INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				0
				õ
				0

A Survey of Techniques Used in Algebraic and Number Theoretic Algorithms

Manindra Agarwal

National University of Singapore and IIT Kanpur

Kunming Tutorial, May 2005

INTRODUCTION	Two Applications	Basic Operations	TOOLS	Overview of the Tools	
	000000			0	
	00000			0	
				0	
				0	
				ŏ	
		0			

OVERVIEW

INTRODUCTION

TWO APPLICATIONS

Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

COMPLEXITY OF BASIC OPERATIONS

Tools for Designing Algorithms for Basic Operations

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

OVERVIEW OF THE TOOLS

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tools
		OUTLINE		

INTRODUCTION

Two Applications Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

(日)

Overview of the Tools

T	N	T	R	21	n I	Tr	C ⁱⁿ	PТ	\cap	N
	18	х.	no			23	U 3		U.	. N

BASIC OPERATIONS

Tools

OVERVIEW OF THE TOOLS 0 0 0

Algebraic Algorithms

• Algorithms for performing algebraic operations.

- Examples:
 - Matrix operations: addition, multiplication, inverse, determinant, solving a system of linear equations,
 - Polynomial operations: addition, multiplication, factoring, ...
 - Abstract algebra operations: order of a group element, discrete log, ...

T	N	T	R	21	n I	Tr	C ⁱⁿ	PТ	\cap	N
	18	х.	no			23	U 3		U.	. N

BASIC OPERATIONS

Tools

OVERVIEW OF THE TOOLS 0 0 0

(日)

Algebraic Algorithms

- Algorithms for performing algebraic operations.
- Examples:
 - Matrix operations: addition, multiplication, inverse, determinant, solving a system of linear equations, ...
 - Polynomial operations: addition, multiplication, factoring, ...
 - Abstract algebra operations: order of a group element, discrete log, ...

INTRODUCTION	Two Applica 000000 00000	tions B <i>i</i>	ASIC OPERATIONS	Tools	Overview of the Tools 0 0 0 0 0 0 0
		-			

NUMBER THEORETICAL ALGORITHMS

• Algorithms for performing number theoretic operations.

- Examples:
 - Operations on integers and rationals: addition, multiplication, gcd, square roots, primality testing, integer factoring, ...

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tools
	Number Thi	EORETICAL A	Algori	THMS

- Algorithms for performing number theoretic operations.
- Examples:
 - Operations on integers and rationals: addition, multiplication, gcd, square roots, primality testing, integer factoring, ...

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools	
	000000			0	
	00000			0	
				õ	
				0	
				0	
	Λ	DDIICATION	7		

APPLICATIONS

• In coding theory for efficient coding/decoding.

- In cryptography for design and analysis of cryptographic schemes.
- In computer algebra systems.

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tools	
	А	PPLICATIONS	5		

- In coding theory for efficient coding/decoding.
- In cryptography for design and analysis of cryptographic schemes.

• In computer algebra systems.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				ŏ
				0
				0
	٨	DDLIGATION	n n	

APPLICATIONS

- In coding theory for efficient coding/decoding.
- In cryptography for design and analysis of cryptographic schemes.

(日)

• In computer algebra systems.

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tools
		THIS TALK		

- Discusses two major applications where algebraic and number theoretic algorithms are used.
- Surveys some of the important tools for designing these algorithms.
- Designs algorithms for some basic operations using these tools.

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tools
		THIS TALK		

- Discusses two major applications where algebraic and number theoretic algorithms are used.
- Surveys some of the important tools for designing these algorithms.
- Designs algorithms for some basic operations using these tools.

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tools
		THIS TALK		

- Discusses two major applications where algebraic and number theoretic algorithms are used.
- Surveys some of the important tools for designing these algorithms.
- Designs algorithms for some basic operations using these tools.

INTRODUCTION Two 000 000	O APPLICATIONS] 000 00	3asic Operations	Tools	Overview of the Tools
	C)UTLINE		0

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction

Two APPLICATIONS Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

INTRODUCTION	Two Applications •00000 00000	Basic Operations	Tools	Overview of the Tools	
		OUTLINE			

Introduction

Two APPLICATIONS Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

÷				
	T			N

BASIC OPERATIONS

Tools

Overview of the Tools 0 0 0 0

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Reed-Soloman Codes

- One of the most important and popular class of codes.
- Used in several applications including encoding data on CDs and DVDs.
- Uses polynomial evaluations for coding, linear system solving and polynomial factorization for decoding.

-		
A		

BASIC OPERATIONS

Tools

OVERVIEW OF THE TOOLS 0 0 0 0

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Reed-Soloman Codes

- One of the most important and popular class of codes.
- Used in several applications including encoding data on CDs and DVDs.
- Uses polynomial evaluations for coding, linear system solving and polynomial factorization for decoding.

TAUT			
TINT		21	NIN -

[wo	Applications	
	000	
0000	00	

Tools

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

REED-SOLOMAN CODES: CODING

- Let *m* be a string that is to be coded.
- Fix a finite field F, |F| ≥ n, and split m as a sequence of k < n elements of F: (m₀,..., m_{k-1}).
- Let polynomial $P_m(x) = \sum_{i=0}^{k-1} m_i \cdot x^i$.
- Let c_j = P_m(e_j) for 0 ≤ j < n with e₀, ..., e_{n-1} distinct elements of F. [Requires polynomial evaluation]
- The sequence (c_0, \ldots, c_{n-1}) is the codeword corresponding to *m*.

T N T	nu	U1	ION

wo	Applications	
0000	000	
0000	00	

Tools

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Let *m* be a string that is to be coded.
- Fix a finite field F, |F| ≥ n, and split m as a sequence of k < n elements of F: (m₀,..., m_{k-1}).
- Let polynomial $P_m(x) = \sum_{i=0}^{k-1} m_i \cdot x^i$.
- Let $c_j = P_m(e_j)$ for $0 \le j < n$ with e_0, \ldots, e_{n-1} distinct elements of F. [Requires polynomial evaluation]
- The sequence (c_0, \ldots, c_{n-1}) is the codeword corresponding to *m*.

