A Survey of Techniques Used in Algebraic and Number Theoretic Algorithms

Manindra Agarwal

National University of Singapore and
IIT Kanpur
Kunming Tutorial, May 2005

Overview

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations
Tools for Designing Algorithms for Basic Operations

Overview of the Tools

Outline

Introduction

Two Applications

Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations
Overview of the Tools

Algebraic Algorithms

- Algorithms for performing algebraic operations.
- Examples:
- Matrix operations: addition, multiplication, inverse, determinant, solving a system of linear equations.
- Polynomial operations: addition, multiplication, factoring,
- Abstract algebra operations: order of a group element, discrete log.

Algebraic Algorithms

- Algorithms for performing algebraic operations.
- Examples:
- Matrix operations: addition, multiplication, inverse, determinant, solving a system of linear equations,
- Polynomial operations: addition, multiplication, factoring, ...
- Abstract algebra operations: order of a group element, discrete log, ...

Number Theoretical Algorithms

- Algorithms for performing number theoretic operations.
- Examples:
- Operations on integers and rationals: addition, multiplication, gcd, square roots, primality testing, integer factoring,

Number Theoretical Algorithms

- Algorithms for performing number theoretic operations.
- Examples:
- Operations on integers and rationals: addition, multiplication, gcd, square roots, primality testing, integer factoring, ...

Applications

- In coding theory for efficient coding/decoding.
- In cryptography for design and analysis of cryptographic schemes.
- In computer algebra systems.

Applications

- In coding theory for efficient coding/decoding.
- In cryptography for design and analysis of cryptographic schemes.
- In computer algebra systems.

Applications

- In coding theory for efficient coding/decoding.
- In cryptography for design and analysis of cryptographic schemes.
- In computer algebra systems.

This Talk

- Discusses two major applications where algebraic and number theoretic algorithms are used.
- Surveys some of the important tools for designing these algorithms.
- Designs algorithms for some basic operations using these tools.

This Talk

- Discusses two major applications where algebraic and number theoretic algorithms are used.
- Surveys some of the important tools for designing these algorithms.
- Designs algorithms for some basic operations using these tools.

This Talk

- Discusses two major applications where algebraic and number theoretic algorithms are used.
- Surveys some of the important tools for designing these algorithms.
- Designs algorithms for some basic operations using these tools.

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

Reed-Soloman Codes

- One of the most important and popular class of codes.
- Used in several applications including encoding data on CDs and DVDs.
- Uses polynomial evaluations for coding, linear system solving and polynomial factorization for decoding.

Reed-Soloman Codes

- One of the most important and popular class of codes.
- Used in several applications including encoding data on CDs and DVDs.
- Uses polynomial evaluations for coding, linear system solving and polynomial factorization for decoding.

Reed-Soloman Codes: Coding

- Let m be a string that is to be coded.
- Fix a finite field $F,|F| \geq n$, and split m as a sequence of $k<n$ elements of $F:\left(m_{0}, \ldots, m_{k-1}\right)$.
- Let polynomial $P_{m}(x)=\sum_{i=0}^{k-1} m_{i}$
- Let $c_{j}=P_{m}\left(e_{j}\right)$ for $0 \leq j<n$ with e_{0}, \ldots, e_{n-1} distinct elements of F. [Requires polynomial evaluation]
- The sequence $\left(c_{0}, \ldots, c_{n-1}\right)$ is the codeword corresponding to m.

Reed-Soloman Codes: Coding

- Let m be a string that is to be coded.
- Fix a finite field $F,|F| \geq n$, and split m as a sequence of $k<n$ elements of $F:\left(m_{0}, \ldots, m_{k-1}\right)$.
- Let polynomial $P_{m}(x)=\sum_{i=0}^{k-1} m_{i} \cdot x^{i}$.
- Let $c_{j}=P_{m}\left(e_{j}\right)$ for $0 \leq j<n$ with e_{0}, \ldots, e_{n-1} distinct elements of F. [Requires polynomial evaluation]
- The sequence $\left(c_{0}, \ldots, c_{n-1}\right)$ is the codeword corresponding to m.

Reed-Soloman Codes: Coding

- Let m be a string that is to be coded.
- Fix a finite field $F,|F| \geq n$, and split m as a sequence of $k<n$ elements of $F:\left(m_{0}, \ldots, m_{k-1}\right)$.
- Let polynomial $P_{m}(x)=\sum_{i=0}^{k-1} m_{i} \cdot x^{i}$.
- Let $c_{j}=P_{m}\left(e_{j}\right)$ for $0 \leq j<n$ with e_{0}, \ldots, e_{n-1} distinct elements of F. [Requires polynomial evaluation]
- The sequence $\left(c_{0}, \ldots, c_{n-1}\right)$ is the codeword corresponding to m.

Reed-Soloman Codes: Decoding

- Let $\left(d_{0}, \ldots, d_{n-1}\right)$ be a given, possibly corrupted, codeword.
- Assume that the number of un-corrupted elements is at least t.
- Let $D_{0}=\left\lceil\sqrt{k n\rceil}\right.$ and $D_{1}=\lfloor\sqrt{n / k}\rfloor$
- Find a non-zero bivariate polynomial $Q(x, y)$ with x-degree D_{0} and y-degree D_{1} such that $Q\left(e_{j}, d_{j}\right)=0$ for every $0 \leq j<n$.
- Such a Q can always be found since Q has $\left(1+D_{0}\right) \cdot\left(1+D_{1}\right)>n$ unknown coefficients that need to satisfy n homogeneous equations. [Requires solving a system of linear equations]

Reed-Soloman Codes: Decoding

- Let $\left(d_{0}, \ldots, d_{n-1}\right)$ be a given, possibly corrupted, codeword.
- Assume that the number of un-corrupted elements is at least t.
- Let $D_{0}=\lceil\sqrt{k n}\rceil$ and $D_{1}=\lfloor\sqrt{n / k}\rfloor$.
- Find a non-zero bivariate polynomial $Q(x, y)$ with x-degree D_{0} and y-degree D_{1} such that $Q\left(e_{j}, d_{j}\right)=0$ for every $0 \leq j<n$.

Reed-Soloman Codes: Decoding

- Let $\left(d_{0}, \ldots, d_{n-1}\right)$ be a given, possibly corrupted, codeword.
- Assume that the number of un-corrupted elements is at least t.
- Let $D_{0}=\lceil\sqrt{k n}\rceil$ and $D_{1}=\lfloor\sqrt{n / k}\rfloor$.
- Find a non-zero bivariate polynomial $Q(x, y)$ with x-degree D_{0} and y-degree D_{1} such that $Q\left(e_{j}, d_{j}\right)=0$ for every $0 \leq j<n$.
- Such a Q can always be found since Q has $\left(1+D_{0}\right) \cdot\left(1+D_{1}\right)>n$ unknown coefficients that need to satisfy n homogeneous equations. [Requires solving a system of linear equations]

Reed-Soloman Codes: Decoding

- Consider the polynomial $\hat{Q}(x)=Q\left(x, P_{m}(x)\right)$.
- We have $\hat{Q}\left(e_{j}\right)=0$ for at least t different e_{j} 's by assumption.
- The degree of $\hat{Q}(x)$ is less than $D_{0}+D_{1} \cdot k \leq 2\lceil\sqrt{k n}\rceil$
- Therefore, if $t \geq 2\lceil\sqrt{k n}\rceil, \hat{Q}(x)=0$.
- If $\hat{Q}(x)=Q\left(x, P_{m}(x)\right)=0$, then polynomial $y-P_{m}(x)$ must divide polynomial $Q(x, y)$.
- Therefore, $y-P_{m}(x)$ divides $Q(x, y)$ whenever $t \geq 2\lceil\sqrt{k n}\rceil$

Reed-Soloman Codes: Decoding

- Consider the polynomial $\hat{Q}(x)=Q\left(x, P_{m}(x)\right)$.
- We have $\hat{Q}\left(e_{j}\right)=0$ for at least t different e_{j} 's by assumption.
- The degree of $\hat{Q}(x)$ is less than $D_{0}+D_{1} \cdot k \leq 2\lceil\sqrt{k n}\rceil$.
- Therefore, if $t \geq 2\lceil\sqrt{k n}\rceil, \hat{Q}(x)=0$.

Reed-Soloman Codes: Decoding

- Consider the polynomial $\hat{Q}(x)=Q\left(x, P_{m}(x)\right)$.
- We have $\hat{Q}\left(e_{j}\right)=0$ for at least t different e_{j} 's by assumption.
- The degree of $\hat{Q}(x)$ is less than $D_{0}+D_{1} \cdot k \leq 2\lceil\sqrt{k n}\rceil$.
- Therefore, if $t \geq 2\lceil\sqrt{k n}\rceil, \hat{Q}(x)=0$.
- If $\hat{Q}(x)=Q\left(x, P_{m}(x)\right)=0$, then polynomial $y-P_{m}(x)$ must divide polynomial $Q(x, y)$.
- Therefore, $y-P_{m}(x)$ divides $Q(x, y)$ whenever $t \geq 2\lceil\sqrt{k n}\rceil$.

Reed-Soloman Codes: Decoding

- Factor polynomial $Q(x, y)$ and list all the factors of the form $y-P(x)$. [Requires polynomial factoring]
- Select the polynomial $P(x)$ from these that agrees with the sequence $\left(d_{0}, \ldots, d_{n-1}\right)$ on maximum number of elements.
- This is likely to be the polynomial $P_{m}(x)$.
- This algorithm decodes up to $n-2\lceil\sqrt{k n}\rceil$ errors.
- Given by Madhu Sudan (1994)

Reed-Soloman Codes: Decoding

- Factor polynomial $Q(x, y)$ and list all the factors of the form $y-P(x)$. [Requires polynomial factoring]
- Select the polynomial $P(x)$ from these that agrees with the sequence $\left(d_{0}, \ldots, d_{n-1}\right)$ on maximum number of elements.
- This is likely to be the polynomial $P_{m}(x)$.
- Given by Madhu Sudan (1994)

Reed-Soloman Codes: Decoding

- Factor polynomial $Q(x, y)$ and list all the factors of the form $y-P(x)$. [Requires polynomial factoring]
- Select the polynomial $P(x)$ from these that agrees with the sequence $\left(d_{0}, \ldots, d_{n-1}\right)$ on maximum number of elements.
- This is likely to be the polynomial $P_{m}(x)$.
- This algorithm decodes up to $n-2\lceil\sqrt{k n}\rceil$ errors.
- Given by Madhu Sudan (1994).

Reed-Soloman Codes: Decoding

- Factor polynomial $Q(x, y)$ and list all the factors of the form $y-P(x)$. [Requires polynomial factoring]
- Select the polynomial $P(x)$ from these that agrees with the sequence $\left(d_{0}, \ldots, d_{n-1}\right)$ on maximum number of elements.
- This is likely to be the polynomial $P_{m}(x)$.
- This algorithm decodes up to $n-2\lceil\sqrt{k n}\rceil$ errors.
- Given by Madhu Sudan (1994).

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes
Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

RSA CRyptosystem

- The first and most popular public-key cryptosystem.
- Used in secure communication everywhere.
- Uses modular arithmetic for encryption and decryption.
- Uses primality testing for generating keys.
- Integer factoring dominates cryptanalysis, with modular equation solving also playing a role.

RSA CRyptosystem

- The first and most popular public-key cryptosystem.
- Used in secure communication everywhere.
- Uses modular arithmetic for encryption and decryption.
- Uses primality testing for generating keys.
- Integer factoring dominates cryptanalysis, with modular equation solving also playing a role.

RSA CRyptosystem

- The first and most popular public-key cryptosystem.
- Used in secure communication everywhere.
- Uses modular arithmetic for encryption and decryption.
- Uses primality testing for generating keys.
- Integer factoring dominates cryptanalysis, with modular equation solving also playing a role.

RSA: Key Generation

- Fix a key length, say, 2^{r} bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an $e, 3 \leq e<(p-1)(q-1)$ and $\operatorname{gcd}(e,(p-1)(q-1))=1$.
- Find the smallest d such that $d \cdot e=1(\bmod (p-1)(q-1))$.
[Requires modular inverse computation]
- Let $n=p q$.
- The encryption key is the pair (n, e).
- The decryption key is d.

RSA: Key Generation

- Fix a key length, say, 2^{r} bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an $e, 3 \leq e<(p-1)(q-1)$ and $\operatorname{gcd}(e,(p-1)(q-1))=1$.
- Find the smallest d such that $d \cdot e=1(\bmod (p-1)(q-1))$. [Requires modular inverse computation]
\square

RSA: Key Generation

- Fix a key length, say, 2^{r} bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an $e, 3 \leq e<(p-1)(q-1)$ and $\operatorname{gcd}(e,(p-1)(q-1))=1$.
- Find the smallest d such that $d \cdot e=1(\bmod (p-1)(q-1))$. [Requires modular inverse computation]
- Let $n=p q$.
- The encryption key is the pair (n, e).
- The decryption key is d

RSA: Key Generation

- Fix a key length, say, 2^{r} bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an $e, 3 \leq e<(p-1)(q-1)$ and $\operatorname{gcd}(e,(p-1)(q-1))=1$.
- Find the smallest d such that $d \cdot e=1(\bmod (p-1)(q-1))$. [Requires modular inverse computation]
- Let $n=p q$.
- The encryption key is the pair (n, e).

RSA: Key Generation

- Fix a key length, say, 2^{r} bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an $e, 3 \leq e<(p-1)(q-1)$ and $\operatorname{gcd}(e,(p-1)(q-1))=1$.
- Find the smallest d such that $d \cdot e=1(\bmod (p-1)(q-1))$. [Requires modular inverse computation]
- Let $n=p q$.
- The encryption key is the pair (n, e).
- The decryption key is d.

RSA: Encryption and Decryption

- Let m be the message to be encrypted.
- Treat m as a number less than n.
- Compute $c=m^{e}(\bmod n)$. [Requires modular exponentiation]
- c is the encrypted message.
- Note that $c^{d}(\bmod n)=m^{e d}(\bmod n)=m$.
- Thus c can be decrypted using key d.

RSA: Encryption And Decryption

- Let m be the message to be encrypted.
- Treat m as a number less than n.
- Compute $c=m^{e}(\bmod n)$. [Requires modular exponentiation]
- c is the encrypted message.
- Note that $c^{d}(\bmod n)=m^{e d}(\bmod n)=m$.
- Thus c can be decrypted using key d.

RSA: Encryption And Decryption

- Let m be the message to be encrypted.
- Treat m as a number less than n.
- Compute $c=m^{e}(\bmod n)$. [Requires modular exponentiation]
- c is the encrypted message.
- Note that $c^{d}(\bmod n)=m^{e d}(\bmod n)=m$.
- Thus c can be decrypted using key d.

RSA: Cryptanalysis

- If n can be factored, then d can be easily computed using e : $d=e^{-1}(\bmod (p-1)(q-1))$.
- So efficiency of factoring algorithms determines how safe RSA is.
- It is not the only way to break RSA though.
- We will see a different attack later that works for a special case.

RSA: Cryptanalysis

- If n can be factored, then d can be easily computed using e : $d=e^{-1}(\bmod (p-1)(q-1))$.
- So efficiency of factoring algorithms determines how safe RSA is.
- It is not the only way to break RSA though.
- We will see a different attack later that works for a special case.

RSA: Cryptanalysis

- If n can be factored, then d can be easily computed using e : $d=e^{-1}(\bmod (p-1)(q-1))$.
- So efficiency of factoring algorithms determines how safe RSA is.
- It is not the only way to break RSA though.
- We will see a different attack later that works for a special case.

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations
Overview of the Tools

Basic Operations: Polynomial Algebra

- Efficient algorithms are known for most of the operations.
- Degree n Polynomial addition: $O(n)$ arithmetic operations.
- Degree n Polynomial multiplication: $M_{P}(n)=O(n \log n)$ arithmetic operations.
- Several other operations reduce to polynomial multiplication:
- Polynomial division: $O\left(M_{P}(n)\right)$,
- Polynomial gcd: $O\left(M_{P}(n) \log n\right)$.
- Polynomial evaluation and interpolation: $O\left(M_{p}(n) \log n\right)$

Basic Operations: Polynomial Algebra

- Efficient algorithms are known for most of the operations.
- Degree n Polynomial addition: $O(n)$ arithmetic operations.
- Degree n Polynomial multiplication: $M_{P}(n)=O(n \log n)$ arithmetic operations.
- Several other operations reduce to polynomial multiplication:
- Polynomial division: $O\left(M_{P}(n)\right)$,
- Polynomial gcd: $O\left(M_{P}(n) \log n\right)$.
- Polynomial evaluation and interpolation: $O\left(M_{P}(n) \log n\right)$.

