polynomials Over Rationals

• But we can do better!

• Suppose f = f1 · f2 over rationals.

• Since f = g ′1 · g ′2 (mod p`), g ′1 is irreducible and Zp` [x ] is a

UFD, g ′1 divides either f1 or f2 modulo p`.

• Without loss of generality, assume that f1 = f ′1 · g ′1 (mod p`).

• Then the vector f̂1 is in the lattice L.

• What is the length of f̂1?
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Factoring Polynomials Over Rationals

• Mignotte’s bound shows that ‖f1‖2 ≤ 2n−1‖f ‖2.

• Therefore, length of f̂1 = ‖f1‖2 ≤ 2n−1‖f ‖2.

• So, the LLL algorithm will produce a vector v̂ of length at

most 2
3(n−1)

2 ‖f ‖2.

• Consider polynomial v(x).

• Since v̂ ∈ L, g ′1(x) divides v(x) modulo p`.
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Factoring Polynomials Over Rationals

• Therefore, gcd(v(x), f (x)) > 1 (mod p`).

• Using the resultant , we can say Res(v(x), f (x)) = 0 (mod p`).

• Resultant of v(x) and f (x) is an (2n + 1)× (2n + 1) matrix
whose columns are essentially vectors v̂ and f̂ .

• From Hadamard’s Inequality it follows that

Res(v(x), f (x)) ≤ ‖v‖n+1
2 ‖f ‖n

2 ≤ 2
3(n2−1)

2 ‖f ‖2n+1
2 .
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Factoring Polynomials Over Rationals

• By the choice of `, ` > 3
2(n2 − 1) + (2n + 1) log ‖f ‖2, it

follows that
Res(v(x), f (x)) < p`.

• Coupled with the fact that Res(v(x), f (x)) = 0 (mod p`), we
get

Res(v(x), f (x)) = 0

over rationals.

• In other words, gcd(v(x), f (x)) > 1 over rationals and thus
we get a factor of f .
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Smooth Numbers

• Number n > 0 is m-smooth if all prime divisors of n are ≤ m.

• Let Ψ(x , y) denote the size of the set of numbers ≤ x that
are y -smooth.

Theorem (Density of Smooth Numbers)

Ψ(x , y) = x · r−r(1+o(1)) where r = ln x
ln y , and y = Ω(ln2 x).
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Smooth Numbers

• Smooth numbers are used in Elliptic Curve Factoring,
Quadratic Sieve and Number Field Sieve, the three most
popular integer factoring algorithms.

• They are also used in index calculus method for discrete log
problem.
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Quadratic Sieve

• Designed by Carl Pomerance (1983).

• Let n be an odd number with at least two distinct prime
factors.

• n can be factored if non-trivial solution of the equation
x2 = y2 (mod n) can be computed.

• A non-trivial solution is (x0, y0) such that x2
0 = y2

0 (mod n)
and x0 6= ±y0 (mod n).

• Given such a solution, gcd(x0 + y0, n) gives a factor of n.

• We will use this approach for factoring n.
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Quadratic Sieve

1. Let m = d
√

ne, B = e
1
2

√
ln n ln ln n, and p1, . . ., pt the set of all

primes ≤ B.

2. For k = 1, 2, 3, . . . do the following:

2.1 Let v = m + k.
2.2 Let u = v2 (mod n), 0 < u < n.
2.3 Check if u is B-smooth.
2.4 If yes, compute complete factorization of u =

∏t
i=1 p

e[i ]
i .

2.5 Store the triple (u, v , ê) where ê = (e[1] e[2] · · · e[t]).
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Quadratic Sieve

3. Exit the previous step after t + 1 triples are stored.

4. Let these be {uj , vj , êj}1≤j≤t+1.

5. Find αj ∈ {0, 1} for 1 ≤ j ≤ t + 1 such that∑t+1
j=1 αj êj = 0 (mod 2) and not all αj ’s are zero. [always

possible]

6. Let

x =
t+1∏
j=1

v
αj

j

and

y =
t∏

i=1

p
1
2

Pt+1
j=1 αjej [i ]

i =
t+1∏
j=1

t∏
i=1

p
1
2
αjej [i ]

i =
t+1∏
j=1

u
1
2
αj

j .
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Quadratic Sieve

7. Compute gcd(x + y , n) and check if a proper factor of n is
obtained.

8. If not, generate more triples and repeat.
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Quadratic Sieve Analysis

• First note that for each j ,
∑t+1

j=1 αjej [i ] is divisible by two and
so y is an integer.

• We have
x2 =

∏t+1
j=1{v2

j }αj =
∏t+1

j=1 u
αj

j (mod n) = y2 (mod n).

• Since x and y are computed using very different numbers (x is
a product of numbers of the form m + k and y is a product of
powers of pi ’s), it is likely that x 6= ±y (mod n).

• This results in a factor of n.
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Quadratic Sieve Analysis

• So how many k’s are required to generate t + 1 triples?

• Number u = (m + k)2 (mod n) ≈ 2
√

nk + k2 ≈ 2
√

nk when
k is small compared to

√
n.

• Assume that u is uniformly distributed over [1, 2
√

nk] as k
varies.

• Then the probability that u is B-smooth is around

( ln n
2 lnB )−

ln n
2 ln B ∼ e−

1
2

√
ln n ln ln n = 1

B .