T N T	nu	U1	ION

wo	Applications	
0000	000	
0000	00	

Tools

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Let *m* be a string that is to be coded.
- Fix a finite field F, |F| ≥ n, and split m as a sequence of k < n elements of F: (m₀,..., m_{k-1}).
- Let polynomial $P_m(x) = \sum_{i=0}^{k-1} m_i \cdot x^i$.
- Let c_j = P_m(e_j) for 0 ≤ j < n with e₀, ..., e_{n-1} distinct elements of F. [Requires polynomial evaluation]
- The sequence (c₀,..., c_{n-1}) is the codeword corresponding to m.

T' O

wo Applications	Basic	C
00000		
0000		

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Let (d_0, \ldots, d_{n-1}) be a given, possibly corrupted, codeword.
- Assume that the number of un-corrupted elements is at least *t*.
- Let $D_0 = \lceil \sqrt{kn} \rceil$ and $D_1 = \lfloor \sqrt{n/k} \rfloor$.
- Find a non-zero bivariate polynomial Q(x, y) with x-degree D₀ and y-degree D₁ such that Q(e_j, d_j) = 0 for every 0 ≤ j < n.
- Such a Q can always be found since Q has $(1 + D_0) \cdot (1 + D_1) > n$ unknown coefficients that need to satisfy n homogeneous equations. [Requires solving a system of linear equations]

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				0
				0
				0

Reed-Soloman Codes: Decoding

- Let (d_0, \ldots, d_{n-1}) be a given, possibly corrupted, codeword.
- Assume that the number of un-corrupted elements is at least *t*.
- Let $D_0 = \lceil \sqrt{kn} \rceil$ and $D_1 = \lfloor \sqrt{n/k} \rfloor$.
- Find a non-zero bivariate polynomial Q(x, y) with x-degree D₀ and y-degree D₁ such that Q(e_j, d_j) = 0 for every 0 ≤ j < n.
- Such a Q can always be found since Q has $(1 + D_0) \cdot (1 + D_1) > n$ unknown coefficients that need to satisfy n homogeneous equations. [Requires solving a system of linear equations]

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				0
				0
				0

Reed-Soloman Codes: Decoding

- Let (d_0, \ldots, d_{n-1}) be a given, possibly corrupted, codeword.
- Assume that the number of un-corrupted elements is at least *t*.
- Let $D_0 = \lceil \sqrt{kn} \rceil$ and $D_1 = \lfloor \sqrt{n/k} \rfloor$.
- Find a non-zero bivariate polynomial Q(x, y) with x-degree D₀ and y-degree D₁ such that Q(e_j, d_j) = 0 for every 0 ≤ j < n.
- Such a Q can always be found since Q has $(1 + D_0) \cdot (1 + D_1) > n$ unknown coefficients that need to satisfy n homogeneous equations. [Requires solving a system of linear equations]

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

TNUT			
TIN T		CII	UN.

WO Applications	
000000	
00000	

Tools

Overview of the Tool o

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Consider the polynomial $\hat{Q}(x) = Q(x, P_m(x))$.
- We have $\hat{Q}(e_j) = 0$ for at least t different e_j 's by assumption.
- The degree of $\hat{Q}(x)$ is less than $D_0 + D_1 \cdot k \leq 2\lceil \sqrt{kn} \rceil$.
- Therefore, if $t \ge 2\lceil \sqrt{kn} \rceil$, $\hat{Q}(x) = 0$.
- If \$\hat{Q}(x) = Q(x, P_m(x)) = 0\$, then polynomial \$y P_m(x)\$ must divide polynomial \$Q(x, y)\$.
- Therefore, $y P_m(x)$ divides Q(x, y) whenever $t \ge 2\lceil \sqrt{kn} \rceil$.

TAUT			
TINT	nu	U1	ION

wo	Applications	
000	000	
000	00	

Tools

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Consider the polynomial $\hat{Q}(x) = Q(x, P_m(x))$.
- We have $\hat{Q}(e_j) = 0$ for at least t different e_j 's by assumption.
- The degree of $\hat{Q}(x)$ is less than $D_0 + D_1 \cdot k \leq 2\lceil \sqrt{kn} \rceil$.
- Therefore, if $t \ge 2\lceil \sqrt{kn} \rceil$, $\hat{Q}(x) = 0$.
- If \$\hat{Q}(x) = Q(x, P_m(x)) = 0\$, then polynomial \$y P_m(x)\$ must divide polynomial \$Q(x, y)\$.
- Therefore, $y P_m(x)$ divides Q(x, y) whenever $t \ge 2\lceil \sqrt{kn} \rceil$.

TAUT			
TINT	nu	U1	ION

wo	Applications	
000	000	
000	00	

Tools

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Consider the polynomial $\hat{Q}(x) = Q(x, P_m(x))$.
- We have $\hat{Q}(e_j) = 0$ for at least t different e_j 's by assumption.
- The degree of $\hat{Q}(x)$ is less than $D_0 + D_1 \cdot k \leq 2\lceil \sqrt{kn} \rceil$.
- Therefore, if $t \ge 2\lceil \sqrt{kn} \rceil$, $\hat{Q}(x) = 0$.
- If \$\hat{Q}(x) = Q(x, P_m(x)) = 0\$, then polynomial \$y P_m(x)\$ must divide polynomial \$Q(x, y)\$.
- Therefore, $y P_m(x)$ divides Q(x, y) whenever $t \ge 2\lceil \sqrt{kn} \rceil$.

TAUT			
TINT	nu	U1	ION

[wo	Applications	
0000	000	

Tools

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

REED-SOLOMAN CODES: DECODING

- Factor polynomial Q(x, y) and list all the factors of the form y P(x). [Requires polynomial factoring]
- Select the polynomial P(x) from these that agrees with the sequence (d₀,..., d_{n-1}) on maximum number of elements.
- This is likely to be the polynomial $P_m(x)$.
- This algorithm decodes up to $n 2\lceil \sqrt{kn} \rceil$ errors.
- Given by Madhu Sudan (1994).