Basic Operations: Polynomial Algebra

- Polynomial factorization over finite field $F_{p}: O^{\sim}\left(n^{2} \log p\right)$ randomized.
- $O^{\sim}(t(n))=O\left(t(n) \cdot(\log t(n))^{c}\right)$ for some constant $c \geq 0$.

Basic Operations: Polynomial Algebra

- Polynomial factorization over finite field $F_{p}: O^{\sim}\left(n^{2} \log p\right)$ randomized.
- $O^{\sim}(t(n))=O\left(t(n) \cdot(\log t(n))^{c}\right)$ for some constant $c \geq 0$.
- Polynomial factorization over rationals: $O^{\sim}\left(n^{10}+n^{8} \log ^{2}\|f\|_{2}\right),\|f\|_{2}$ square-root of the sum of square of coefficients of f.

Basic Operations: Arithmetic

- Very similar to polynomial algebra.
- Addition: $O(n)$,
- Multiplication: $M_{l}(n)=O(n \log n \log \log n)$,
- Gcd: $O\left(n^{2}\right)$.
- A number of operations can be transformed to multiplication:
- Division, Modular arithmetic, computing integer roots: $O\left(M_{l}(n)\right)$

Basic Operations: Arithmetic

- Very similar to polynomial algebra.
- Addition: $O(n)$,
- Multiplication: $M_{l}(n)=O(n \log n \log \log n)$,
- Gcd: $O\left(n^{2}\right)$.
- A number of operations can be transformed to multiplication:
- Division, Modular arithmetic, computing integer roots: $O\left(M_{l}(n)\right)$.

Basic Operations: Arithmetic

- Primality testing: $O^{\sim}\left(n^{6}\right)$ deterministic, $O^{\sim}\left(n^{2}\right)$ randomized.
- Integer factoring:
- $e^{O\left((\log n)^{1 / 2}(\log \log n)^{1 / 2}\right)}$ randomized.
- $e^{O\left((\log n)^{1 / 3}(\log \log n)^{2 / 3}\right)}$ heuristic.

Basic Operations: Arithmetic

- Primality testing: $O^{\sim}\left(n^{6}\right)$ deterministic, $O^{\sim}\left(n^{2}\right)$ randomized.
- Integer factoring:
- $e^{O\left((\log n)^{1 / 2}(\log \log n)^{1 / 2}\right)}$ randomized.
- $e^{O\left((\log n)^{1 / 3}(\log \log n)^{2 / 3}\right)}$ heuristic.

Basic Operations: Linear Algebra

- The central problem is matrix multiplication.
- Coppersmith and Winograd (1986) showed that time complexity of multiplying two $n \times n$ matrices is $M_{M}(n)=O\left(n^{2.376}\right)$ arithmetic operations.
- Several problems reduce to matrix multiplication:
- Matrix inverse: $O\left(M_{M}(n)\right)$,
- Determinant, Characteristic polynomial: $O\left(M_{M}(n)\right)$,
- Solving a system of linear equations in n variables: $O\left(M_{M}(n)\right)$

Basic Operations: Linear Algebra

- The central problem is matrix multiplication.
- Coppersmith and Winograd (1986) showed that time complexity of multiplying two $n \times n$ matrices is $M_{M}(n)=O\left(n^{2.376}\right)$ arithmetic operations.
- Several problems reduce to matrix multiplication:
- Matrix inverse: $O\left(M_{M}(n)\right)$,
- Determinant, Characteristic polynomial: $O\left(M_{M}(n)\right)$,
- Solving a system of linear equations in n variables: $O\left(M_{M}(n)\right)$.

Basic Operations: Abstract Algebra

- Computing order of an element in finite group G :
- Complexity depends on the group.
- Trivial for some groups, e.g., $\left(Z_{n},+\right)$.
- As hard as integer factoring for some groups, e.g., Z_{n}^{*}.

Basic Operations: Abstract Algebra

- Computing order of an element in finite group G :
- Complexity depends on the group.
- Trivial for some groups, e.g., $\left(Z_{n},+\right)$.
- As hard as integer factoring for some groups, e.g., Z_{n}^{*}.
- Computing discrete log of an element in finite cyclic group G : given generator g for G, and element e, find m such that $e=g^{m}$.
- Easy for some groups, e.g., $\left(Z_{n},+\right)$. [requires modular inverse and multiplication]
- Similar in hardness to integer factoring for groups, e.g., Z_{p}.
 points on elliptic curve E_{p}.

Basic Operations: Abstract Algebra

- Computing order of an element in finite group G :
- Complexity depends on the group.
- Trivial for some groups, e.g., $\left(Z_{n},+\right)$.
- As hard as integer factoring for some groups, e.g., Z_{n}^{*}.
- Computing discrete log of an element in finite cyclic group G : given generator g for G, and element e, find m such that $e=g^{m}$.
- Easy for some groups, e.g., $\left(Z_{n},+\right)$. [requires modular inverse and multiplication]
- Similar in hardness to integer factoring for groups, e.g., Z_{p}^{*}.
- Very hard (time $=2^{O(n)}$) for some groups, e.g., groups of points on elliptic curve E_{p}.

Outline

Introduction

Two Applications

Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations
Tools for Designing Algorithms for Basic Operations

Overview of the Tools

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic computations.
2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
3. Automornhisms: Used in polynomial and integer factorization and irreducibility testing.
4. Hensel Lifting: Used in polynomial factorization and division.
5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
6. Smooth Numbers: Used in integer factorization and discrete log problem.

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic computations.
2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing. Hensel Lifting: Used in polynomial factorization and division. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems. Smooth Numbers: Used in integer factorization and discrete log problem.

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic computations.
2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic computations.
2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
4. Hensel Lifting: Used in polynomial factorization and division.

Short Vectors in a Lattice: Used in polynomial factorization
(over fields and rings) and breaking cryptosystems. Smooth Numbers: Used in integer factorization and discrete log problem

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic computations.
2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
4. Hensel Lifting: Used in polynomial factorization and division.
5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.

Tools for Designing Algorithms

1. Chinese Remaindering: Used in speeding integer and algebraic computations.
2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
4. Hensel Lifting: Used in polynomial factorization and division.
5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
6. Smooth Numbers: Used in integer factorization and discrete log problem.

Outline

Introduction

Two Applications
Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations
Overview of the Tools

Chinese Remaindering

Definition

Example: Determinant Computation

Discrete Fourier Transform

Definition

Fast Fourier Transform

Example: Polynomial Multiplication

Automorphisms

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring

Hensel Lifting

Definition

Example: Polynomial Division

Short Vectors in a Lattice

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals

Smooth Numbers

Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index Calculus

Tool 1: Chinese Remaindering

Outline

Definition

Example: Determinant Computation

Chinese Remaindering Theorem

Theorem
Let $R=\mathbb{Z}$ or $F[x]$, and $m_{0}, m_{1}, \ldots, m_{r-1} \in R$ be pairwise coprime. Let $m=\prod_{i=0}^{r-1} m_{i}$. Then,

$$
R /(m) \cong R /\left(m_{0}\right) \oplus R /\left(m_{1}\right) \oplus \cdots \oplus R /\left(m_{r-1}\right) .
$$

- An element of ring $R /(m)$ can be uniquely written as an r-tuple with i th component belonging to ring $R /\left(m_{i}\right)$,
- Addition and multiplication operations act component-wise.

Chinese Remaindering Theorem

Theorem

Let $R=\mathbb{Z}$ or $F[x]$, and $m_{0}, m_{1}, \ldots, m_{r-1} \in R$ be pairwise coprime. Let $m=\prod_{i=0}^{r-1} m_{i}$. Then,

$$
R /(m) \cong R /\left(m_{0}\right) \oplus R /\left(m_{1}\right) \oplus \cdots \oplus R /\left(m_{r-1}\right) .
$$

- An element of ring $R /(m)$ can be uniquely written as an r-tuple with ith component belonging to ring $R /\left(m_{i}\right)$.
- Addition and multiplication operations act component-wise.

Chinese Remaindering Applications

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
- Also lends itself to parallelization.

Chinese Remaindering Applications

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
- Given a bound, say A, on the output of a computation, choose small m_{0},
computations modulo each of m_{i} 's.
- At the end, combine the results of computations to get the desired result.
- Also Innds itself to parallelization.

Chinese Remaindering Applications

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
- Given a bound, say A, on the output of a computation, choose small m_{0}, \ldots, m_{r-1} such that $\prod_{i=0}^{r-1} m_{i}>A$ and do the computations modulo each of m_{i} 's.
- At the end, combine the results of computations to get the desired result.
- Also lends itself to parallelization.

Chinese Remaindering Applications

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
- Given a bound, say A, on the output of a computation, choose small m_{0}, \ldots, m_{r-1} such that $\prod_{i=0}^{r-1} m_{i}>A$ and do the computations modulo each of m_{i} 's.
- At the end, combine the results of computations to get the desired result.
- Also lends itself to parallelization.

Outline

Definition

Example: Determinant Computation

Computing Determinant via CRT

- Let M be a $n \times n$ matrix over integers with A bounding the largest absolute value of its elements.
- Hadamard's inequality implies that $|\operatorname{det} M| \leq n^{n / 2} A^{n}$.
- Let $B=n^{n / 2} A^{n}$ and $r=\lceil\log (2 B+1)\rceil$

- Compute $v_{i}=\operatorname{det} M\left(\bmod m_{i}\right)$ for each i
- Compute α_{i} such that $\alpha_{i} \cdot \frac{m}{m_{i}}=1\left(\bmod m_{i}\right)$ for each
- Output

Computing Determinant via CRT

- Let M be a $n \times n$ matrix over integers with A bounding the largest absolute value of its elements.
- Hadamard's inequality implies that $|\operatorname{det} M| \leq n^{n / 2} A^{n}$.
- Let $B=n^{n / 2} A^{n}$ and $r=\lceil\log (2 B+1)\rceil$.
- Let m_{0}, \ldots, m_{r-1} be first r primes and $m=\prod_{i=0}^{r-1} m_{i}$.
- Compute $v_{i}=\operatorname{det} M\left(\bmod m_{i}\right)$ for each i
- Compute α_{i} such that $\alpha_{i} \cdot \frac{m}{m_{i}}=1\left(\bmod m_{i}\right)$ for each i
- Output $\sum_{i=0}^{r-1} \alpha_{i} \cdot \frac{m}{m_{j}} \cdot v_{i}(\bmod m)$.

Computing Determinant via CRT

- Let M be a $n \times n$ matrix over integers with A bounding the largest absolute value of its elements.
- Hadamard's inequality implies that $|\operatorname{det} M| \leq n^{n / 2} A^{n}$.
- Let $B=n^{n / 2} A^{n}$ and $r=\lceil\log (2 B+1)\rceil$.
- Let m_{0}, \ldots, m_{r-1} be first r primes and $m=\prod_{i=0}^{r-1} m_{i}$.
- Compute $v_{i}=\operatorname{det} M\left(\bmod m_{i}\right)$ for each i.
- Compute α_{i} such that $\alpha_{i} \cdot \frac{m}{m_{i}}=1\left(\bmod m_{i}\right)$ for each i
- Output $\sum_{i=0}^{r-1} \alpha_{i} \cdot \frac{m}{m_{i}} \cdot v_{i}(\bmod m)$

Computing Determinant via CRT

- Let M be a $n \times n$ matrix over integers with A bounding the largest absolute value of its elements.
- Hadamard's inequality implies that $|\operatorname{det} M| \leq n^{n / 2} A^{n}$.
- Let $B=n^{n / 2} A^{n}$ and $r=\lceil\log (2 B+1)\rceil$.
- Let m_{0}, \ldots, m_{r-1} be first r primes and $m=\prod_{i=0}^{r-1} m_{i}$.
- Compute $v_{i}=\operatorname{det} M\left(\bmod m_{i}\right)$ for each i.
- Compute α_{i} such that $\alpha_{i} \cdot \frac{m}{m_{i}}=1\left(\bmod m_{i}\right)$ for each i.
- Output $\sum_{i=0}^{r-1} \alpha_{i} \cdot \frac{m}{m_{i}} \cdot v_{i}(\bmod m)$

Computing Determinant via CRT

- Let M be a $n \times n$ matrix over integers with A bounding the largest absolute value of its elements.
- Hadamard's inequality implies that $|\operatorname{det} M| \leq n^{n / 2} A^{n}$.
- Let $B=n^{n / 2} A^{n}$ and $r=\lceil\log (2 B+1)\rceil$.
- Let m_{0}, \ldots, m_{r-1} be first r primes and $m=\prod_{i=0}^{r-1} m_{i}$.
- Compute $v_{i}=\operatorname{det} M\left(\bmod m_{i}\right)$ for each i.
- Compute α_{i} such that $\alpha_{i} \cdot \frac{m}{m_{i}}=1\left(\bmod m_{i}\right)$ for each i.
- Output $\sum_{i=0}^{r-1} \alpha_{i} \cdot \frac{m}{m_{i}} \cdot v_{i}(\bmod m)$.

Tool 2: Discrete Fourier Transform

Outline

Definition

Fast Fourier Transform

Example: Polynomial Multiplication

Discrete Fourier Transform

- Discrete Fourier Transform is the discrete variant of Fourier transform.
- It is used in polynomial multiplication, integer multiplication, image compression, and many other applications.

Discrete Fourier Transform

- Discrete Fourier Transform is the discrete variant of Fourier transform.
- It is used in polynomial multiplication, integer multiplication, image compression, and many other applications.

Discrete Fourier Transform

- Let $f:[0, n-1] \mapsto F$ be a function 'selecting' n elements of field F.
- Let ω be a principle nth root of unity, i.e., $\omega^{n}=1$, and $\omega^{t} \neq 1$ for $0<t<n$.

Discrete Fourier Transform

- Let $f:[0, n-1] \mapsto F$ be a function 'selecting' n elements of field F.
- Let ω be a principle nth root of unity, i.e., $\omega^{n}=1$, and $\omega^{t} \neq 1$ for $0<t<n$.

Discrete Fourier Transform

- Let $f:[0, n-1] \mapsto F$ be a function 'selecting' n elements of field F.
- Let ω be a principle nth root of unity, i.e., $\omega^{n}=1$, and $\omega^{t} \neq 1$ for $0<t<n$.
- The DFT of f is $\mathcal{F}_{f}:[0, n-1] \mapsto F[\omega]:$

$$
\mathcal{F}_{f}(j)=\sum_{i=0}^{n-1} f(i) \omega^{i j}
$$

Outline

Definition

Fast Fourier Transform

Example: Polynomial Multiplication

Fast Fourier Transform: An Algorithm for Computing DFT

- A straightforward algorithm takes $O\left(n^{2}\right)$ arithmetic operations.
- An $O(n \log n)$ time algorithm for DFT was (re)discovered by Cooley and Tukey (1965).
- It was first found by Gauss (1805).
- The algorithm is called Fast Fourier Transform and uses divide-and-conquer technique to recursively compute DFT

Fast Fourier Transform: An Algorithm for Computing DFT

- A straightforward algorithm takes $O\left(n^{2}\right)$ arithmetic operations.
- An $O(n \log n)$ time algorithm for DFT was (re)discovered by Cooley and Tukey (1965).
- It was first found by Gauss (1805).
- The algorithm is called Fast Fourier Transform and uses divide-and-conquer technique to recursively compute DFT.

FFT

- Let $f, f:[0, n-1] \mapsto F$ for field field F, and assume $n=2^{k}$.
- Note that for $0 \leq j<n / 2$,

- Similarly,

- Thus the problem reduces to computing DFT of two functions with $\frac{n}{2}$ domain size.

FFT

- Let $f, f:[0, n-1] \mapsto F$ for field field F, and assume $n=2^{k}$.
- Note that for $0 \leq j<n / 2$,

$$
\mathcal{F}_{f}(2 j)=\sum_{i=0}^{n-1} f(i) \omega^{2 i j}=\sum_{i=0}^{n / 2-1}(f(i)+f(n / 2+i))\left(\omega^{2}\right)^{i j}
$$

- Similarly,
- Thus the problem reduces to computing DFT of two functions with $\frac{n}{2}$ domain size.