• So we need B2+o(1) k’s to generate required triples.
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Quadratic Sieve Analysis

• Using a clever sieving trick, it can be shown that time taken
to compute all the triples remains B2+o(1).

• αj ’s can be computed by solving a system of t + 1 linear
equations.

• Time taken to compute these can be shown to be
O(t2) = O(B2).

• Therefore, the time complexity of the whole algorithm is

B2+o(1) = e(1+o(1))
√

ln n ln ln n.
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Number Field Sieve

• Designed by Pollard, Pomerance, Lenstra, ... (1990s).

• Uses arithmetic in a number field instead of Q.

• This allows one to reduce the size of u’s thus increasing the
chances of finding a smooth number.

• The time complexity comes down to ec(ln n)1/3(ln ln n)2/3
,

c ≈ 1.903.
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Discrete Log Problem Over Finite Fields

• Let p be a large prime.

• Let g ∈ Fp be a generator of F ∗
p and γ ∈ F ∗

p .

• The discrete log problem over finite fields is: given p, g , and
γ, compute m such that gm = γ (mod p).

• The hardness of this problem is the basis for security of El
Gamal type encryption algorithms over finite fields and
Diffie-Hellman key exchange scheme.
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Index Calculus Method

• Compute r and s such that g rγs = 1 (mod p) and
gcd(s, p − 1) = 1.

• Then g r+ms = 1 (mod p) giving m = −rs−1 (mod p − 1).

• How does one quickly find such r and s?

• We use a method similar to one used for integer factoring.
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Index Calculus Method

1. Let B = e
1
2

√
ln p ln ln p and p1, . . ., pt be all primes ≤ B.

2. Randomly select r and s, 0 < r , s < p − 1.

3. Compute u = g rγs (mod p).

4. Check if u is B-smooth.

5. If yes, compute complete factorization of u =
∏t

i=1 p
e[i ]
i .

6. Store the 4-tuple (r , s, u, ê) where ê = (e[1] e[2] · · · e[t]).



Definition Integer Factoring Discrete Log

Index Calculus Method

1. Let B = e
1
2

√
ln p ln ln p and p1, . . ., pt be all primes ≤ B.

2. Randomly select r and s, 0 < r , s < p − 1.

3. Compute u = g rγs (mod p).

4. Check if u is B-smooth.

5. If yes, compute complete factorization of u =
∏t

i=1 p
e[i ]
i .
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Definition Integer Factoring Discrete Log

Index Calculus Method

7. Exit the previous step after t + 1 4-tuples are stored.

8. Let these be {rj , sj , uj , êj}1≤j≤t+1.

9. Find αj ∈ Zp−1 for 1 ≤ j ≤ t + 1 such that∑t+1
j=1 αj êj = 0 (mod p − 1) and not all αj ’s are zero.

10. Let

r =
t+1∑
j=1

αj rj (mod p − 1)

and

s =
t+1∑
j=1

αjsj (mod p − 1).
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Index Calculus Method

11. Check if gcd(s, p − 1) = 1.

12. If yes, m = −rs−1 (mod p − 1) is the answer.
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Analysis of Index Calculus Method

• Note that

g rγs =
t+1∏
j=1

(g rjγsj )αj (mod p)

=
t+1∏
j=1

u
αj

j (mod p)

=
t+1∏
j=1

t∏
i=1

p
αjej [i ]
i (mod p)

=
t∏

i=1

p
Pt+1

j=1 αjej [i ]

i (mod p)

= 1 (mod p).
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Analysis of Index Calculus Method

• In addition, the probability that gcd(s, p − 1) = 1 is high since
sj ’s are randomly chosen.

• Therefore, the algorithm computes discrete log with high
probability.

• For time complexity we proceed exactly as before.

• The probability that u is B-smooth is
Ψ(p−1,B)

p−1 ∼ ( ln p
ln B )−

ln p
ln B ∼ e− ln p ln ln p = 1

B2 .
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Analysis of Index Calculus Method

• Therefore, we need to generate B3+o(1) u’s.

• Testing each u for smoothness takes B1+o(1) steps (no savings
here!).

• Also, solving the system of linear equation takes O(B3) steps.

• This gives the total complexity of
B4+o(1) = e(2+o(1))

√
ln p ln ln p.
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Comments

• As in case of factoring, number fields can be used to bring the
time complexity down to ec(ln n)1/3(ln ln n)2/3

.

• The index calculus method can be generalized to work for any
finite commutative group.

• However, it does not work well in groups with no good notion
of ‘smoothness’.

• For example, in group of points on an elliptic curve Ep.
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Thank You!



Resultants

• Let f and v be two polynomials over field F of degree n and
m respectively.

• We have gcd(f (x), v(x)) > 1 iff there exist r(x) and s(x), of
degrees < m and < n respectively, such that
r(x)f (x) + s(x)v(x) = 0.

• Define map T (r(x), s(x)) = r(x)f (x) + s(x)v(x) for
deg(r) < m and deg(s) < n.

• T is a bilinear map and so can be represented by a
(n + m)× (n + m) matrix, Mf ,v .

• Further, T is invertible iff gcd(f (x), v(x)) = 1.

• Let Res(f , v) = det Mf ,v .
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