TNT			
TIAT	no	101	

[wo	Applications	
0000	000	
0000	00	

Tools

Overview of the Tool

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Factor polynomial Q(x, y) and list all the factors of the form y P(x). [Requires polynomial factoring]
- Select the polynomial P(x) from these that agrees with the sequence (d_0, \ldots, d_{n-1}) on maximum number of elements.
- This is likely to be the polynomial $P_m(x)$.
- This algorithm decodes up to $n 2\lceil \sqrt{kn} \rceil$ errors.
- Given by Madhu Sudan (1994).

TNUT			
TIN T		CII	UN.

wo	Applications
0000	00

Tools

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Factor polynomial Q(x, y) and list all the factors of the form y P(x). [Requires polynomial factoring]
- Select the polynomial P(x) from these that agrees with the sequence (d_0, \ldots, d_{n-1}) on maximum number of elements.
- This is likely to be the polynomial $P_m(x)$.
- This algorithm decodes up to $n 2\lceil \sqrt{kn} \rceil$ errors.
- Given by Madhu Sudan (1994).

TNUT			
TINT	nu	U1	ION

wo	Applications
0000	000

Tools

Overview of the Tool o

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Factor polynomial Q(x, y) and list all the factors of the form y P(x). [Requires polynomial factoring]
- Select the polynomial P(x) from these that agrees with the sequence (d_0, \ldots, d_{n-1}) on maximum number of elements.
- This is likely to be the polynomial $P_m(x)$.
- This algorithm decodes up to $n 2\lceil \sqrt{kn} \rceil$ errors.
- Given by Madhu Sudan (1994).

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
		OUTLINE		

Introduction

Two APPLICATIONS Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

Taym			0.27
TIM.L.	RO	CH	.ON

BASIC OPERATIONS

Tools

OVERVIEW OF THE TOOLS 0 0 0

RSA CRYPTOSYSTEM

- The first and most popular public-key cryptosystem.
- Used in secure communication everywhere.
- Uses modular arithmetic for encryption and decryption.
- Uses primality testing for generating keys.
- Integer factoring dominates cryptanalysis, with modular equation solving also playing a role.

-		
A		

BASIC OPERATIONS

Tools

Overview of the Tools 0 0 0

(日)

RSA CRYPTOSYSTEM

- The first and most popular public-key cryptosystem.
- Used in secure communication everywhere.
- Uses modular arithmetic for encryption and decryption.
- Uses primality testing for generating keys.
- Integer factoring dominates cryptanalysis, with modular equation solving also playing a role.

-		
A		

BASIC OPERATIONS

Tools

OVERVIEW OF THE TOOLS 0 0 0

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

RSA CRYPTOSYSTEM

- The first and most popular public-key cryptosystem.
- Used in secure communication everywhere.
- Uses modular arithmetic for encryption and decryption.
- Uses primality testing for generating keys.
- Integer factoring dominates cryptanalysis, with modular equation solving also playing a role.

BASIC OPERATIONS

Tools

Overview of the Tools 0 0 0 0

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

RSA: KEY GENERATION

- Fix a key length, say, 2^r bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an $e, 3 \le e < (p-1)(q-1)$ and gcd(e, (p-1)(q-1)) = 1.
- Find the smallest d such that $d \cdot e = 1 \pmod{(p-1)(q-1)}$. [Requires modular inverse computation]
- Let n = pq.
- The encryption key is the pair (n, e).
- The decryption key is *d*.

TNUT			
TIN T	no	ю.	DIN .

BASIC OPERATIONS

Tools

Overview of the Tools o o o o o

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

RSA: KEY GENERATION

- Fix a key length, say, 2^r bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an e, $3 \le e < (p-1)(q-1)$ and gcd(e, (p-1)(q-1)) = 1.
- Find the smallest d such that $d \cdot e = 1 \pmod{(p-1)(q-1)}$. [Requires modular inverse computation]
- Let n = pq.
- The encryption key is the pair (n, e).
- The decryption key is *d*.
| TNUT | | | |
|-------|----|----|-----|
| TIN T | no | ю. |)IN |

BASIC OPERATIONS

Tools

Overview of the Tools 0 0 0 0

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

RSA: KEY GENERATION

- Fix a key length, say, 2^r bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an e, $3 \le e < (p-1)(q-1)$ and gcd(e, (p-1)(q-1)) = 1.
- Find the smallest d such that $d \cdot e = 1 \pmod{(p-1)(q-1)}$. [Requires modular inverse computation]
- Let n = pq.
- The encryption key is the pair (n, e).
- The decryption key is *d*.

TNUT			
TIN T	no	ю.)IN

BASIC OPERATIONS

Tools

Overview of the Tools 0 0 0 0

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

RSA: KEY GENERATION

- Fix a key length, say, 2^r bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an e, $3 \le e < (p-1)(q-1)$ and gcd(e, (p-1)(q-1)) = 1.
- Find the smallest d such that $d \cdot e = 1 \pmod{(p-1)(q-1)}$. [Requires modular inverse computation]
- Let n = pq.
- The encryption key is the pair (n, e).
- The decryption key is *d*.

TNUT			
TIN T	no	ю.)IN

BASIC OPERATIONS

Tools

Overview of the Tools 0 0 0 0

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

RSA: KEY GENERATION

- Fix a key length, say, 2^r bits.
- Randomly select two primes p and q each of 2^{r-1} bits. [Requires primality testing]
- Randomly select an e, $3 \le e < (p-1)(q-1)$ and gcd(e, (p-1)(q-1)) = 1.
- Find the smallest d such that $d \cdot e = 1 \pmod{(p-1)(q-1)}$. [Requires modular inverse computation]
- Let n = pq.
- The encryption key is the pair (n, e).
- The decryption key is *d*.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools	
	000000			0	
	00000			0	
				0	
				0	
				0	
				0	

RSA: ENCRYPTION AND DECRYPTION

- Let *m* be the message to be encrypted.
- Treat *m* as a number less than *n*.
- Compute $c = m^e \pmod{n}$. [Requires modular exponentiation]

- *c* is the encrypted message.
- Note that $c^d \pmod{n} = m^{ed} \pmod{n} = m$.
- Thus c can be decrypted using key d.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools	
	000000			0	
	00000			0	
				0	
				ō	
				0	