FFT

- Let $f, f:[0, n-1] \mapsto F$ for field field F, and assume $n=2^{k}$.
- Note that for $0 \leq j<n / 2$,

$$
\mathcal{F}_{f}(2 j)=\sum_{i=0}^{n-1} f(i) \omega^{2 i j}=\sum_{i=0}^{n / 2-1}(f(i)+f(n / 2+i))\left(\omega^{2}\right)^{i j}
$$

- Similarly,

$$
\mathcal{F}_{f}(2 j+1)=\sum_{i=0}^{n-1} f(i) \omega^{i(2 j+1)}=\sum_{i=0}^{n / 2-1}\left(f(i) \omega^{i}-f(n / 2+i) \omega^{i}\right)\left(\omega^{2}\right)^{i j}
$$

- Thus the problem reduces to computing DFT of two functions with $\frac{n}{2}$ domain size.

FFT

- The functions are: $f_{0}(i)=f(i)+f(n / 2+i)$ and $f_{1}(i)=(f(i)-f(n / 2+i)) \omega^{i}$ for $0 \leq i<n / 2$.
- These functions can be computed using $O(n)$ operations from
- Setting the recurrence and solving, we get the time to compute DFT is $O(n \log n)$.

FFT

- The functions are: $f_{0}(i)=f(i)+f(n / 2+i)$ and $f_{1}(i)=(f(i)-f(n / 2+i)) \omega^{i}$ for $0 \leq i<n / 2$.
- These functions can be computed using $O(n)$ operations from f.
- Setting the recurrence and solving, we get the time to compute DFT is $O(n \log n)$.

FFT

- The functions are: $f_{0}(i)=f(i)+f(n / 2+i)$ and $f_{1}(i)=(f(i)-f(n / 2+i)) \omega^{i}$ for $0 \leq i<n / 2$.
- These functions can be computed using $O(n)$ operations from f.
- Setting the recurrence and solving, we get the time to compute DFT is $O(n \log n)$.

Outline

Definition

Fast Fourier Transform

Example: Polynomial Multiplication

Polynomial Multiplication via FFT

- Let P be a polynomial over field F of degree $<n$:

$$
P(x)=\sum_{i=0}^{n-1} c_{i} x^{i}
$$

- Associate function \hat{P} with $P, \hat{P}:[0, n-1] \mapsto F, \hat{P}(i)=c_{i}$.
- DFT of P is defined to be

Polynomial Multiplication via FFT

- Let P be a polynomial over field F of degree $<n$:

$$
P(x)=\sum_{i=0}^{n-1} c_{i} x^{i}
$$

- Associate function \hat{P} with $P, \hat{P}:[0, n-1] \mapsto F, \hat{P}(i)=c_{i}$.
- DFT of P is defined to be

Polynomial Multiplication via FFT

- Let P be a polynomial over field F of degree $<n$:

$$
P(x)=\sum_{i=0}^{n-1} c_{i} x^{i}
$$

- Associate function \hat{P} with $P, \hat{P}:[0, n-1] \mapsto F, \hat{P}(i)=c_{i}$.
- DFT of P is defined to be

$$
\mathcal{F}_{P}(j)=\mathcal{F}_{\hat{P}}(j)=\sum_{i=0}^{n-1} c_{i} \omega^{i j}=P\left(\omega^{j}\right) .
$$

Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree $<n=2^{k}$.

1. Treat both P and Q as polynomials of degree $2 n-1$ and compute their DFT, \mathcal{F}_{P} and \mathcal{F}_{Q}.
2. Multiply \mathcal{F}_{P} and \mathcal{F}_{Q} component-wise.
3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω.
4. The resulting polynomial is $P \cdot Q$

The time complexity of each step is bounded by $O(n \log n)$.

Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree $<n=2^{k}$.

1. Treat both P and Q as polynomials of degree $2 n-1$ and compute their DFT, \mathcal{F}_{P} and \mathcal{F}_{Q}.
2. Multiply \mathcal{F}_{P} and \mathcal{F}_{Q} component-wise.

Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω

The resulting nolynomial is $P \cdot Q$
The time complexity of each step is bounded by $O(n \log n)$.

Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree $<n=2^{k}$.

1. Treat both P and Q as polynomials of degree $2 n-1$ and compute their DFT, \mathcal{F}_{P} and \mathcal{F}_{Q}.
2. Multiply \mathcal{F}_{P} and \mathcal{F}_{Q} component-wise.
3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω.

The time complexity of each step is bounded by $O(n \log n)$.

Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree $<n=2^{k}$.

1. Treat both P and Q as polynomials of degree $2 n-1$ and compute their DFT, \mathcal{F}_{P} and \mathcal{F}_{Q}.
2. Multiply \mathcal{F}_{P} and \mathcal{F}_{Q} component-wise.
3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω.
4. The resulting polynomial is $P \cdot Q$.

The time complexity of each step is bounded by $O(n \log n)$.

Polynomial Multiplication via FFT

Let P and Q be two polynomials of degree $<n=2^{k}$.

1. Treat both P and Q as polynomials of degree $2 n-1$ and compute their DFT, \mathcal{F}_{P} and \mathcal{F}_{Q}.
2. Multiply \mathcal{F}_{P} and \mathcal{F}_{Q} component-wise.
3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω.
4. The resulting polynomial is $P \cdot Q$.

The time complexity of each step is bounded by $O(n \log n)$.

Tool 3: Automorphisms

Outline

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring

Definition

- Automorphism of an algebraic structure is a mapping of the structure to itself that preserves all the operations.
- Automorphisms of finite rings and fields play a crucial role in polynomial factoring and primality testing.

Definition

- Let $R=Z_{n}[X] /(f(X))$ be a finite ring, f a polynomial of degree d.
- An automorphism ϕ of R preserves both addition and multiplication in the ring.
- It is easy to see that ϕ is completely specified by its action on X : for any element $e(X) \in R, \phi(e(X))=e(\phi(X))$.
- In addition $\phi(f(X))=f(\phi(X))=0$ in the ring.

Definition

- Let $R=Z_{n}[X] /(f(X))$ be a finite ring, f a polynomial of degree d.
- An automorphism ϕ of R preserves both addition and multiplication in the ring.
- It is easy to see that ϕ is completely specified by its action on X : for any element $e(X) \in R, \phi(e(X))=e(\phi(X))$.

Definition

- Let $R=Z_{n}[X] /(f(X))$ be a finite ring, f a polynomial of degree d.
- An automorphism ϕ of R preserves both addition and multiplication in the ring.
- It is easy to see that ϕ is completely specified by its action on X : for any element $e(X) \in R, \phi(e(X))=e(\phi(X))$.
- In addition, $\phi(f(X))=f(\phi(X))=0$ in the ring.

Definition

- If R is a field, i.e., n is prime and f is irreducible over F_{p}, then the automorphisms of R are precisely $\psi, \psi^{2}, \ldots, \psi^{d}=i d$ where $\psi(X)=X^{p}$.
- In general, R is a direct sum of fields (by CRT) and its automorphisms are compositions of automorphisms of fields in the sum.

Definition

- If R is a field, i.e., n is prime and f is irreducible over F_{p}, then the automorphisms of R are precisely $\psi, \psi^{2}, \ldots, \psi^{d}=i d$ where $\psi(X)=X^{p}$.
- In general, R is a direct sum of fields (by CRT) and its automorphisms are compositions of automorphisms of fields in the sum.

Outline

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring

Polynomial Factoring Over Finite Fields

- The algorithms developed by Berlekemp and others (1980s).
- Let f be a degree n monic polynomial over finite field F_{p}.
- We wish to compute all irreducible factors of f.
- If f is not square-free, i.e., g^{2} divides f for some g, then f can be factored easily:

Polynomial Factoring Over Finite Fields

- The algorithms developed by Berlekemp and others (1980s).
- Let f be a degree n monic polynomial over finite field F_{p}.
- We wish to compute all irreducible factors of f.
can be factored easily:

Polynomial Factoring Over Finite Fields

- The algorithms developed by Berlekemp and others (1980s).
- Let f be a degree n monic polynomial over finite field F_{p}.
- We wish to compute all irreducible factors of f.
- If f is not square-free, i.e., g^{2} divides f for some g, then f can be factored easily:
- Since g divides both f and $\frac{d f}{d x}$, the gcd will be non-trivial.

Polynomial Factoring Over Finite Fields

- The algorithms developed by Berlekemp and others (1980s).
- Let f be a degree n monic polynomial over finite field F_{p}.
- We wish to compute all irreducible factors of f.
- If f is not square-free, i.e., g^{2} divides f for some g, then f can be factored easily:
- Compute $\operatorname{gcd}\left(f, \frac{d f}{d x}\right)$.
- Since g divides both f and $\frac{d f}{d x}$, the gcd will be non-trivial.

Polynomial Factoring Over Finite Fields

- We now assume that f is square-free.
- Let $f=\prod_{i=1}^{t} f_{i}$, each f_{i} is irreducible and has degree d_{i}.
- Let $d_{1} \leq d_{2} \leq \cdots \leq d_{t}$.
- Consider ring $R=F_{p}[X] /(f)=\oplus_{i=1}^{t} F_{p}[X] /\left(f_{i}\right)$. [by CRT]
- Clearly, $\psi^{d_{1}}$ is trivial in $F_{p}[X] /\left(f_{1}\right)$ but not in $F_{p}[X] /\left(f_{j}\right)$ when $d_{j}>d_{1}$

Polynomial Factoring Over Finite Fields

- We now assume that f is square-free.
- Let $f=\prod_{i=1}^{t} f_{i}$, each f_{i} is irreducible and has degree d_{i}.
- Let $d_{1} \leq d_{2} \leq \cdots \leq d_{t}$.
- Consider ring $R=F_{p}[X] /(f)=\oplus_{i=1}^{t} F_{p}[X] /\left(f_{i}\right)$. [by CRT]
- Clearly, $\psi^{d_{1}}$ is trivial in $F_{p}[X] /\left(f_{1}\right)$ but not in $F_{p}[X] /\left(f_{j}\right)$ when $d_{j}>d_{1}$.

Polynomial Factoring Over Finite Fields

- Therefore, $X^{p^{d_{1}}}=X$ in $F_{p}[X] /\left(f_{1}\right)$ but not in $F_{p}[X] /\left(f_{j}\right)$.
- So f_{1} divides $\operatorname{gcd}\left(X^{p^{d_{1}}}-X, f(X)\right)$ but not f_{j}.
- Computing $\operatorname{gcd}\left(X^{P^{d}}-X, f(X)\right)$ starting from $d=1$ to $d=n / 2$ will factor f into equal degree factors.
- That is, each factor we get is a product of all the f_{j} 's of the same degree.
- This also allows us to test if f is irreducible: all the gcds are 1 iff f is irreducible.

Polynomial Factoring Over Finite Fields

- Therefore, $X^{p^{d_{1}}}=X$ in $F_{p}[X] /\left(f_{1}\right)$ but not in $F_{p}[X] /\left(f_{j}\right)$.
- So f_{1} divides $\operatorname{gcd}\left(X^{p^{d_{1}}}-X, f(X)\right)$ but not f_{j}.
- Computing $\operatorname{gcd}\left(X^{p^{d}}-X, f(X)\right)$ starting from $d=1$ to $d=n / 2$ will factor f into equal degree factors.
- That is, each factor we get is a product of all the f_{j} 's of the same degree.
iff f is irreducible.

Polynomial Factoring Over Finite Fields

- Therefore, $X^{p^{d_{1}}}=X$ in $F_{p}[X] /\left(f_{1}\right)$ but not in $F_{p}[X] /\left(f_{j}\right)$.
- So f_{1} divides $\operatorname{gcd}\left(X^{p^{d_{1}}}-X, f(X)\right)$ but not f_{j}.
- Computing $\operatorname{gcd}\left(X^{p^{d}}-X, f(X)\right)$ starting from $d=1$ to $d=n / 2$ will factor f into equal degree factors.
- That is, each factor we get is a product of all the f_{j} 's of the same degree.
- This also allows us to test if f is irreducible: all the gcds are 1 iff f is irreducible.

Polynomial Factoring Over Finite Fields

- Now suppose f is such that $d_{1}=d_{2}=\cdots=d_{t}$.
- Then the above method does not give any factor of f.
- To handle this, we convert the problem to finding roots of a polynomial in F_{p}.
- S is a subring of $R, S=\oplus_{i=1}^{t} F_{p}$.
- S can be computed using linear algebra.

Polynomial Factoring Over Finite Fields

- Now suppose f is such that $d_{1}=d_{2}=\cdots=d_{t}$.
- Then the above method does not give any factor of f.
- To handle this, we convert the problem to finding roots of a polynomial in F_{p}.
- Let

$$
S=\left\{e(X) \in R \mid \psi(e(X))=e\left(X^{p}\right)=e(X)\right\} .
$$

- S is a subring of $R, S=\oplus_{i=1}^{t} F_{p}$.
- S can be computed using linear algebra.

Polynomial Factoring Over Finite Fields

- Choose $e(X) \in S-F_{p}$.
- We must have $e(X)\left(\bmod f_{i}(X)\right)=c_{i} \in F_{p}$ for each i.
- Since $e(X) \notin F_{p}$, there exists i and j such that $c_{i} \neq c_{j}$.
- Therefore, $\operatorname{gcd}\left(e(X)-c_{i}, f(X)\right)$ is divisible by f_{i} but not by f_{j}
- Thus we get a factor of f.
- How do we compute a c?

Polynomial Factoring Over Finite Fields

- Choose $e(X) \in S-F_{p}$.
- We must have $e(X)\left(\bmod f_{i}(X)\right)=c_{i} \in F_{p}$ for each i.
- Since $e(X) \notin F_{p}$, there exists i and j such that $c_{i} \neq c_{j}$.
- Therefore, $\operatorname{gcd}\left(e(X)-c_{i}, f(X)\right)$ is divisible by f_{i} but not by f_{j}.
- Thus we get a factor of f.

Polynomial Factoring Over Finite Fields

- Choose $e(X) \in S-F_{p}$.
- We must have $e(X)\left(\bmod f_{i}(X)\right)=c_{i} \in F_{p}$ for each i.
- Since $e(X) \notin F_{p}$, there exists i and j such that $c_{i} \neq c_{j}$.
- Therefore, $\operatorname{gcd}\left(e(X)-c_{i}, f(X)\right)$ is divisible by f_{i} but not by f_{j}.
- Thus we get a factor of f.
- How do we compute a c_{i} ?

Polynomial Factoring Over Finite Fields

- Let $g(y)=\operatorname{Res}(e(X)-y, f(X))$.
- Res is the resultant of two polynomials.
- For any $c \in F_{p}$, we have $g(c)=0$ iff $\operatorname{gcd}(e(X)-c, f(X))$ is non-trivial giving a factor of f.
- So, if we can find roots of g in F_{p}, we can factor f !

Polynomial Factoring Over Finite Fields

- Let $g(y)=\operatorname{Res}(e(X)-y, f(X))$.
- Res is the resuitant of two polynomials.
- For any $c \in F_{p}$, we have $g(c)=0$ iff $\operatorname{gcd}(e(X)-c, f(X))$ is non-trivial giving a factor of f.
- So, if we can find roots of g in F_{p}, we can factor f !

Polynomial Factoring Over Finite Fields

- Let $g(y)=\operatorname{Res}(e(X)-y, f(X))$.
- Res is the resultant of two polynomials.
- For any $c \in F_{p}$, we have $g(c)=0$ iff $\operatorname{gcd}(e(X)-c, f(X))$ is non-trivial giving a factor of f.
- So, if we can find roots of g in F_{p}, we can factor f !

Polynomial Factoring Over Finite Fields

- Compute $\hat{g}(y)=\operatorname{gcd}(g(y), \psi(y)-y)$.
- \hat{g} factors completely in F_{p} and its roots are roots of g in F_{p}.
- Let $\hat{g}(y)=\prod_{i=0}^{k}\left(y-c_{i}\right)$.
- Compute $h(y)=\hat{g}\left(y^{2}-r\right)$ for a randomly chosen $r \in F_{p}$.
- So, $h(y)=\prod_{i=0}^{k}\left(y^{2}-\left(c_{i}+r\right)\right)$.
- $y^{2}-\left(c_{i}+r\right)$ factors over F_{p} iff $c_{i}+r$ is a quadratic residue.