RSA: Encryption and Decryption

- Let *m* be the message to be encrypted.
- Treat *m* as a number less than *n*.
- Compute $c = m^e \pmod{n}$. [Requires modular exponentiation]

- *c* is the encrypted message.
- Note that $c^d \pmod{n} = m^{ed} \pmod{n} = m$.
- Thus c can be decrypted using key d.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools	
	000000			0	
	00000			0	
				0	
				0	
				0	
				0	

RSA: ENCRYPTION AND DECRYPTION

- Let *m* be the message to be encrypted.
- Treat *m* as a number less than *n*.
- Compute c = m^e (mod n). [Requires modular exponentiation]

- *c* is the encrypted message.
- Note that $c^d \pmod{n} = m^{ed} \pmod{n} = m$.
- Thus *c* can be decrypted using key *d*.

TRODUCTION	Two Applications 000000 0000●	Basic Operations	Tools	Overview of the Tools 0 0 0 0 0 0 0

RSA: Cryptanalysis

- If *n* can be factored, then *d* can be easily computed using *e*: $d = e^{-1} \pmod{(p-1)(q-1)}$.
- So efficiency of factoring algorithms determines how safe RSA is.
- It is not the only way to break RSA though.
- We will see a different attack later that works for a special case.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

NTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				õ
				0
				0

RSA: Cryptanalysis

- If *n* can be factored, then *d* can be easily computed using *e*: $d = e^{-1} \pmod{(p-1)(q-1)}$.
- So efficiency of factoring algorithms determines how safe RSA is.
- It is not the only way to break RSA though.
- We will see a different attack later that works for a special case.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

TRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				ő
				0
				0

RSA: Cryptanalysis

- If *n* can be factored, then *d* can be easily computed using *e*: $d = e^{-1} \pmod{(p-1)(q-1)}$.
- So efficiency of factoring algorithms determines how safe RSA is.
- It is not the only way to break RSA though.
- We will see a different attack later that works for a special case.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tools	
		OUTLINE			

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction

Two Applications Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

COMPLEXITY OF BASIC OPERATIONS

Tools for Designing Algorithms for Basic Operations

Overview of the Tools

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tool: o o o o	5
-	~	-			

• Efficient algorithms are known for most of the operations.

- Degree *n* Polynomial addition: O(n) arithmetic operations.
- Degree *n* Polynomial multiplication: $M_P(n) = O(n \log n)$ arithmetic operations.

• Several other operations reduce to polynomial multiplication:

- Polynomial division: $O(M_P(n))$,
- Polynomial gcd: $O(M_P(n) \log n)$.
- Polynomial evaluation and interpolation: $O(M_P(n) \log n)$.

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tools	
		_			

• Efficient algorithms are known for most of the operations.

- Degree *n* Polynomial addition: O(n) arithmetic operations.
- Degree *n* Polynomial multiplication: $M_P(n) = O(n \log n)$ arithmetic operations.

• Several other operations reduce to polynomial multiplication:

- Polynomial division: $O(M_P(n))$,
- Polynomial gcd: $O(M_P(n) \log n)$.
- Polynomial evaluation and interpolation: $O(M_P(n) \log n)$.

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tools	
		_			

- Polynomial factorization over finite field F_p : $O^{\sim}(n^2 \log p)$ randomized.
 - $O^{\sim}(t(n)) = O(t(n) \cdot (\log t(n))^c)$ for some constant $c \ge 0$.
- Polynomial factorization over rationals:
 O~(n¹⁰ + n⁸ log² ||f||₂), ||f||₂ square-root of the sum of square of coefficients of f.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools	
	000000			0	
	00000			0	
				0	
				0	
				0	
				0	

• Polynomial factorization over finite field F_p : $O^{\sim}(n^2 \log p)$ randomized.

• $O^{\sim}(t(n)) = O(t(n) \cdot (\log t(n))^c)$ for some constant $c \ge 0$.

Polynomial factorization over rationals:
 O~(n¹⁰ + n⁸ log² ||f||₂), ||f||₂ square-root of the sum of square of coefficients of f.

NTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				õ
				0
				0

- Very similar to polynomial algebra.
 - Addition: O(n),
 - Multiplication: $M_I(n) = O(n \log n \log \log n)$,
 - Gcd: $O(n^2)$.

• A number of operations can be transformed to multiplication:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Division, Modular arithmetic, computing integer roots: $O(M_I(n))$.

NTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools	
	000000			0	
	00000			0	
				õ	
				0	
				0	

- Very similar to polynomial algebra.
 - Addition: O(n),
 - Multiplication: $M_I(n) = O(n \log n \log \log n)$,
 - Gcd: $O(n^2)$.

• A number of operations can be transformed to multiplication:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Division, Modular arithmetic, computing integer roots: $O(M_I(n))$.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools	
	000000			0	
	00000			0	
				0	
				0	
				0	

• Primality testing: $O^{\sim}(n^6)$ deterministic, $O^{\sim}(n^2)$ randomized.

- Integer factoring:
 - $e^{O((\log n)^{1/2} (\log \log n)^{1/2})}$ randomized.
 - $e^{O((\log n)^{1/3}(\log \log n)^{2/3})}$ heuristic.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools	
	000000			0	
	00000			0	
				0	
				0	
				0	
				0	

• Primality testing: $O^{\sim}(n^6)$ deterministic, $O^{\sim}(n^2)$ randomized.

- Integer factoring:
 - $e^{O((\log n)^{1/2}(\log \log n)^{1/2})}$ randomized.
 - $e^{O((\log n)^{1/3}(\log \log n)^{2/3})}$ heuristic.

NTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				0
				0

BASIC OPERATIONS: LINEAR ALGEBRA

- The central problem is matrix multiplication.
- Coppersmith and Winograd (1986) showed that time complexity of multiplying two $n \times n$ matrices is $M_M(n) = O(n^{2.376})$ arithmetic operations.
- Several problems reduce to matrix multiplication:
 - Matrix inverse: $O(M_M(n))$,
 - Determinant, Characteristic polynomial: $O(M_M(n))$,
 - Solving a system of linear equations in *n* variables: $O(M_M(n))$.

VTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				0
				0

BASIC OPERATIONS: LINEAR ALGEBRA

- The central problem is matrix multiplication.
- Coppersmith and Winograd (1986) showed that time complexity of multiplying two $n \times n$ matrices is $M_M(n) = O(n^{2.376})$ arithmetic operations.
- Several problems reduce to matrix multiplication:
 - Matrix inverse: $O(M_M(n))$,
 - Determinant, Characteristic polynomial: $O(M_M(n))$,
 - Solving a system of linear equations in *n* variables: $O(M_M(n))$.

INTRODUCTION	Two Applications	Basic Of
	000000	

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BASIC OPERATIONS: ABSTRACT ALGEBRA

ERATIONS

- Computing order of an element in finite group G:
 - Complexity depends on the group.
 - Trivial for some groups, e.g., $(Z_n, +)$.
 - As hard as integer factoring for some groups, e.g., Z_n^* .
- Computing discrete log of an element in finite cyclic group G: given generator g for G, and element e, find m such that e = g^m.
 - Easy for some groups, e.g., (Z_n, +). [requires modular inverse and multiplication]
 - Similar in hardness to integer factoring for groups, e.g., Z^{*}_p.
 - Very hard (time = 2^{O(n)}) for some groups, e.g., groups of points on elliptic curve E_p.

NTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				õ
				0
				0

BASIC OPERATIONS: ABSTRACT ALGEBRA

- Computing order of an element in finite group G:
 - Complexity depends on the group.
 - Trivial for some groups, e.g., $(Z_n, +)$.
 - As hard as integer factoring for some groups, e.g., Z_n^* .
- Computing discrete log of an element in finite cyclic group G: given generator g for G, and element e, find m such that e = g^m.
 - Easy for some groups, e.g., $(Z_n, +)$. [requires modular inverse and multiplication]

- Similar in hardness to integer factoring for groups, e.g., Z_{p}^{*} .
- Very hard (time = 2^{O(n)}) for some groups, e.g., groups of points on elliptic curve E_p.

NTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				õ
				0
				0

BASIC OPERATIONS: ABSTRACT ALGEBRA

- Computing order of an element in finite group G:
 - Complexity depends on the group.
 - Trivial for some groups, e.g., $(Z_n, +)$.
 - As hard as integer factoring for some groups, e.g., Z_n^* .
- Computing discrete log of an element in finite cyclic group G: given generator g for G, and element e, find m such that e = g^m.
 - Easy for some groups, e.g., $(Z_n, +)$. [requires modular inverse and multiplication]
 - Similar in hardness to integer factoring for groups, e.g., Z^{*}_p.
 - Very hard (time = 2^{O(n)}) for some groups, e.g., groups of points on elliptic curve E_p.

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tools 0 0 0 0 0 0
		OUTLINE		

Introduction

Two Applications Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Overview of the Tools

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				0
				ŏ
				ō

- 1. Chinese Remaindering: Used in speeding integer and algebraic computations.
- 2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
- 3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
- 4. Hensel Lifting: Used in polynomial factorization and division.
- 5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
- 6. Smooth Numbers: Used in integer factorization and discrete log problem.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				0
				0
				ō

- 1. Chinese Remaindering: Used in speeding integer and algebraic computations.
- 2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
- 3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
- 4. Hensel Lifting: Used in polynomial factorization and division.
- 5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
- 6. Smooth Numbers: Used in integer factorization and discrete log problem.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				0
				0
				ŏ

- 1. Chinese Remaindering: Used in speeding integer and algebraic computations.
- 2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
- 3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
- 4. Hensel Lifting: Used in polynomial factorization and division.
- 5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
- 6. Smooth Numbers: Used in integer factorization and discrete log problem.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				0
				0
				ő

Tools for Designing Algorithms

- 1. Chinese Remaindering: Used in speeding integer and algebraic computations.
- 2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
- 3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
- 4. Hensel Lifting: Used in polynomial factorization and division.
- 5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
- 6. Smooth Numbers: Used in integer factorization and discrete log problem.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				0
				0
				ő

Tools for Designing Algorithms

- 1. Chinese Remaindering: Used in speeding integer and algebraic computations.
- 2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
- 3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
- 4. Hensel Lifting: Used in polynomial factorization and division.
- 5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
- 6. Smooth Numbers: Used in integer factorization and discrete log problem.

INTRODUCTION	Two Applications	Basic Operations	Tools	Overview of the Tools
	000000			0
	00000			0
				0
				0
				ő

- 1. Chinese Remaindering: Used in speeding integer and algebraic computations.
- 2. Discrete Fourier Transform: Used in polynomial and integer multiplication.
- 3. Automorphisms: Used in polynomial and integer factorization and irreducibility testing.
- 4. Hensel Lifting: Used in polynomial factorization and division.
- 5. Short Vectors in a Lattice: Used in polynomial factorization (over fields and rings) and breaking cryptosystems.
- 6. Smooth Numbers: Used in integer factorization and discrete log problem.

INTRODUCTION	Two Applications 000000 00000	Basic Operations	Tools	Overview of the Tools	

OUTLINE

(日)

Introduction

Two Applications Coding Theory Application: Reed-Solomon Codes Cryptography Application: RSA Cryptosystem

Complexity of Basic Operations

Tools for Designing Algorithms for Basic Operations

OVERVIEW OF THE TOOLS

INTRODUCTION

Two Applications 000000 00000 BASIC OPERATIONS

Tools

OVERVIEW OF THE TOOLS

CHINESE REMAINDERING

DEFINITION

EXAMPLE: DETERMINANT COMPUTATION

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

T NUT			
TINT		U1	ION

BASIC OPERATIONS

Tools

Overview of the Tools •

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

DISCRETE FOURIER TRANSFORM

DEFINITION

FAST FOURIER TRANSFORM

EXAMPLE: POLYNOMIAL MULTIPLICATION

TATC			
TIN.L.	RO	CII	.ON

BASIC OPERATIONS

Tools

Overview of the Tools $_{\odot}$

ė

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

AUTOMORPHISMS

DEFINITION

EXAMPLE: POLYNOMIAL FACTORING OVER FINITE FIELDS

EXAMPLE: PRIMALITY TESTING

EXAMPLE: INTEGER FACTORING

INTRODUCTION

Two Applications 000000 00000 BASIC OPERATIONS

Tools

OVERVIEW OF THE TOOLS

0000

HENSEL LIFTING

DEFINITION

EXAMPLE: POLYNOMIAL DIVISION

T NUT			
TINT		UH	UN.