Polynomial Factoring Over Finite Fields

- Compute $\hat{g}(y)=\operatorname{gcd}(g(y), \psi(y)-y)$.
- \hat{g} factors completely in F_{p} and its roots are roots of g in F_{p}.
- Let $\hat{g}(y)=\prod_{i=0}^{k}\left(y-c_{i}\right)$.
- Compute $h(y)=\hat{g}\left(y^{2}-r\right)$ for a randomly chosen $r \in F_{p}$.
- So, $h(y)=\prod_{i=0}^{k}\left(y^{2}-\left(c_{i}+r\right)\right)$.

Polynomial Factoring Over Finite Fields

- Compute $\hat{g}(y)=\operatorname{gcd}(g(y), \psi(y)-y)$.
- \hat{g} factors completely in F_{p} and its roots are roots of g in F_{p}.
- Let $\hat{g}(y)=\prod_{i=0}^{k}\left(y-c_{i}\right)$.
- Compute $h(y)=\hat{g}\left(y^{2}-r\right)$ for a randomly chosen $r \in F_{p}$.
- So, $h(y)=\prod_{i=0}^{k}\left(y^{2}-\left(c_{i}+r\right)\right)$.
- $y^{2}-\left(c_{i}+r\right)$ factors over F_{p} iff $c_{i}+r$ is a quadratic residue.

Polynomial Factoring Over Finite Fields

- For any i and $j, i \neq j$, the probability that exactly one of $c_{i}+r$ and $c_{j}+r$ is a quadratic residue in F_{p}, is at least $\frac{1}{2}$.
- Therefore, using the equal degree factorization algorithm above factors $h(y)$ with probability at least $\frac{1}{2}$.
- Both h_{1} and h_{2} will have only even powers of y.
- Then, $g(y)=h(\sqrt{y}+r)=h_{1}(\sqrt{y}+r) \cdot h_{2}(\sqrt{y}+r)$.
- Iterate this to completely factor g.

Polynomial Factoring Over Finite Fields

- For any i and $j, i \neq j$, the probability that exactly one of $c_{i}+r$ and $c_{j}+r$ is a quadratic residue in F_{p}, is at least $\frac{1}{2}$.
- Therefore, using the equal degree factorization algorithm above factors $h(y)$ with probability at least $\frac{1}{2}$.
- Let $h(y)=h_{1}(y) \cdot h_{2}(y)$.
- Both h_{1} and h_{2} will have only even powers of y.
- Then, $g(y)=h(\sqrt{y}+r)=h_{1}(\sqrt{y}+r) \cdot h_{2}(\sqrt{y}+r)$.
- Iterate this to completely factor g.

Polynomial Factoring Over Finite Fields

- For any i and $j, i \neq j$, the probability that exactly one of $c_{i}+r$ and $c_{j}+r$ is a quadratic residue in F_{p}, is at least $\frac{1}{2}$.
- Therefore, using the equal degree factorization algorithm above factors $h(y)$ with probability at least $\frac{1}{2}$.
- Let $h(y)=h_{1}(y) \cdot h_{2}(y)$.
- Both h_{1} and h_{2} will have only even powers of y.
- Then, $g(y)=h(\sqrt{y}+r)=h_{1}(\sqrt{y}+r) \cdot h_{2}(\sqrt{y}+r)$.
- Iterate this to completely factor g.

Outline

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring

Primality Testing

- Fermat's Little Theorem states that if n is prime then for every $a: a^{n}=a(\bmod n)$.
- In other words: mapping $\phi(x)=x^{n}$ is the trivial automorphism of the ring Z_{n}.
- The converse of the statement is not true: there are composite n such that ϕ is the trivial automorphism of Z_{n}.
- Fven if it were true, checking if ϕ is the trivial automornhism requires $\Omega(n)$ steps.
- So the theorem cannot be used for testing primality efficiently.

Primality Testing

- Fermat's Little Theorem states that if n is prime then for every $a: a^{n}=a(\bmod n)$.
- In other words: mapping $\phi(x)=x^{n}$ is the trivial automorphism of the ring Z_{n}.
- The converse of the statement is not true: there are composite n such that ϕ is the trivial automorphism of Z_{n}.
- Even if it were true, checking if ϕ is the trivial automorphism requires $\Omega(n)$ steps.
- So the theorem cannot be used for testing primality efficiently.

Primality Testing

- Fermat's Little Theorem states that if n is prime then for every $a: a^{n}=a(\bmod n)$.
- In other words: mapping $\phi(x)=x^{n}$ is the trivial automorphism of the ring Z_{n}.
- The converse of the statement is not true: there are composite n such that ϕ is the trivial automorphism of Z_{n}.
- Even if it were true, checking if ϕ is the trivial automorphism requires $\Omega(n)$ steps.
- So the theorem cannot be used for testing primality efficiently.

Primality Testing

- Both the problems can be eliminated using a generalization of the theorem.
- This was shown by A, Kayal and Saxena (2004) who obtained a deterministic $O^{\sim}\left(n^{15 / 2}\right)$ algorithm for primality testing.
- Earlier, there were algorithms known for primality testing but they were either randomized or not polynomial-time.

Primality Testing

- Both the problems can be eliminated using a generalization of the theorem.
- This was shown by A, Kayal and Saxena (2004) who obtained a deterministic $O^{\sim}\left(n^{15 / 2}\right)$ algorithm for primality testing.
- Earlier, there were algorithms known for primality testing but they were either randomized or not polynomial-time.

Primality Testing

- Fix $r>0$ such that $O_{r}(n)>4 \log ^{2} n\left(O_{r}(n)\right.$ is order of n modulo r).
- It is easy to see that such an r exists in $\left[4 \log ^{2} n, 16 \log ^{5} n\right]$.
- Let ring $R=Z_{n}[X] /\left(X^{2 r}-X^{r}\right)$.
- Clearly we have:

Theorem (Generalized FLT)
If n is prime then ϕ is an automornhism of R.

Primality Testing

- Fix $r>0$ such that $O_{r}(n)>4 \log ^{2} n\left(O_{r}(n)\right.$ is order of n modulo r).
- It is easy to see that such an r exists in $\left[4 \log ^{2} n, 16 \log ^{5} n\right]$.
- Let ring $R=Z_{n}[X] /\left(X^{2 r}-X^{r}\right)$.
- Clearly we have:

Theorem (Generalized FLT)
If n is prime then ϕ is an automorphism of R.

Primality Testing

- Does the converse also hold?
- Yes, it does!

Theorem (AKS, 2004)
If ϕ is an automorphism of R then n is prime.

Primality Testing

- Does the converse also hold?
- Yes, it does!

Theorem (AKS, 2004)
If ϕ is an automorphism of R then n is prime.

Primality Testing

- What about efficiency?
- Testing that ϕ is an automorphism naively requires exponential time.
- This can be eliminated too:

Theorem (AKS, 2004)
ϕ is an automorphism of R iff $\sigma(X+a)=\phi(X)+a$ in R for
$1 \leq a \leq 2 \sqrt{r} \log n$.

Primality Testing

- What about efficiency?
- Testing that ϕ is an automorphism naively requires exponential time.
- This can be eliminated too:
\square
ϕ is an automorphism of R iff $\phi(X+a)=\phi(X)+a$ in R for

Primality Testing

- What about efficiency?
- Testing that ϕ is an automorphism naively requires exponential time.
- This can be eliminated too:

Theorem (AKS, 2004)
ϕ is an automorphism of R iff $\phi(X+a)=\phi(X)+a$ in R for
$1 \leq a \leq 2 \sqrt{r} \log n$.

Primality Testing

- Since $r=O\left(\log ^{5} n\right)$, testing if $\phi(X+a)=\phi(X)+a$ takes time $O^{\sim}\left(\log ^{7} n\right)$.
- So total time taken is $O^{\sim}\left(\log ^{7} n \cdot \log ^{7 / 2} n\right)=O^{\sim}\left(\log ^{21 / 2} n\right)$.
- Using an analytic number theory result by Fouvry (1985), it can be shown that $r=O\left(\log ^{3} n\right)$.
- This brings down time complexity to $O^{\sim}\left(\log ^{15 / 2} n\right)$.
- Lenstra and Pomerance (2003) further bring it down to $O^{\sim}\left(\log ^{6} n\right)$.

Primality Testing

- Since $r=O\left(\log ^{5} n\right)$, testing if $\phi(X+a)=\phi(X)+a$ takes time $O^{\sim}\left(\log ^{7} n\right)$.
- So total time taken is $O^{\sim}\left(\log ^{7} n \cdot \log ^{7 / 2} n\right)=O^{\sim}\left(\log ^{21 / 2} n\right)$.
- Using an analytic number theory result by Fouvry (1985), it can be shown that $r=O\left(\log ^{3} n\right)$.
- This brings down time complexity to $O^{\sim}\left(\log ^{15 / 2} n\right)$.
- Lenstra and Pomerance (2003) further bring it down to $O^{\sim}\left(\log ^{6} n\right)$.

Primality Testing

- Since $r=O\left(\log ^{5} n\right)$, testing if $\phi(X+a)=\phi(X)+a$ takes time $O^{\sim}\left(\log ^{7} n\right)$.
- So total time taken is $O^{\sim}\left(\log ^{7} n \cdot \log ^{7 / 2} n\right)=O^{\sim}\left(\log ^{21 / 2} n\right)$.
- Using an analytic number theory result by Fouvry (1985), it can be shown that $r=O\left(\log ^{3} n\right)$.
- This brings down time complexity to $O^{\sim}\left(\log ^{15 / 2} n\right)$.
$O^{\sim}\left(\log ^{6} n\right)$.

Primality Testing

- Since $r=O\left(\log ^{5} n\right)$, testing if $\phi(X+a)=\phi(X)+a$ takes time $O^{\sim}\left(\log ^{7} n\right)$.
- So total time taken is $O^{\sim}\left(\log ^{7} n \cdot \log ^{7 / 2} n\right)=O^{\sim}\left(\log ^{21 / 2} n\right)$.
- Using an analytic number theory result by Fouvry (1985), it can be shown that $r=O\left(\log ^{3} n\right)$.
- This brings down time complexity to $O^{\sim}\left(\log ^{15 / 2} n\right)$.
- Lenstra and Pomerance (2003) further bring it down to $O^{\sim}\left(\log ^{6} n\right)$.

Outline

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring

Integer Factoring

- Kayal and Saxena (2004) show that integer factoring reduces to several questions about automorphisms of rings.
- They show n can be factored if

Integer Factoring

- Kayal and Saxena (2004) show that integer factoring reduces to several questions about automorphisms of rings.
- They show n can be factored if
- A non-trivial automorphism of ring $Z_{n}[X] /\left(X^{2}-1\right)$ can be computed.
- The number of automorphisms of ring $Z_{n}[X] /\left(X^{2}\right)$ can be computed

Integer Factoring

- Kayal and Saxena (2004) show that integer factoring reduces to several questions about automorphisms of rings.
- They show n can be factored if
- A non-trivial automorphism of ring $Z_{n}[X] /\left(X^{2}-1\right)$ can be computed.
- The number of automorphisms of ring $Z_{n}[X] /\left(X^{2}\right)$ can be computed.

Integer Factoring

Theorem (Kayal and Saxena, 2004)
An odd number n can be factored efficiently iff a non-trivial automorphism of ring $Z_{n}[X] /\left(X^{2}-1\right)$ can be computed efficiently.

Integer Factoring

Proof.

- First observe that n can be factored iff a non-trivial solution of $y^{2}-1(\bmod n)$ can be found in Z_{n} :

Integer Factoring

Proof.

- First observe that n can be factored iff a non-trivial solution of $y^{2}-1(\bmod n)$ can be found in Z_{n} :
- If $y_{0} \neq \pm 1(\bmod n)$ is a non-trivial solution, then $\operatorname{gcd}\left(y_{0}+1, n\right)$ gives a factor.
$y_{0}=-1\left(\bmod n_{2}\right)$ exists $($ by CRT) and is therefore a
non-trivial solution.

Integer Factoring

Proof.

- First observe that n can be factored iff a non-trivial solution of $y^{2}-1(\bmod n)$ can be found in Z_{n} :
- If $y_{0} \neq \pm 1(\bmod n)$ is a non-trivial solution, then $\operatorname{gcd}\left(y_{0}+1, n\right)$ gives a factor.
- If $n=n_{1} n_{2}$, then a $y_{0}<n$ with $y_{0}=1\left(\bmod n_{1}\right)$ and $y_{0}=-1\left(\bmod n_{2}\right)$ exists (by CRT) and is therefore a non-trivial solution.

Integer Factoring

- Let $\phi(X)=a \cdot X+b$ be a non-trivial automorphism of $R=Z_{n}[X] /\left(X^{2}-1\right)$.
- Let $d=\operatorname{gcd}(a, n)$.
- Consider $\phi\left(\frac{n}{d} X\right)=\frac{n}{d} \cdot a \cdot X+\frac{n}{d} \cdot b=\frac{n}{d} \cdot b$.
- Since ϕ is a 1-1 map, this is only possible when $d=\operatorname{gcd}(a, n)=1$.

Integer Factoring

- Let $\phi(X)=a \cdot X+b$ be a non-trivial automorphism of $R=Z_{n}[X] /\left(X^{2}-1\right)$.
- Let $d=\operatorname{gcd}(a, n)$.
- Consider $\phi\left(\frac{n}{d} X\right)=\frac{n}{d} \cdot a \cdot X+\frac{n}{d} \cdot b=\frac{n}{d} \cdot b$.
- Since ϕ is a 1-1 map, this is only possible when $d=\operatorname{gcd}(a, n)=1$.

Integer Factoring

- Let $\phi(X)=a \cdot X+b$ be a non-trivial automorphism of $R=Z_{n}[X] /\left(X^{2}-1\right)$.
- Let $d=\operatorname{gcd}(a, n)$.
- Consider $\phi\left(\frac{n}{d} X\right)=\frac{n}{d} \cdot a \cdot X+\frac{n}{d} \cdot b=\frac{n}{d} \cdot b$.
- Since ϕ is a 1-1 map, this is only possible when $d=\operatorname{gcd}(a, n)=1$.

Integer Factoring

- We have:

$$
0=\phi\left(X^{2}-1\right)=(a X+b)^{2}-1=2 a b X+a^{2}+b^{2}-1
$$

in the ring.

- This gives $2 a b=0=a^{2}+b^{2}-1(\bmod n)$.
- Since n is odd and $\operatorname{gcd}(a, n)=1$, we get $b=0(\bmod n)$ and $a^{2}=1(\bmod n)$.
- Therefore, $\phi(X)=a \cdot X$ with $a^{2}=1(\bmod n)$.
- As ϕ is non-trivial, $a \neq \pm 1(\bmod n)$.
- So, given ϕ, we can use a to factor n.

Integer Factoring

- We have:

$$
0=\phi\left(X^{2}-1\right)=(a X+b)^{2}-1=2 a b X+a^{2}+b^{2}-1
$$

in the ring.

- This gives $2 a b=0=a^{2}+b^{2}-1(\bmod n)$.
- Since n is odd and $\operatorname{gcd}(a, n)=1$, we get $b=0(\bmod n)$ and $a^{2}=1(\bmod n)$.
- Therefore, $\phi(X)=a \cdot X$ with $a^{2}=1(\bmod n)$.
- As ϕ is non-trivial, $a \neq \pm 1(\bmod n)$.
- So, given ϕ, we can use a to factor n.

Integer Factoring

- We have:

$$
0=\phi\left(X^{2}-1\right)=(a X+b)^{2}-1=2 a b X+a^{2}+b^{2}-1
$$

in the ring.

- This gives $2 a b=0=a^{2}+b^{2}-1(\bmod n)$.
- Since n is odd and $\operatorname{gcd}(a, n)=1$, we get $b=0(\bmod n)$ and $a^{2}=1(\bmod n)$.
- Therefore, $\phi(X)=a \cdot X$ with $a^{2}=1(\bmod n)$.
- As ϕ is non-trivial, $a \neq \pm 1$ (mod n).
- So, given ϕ, we can use a to factor n.

Integer Factoring

- We have:

$$
0=\phi\left(X^{2}-1\right)=(a X+b)^{2}-1=2 a b X+a^{2}+b^{2}-1
$$

in the ring.