BASIC OPERATIONS

Tools

Overview of the Tools

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

ő

•

SHORT VECTORS IN A LATTICE

LATTICES AND LLL ALGORITHM

EXAMPLE: SOLVING MODULAR EQUATIONS

EXAMPLE: POLYNOMIAL FACTORING OVER RATIONALS
T NUT			
TINT		UH	UN.

Two Applications

BASIC OPERATIONS

Tools

OVERVIEW OF THE TOOLS

5

0

õ

Smooth Numbers

DEFINITION

EXAMPLE: INTEGER FACTORING VIA QUADRATIC SIEVE

EXAMPLE: DISCRETE LOG COMPUTATION VIA INDEX CALCULUS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

DETERMINANT

Tool 1: Chinese Remaindering

DEFINITION

DETERMINANT

OUTLINE

DEFINITION

Example: Determinant Computation

CHINESE REMAINDERING THEOREM

THEOREM Let $R = \mathbb{Z}$ or F[x], and $m_0, m_1, \ldots, m_{r-1} \in R$ be pairwise coprime. Let $m = \prod_{i=0}^{r-1} m_i$. Then,

 $R/(m) \cong R/(m_0) \oplus R/(m_1) \oplus \cdots \oplus R/(m_{r-1}).$

- An element of ring R/(m) can be uniquely written as an *r*-tuple with *i*th component belonging to ring $R/(m_i)$.
- Addition and multiplication operations act component-wise.

CHINESE REMAINDERING THEOREM

THEOREM Let $R = \mathbb{Z}$ or F[x], and $m_0, m_1, \ldots, m_{r-1} \in R$ be pairwise coprime. Let $m = \prod_{i=0}^{r-1} m_i$. Then,

 $R/(m) \cong R/(m_0) \oplus R/(m_1) \oplus \cdots \oplus R/(m_{r-1}).$

- An element of ring R/(m) can be uniquely written as an *r*-tuple with *i*th component belonging to ring $R/(m_i)$.
- Addition and multiplication operations act component-wise.

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
 - Given a bound, say A, on the output of a computation, choose small m₀, ..., m_{r-1} such that ∏^{r-1}_{i=0} m_i > A and do the computations modulo each of m_i's.
 - At the end, combine the results of computations to get the desired result.
- Also lends itself to parallelization.

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
 - Given a bound, say A, on the output of a computation, choose small m₀, ..., m_{r-1} such that ∏^{r-1}_{i=0} m_i > A and do the computations modulo each of m_i's.
 - At the end, combine the results of computations to get the desired result.
- Also lends itself to parallelization.

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
 - Given a bound, say A, on the output of a computation, choose small m₀, ..., m_{r-1} such that ∏^{r-1}_{i=0} m_i > A and do the computations modulo each of m_i's.
 - At the end, combine the results of computations to get the desired result.
- Also lends itself to parallelization.

- Fundamental theorem used in arguing about rings everywhere.
- Used for speeding up computations over integers and polynomials.
- Based on the fact that it is much faster to compute modulo a small number (or small degree polynomial) than over integers (or polynomial ring):
 - Given a bound, say A, on the output of a computation, choose small m₀, ..., m_{r-1} such that ∏^{r-1}_{i=0} m_i > A and do the computations modulo each of m_i's.
 - At the end, combine the results of computations to get the desired result.
- Also lends itself to parallelization.

DEFINITION

Determinant

OUTLINE

Definition

EXAMPLE: DETERMINANT COMPUTATION

・ロト < 回ト < 三ト < 三ト < 三日 < つへの

- Let *M* be a *n* × *n* matrix over integers with *A* bounding the largest absolute value of its elements.
- Hadamard's inequality implies that $|\det M| \le n^{n/2}A^n$.
- Let $B = n^{n/2}A^n$ and $r = \lceil \log(2B+1) \rceil$.
- Let m_0, \ldots, m_{r-1} be first r primes and $m = \prod_{i=0}^{r-1} m_i$.
- Compute $v_i = \det M \pmod{m_i}$ for each *i*.
- Compute α_i such that $\alpha_i \cdot \frac{m}{m_i} = 1 \pmod{m_i}$ for each *i*.
- Output $\sum_{i=0}^{r-1} \alpha_i \cdot \frac{m}{m_i} \cdot v_i \pmod{m}$.

- Let *M* be a *n* × *n* matrix over integers with *A* bounding the largest absolute value of its elements.
- Hadamard's inequality implies that $|\det M| \le n^{n/2}A^n$.
- Let $B = n^{n/2}A^n$ and $r = \lceil \log(2B+1) \rceil$.
- Let m_0, \ldots, m_{r-1} be first r primes and $m = \prod_{i=0}^{r-1} m_i$.
- Compute $v_i = \det M \pmod{m_i}$ for each *i*.
- Compute α_i such that $\alpha_i \cdot \frac{m}{m_i} = 1 \pmod{m_i}$ for each *i*.
- Output $\sum_{i=0}^{r-1} \alpha_i \cdot \frac{m}{m_i} \cdot v_i \pmod{m}$.

- Let *M* be a *n* × *n* matrix over integers with *A* bounding the largest absolute value of its elements.
- Hadamard's inequality implies that $|\det M| \le n^{n/2}A^n$.
- Let $B = n^{n/2}A^n$ and $r = \lceil \log(2B+1) \rceil$.
- Let m_0, \ldots, m_{r-1} be first r primes and $m = \prod_{i=0}^{r-1} m_i$.
- Compute $v_i = \det M \pmod{m_i}$ for each *i*.
- Compute α_i such that $\alpha_i \cdot \frac{m}{m_i} = 1 \pmod{m_i}$ for each *i*.
- Output $\sum_{i=0}^{r-1} \alpha_i \cdot \frac{m}{m_i} \cdot v_i \pmod{m}$.