- This gives $2 a b=0=a^{2}+b^{2}-1(\bmod n)$.
- Since n is odd and $\operatorname{gcd}(a, n)=1$, we get $b=0(\bmod n)$ and $a^{2}=1(\bmod n)$.
- Therefore, $\phi(X)=a \cdot X$ with $a^{2}=1(\bmod n)$.
- As ϕ is non-trivial, $a \neq \pm 1(\bmod n)$.
- So, given ϕ, we can use a to factor n.

Integer Factoring

- Conversely, assume that we know a number a such that $a \neq \pm 1(\bmod n)$ and $a^{2}=1(\bmod n)$.
- This a defines a non-trivial automorphism of R.

Integer Factoring

- Conversely, assume that we know a number a such that $a \neq \pm 1(\bmod n)$ and $a^{2}=1(\bmod n)$.
- This a defines a non-trivial automorphism of R.

Tool 4: Hensel Lifting

Outline

Definition

Example: Polynomial Division

Hensel Lifting

- Let $R=\mathbb{Z}$ or $F[x]$, and $m \in R$.
- Hensel (1918) designed a method to compute factorization of any element of R modulo m^{ℓ} given its factorization modulo m.
- The method is called Hensel Lifting.
- It is used in several places: polynomial division, polynomial factorization etc.

Hensel Lifting

- Suppose we are given $f, g, h, s, t \in R$ such that $f=g \cdot h(\bmod m), \operatorname{gcd}(g, h)=1(\bmod m)$, and $s g+t h=1(\bmod m)$.
- Compute $e=f-\operatorname{gh}\left(\bmod m^{2}\right), g^{\prime}=g+t e\left(\bmod m^{2}\right)$, $h^{\prime}=h+\operatorname{se}\left(\bmod m^{2}\right)$.
- Then we get:

$=f\left(\bmod m^{2}\right)$

Hensel Lifting

- Suppose we are given $f, g, h, s, t \in R$ such that $f=g \cdot h(\bmod m), \operatorname{gcd}(g, h)=1(\bmod m)$, and $s g+t h=1(\bmod m)$.
- Compute $e=f-g h\left(\bmod m^{2}\right), g^{\prime}=g+t e\left(\bmod m^{2}\right)$, $h^{\prime}=h+\operatorname{se}\left(\bmod m^{2}\right)$.
- Then we get:

Hensel Lifting

- Suppose we are given $f, g, h, s, t \in R$ such that $f=g \cdot h(\bmod m), \operatorname{gcd}(g, h)=1(\bmod m)$, and $s g+t h=1(\bmod m)$.
- Compute $e=f-g h\left(\bmod m^{2}\right), g^{\prime}=g+t e\left(\bmod m^{2}\right)$, $h^{\prime}=h+\operatorname{se}\left(\bmod m^{2}\right)$.
- Then we get:

$$
\begin{aligned}
g^{\prime} h^{\prime}\left(\bmod m^{2}\right) & =g h+s g e+t h e+s t e^{2}\left(\bmod m^{2}\right) \\
& =g h+(s g+t h)(f-g h)\left(\bmod m^{2}\right) \\
& =f\left(\bmod m^{2}\right)
\end{aligned}
$$

Hensel Lifting

- Also compute $d=s g^{\prime}+t h^{\prime}-1\left(\bmod m^{2}\right)$, $s^{\prime}=s(1-d)\left(\bmod m^{2}\right), t^{\prime}=t(1-d)\left(\bmod m^{2}\right)$.
- Then:

- Thus we can 'lift' the factorization to modulo m^{2}
- Iterating this $\log \ell$ times gives factorization modulo m^{ℓ}

Hensel Lifting

- Also compute $d=s g^{\prime}+t h^{\prime}-1\left(\bmod m^{2}\right)$, $s^{\prime}=s(1-d)\left(\bmod m^{2}\right), t^{\prime}=t(1-d)\left(\bmod m^{2}\right)$.
- Then:

$$
\begin{aligned}
s^{\prime} g^{\prime}+t^{\prime} h^{\prime}\left(\bmod m^{2}\right) & =s g^{\prime}(1-d)+t h^{\prime}(1-d)\left(\bmod m^{2}\right) \\
& =(1+d)(1-d)\left(\bmod m^{2}\right) \\
& =1\left(\bmod m^{2}\right) .
\end{aligned}
$$

- Thus we can 'lift' the factorization to modulo m^{2}
- Iterating this $\log \ell$ times gives factorization modulo m^{\prime}

Hensel Lifting

- Also compute $d=s g^{\prime}+t h^{\prime}-1\left(\bmod m^{2}\right)$, $s^{\prime}=s(1-d)\left(\bmod m^{2}\right), t^{\prime}=t(1-d)\left(\bmod m^{2}\right)$.
- Then:

$$
\begin{aligned}
s^{\prime} g^{\prime}+t^{\prime} h^{\prime}\left(\bmod m^{2}\right) & =s g^{\prime}(1-d)+t h^{\prime}(1-d)\left(\bmod m^{2}\right) \\
& =(1+d)(1-d)\left(\bmod m^{2}\right) \\
& =1\left(\bmod m^{2}\right) .
\end{aligned}
$$

- Thus we can 'lift' the factorization to modulo m^{2}.
- Iterating this $\log \ell$ times gives factorization modulo m^{ℓ}.

Outline

Definition

Example: Polynomial Division

Polynomial Division via Hensel Lifting

- Let $f(x)$ and $g(x)$ be two monic polynomials over field F, $\operatorname{deg} f=n, \operatorname{deg} g=m<n$.
- We wish to compute $d(x)$ and $r(x)$ such that $f=d g+r$ and $\operatorname{deg} r<m$.
- A naive algorithm takes $O\left(n^{2}\right)$ field operations.
- Using Hensel Lifting, we can do it in $O(n \log n)$ operations.

Polynomial Division via Hensel Lifting

- Let $f(x)$ and $g(x)$ be two monic polynomials over field F, $\operatorname{deg} f=n, \operatorname{deg} g=m<n$.
- We wish to compute $d(x)$ and $r(x)$ such that $f=d g+r$ and $\operatorname{deg} r<m$.
- A naive algorithm takes $O\left(n^{2}\right)$ field operations.
- Using Hensel Lifting, we can do it in $O(n \log n)$ operations.

Polynomial Division via Hensel Lifting

- For any polynomial $p(x)$ of degree d, define $\widetilde{p}(x)=x^{d} p\left(\frac{1}{x}\right)$.
- The coefficients of \widetilde{p} are 'reversed'.
- If $f(x)=d(x) g(x)+r(x)$, then

$$
\widetilde{f}(x)=\widetilde{d}(x) \widetilde{g}(x)+x^{n-m+1} \widetilde{r}(x) .
$$

- Therefore,

$$
\widetilde{f}(x)=\widetilde{d}(x) \widetilde{g}(x)\left(\bmod x^{n-m+1}\right) .
$$

Polynomial Division via Hensel Lifting

- For any polynomial $p(x)$ of degree d, define $\widetilde{p}(x)=x^{d} p\left(\frac{1}{x}\right)$.
- The coefficients of \widetilde{p} are 'reversed'.
- If $f(x)=d(x) g(x)+r(x)$, then

$$
\widetilde{f}(x)=\widetilde{d}(x) \widetilde{g}(x)+x^{n-m+1} \widetilde{r}(x) .
$$

- Therefore,

$$
\widetilde{f}(x)=\widetilde{d}(x) \widetilde{g}(x)\left(\bmod x^{n-m+1}\right)
$$

Polynomial Division via Hensel Lifting

- Since $\widetilde{g}(x)$ has degree zero coefficient 1 , it is invertible modulo x^{n-m+1}.
- So, $\widetilde{d}(x)=\widetilde{f}(x) \cdot \widetilde{g}^{-1}(x)\left(\bmod x^{n-m+1}\right)$.
- So if we can compute $\widetilde{g}^{-1}(x)\left(\bmod x^{n-m+1}\right)$, then one multiplication would give $d(x)$ from which $d(x)$ and then $r(x)=f(x)-d(x) g(x)$ can be easily recovered.
- We use Hensel Lifting to compute $\widetilde{g}^{-1}(x)\left(\bmod x^{n-m+1}\right)$

Polynomial Division via Hensel Lifting

- Since $\widetilde{g}(x)$ has degree zero coefficient 1 , it is invertible modulo x^{n-m+1}.
- So, $\tilde{d}(x)=\widetilde{f}(x) \cdot \widetilde{g}^{-1}(x)\left(\bmod x^{n-m+1}\right)$.
- So if we can compute $\widetilde{g}^{-1}(x)\left(\bmod x^{n-m+1}\right)$, then one multiplication would give $\tilde{d}(x)$ from which $d(x)$ and then $r(x)=f(x)-d(x) g(x)$ can be easily recovered.

Polynomial Division via Hensel Lifting

- Since $\tilde{g}(x)$ has degree zero coefficient 1 , it is invertible modulo x^{n-m+1}.
- So, $\tilde{d}(x)=\widetilde{f}(x) \cdot \widetilde{g}^{-1}(x)\left(\bmod x^{n-m+1}\right)$.
- So if we can compute $\widetilde{g}^{-1}(x)\left(\bmod x^{n-m+1}\right)$, then one multiplication would give $d(x)$ from which $d(x)$ and then $r(x)=f(x)-d(x) g(x)$ can be easily recovered.
- We use Hensel Lifting to compute $\tilde{g}^{-1}(x)\left(\bmod x^{n-m+1}\right)$.

Polynomial Division via Hensel Lifting

- Let $h(x)=\widetilde{g}^{-1}(x)\left(\bmod x^{n-m+1}\right)$.
- So, $h(x) \cdot \tilde{g}(x)=1\left(\bmod x^{n-m+1}\right)$.
- Notice that $\tilde{g}(x)(\bmod x)=1$ and so $h(x)(\bmod x)=1$.
- Let $s(x)=1$ and $t(x)=0$ so $s \cdot h+t \cdot \widetilde{g}=1(\bmod x)$.
- Use Hensel Lifting iteratively $\ell=\lceil\log (n-m+1)\rceil$ times to compute $h(x)\left(\bmod x^{2^{\ell}}\right)$ such that $h(x) \cdot \tilde{g}(x)=1\left(\bmod x^{2^{\ell}}\right)$
- As we start with $t=0, t$ will remain zero through all the iterations.
- Therefore, function \widetilde{g} will also not change, as required.

Polynomial Division via Hensel Lifting

- Let $h(x)=\tilde{g}^{-1}(x)\left(\bmod x^{n-m+1}\right)$.
- So, $h(x) \cdot \tilde{g}(x)=1\left(\bmod x^{n-m+1}\right)$.
- Notice that $\tilde{g}(x)(\bmod x)=1$ and so $h(x)(\bmod x)=1$.
- Let $s(x)=1$ and $t(x)=0$ so $s \cdot h+t \cdot \widetilde{g}=1(\bmod x)$.
- Use Hensel Lifting iteratively $\ell=\lceil\log (n-m+1)\rceil$ times to compute $h(x)\left(\bmod x^{2^{\ell}}\right)$ such that $h(x) \cdot \widetilde{g}(x)=1\left(\bmod x^{2^{\ell}}\right)$.
- As we start with $t=0, t$ will remain zero through all the iterations.
- Therefore, function \widetilde{g} will also not change, as required.

Polynomial Division via Hensel Lifting

- This gives the inverse of $\widetilde{g}(x)\left(\bmod x^{n-m+1}\right)$.
- The algorithm uses only multiplication and addition.
- The k th iteration uses a constant number of multiplication and addition of polynomials of degree 2^{k}
- Therefore, the whole algorithm requires
$O\left(\sum_{k=1}^{\ell} M_{P}\left(2^{k}\right)\right)=O\left(M_{P}\left(2^{\ell}\right)=O\left(M_{P}(n)\right)=O(n \log n)\right.$ operations.

Polynomial Division via Hensel Lifting

- This gives the inverse of $\widetilde{g}(x)\left(\bmod x^{n-m+1}\right)$.
- The algorithm uses only multiplication and addition.
- The k th iteration uses a constant number of multiplication and addition of polynomials of degree 2^{k}.
- Therefore, the whole algorithm requires

operations.

Polynomial Division via Hensel Lifting

- This gives the inverse of $\widetilde{g}(x)\left(\bmod x^{n-m+1}\right)$.
- The algorithm uses only multiplication and addition.
- The k th iteration uses a constant number of multiplication and addition of polynomials of degree 2^{k}.
- Therefore, the whole algorithm requires
$O\left(\sum_{k=1}^{\ell} M_{P}\left(2^{k}\right)\right)=O\left(M_{P}\left(2^{\ell}\right)=O\left(M_{P}(n)\right)=O(n \log n)\right.$ operations.

Tool 5: Short Vectors in a Lattice

Outline

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals

LATTICES

- Let $\hat{v}_{1}, \ldots, \hat{v}_{n} \in \mathbb{R}^{n}$ be linearly independent vectors.
- Then,

is lattice generated by \hat{v}_{1},
- Vector \hat{v} is shortest vector in lattice \mathcal{L} if $\|\hat{v}\|_{2}$ is minimum.

Lattices

- Let $\hat{v}_{1}, \ldots, \hat{v}_{n} \in \mathbb{R}^{n}$ be linearly independent vectors.
- Then,

$$
\mathcal{L}=\left\{\sum_{i=1}^{n} \alpha_{i} \hat{v}_{i} \mid \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{Z}\right\}
$$

is lattice generated by $\hat{v}_{1}, \ldots, \hat{v}_{n}$.

- Vector \hat{v} is shortest vector in lattice \mathcal{L} if $\|\hat{v}\|_{2}$ is minimum.

Lattices

- Let $\hat{v}_{1}, \ldots, \hat{v}_{n} \in \mathbb{R}^{n}$ be linearly independent vectors.
- Then,

$$
\mathcal{L}=\left\{\sum_{i=1}^{n} \alpha_{i} \hat{v}_{i} \mid \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{Z}\right\}
$$

is lattice generated by $\hat{v}_{1}, \ldots, \hat{v}_{n}$.

- Vector \hat{v} is shortest vector in lattice \mathcal{L} if $\|\hat{v}\|_{2}$ is minimum.

LATTICES

- For lattice \mathcal{L}, its norm $|\mathcal{L}|$ is defined to be $\operatorname{det}\left(\hat{v}_{1} \hat{v}_{2} \ldots \hat{v}_{n}\right)$.
- $|\mathcal{L}|$ is independent of the choice of basis of \mathcal{L}.

Theorem (Minkowski, 1896)
The length of shortest vector of \mathcal{L} is at most $\sqrt{n} \cdot|\mathcal{L}|^{1 / n}$

LATTICES

- For lattice \mathcal{L}, its norm $|\mathcal{L}|$ is defined to be $\operatorname{det}\left(\hat{v}_{1} \hat{v}_{2} \ldots \hat{v}_{n}\right)$.
- $|\mathcal{L}|$ is independent of the choice of basis of \mathcal{L}.

Theorem (Minkowski, 1896)
The length of shortest vector of \mathcal{L} is at most $\sqrt{n} \cdot|\mathcal{L}|^{1 / n}$.

LLL Algorithm

- Lenstra, Lenstra and Lovasz (1982) designed a polynomial-time algorithm for computing a short vector in any lattice.
- The algorithm computes a vector whose length is at most $2^{\frac{n-1}{2}}$ times the length of shortest vector in the lattice.
- It is now known that finding a vector within a $\sqrt{2}$ factor of shortest vector length is NP-hard.

LLL Algorithm

- Lenstra, Lenstra and Lovasz (1982) designed a polynomial-time algorithm for computing a short vector in any lattice.
- The algorithm computes a vector whose length is at most $2^{\frac{n-1}{2}}$ times the length of shortest vector in the lattice.
- It is now known that finding a vector within a $\sqrt{2}$ factor of shortest vector length is NP-hard

LLL Algorithm

- Lenstra, Lenstra and Lovasz (1982) designed a polynomial-time algorithm for computing a short vector in any lattice.
- The algorithm computes a vector whose length is at most $2^{\frac{n-1}{2}}$ times the length of shortest vector in the lattice.
- It is now known that finding a vector within a $\sqrt{2}$ factor of shortest vector length is NP-hard.

Outline

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals

Finding Small Solutions of Modular Equations

- Modular equations for prime moduli can be solved using polynomial factorization.
- But this does not work for composite moduli.
- For this, short lattice vectors can be used to find small solutions.
- Small = solutions much smaller than the moduli in absolute value
- An example is breaking low-exponent RSA when part of the message is known.