- Let *M* be a *n* × *n* matrix over integers with *A* bounding the largest absolute value of its elements.
- Hadamard's inequality implies that $|\det M| \le n^{n/2}A^n$.
- Let $B = n^{n/2}A^n$ and $r = \lceil \log(2B+1) \rceil$.
- Let m_0, \ldots, m_{r-1} be first r primes and $m = \prod_{i=0}^{r-1} m_i$.
- Compute $v_i = \det M \pmod{m_i}$ for each *i*.
- Compute α_i such that $\alpha_i \cdot \frac{m}{m_i} = 1 \pmod{m_i}$ for each *i*.
- Output $\sum_{i=0}^{r-1} \alpha_i \cdot \frac{m}{m_i} \cdot v_i \pmod{m}$.

- Let *M* be a *n* × *n* matrix over integers with *A* bounding the largest absolute value of its elements.
- Hadamard's inequality implies that $|\det M| \le n^{n/2}A^n$.
- Let $B = n^{n/2}A^n$ and $r = \lceil \log(2B+1) \rceil$.
- Let m_0, \ldots, m_{r-1} be first r primes and $m = \prod_{i=0}^{r-1} m_i$.
- Compute $v_i = \det M \pmod{m_i}$ for each *i*.
- Compute α_i such that $\alpha_i \cdot \frac{m}{m_i} = 1 \pmod{m_i}$ for each *i*.
- Output $\sum_{i=0}^{r-1} \alpha_i \cdot \frac{m}{m_i} \cdot v_i \pmod{m}$.

TOOL 2: DISCRETE FOURIER TRANSFORM

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●□■ のへ⊙

OUTLINE

DEFINITION

Fast Fourier Transform

Example: Polynomial Multiplication

DISCRETE FOURIER TRANSFORM

• Discrete Fourier Transform is the discrete variant of Fourier transform.

• It is used in polynomial multiplication, integer multiplication, image compression, and many other applications.

DISCRETE FOURIER TRANSFORM

- Discrete Fourier Transform is the discrete variant of Fourier transform.
- It is used in polynomial multiplication, integer multiplication, image compression, and many other applications.

DISCRETE FOURIER TRANSFORM

- Let f : [0, n − 1] → F be a function 'selecting' n elements of field F.
- Let ω be a principle *n*th root of unity, i.e., $\omega^n = 1$, and $\omega^t \neq 1$ for 0 < t < n.
- The DFT of f is $\mathcal{F}_f : [0, n-1] \mapsto F[\omega]$:

$$\mathcal{F}_f(j) = \sum_{i=0}^{n-1} f(i) \omega^{ij}.$$

DISCRETE FOURIER TRANSFORM

- Let f : [0, n − 1] → F be a function 'selecting' n elements of field F.
- Let ω be a principle *n*th root of unity, i.e., $\omega^n = 1$, and $\omega^t \neq 1$ for 0 < t < n.
- The DFT of f is $\mathcal{F}_f : [0, n-1] \mapsto F[\omega]$:

$$\mathcal{F}_f(j) = \sum_{i=0}^{n-1} f(i) \omega^{ij}.$$

・ロト・4回ト・4回ト・4回ト・4回ト

DISCRETE FOURIER TRANSFORM

- Let f : [0, n − 1] → F be a function 'selecting' n elements of field F.
- Let ω be a principle *n*th root of unity, i.e., $\omega^n = 1$, and $\omega^t \neq 1$ for 0 < t < n.
- The DFT of f is $\mathcal{F}_f : [0, n-1] \mapsto F[\omega]$:

$$\mathcal{F}_f(j) = \sum_{i=0}^{n-1} f(i) \omega^{ij}.$$

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●□■ のへ⊙

Definition

FAST FOURIER TRANSFORM

Example: Polynomial Multiplication

FAST FOURIER TRANSFORM: AN ALGORITHM FOR COMPUTING DFT

- A straightforward algorithm takes $O(n^2)$ arithmetic operations.
- An *O*(*n* log *n*) time algorithm for DFT was (re)discovered by Cooley and Tukey (1965).
- It was first found by Gauss (1805).
- The algorithm is called Fast Fourier Transform and uses divide-and-conquer technique to recursively compute DFT.

FAST FOURIER TRANSFORM: AN ALGORITHM FOR COMPUTING DFT

FFT

- A straightforward algorithm takes $O(n^2)$ arithmetic operations.
- An O(n log n) time algorithm for DFT was (re)discovered by Cooley and Tukey (1965).
- It was first found by Gauss (1805).
- The algorithm is called Fast Fourier Transform and uses divide-and-conquer technique to recursively compute DFT.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let f, f: [0, n-1] → F for field field F, and assume n = 2^k.
Note that for 0 ≤ j < n/2,

$$\mathcal{F}_f(2j) = \sum_{i=0}^{n-1} f(i)\omega^{2ij} = \sum_{i=0}^{n/2-1} (f(i) + f(n/2 + i))(\omega^2)^{ij}.$$

• Similarly,

$$\mathcal{F}_f(2j+1) = \sum_{i=0}^{n-1} f(i)\omega^{i(2j+1)} = \sum_{i=0}^{n/2-1} (f(i)\omega^i - f(n/2+i)\omega^i)(\omega^2)^{ij}.$$

 Thus the problem reduces to computing DFT of two functions with ⁿ/₂ domain size.