Finding Small Solutions of Modular EquATIONS

- Modular equations for prime moduli can be solved using polynomial factorization.
- But this does not work for composite moduli.
- For this, short lattice vectors can be used to find small solutions.
- Small $=$ solutions much smaller than the moduli in absolute value
- An example is breaking low-exponent RSA when part of the message is known.

Finding Small Solutions of Modular EQUATIONS

- Modular equations for prime moduli can be solved using polynomial factorization.
- But this does not work for composite moduli.
- For this, short lattice vectors can be used to find small solutions.
- Small $=$ solutions much smaller than the moduli in absolute value
- An example is breaking low-exponent RSA when part of the message is known.

Breaking Low Exponent RSA

- Let $(n, 3)$ be the public-key of an RSA cryptosystem.
- Notice that the exponent of encryption is set to 3 .
- Let $c=m^{3}(\bmod n)$ be a ciphertext.
- Suppose that leading $\frac{11}{12}|n|$ bits of m are known.
- This is possible in certain situations, e.g., when there is a fixed $\frac{11}{12}|n|$-bit header appended to each message.
- Let $m=h \cdot 2^{|n| / 12}+x$ where h is known.

Breaking Low Exponent RSA

- Let $(n, 3)$ be the public-key of an RSA cryptosystem.
- Notice that the exponent of encryption is set to 3 .
- Let $c=m^{3}(\bmod n)$ be a ciphertext.
- Suppose that leading $\frac{11}{12}|n|$ bits of m are known.
- This is possible in certain situations, e.g., when there is a fixed $\frac{11}{12}|n|$-bit header appended to each message.
- Let $m=h \cdot 2^{n / / 12}+x$ where h is known.

Breaking Low Exponent RSA

- Let $(n, 3)$ be the public-key of an RSA cryptosystem.
- Notice that the exponent of encryption is set to 3 .
- Let $c=m^{3}(\bmod n)$ be a ciphertext.
- Suppose that leading $\frac{11}{12}|n|$ bits of m are known.
- This is possible in certain situations, e.g., when there is a fixed $\frac{11}{12}|n|$-bit header appended to each message.

Breaking Low Exponent RSA

- Let $(n, 3)$ be the public-key of an RSA cryptosystem.
- Notice that the exponent of encryption is set to 3 .
- Let $c=m^{3}(\bmod n)$ be a ciphertext.
- Suppose that leading $\frac{11}{12}|n|$ bits of m are known.
- This is possible in certain situations, e.g., when there is a fixed $\frac{11}{12}|n|$-bit header appended to each message.
- Let $m=h \cdot 2^{|n| / 12}+x$ where h is known.

Breaking Low Exponent RSA

- Therefore,
$c=\left(h \cdot 2^{|n| / 12}+x\right)^{3}(\bmod n)=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}(\bmod n)$.
- So if we can find all the roots of the above polynomial that
are less than $2^{|n| / 12}=n^{1 / 12}$ then m can be recovered.
- For a vector $\hat{v} \in \mathbb{Z}^{d}, \hat{v}=\left[v_{d-1} v_{d-2} \cdots v_{0}\right]$, let
$v(x)=\sum_{i=0}^{d-1} v_{i} x^{i}$ and vice-versa.
- Let $p_{3}(x)=x^{3}+a_{2} x^{2}+a_{1} x+\left(a_{0}-c\right)$.
- Then $\hat{p}_{3}=\left[\begin{array}{lll}0 & 1 & a_{2} \\ a_{1} & a_{0}-c\end{array}\right] \in \mathbb{Z}^{6}$

Breaking Low Exponent RSA

- Therefore,
$c=\left(h \cdot 2^{|n| / 12}+x\right)^{3}(\bmod n)=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}(\bmod n)$.
- So if we can find all the roots of the above polynomial that are less than $2^{|n| / 12}=n^{1 / 12}$ then m can be recovered.

- Then $\hat{p}_{3}=\left[\begin{array}{llll}0 & 0 & 1 & a_{2}\end{array} a_{1} a_{0}-c\right] \in \mathbb{Z}^{6}$

Breaking Low Exponent RSA

- Therefore, $c=\left(h \cdot 2^{|n| / 12}+x\right)^{3}(\bmod n)=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}(\bmod n)$.
- So if we can find all the roots of the above polynomial that are less than $2^{|n| / 12}=n^{1 / 12}$ then m can be recovered.
- For a vector $\hat{v} \in \mathbb{Z}^{d}, \hat{v}=\left[v_{d-1} v_{d-2} \cdots v_{0}\right]$, let $v(x)=\sum_{i=0}^{d-1} v_{i} x^{i}$ and vice-versa.
- Let $p_{3}(x)=x^{3}+a_{2} x^{2}+a_{1} x+\left(a_{0}-c\right)$.
- Then $\hat{p}_{3}=\left[\begin{array}{lllll}0 & 0 & 1 & a_{2} & a_{1}\end{array} a_{0}-c\right] \in \mathbb{Z}^{6}$.

Breaking Low Exponent RSA

- Let $p_{4}(x)=x \cdot p_{3}(x), p_{5}(x)=x^{2} \cdot p_{3}(x), p_{0}(x)=n$, $p_{1}(x)=n \cdot x$, and $p_{2}(x)=n \cdot x^{2}$.
- Let \mathcal{L} be the lattice generated by vectors $\hat{p}_{0}, \ldots, \hat{p}_{5}$.
- Let vector $\hat{v} \in \mathcal{L}, \hat{v}=\sum_{i=0}^{5} \alpha_{i} \hat{p}_{i}$.
- Notice that polynomial
$v(x)=\sum_{i=0}^{5} \alpha_{i} p_{i}(x)=p_{3}(x) \cdot q(x)(\bmod n)$ for some $q(x)$ of degree two.
- Hence, every root of $p_{3}(x)(\bmod n)$ is also a root of $v(x)(\bmod n)$

Breaking Low Exponent RSA

- Let $p_{4}(x)=x \cdot p_{3}(x), p_{5}(x)=x^{2} \cdot p_{3}(x), p_{0}(x)=n$, $p_{1}(x)=n \cdot x$, and $p_{2}(x)=n \cdot x^{2}$.
- Let \mathcal{L} be the lattice generated by vectors $\hat{p}_{0}, \ldots, \hat{p}_{5}$.
- Let vector $\hat{v} \in \mathcal{L}, \hat{v}=\sum_{i=0}^{5} \alpha_{i} \hat{p}_{i}$.
- Notice that polynomial
degree two.
- Hence, every root of $p_{3}(x)(\bmod n)$ is also a root of $v(x)(\bmod n)$

Breaking Low Exponent RSA

- Let $p_{4}(x)=x \cdot p_{3}(x), p_{5}(x)=x^{2} \cdot p_{3}(x), p_{0}(x)=n$, $p_{1}(x)=n \cdot x$, and $p_{2}(x)=n \cdot x^{2}$.
- Let \mathcal{L} be the lattice generated by vectors $\hat{p}_{0}, \ldots, \hat{p}_{5}$.
- Let vector $\hat{v} \in \mathcal{L}, \hat{v}=\sum_{i=0}^{5} \alpha_{i} \hat{p}_{i}$.
- Notice that polynomial
$v(x)=\sum_{i=0}^{5} \alpha_{i} p_{i}(x)=p_{3}(x) \cdot q(x)(\bmod n)$ for some $q(x)$ of degree two.
- Hence, every root of $p_{3}(x)(\bmod n)$ is also a root of $v(x)(\bmod n)$.

Breaking Low Exponent RSA

- We have $|\mathcal{L}|=n^{3}$.
- By the property of lattices, \mathcal{L} has a shortest vector of length at most $\sqrt{6} n^{3 / 6}=\sqrt{6 n}$.
- Run LLL algorithm to find a short vector û in \mathcal{L}.
- The length of \hat{u} is at most $2^{5 / 2} \sqrt{6 n}=4 \sqrt{12 n}$.
- Let $u(x)=\sum_{i=0}^{5} \beta_{i} x^{i}$
- We have $\left|\beta_{i}\right| \leq 4 \sqrt{ } 12 n$.

Breaking Low Exponent RSA

- We have $|\mathcal{L}|=n^{3}$.
- By the property of lattices, \mathcal{L} has a shortest vector of length at most $\sqrt{6} n^{3 / 6}=\sqrt{6 n}$.
- Run LLL algorithm to find a short vector \hat{u} in \mathcal{L}.
- The length of \hat{u} is at most $2^{5 / 2} \sqrt{6 n}=4 \sqrt{12 n}$.
- We have $\left|\beta_{i}\right| \leq 4 \sqrt{ } 12 n$.

Breaking Low Exponent RSA

- We have $|\mathcal{L}|=n^{3}$.
- By the property of lattices, \mathcal{L} has a shortest vector of length at most $\sqrt{6} n^{3 / 6}=\sqrt{6 n}$.
- Run LLL algorithm to find a short vector \hat{u} in \mathcal{L}.
- The length of \hat{u} is at most $2^{5 / 2} \sqrt{6 n}=4 \sqrt{12 n}$.
- Let $u(x)=\sum_{i=0}^{5} \beta_{i} x^{i}$.
- We have $\left|\beta_{i}\right| \leq 4 \sqrt{12 n}$.

Breaking Low Exponent RSA

- Consider a root γ of $p_{3}(x)(\bmod n)$ with $\gamma \leq n^{1 / 12}$.
- As argued above, γ is a root of $u(x)(\bmod n)$ too.
- Now, $|u(\gamma)| \leq 24 \sqrt{ } 12 n \cdot \gamma^{5}<n$ for $n>(24 \sqrt{ } 12)^{12}$
- Therefore, $u(\gamma)=0$ over rationals!
- Factor $u(x)$ over rationals to compute all its roots.
- Identify the root that yields the ciphertext.

Breaking Low Exponent RSA

- Consider a root γ of $p_{3}(x)(\bmod n)$ with $\gamma \leq n^{1 / 12}$.
- As argued above, γ is a root of $u(x)(\bmod n)$ too.
- Now, $|u(\gamma)| \leq 24 \sqrt{12 n} \cdot \gamma^{5}<n$ for $n>(24 \sqrt{12})^{12}$.
- Therefore, $u(\gamma)=0$ over rationals!
- Factor $u(x)$ over rationals to compute all its roots.
- Identify the root that yields the ciphertext.

Breaking Low Exponent RSA

- Consider a root γ of $p_{3}(x)(\bmod n)$ with $\gamma \leq n^{1 / 12}$.
- As argued above, γ is a root of $u(x)(\bmod n)$ too.
- Now, $|u(\gamma)| \leq 24 \sqrt{12 n} \cdot \gamma^{5}<n$ for $n>(24 \sqrt{12})^{12}$.
- Therefore, $u(\gamma)=0$ over rationals!
- Factor $u(x)$ over rationals to compute all its roots.
- Identify the root that yields the ciphertext.

Breaking Low Exponent RSA

- This breaks exponent-3 RSA when first $\frac{11}{12}$-fraction of bits of plaintext are known.
- This can be improved to first $\frac{1}{2}$-fraction.
- Also generalizes to any small exponent.

Breaking Low Exponent RSA

- This breaks exponent-3 RSA when first $\frac{11}{12}$-fraction of bits of plaintext are known.
- This can be improved to first $\frac{1}{2}$-fraction.
- Also generalizes to any small exponent.

Breaking Low Exponent RSA

- This breaks exponent-3 RSA when first $\frac{11}{12}$-fraction of bits of plaintext are known.
- This can be improved to first $\frac{1}{2}$-fraction.
- Also generalizes to any small exponent.

Outline

Lattices and LLL Algorithm

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals

The Problem

- Given a monic polynomial $f(x)$ of degree n, factor f over rationals.
- A deterministic polynomial time algorithm for this was given by Lenstra, Lenstra, Lovasz (1982).
- The algorithm uses Hensel Lifting and short vectors in lattices.

The Problem

- Given a monic polynomial $f(x)$ of degree n, factor f over rationals.
- A deterministic polynomial time algorithm for this was given by Lenstra, Lenstra, Lovasz (1982).
- The algorithm uses Hensel Lifting and short vectors in lattices.

Factoring Polynomials Over Rationals

- Choose a small prime p, and factor f over F_{p}.
- Let $f=g_{1} \cdot g_{2}(\bmod p)$ with g_{1} being irreducible.
- Let ℓ be the smallest integer greater than $\frac{3}{2}\left(n^{2}-1\right)+(2 n+1) \log \|f\|_{2}$.
- Use Hensel Lifting to compute factors of f modulo p^{2}
- Let $f=g_{1}^{\prime} \cdot g_{2}^{\prime}\left(\bmod p^{\ell}\right)$.
- Note that g_{1}^{\prime} remains irreducible modulo p^{ℓ}

Factoring Polynomials Over Rationals

- Choose a small prime p, and factor f over F_{p}.
- Let $f=g_{1} \cdot g_{2}(\bmod p)$ with g_{1} being irreducible.
- Let ℓ be the smallest integer greater than $\frac{3}{2}\left(n^{2}-1\right)+(2 n+1) \log \|f\|_{2}$.
- Use Hensel Lifting to compute factors of f modulo p^{ℓ}.
- Let $f=g_{1}^{\prime} \cdot g_{2}^{\prime}\left(\bmod p^{\ell}\right)$.
- Note that g_{1}^{\prime} remains irreducible modulo p^{ℓ}.

Factoring Polynomials Over Rationals

- Without loss of generality, assume g_{1}^{\prime} is monic and $\operatorname{deg}\left(g_{1}^{\prime}\right)=d$.
- Define polynomials $h_{i}(x)=p^{\ell} x^{i}$ for $0 \leq i<d$.
- Define polynomials $h_{d+i}(x)=x^{i} \cdot g_{1}^{\prime}(x)$ for $0 \leq i<n-d$.
- As before, let \mathcal{L} be the n-dimensional lattice generated by vectors $\hat{h}_{0}, \ldots, \hat{h}_{n-1}$
- The lattice contains precisely degree $n-1$ polynomials that are multiples of g_{1}^{\prime} modulo p^{ℓ}
- This lattice has a shortest vector of length at most $\sqrt{n} p^{d \ell / n}$
- So, LLL algorithm produces a vector of length at most $2^{\frac{n-1}{2}} \sqrt{n} p^{d l / n}$

Factoring Polynomials Over Rationals

- Without loss of generality, assume g_{1}^{\prime} is monic and $\operatorname{deg}\left(g_{1}^{\prime}\right)=d$.
- Define polynomials $h_{i}(x)=p^{\ell} x^{i}$ for $0 \leq i<d$.
- Define polynomials $h_{d+i}(x)=x^{i} \cdot g_{1}^{\prime}(x)$ for $0 \leq i<n-d$.
- As before, let \mathcal{L} be the n-dimensional lattice generated by vectors $\hat{h}_{0}, \ldots, \hat{h}_{n-1}$.
- The lattice contains precisely degree $n-1$ polynomials that are multiples of g_{1}^{\prime} modulo p^{ℓ}.
- So, LLL algorithm produces a vector of length at most

Factoring Polynomials Over Rationals

- Without loss of generality, assume g_{1}^{\prime} is monic and $\operatorname{deg}\left(g_{1}^{\prime}\right)=d$.
- Define polynomials $h_{i}(x)=p^{\ell} x^{i}$ for $0 \leq i<d$.
- Define polynomials $h_{d+i}(x)=x^{i} \cdot g_{1}^{\prime}(x)$ for $0 \leq i<n-d$.
- As before, let \mathcal{L} be the n-dimensional lattice generated by vectors $\hat{h}_{0}, \ldots, \hat{h}_{n-1}$.
- The lattice contains precisely degree $n-1$ polynomials that are multiples of g_{1}^{\prime} modulo p^{ℓ}.
- This lattice has a shortest vector of length at most $\sqrt{n} p^{d \ell / n}$.
- So, LLL algorithm produces a vector of length at most $2^{\frac{n-1}{2}} \sqrt{n} p^{d \ell / n}$.

Factoring Polynomials Over Rationals

- But we can do better!
- Suppose $f=f_{1} \cdot f_{2}$ over rationals.
- Since $f=g_{1}^{\prime} \cdot g_{2}^{\prime}\left(\bmod p^{\ell}\right), g_{1}^{\prime}$ is irreducible and $Z_{p^{\ell}}[x]$ is a UFD, g_{1}^{\prime} divides either f_{1} or f_{2} modulo p^{ℓ}.
- Without loss of generality, assume that $f_{1}=f_{1}^{\prime} \cdot g_{1}^{\prime}\left(\bmod p^{\ell}\right)$
- Then the vector \hat{f}_{1} is in the lattice \mathcal{L}.

Factoring Polynomials Over Rationals

- But we can do better!
- Suppose $f=f_{1} \cdot f_{2}$ over rationals.
- Since $f=g_{1}^{\prime} \cdot g_{2}^{\prime}\left(\bmod p^{\ell}\right), g_{1}^{\prime}$ is irreducible and $Z_{p^{\ell}}[x]$ is a UFD, g_{1}^{\prime} divides either f_{1} or f_{2} modulo p^{ℓ}.
- Without loss of generality, assume that $f_{1}=f_{1}^{\prime} \cdot g_{1}^{\prime}\left(\bmod p^{\ell}\right)$.
- Then the vector \hat{f}_{1} is in the lattice \mathcal{L}.

Factoring Polynomials Over Rationals

- But we can do better!
- Suppose $f=f_{1} \cdot f_{2}$ over rationals.
- Since $f=g_{1}^{\prime} \cdot g_{2}^{\prime}\left(\bmod p^{\ell}\right), g_{1}^{\prime}$ is irreducible and $Z_{p^{\ell}}[x]$ is a UFD, g_{1}^{\prime} divides either f_{1} or f_{2} modulo p^{ℓ}.
- Without loss of generality, assume that $f_{1}=f_{1}^{\prime} \cdot g_{1}^{\prime}\left(\bmod p^{\ell}\right)$.
- Then the vector \hat{f}_{1} is in the lattice \mathcal{L}.
- What is the length of \hat{f}_{1} ?

Factoring Polynomials Over Rationals

- Mignotte's bound shows that $\left\|f_{1}\right\|_{2} \leq 2^{n-1}\|f\|_{2}$.
- Therefore, length of $\hat{f}_{1}=\left\|f_{1}\right\|_{2} \leq 2^{n-1}\|f\|_{2}$.
- So, the LLL algorithm will produce a vector \hat{v} of length at
most $2{ }^{\frac{2}{2}}\|f\|_{2}$.
- Consider polynomial $v(x)$.
- Since $\hat{v} \in \mathcal{L}, g_{1}^{\prime}(x)$ divides $v(x)$ modulo p^{l}

Factoring Polynomials Over Rationals

- Mignotte's bound shows that $\left\|f_{1}\right\|_{2} \leq 2^{n-1}\|f\|_{2}$.
- Therefore, length of $\hat{f}_{1}=\left\|f_{1}\right\|_{2} \leq 2^{n-1}\|f\|_{2}$.
- So, the LLL algorithm will produce a vector \hat{v} of length at most $2 \frac{3(n-1)}{2}\|f\|_{2}$.
- Consider polynomial $v(x)$.
- Since $\hat{v} \in \mathcal{L}, g_{1}^{\prime}(x)$ divides $v(x)$ modulo p^{l}

Factoring Polynomials Over Rationals

- Mignotte's bound shows that $\left\|f_{1}\right\|_{2} \leq 2^{n-1}\|f\|_{2}$.
- Therefore, length of $\hat{f}_{1}=\left\|f_{1}\right\|_{2} \leq 2^{n-1}\|f\|_{2}$.
- So, the LLL algorithm will produce a vector \hat{v} of length at most $2 \frac{3(n-1)}{2}\|f\|_{2}$.
- Consider polynomial $v(x)$.
- Since $\hat{v} \in \mathcal{L}, g_{1}^{\prime}(x)$ divides $v(x)$ modulo p^{ℓ}.

Factoring Polynomials Over Rationals

- Therefore, $\operatorname{gcd}(v(x), f(x))>1\left(\bmod p^{\ell}\right)$.
- Using the resultant, we can say $\operatorname{Res}(v(x), f(x))=0\left(\bmod p^{\ell}\right)$.
- Resultant of $v(x)$ and $f(x)$ is an $(2 n+1) \times(2 n+1)$ matrix whose columns are essentially vectors \hat{v} and \hat{f}
- From Hadamard's Inequality it follows that

Factoring Polynomials Over Rationals

- Therefore, $\operatorname{gcd}(v(x), f(x))>1\left(\bmod p^{\ell}\right)$.
- Using the resuliant, we can say $\operatorname{Res}(v(x), f(x))=0\left(\bmod p^{\ell}\right)$.
- Resultant of $v(x)$ and $f(x)$ is an $(2 n+1) \times(2 n+1)$ matrix whose columns are essentially vectors \hat{v} and \hat{f}.
- From Hadamard's Inequality it follows that

$$
\operatorname{Res}(v(x), f(x)) \leq\|v\|_{2}^{n+1}\|f\|_{2}^{n} \leq 2^{\frac{3\left(n^{2}-1\right)}{2}}\|f\|_{2}^{2 n+1}
$$

Factoring Polynomials Over Rationals

- By the choice of $\ell, \ell>\frac{3}{2}\left(n^{2}-1\right)+(2 n+1) \log \|f\|_{2}$, it follows that

$$
\operatorname{Res}(v(x), f(x))<p^{\ell} .
$$

- Coupled with the fact that $\operatorname{Res}(v(x), f(x))=0\left(\bmod p^{\ell}\right)$, we get

$$
\operatorname{Res}(v(x), f(x))=0
$$

over rationals.

- In other words, $\operatorname{gcd}(v(x), f(x))>1$ over rationals and thus we get a factor of f.

Factoring Polynomials Over Rationals

- By the choice of $\ell, \ell>\frac{3}{2}\left(n^{2}-1\right)+(2 n+1) \log \|f\|_{2}$, it follows that

$$
\operatorname{Res}(v(x), f(x))<p^{\ell} .
$$

- Coupled with the fact that $\operatorname{Res}(v(x), f(x))=0\left(\bmod p^{\ell}\right)$, we get

$$
\operatorname{Res}(v(x), f(x))=0
$$

over rationals.

- In other words, $\operatorname{gcd}(v(x), f(x))>1$ over rationals and thus we get a factor of f.

Factoring Polynomials Over Rationals

- By the choice of $\ell, \ell>\frac{3}{2}\left(n^{2}-1\right)+(2 n+1) \log \|f\|_{2}$, it follows that

$$
\operatorname{Res}(v(x), f(x))<p^{\ell}
$$

- Coupled with the fact that $\operatorname{Res}(v(x), f(x))=0\left(\bmod p^{\ell}\right)$, we get

$$
\operatorname{Res}(v(x), f(x))=0
$$

over rationals.

- In other words, $\operatorname{gcd}(v(x), f(x))>1$ over rationals and thus we get a factor of f.

Tool 6: Smooth Numbers

Outline

Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index Calculus

Smooth Numbers

- Number $n>0$ is m-smooth if all prime divisors of n are $\leq m$.
- Let $\Psi(x, y)$ denote the size of the set of numbers $\leq x$ that are y-smooth.

Theorem (Density of Smooth Numbers)
$\Psi(x, y)=x \cdot r^{-r(1+o(1))}$ where $r=\frac{\ln x}{\ln y}$, and $y=\Omega\left(\ln ^{2} x\right)$.

Smooth Numbers

- Number $n>0$ is m-smooth if all prime divisors of n are $\leq m$.
- Let $\Psi(x, y)$ denote the size of the set of numbers $\leq x$ that are y-smooth.

Smooth Numbers

- Number $n>0$ is m-smooth if all prime divisors of n are $\leq m$.
- Let $\Psi(x, y)$ denote the size of the set of numbers $\leq x$ that are y-smooth.

$$
\begin{aligned}
& \text { Theorem (Density of Smooth Numbers) } \\
& \Psi(x, y)=x \cdot r^{-r(1+o(1))} \text { where } r=\frac{\ln x}{\ln y} \text {, and } y=\Omega\left(\ln ^{2} x\right) \text {. }
\end{aligned}
$$

Smooth Numbers

- Smooth numbers are used in Elliptic Curve Factoring, Quadratic Sieve and Number Field Sieve, the three most popular integer factoring algorithms.
- They are also used in index calculus method for discrete log problem.

Outline

Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index Calculus

Quadratic SiEve

- Designed by Carl Pomerance (1983).
- Let n be an odd number with at least two distinct prime factors.
- n can be factored if non-trivial solution of the equation $x^{2}=y^{2}(\bmod n)$ can be computed
- A non-trivial solution is $\left(x_{0}, y_{0}\right)$ such that $x_{0}^{2}=y_{0}^{2}(\bmod n)$ and $x_{0} \neq \pm y_{0}(\bmod n)$.
- Given such a solution, $\operatorname{gcd}\left(x_{0}+y_{0}, n\right)$ gives a factor of n.
- W/e will use this approach for factoring n.

Quadratic SiEve

- Designed by Carl Pomerance (1983).
- Let n be an odd number with at least two distinct prime factors.
- n can be factored if non-trivial solution of the equation $x^{2}=y^{2}(\bmod n)$ can be computed.
- A non-trivial solution is $\left(x_{0}, y_{0}\right)$ such that $x_{0}^{2}=y_{0}^{2}(\bmod n)$ and $x_{0} \neq \pm y_{0}(\bmod n)$.
- Given such a solution, $\operatorname{gcd}\left(x_{0}+y_{0}, n\right)$ gives a factor of n.
- We will use this approach for factoring n.

Quadratic SiEve

- Designed by Carl Pomerance (1983).
- Let n be an odd number with at least two distinct prime factors.
- n can be factored if non-trivial solution of the equation $x^{2}=y^{2}(\bmod n)$ can be computed.
- A non-trivial solution is $\left(x_{0}, y_{0}\right)$ such that $x_{0}^{2}=y_{0}^{2}(\bmod n)$ and $x_{0} \neq \pm y_{0}(\bmod n)$.
- Given such a solution, $\operatorname{gcd}\left(x_{0}+y_{0}, n\right)$ gives a factor of n.
- We will use this approach for factoring n.

Quadratic SiEve

1. Let $m=\left\lceil\sqrt{n}, B=e^{\frac{1}{2} \sqrt{\ln n \ln \ln n}}\right.$, and p_{1}, \ldots, p_{t} the set of all primes $\leq B$.
2. For $k=1,2,3, \ldots$ do the following:
2.1 Let $v=m+k$.
2.3 Check if u is B-smooth.
2.4 If yes, compute complete factorization of $u=\prod_{i=1}^{t} p_{i}^{e l t}$
2.5 Store the triple (u, v, \hat{e}) where $\hat{e}=(e[1] e[2] \cdots e[t])$.

Quadratic Sieve

1. Let $m=\left\lceil\sqrt{n}, B=e^{\frac{1}{2} \sqrt{\ln n \ln \ln n}}\right.$, and p_{1}, \ldots, p_{t} the set of all primes $\leq B$.
2. For $k=1,2,3, \ldots$ do the following:
2.1 Let $v=m+k$.
2.2 Let $u=v^{2}(\bmod n), 0<u<n$.
2.3 Check if u is B-smooth.
2.4 If yes, compute complete factorization of $u=$
2.5 Store the triple (u, v, \hat{e}) where $\hat{e}=(e[1] e[2]$

Quadratic SiEve

1. Let $m=\left\lceil\sqrt{n}, B=e^{\frac{1}{2} \sqrt{\ln n \ln \ln n}}\right.$, and p_{1}, \ldots, p_{t} the set of all primes $\leq B$.
2. For $k=1,2,3, \ldots$ do the following:
2.1 Let $v=m+k$.
2.2 Let $u=v^{2}(\bmod n), 0<u<n$.
2.3 Check if u is B-smooth.
2.4 If yes, compute complete factorization of $u=\prod_{i=1}^{t} p_{i}^{e[i]}$.
2.5 Store the triple (u, v, \hat{e}) where $\hat{e}=(e[1] e[2] \cdots e[t])$.

Quadratic SiEve

3. Exit the previous step after $t+1$ triples are stored.
4. Let these be $\left\{u_{j}, v_{j}, \hat{e}_{j}\right\}_{1 \leq j \leq t+1}$.

Find $\alpha_{j} \in\{0,1\}$ for $1 \leq j \leq t+1$ such that
$\sum_{j=1}^{t+1} \alpha_{j} \hat{e}_{j}=0(\bmod 2)$ and not all α_{j} 's are zero. [always possible]

Quadratic Sieve

3. Exit the previous step after $t+1$ triples are stored.
4. Let these be $\left\{u_{j}, v_{j}, \hat{e}_{j}\right\}_{1 \leq j \leq t+1}$.
5. Find $\alpha_{j} \in\{0,1\}$ for $1 \leq j \leq t+1$ such that $\sum_{j=1}^{t+1} \alpha_{j} \hat{e}_{j}=0(\bmod 2)$ and not all α_{j} 's are zero. [always possible]

Quadratic Sieve

3. Exit the previous step after $t+1$ triples are stored.
4. Let these be $\left\{u_{j}, v_{j}, \hat{e}_{j}\right\}_{1 \leq j \leq t+1}$.
5. Find $\alpha_{j} \in\{0,1\}$ for $1 \leq j \leq t+1$ such that $\sum_{j=1}^{t+1} \alpha_{j} \hat{e}_{j}=0(\bmod 2)$ and not all α_{j} 's are zero. [always possible]
6. Let

$$
x=\prod_{j=1}^{t+1} v_{j}^{\alpha_{j}}
$$

and

$$
y=\prod_{i=1}^{t} p_{i}^{\frac{1}{2} \sum_{j=1}^{t+1} \alpha_{j} e_{j}[i]}=\prod_{j=1}^{t+1} \prod_{i=1}^{t} p_{i}^{\frac{1}{2} \alpha_{j} e_{j}[i]}=\prod_{j=1}^{t+1} u_{j}^{\frac{1}{2} \alpha_{j}} .
$$

Quadratic SiEve

7. Compute $\operatorname{gcd}(x+y, n)$ and check if a proper factor of n is obtained.
8. If not, generate more triples and repeat.

Quadratic Sieve Analysis

- First note that for each $j, \sum_{j=1}^{t+1} \alpha_{j} e_{j}[i]$ is divisible by two and so y is an integer.
- We have $x^{2}=\prod_{j=1}^{t+1}\left\{v_{j}^{2}\right\}^{\alpha_{j}}=\prod_{j=1}^{t+1} u_{j}^{\alpha_{j}}(\bmod n)=y^{2}(\bmod n)$.
- Since x and y are computed using very different numbers (x is a product of numbers of the form $m+k$ and y is a product of powers of $\left.p_{i} ' s\right)$, it is likely that $x \neq \pm y(\bmod n)$.
- This results in a factor of n.

Quadratic Sieve Analysis

- First note that for each $j, \sum_{j=1}^{t+1} \alpha_{j} e_{j}[i]$ is divisible by two and so y is an integer.
- We have
$x^{2}=\prod_{j=1}^{t+1}\left\{v_{j}^{2}\right\}^{\alpha_{j}}=\prod_{j=1}^{t+1} u_{j}^{\alpha_{j}}(\bmod n)=y^{2}(\bmod n)$.
- Since x and y are computed using very different numbers (x is a product of numbers of the form $m+k$ and y is a product of powers of $\left.p_{i} ' s\right)$, it is likely that $x \neq \pm y(\bmod n)$.
- This results in a factor of n.

Quadratic Sieve Analysis

- First note that for each $j, \sum_{j=1}^{t+1} \alpha_{j} e_{j}[i]$ is divisible by two and so y is an integer.
- We have
$x^{2}=\prod_{j=1}^{t+1}\left\{v_{j}^{2}\right\}^{\alpha_{j}}=\prod_{j=1}^{t+1} u_{j}^{\alpha_{j}}(\bmod n)=y^{2}(\bmod n)$.
- Since x and y are computed using very different numbers (x is a product of numbers of the form $m+k$ and y is a product of powers of $\left.p_{i} ' s\right)$, it is likely that $x \neq \pm y(\bmod n)$.
- This results in a factor of n.

Quadratic Sieve Analysis

- So how many k 's are required to generate $t+1$ triples?
- Number $u=(m+k)^{2}(\bmod n) \approx 2 \sqrt{n} k+k^{2} \approx 2 \sqrt{n} k$ when k is small compared to \sqrt{n}.
- Assume that u is uniformly distributed over $[1,2 \sqrt{n} k]$ as k varies.
- Then the probability that u is B-smooth is around $\left(\frac{\ln n}{2 \ln B}\right)^{-\frac{\ln n}{2 \ln B}} \sim e^{-\frac{1}{2} \sqrt{\ln n \ln \ln n}}=\frac{1}{B}$.
- So we need $B^{2+o(1)} k$'s to generate required triples.

Quadratic Sieve Analysis

- So how many k 's are required to generate $t+1$ triples?
- Number $u=(m+k)^{2}(\bmod n) \approx 2 \sqrt{n} k+k^{2} \approx 2 \sqrt{n} k$ when k is small compared to \sqrt{n}.
- Assume that u is uniformly distributed over $[1,2 \sqrt{n} k]$ as k varies.
- Then the probability that u is B-smooth is around $\left(\frac{\ln n}{2 \ln B}\right)^{-\frac{\ln n}{2 \ln B}} \sim e^{-\frac{1}{2} \sqrt{\ln n \ln \ln n}}=\frac{1}{B}$.
- So we need $B^{2+o(1)} k$'s to generate required triples.

Quadratic Sieve Analysis

- So how many k 's are required to generate $t+1$ triples?
- Number $u=(m+k)^{2}(\bmod n) \approx 2 \sqrt{n} k+k^{2} \approx 2 \sqrt{n} k$ when k is small compared to \sqrt{n}.
- Assume that u is uniformly distributed over $[1,2 \sqrt{n} k]$ as k varies.
- Then the probability that u is B-smooth is around $\left(\frac{\ln n}{2 \ln B}\right)^{-\frac{\ln n}{2 \ln B}} \sim e^{-\frac{1}{2} \sqrt{\ln n \ln \ln n}}=\frac{1}{B}$.
- So we need $B^{2+o(1)} k$'s to generate required triples.

Quadratic Sieve Analysis

- Using a clever sieving trick, it can be shown that time taken to compute all the triples remains $B^{2+o(1)}$.
- α_{j} 's can be computed by solving a system of $t+1$ linear equations.
- Time taken to compute these can be shown to be $O\left(t^{2}\right)=O\left(B^{2}\right)$.
- Therefore, the time complexity of the whole algorithm is $B^{2+o(1)}=e^{(1+o(1)) \sqrt{ } \ln n \ln \ln n}$

Quadratic Sieve Analysis

- Using a clever sieving trick, it can be shown that time taken to compute all the triples remains $B^{2+o(1)}$.
- α_{j} 's can be computed by solving a system of $t+1$ linear equations.
- Time taken to compute these can be shown to be $O\left(t^{2}\right)=O\left(B^{2}\right)$.
- Therefore, the time complexity of the whole algorithm is $B^{2+o(1)}=e^{(1+o(1)) \sqrt{\ln n \ln \ln n}}$

Quadratic Sieve Analysis

- Using a clever sieving trick, it can be shown that time taken to compute all the triples remains $B^{2+o(1)}$.
- α_{j} 's can be computed by solving a system of $t+1$ linear equations.
- Time taken to compute these can be shown to be $O\left(t^{2}\right)=O\left(B^{2}\right)$.
- Therefore, the time complexity of the whole algorithm is $B^{2+o(1)}=e^{(1+o(1)) \sqrt{\ln n \ln \ln n}}$.

Number Field Sieve

- Designed by Pollard, Pomerance, Lenstra, ... (1990s).
- Uses arithmetic in a number field instead of \mathbb{Q}.
- This allows one to reduce the size of u 's thus increasing the chances of finding a smooth number.
- The time complexity comes down to $e^{c(\ln n)^{1 / 3}(\ln \ln n)^{2 / 3}}$. $c \approx 1.903$.

Number Field Sieve

- Designed by Pollard, Pomerance, Lenstra, ... (1990s).
- Uses arithmetic in a number field instead of \mathbb{Q}.
- This allows one to reduce the size of u 's thus increasing the chances of finding a smooth number.
- The time complexity comes down to $e^{c(\ln n)^{1 / 3}(\ln \ln n)^{2 / 3}}$, $c \approx 1.903$.

Outline

Definition

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index Calculus

Discrete Log Problem Over Finite Fields

- Let p be a large prime.
- Let $g \in F_{p}$ be a generator of F_{p}^{*} and $\gamma \in F_{p}^{*}$.
- The discrete log problem over finite fields is: given p, g, and γ, compute m such that $g^{m}=\gamma(\bmod p)$.
- The hardness of this nroblem is the basis for security of El Gamal type encryption algorithms over finite fields and Diffie-Hellman key exchange scheme.

Discrete Log Problem Over Finite Fields

- Let p be a large prime.
- Let $g \in F_{p}$ be a generator of F_{p}^{*} and $\gamma \in F_{p}^{*}$.
- The discrete log problem over finite fields is: given p, g, and γ, compute m such that $g^{m}=\gamma(\bmod p)$.
- The hardness of this problem is the basis for security of El Gamal type encryption algorithms over finite fields and Diffie-Hellman key exchange scheme.

Index Calculus Method

- Compute r and s such that $g^{r} \gamma^{s}=1(\bmod p)$ and $\operatorname{gcd}(s, p-1)=1$.
- Then $g^{r+m s}=1(\bmod p)$ giving $m=-r s^{-1}(\bmod p-1)$.
- How does one quickly find such r and s ?
- We use a method similar to one used for integer factoring.

Index Calculus Method

- Compute r and s such that $g^{r} \gamma^{s}=1(\bmod p)$ and $\operatorname{gcd}(s, p-1)=1$.
- Then $g^{r+m s}=1(\bmod p)$ giving $m=-r s^{-1}(\bmod p-1)$.
- How does one quickly find such r and s ?
- We use a method similar to one used for integer factoring.

Index Calculus Method

- Compute r and s such that $g^{r} \gamma^{s}=1(\bmod p)$ and $\operatorname{gcd}(s, p-1)=1$.
- Then $g^{r+m s}=1(\bmod p)$ giving $m=-r s^{-1}(\bmod p-1)$.
- How does one quickly find such r and s ?
- We use a method similar to one used for integer factoring.

Index Calculus Method

1. Let $B=e^{\frac{1}{2} \sqrt{\ln p \ln \ln p}}$ and p_{1}, \ldots, p_{t} be all primes $\leq B$.
2. Randomly select r and $s, 0<r, s<p-1$.
3. Compute $u=g^{r} \gamma^{s}(\bmod p)$.

Check if u is B-smooth.
5. If yes, compute complete factorization of $u=\prod_{i=1}^{t} p_{i}^{e l i}$
6. Store the 4-tuple (r, s, u, \hat{e}) where $\hat{e}=(e[1] e[2]$

Index Calculus Method

1. Let $B=e^{\frac{1}{2} \sqrt{\ln p \ln \ln p}}$ and p_{1}, \ldots, p_{t} be all primes $\leq B$.
2. Randomly select r and $s, 0<r, s<p-1$.
3. Compute $u=g^{r} \gamma^{s}(\bmod p)$.
4. Check if u is B-smooth.
5. If yes, compute complete factorization of $u=\prod_{i=1}^{t} p_{i}^{e}$
6. Store the 4-tuple (r, s, u, \hat{e}) where $\hat{e}=(e[1] e[2]$

Index Calculus Method

1. Let $B=e^{\frac{1}{2} \sqrt{\ln p \ln \ln p}}$ and p_{1}, \ldots, p_{t} be all primes $\leq B$.
2. Randomly select r and $s, 0<r, s<p-1$.
3. Compute $u=g^{r} \gamma^{s}(\bmod p)$.
4. Check if u is B-smooth.
5. If yes, compute complete factorization of $u=\prod_{i=1}^{t} p_{i}^{e[i]}$.
6. Store the 4-tuple (r, s, u, \hat{e}) where $\hat{e}=(e[1] e[2] \cdots e[t])$.

Index Calculus Method

7. Exit the previous step after $t+1$ 4-tuples are stored.
8. Let these be $\left\{r_{j}, s_{j}, u_{j}, \hat{e}_{j}\right\}_{1 \leq j \leq t+1}$.
\square $=0(\bmod p-1)$ and not all α_{j} 's are zero.

Index Calculus Method

7. Exit the previous step after $t+1$ 4-tuples are stored.
8. Let these be $\left\{r_{j}, s_{j}, u_{j}, \hat{e}_{j}\right\}_{1 \leq j \leq t+1}$.
9. Find $\alpha_{j} \in Z_{p-1}$ for $1 \leq j \leq t+1$ such that $\sum_{j=1}^{t+1} \alpha_{j} \hat{e}_{j}=0(\bmod p-1)$ and not all α_{j} 's are zero.

Index Calculus Method

7. Exit the previous step after $t+1$ 4-tuples are stored.
8. Let these be $\left\{r_{j}, s_{j}, u_{j}, \hat{e}_{j}\right\}_{1 \leq j \leq t+1}$.
9. Find $\alpha_{j} \in Z_{p-1}$ for $1 \leq j \leq t+1$ such that $\sum_{j=1}^{t+1} \alpha_{j} \hat{e}_{j}=0(\bmod p-1)$ and not all α_{j} 's are zero.
10. Let

$$
r=\sum_{j=1}^{t+1} \alpha_{j} r_{j}(\bmod p-1)
$$

and

$$
s=\sum_{j=1}^{t+1} \alpha_{j} s_{j}(\bmod p-1)
$$

Index Calculus Method

11. Check if $\operatorname{gcd}(s, p-1)=1$.
12. If yes, $m=-r s^{-1}(\bmod p-1)$ is the answer.

Analysis of Index Calculus Method

- Note that

$$
\begin{aligned}
g^{r} \gamma^{s} & =\prod_{j=1}^{t+1}\left(g^{r_{j}} \gamma^{s_{j}}\right)^{\alpha_{j}}(\bmod p) \\
& =\prod_{j=1}^{t+1} u_{j}^{\alpha_{j}}(\bmod p) \\
& =\prod_{j=1}^{t+1} \prod_{i=1}^{t} p_{i}^{\alpha_{j} e_{j}[i]}(\bmod p) \\
& =\prod_{i=1}^{t} p_{i}^{\sum_{j=1}^{t+1} \alpha_{j} e_{j}[i]}(\bmod p) \\
& =1(\bmod p) .
\end{aligned}
$$

Analysis of Index Calculus Method

- In addition, the probability that $\operatorname{gcd}(s, p-1)=1$ is high since s_{j} 's are randomly chosen.
- Therefore, the algorithm computes discrete log with high probability.
- For time complexity we proceed exactly as before.
- The probability that u is B-smooth is $\frac{\Psi(p-1, B)}{p-1} \sim\left(\frac{\ln p}{\ln B}\right)^{-\frac{\ln p}{\ln B}} \sim e^{-\ln p \ln \ln p}=\frac{1}{B^{2}}$

Analysis of Index Calculus Method

- In addition, the probability that $\operatorname{gcd}(s, p-1)=1$ is high since s_{j} 's are randomly chosen.
- Therefore, the algorithm computes discrete log with high probability.
- For time complexity we proceed exactly as before.
- The probability that u is B-smooth is

$$
\frac{\Psi(p-1, B)}{p-1} \sim\left(\frac{\ln p}{\ln B}\right)^{-\frac{\ln p}{\ln B}} \sim e^{-\ln p \ln \ln p}=\frac{1}{B^{2}}
$$

Analysis of Index Calculus Method

- Therefore, we need to generate $B^{3+o(1)} u$'s.
- Testing each u for smoothness takes $B^{1+o(1)}$ steps (no savings here!).
- Also, solving the system of linear equation takes $O\left(B^{3}\right)$ steps.
- This gives the total complexity of $B^{4+o(1)}=e^{(2+o(1)) \sqrt{\ln p \ln \ln p}}$

Analysis of Index Calculus Method

- Therefore, we need to generate $B^{3+o(1)} u$'s.
- Testing each u for smoothness takes $B^{1+o(1)}$ steps (no savings here!).
- Also, solving the system of linear equation takes $O\left(B^{3}\right)$ steps.
- This gives the total complexity of $B^{4+o(1)}=e^{(2+o(1)) \sqrt{\ln p \ln \ln p}}$

Analysis of Index Calculus Method

- Therefore, we need to generate $B^{3+o(1)} u$'s.
- Testing each u for smoothness takes $B^{1+o(1)}$ steps (no savings here!).
- Also, solving the system of linear equation takes $O\left(B^{3}\right)$ steps.
- This gives the total complexity of $B^{4+o(1)}=e^{(2+o(1)) \sqrt{\ln p \ln \ln p} \text {. }}$

Comments

- As in case of factoring, number fields can be used to bring the time complexity down to $e^{c(\ln n)^{1 / 3}(\ln \ln n)^{2 / 3}}$.
- The index calculus method can be generalized to work for any finite commutative group.
- However, it does not work well in groups with no good notion of 'smoothness'
- For example, in group of points on an elliptic curve E_{p}.

Comments

- As in case of factoring, number fields can be used to bring the time complexity down to $e^{c(\ln n)^{1 / 3}(\ln \ln n)^{2 / 3}}$.
- The index calculus method can be generalized to work for any finite commutative group.
- However, it does not work well in groups with no good notion of 'smoothness'
- For example, in group of points on an elliptic curve E_{p}.

Comments

- As in case of factoring, number fields can be used to bring the time complexity down to $e^{c(\ln n)^{1 / 3}(\ln \ln n)^{2 / 3}}$.
- The index calculus method can be generalized to work for any finite commutative group.
- However, it does not work well in groups with no good notion of 'smoothness'.
- For example, in group of points on an elliptic curve E_{p}.

Thank You!

Resultants

- Let f and v be two polynomials over field F of degree n and m respectively.
- We have $\operatorname{gcd}(f(x), v(x))>1$ iff there exist $r(x)$ and $s(x)$, of degrees $<m$ and $<n$ respectively, such that $r(x) f(x)+s(x) v(x)=0$.
- Define map $T(r(x), s(x))=r(x) f(x)+s(x) v(x)$ for $\operatorname{deg}(r)<m$ and $\operatorname{deg}(s)<n$.
- T is a bilinear map and so can be represented by a

- Further, T is invertible iff $\operatorname{gcd}(f(x), v(x))=1$.
- Let $\operatorname{Res}(f, v)=\operatorname{det} M_{f}$,

Resultants

- Let f and v be two polynomials over field F of degree n and m respectively.
- We have $\operatorname{gcd}(f(x), v(x))>1$ iff there exist $r(x)$ and $s(x)$, of degrees $<m$ and $<n$ respectively, such that $r(x) f(x)+s(x) v(x)=0$.
- Define map $\operatorname{deg}(r)<m$ and $\operatorname{deg}(s)<n$.
- T is a bilinear map and so can be represented by a $(n+m) \times(n+m)$ matrix, $M_{f, v}$.
- Further, T is invertible iff $\operatorname{gcd}(f(x), v(x))=1$.
- Let $\operatorname{Res}(f, v)=\operatorname{det} M_{f v}$.

Resultants

- Let f and v be two polynomials over field F of degree n and m respectively.
- We have $\operatorname{gcd}(f(x), v(x))>1$ iff there exist $r(x)$ and $s(x)$, of degrees $<m$ and $<n$ respectively, such that $r(x) f(x)+s(x) v(x)=0$.
- Define map $T(r(x), s(x))=r(x) f(x)+s(x) v(x)$ for $\operatorname{deg}(r)<m$ and $\operatorname{deg}(s)<n$.
- T is a bilinear map and so can be represented by a $(n+m) \times(n+m)$ matrix, $M_{f, v}$.
- Further, T is invertible iff $\operatorname{gcd}(f(x), v(x))=1$.

Resultants

- Let f and v be two polynomials over field F of degree n and m respectively.
- We have $\operatorname{gcd}(f(x), v(x))>1$ iff there exist $r(x)$ and $s(x)$, of degrees $<m$ and $<n$ respectively, such that $r(x) f(x)+s(x) v(x)=0$.
- Define map $T(r(x), s(x))=r(x) f(x)+s(x) v(x)$ for $\operatorname{deg}(r)<m$ and $\operatorname{deg}(s)<n$.
- T is a bilinear map and so can be represented by a $(n+m) \times(n+m)$ matrix, $M_{f, v}$.
- Further, T is invertible iff $\operatorname{gcd}(f(x), v(x))=1$.
- Let $\operatorname{Res}(f, v)=\operatorname{det} M_{f, v}$.