- Let $f, f: [0, n-1] \mapsto F$ for field field F, and assume $n = 2^k$.
- Note that for $0 \le i < n/2$,

$$\mathcal{F}_f(2j) = \sum_{i=0}^{n-1} f(i)\omega^{2ij} = \sum_{i=0}^{n/2-1} (f(i) + f(n/2 + i))(\omega^2)^{ij}.$$

Similarly,

$$\mathcal{F}_f(2j+1) = \sum_{i=0}^{n-1} f(i)\omega^{i(2j+1)} = \sum_{i=0}^{n/2-1} (f(i)\omega^i - f(n/2+i)\omega^i)(\omega^2)^{ij}.$$

 Thus the problem reduces to computing DFT of two functions ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

FFT

- Let $f, f: [0, n-1] \mapsto F$ for field field F, and assume $n = 2^k$.
- Note that for $0 \le j < n/2$,

$$\mathcal{F}_f(2j) = \sum_{i=0}^{n-1} f(i)\omega^{2ij} = \sum_{i=0}^{n/2-1} (f(i) + f(n/2 + i))(\omega^2)^{ij}.$$

• Similarly,

$$\mathcal{F}_{f}(2j+1) = \sum_{i=0}^{n-1} f(i)\omega^{i(2j+1)} = \sum_{i=0}^{n/2-1} (f(i)\omega^{i} - f(n/2+i)\omega^{i})(\omega^{2})^{ij}.$$

 Thus the problem reduces to computing DFT of two functions with ⁿ/₂ domain size.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

FFT

- The functions are: $f_0(i) = f(i) + f(n/2 + i)$ and $f_1(i) = (f(i) f(n/2 + i))\omega^i$ for $0 \le i < n/2$.
- These functions can be computed using O(n) operations from f.
- Setting the recurrence and solving, we get the time to compute DFT is $O(n \log n)$.

FFT

- The functions are: $f_0(i) = f(i) + f(n/2 + i)$ and $f_1(i) = (f(i) f(n/2 + i))\omega^i$ for $0 \le i < n/2$.
- These functions can be computed using O(n) operations from f.
- Setting the recurrence and solving, we get the time to compute DFT is $O(n \log n)$.

(日)

FFT

- The functions are: $f_0(i) = f(i) + f(n/2 + i)$ and $f_1(i) = (f(i) f(n/2 + i))\omega^i$ for $0 \le i < n/2$.
- These functions can be computed using O(n) operations from f.
- Setting the recurrence and solving, we get the time to compute DFT is O(n log n).

Definition

Fast Fourier Transform

EXAMPLE: POLYNOMIAL MULTIPLICATION

POLYNOMIAL MULTIPLICATION VIA FFT

• Let *P* be a polynomial over field *F* of degree < *n*:

$$P(x) = \sum_{i=0}^{n-1} c_i x^i.$$

- Associate function \hat{P} with P, $\hat{P}: [0, n-1] \mapsto F$, $\hat{P}(i) = c_i$.
- DFT of *P* is defined to be

$$\mathcal{F}_P(j)=\mathcal{F}_{\hat{P}}(j)=\sum_{i=0}^{n-1}c_i\omega^{ij}=P(\omega^j).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

POLYNOMIAL MULTIPLICATION VIA FFT

• Let *P* be a polynomial over field *F* of degree < *n*:

$$P(x) = \sum_{i=0}^{n-1} c_i x^i.$$

• Associate function \hat{P} with P, $\hat{P}: [0, n-1] \mapsto F$, $\hat{P}(i) = c_i$.

• DFT of *P* is defined to be

$$\mathcal{F}_{\mathcal{P}}(j)=\mathcal{F}_{\hat{\mathcal{P}}}(j)=\sum_{i=0}^{n-1}c_i\omega^{ij}=\mathcal{P}(\omega^j).$$

シック・ 単語・ 4 目 ・ 4 目 ・ 9 Q や

POLYNOMIAL MULTIPLICATION VIA FFT

• Let *P* be a polynomial over field *F* of degree < *n*:

$$P(x) = \sum_{i=0}^{n-1} c_i x^i.$$

- Associate function \hat{P} with P, $\hat{P}: [0, n-1] \mapsto F$, $\hat{P}(i) = c_i$.
- DFT of *P* is defined to be

$$\mathcal{F}_{\mathcal{P}}(j)=\mathcal{F}_{\hat{\mathcal{P}}}(j)=\sum_{i=0}^{n-1}c_i\omega^{ij}=\mathcal{P}(\omega^j).$$

POLYNOMIAL MULTIPLICATION VIA FFT

Let *P* and *Q* be two polynomials of degree $< n = 2^k$.

- 1. Treat both P and Q as polynomials of degree 2n 1 and compute their DFT, \mathcal{F}_P and \mathcal{F}_Q .
- 2. Multiply \mathcal{F}_P and \mathcal{F}_Q component-wise.
- 3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω .
- 4. The resulting polynomial is $P \cdot Q$.

The time complexity of each step is bounded by $O(n \log n)$.
POLYNOMIAL MULTIPLICATION VIA FFT

Let *P* and *Q* be two polynomials of degree $< n = 2^k$.

- 1. Treat both P and Q as polynomials of degree 2n 1 and compute their DFT, \mathcal{F}_P and \mathcal{F}_Q .
- 2. Multiply \mathcal{F}_P and \mathcal{F}_Q component-wise.
- 3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of $\omega.$
- 4. The resulting polynomial is $P \cdot Q$.

POLYNOMIAL MULTIPLICATION VIA FFT

Let *P* and *Q* be two polynomials of degree $< n = 2^k$.

- 1. Treat both P and Q as polynomials of degree 2n 1 and compute their DFT, \mathcal{F}_P and \mathcal{F}_Q .
- 2. Multiply \mathcal{F}_P and \mathcal{F}_Q component-wise.
- 3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω .
- 4. The resulting polynomial is $P \cdot Q$.

POLYNOMIAL MULTIPLICATION VIA FFT

Let *P* and *Q* be two polynomials of degree $< n = 2^k$.

- 1. Treat both P and Q as polynomials of degree 2n 1 and compute their DFT, \mathcal{F}_P and \mathcal{F}_Q .
- 2. Multiply \mathcal{F}_P and \mathcal{F}_Q component-wise.
- 3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω .
- 4. The resulting polynomial is $P \cdot Q$.

POLYNOMIAL MULTIPLICATION VIA FFT

Let *P* and *Q* be two polynomials of degree $< n = 2^k$.

- 1. Treat both P and Q as polynomials of degree 2n 1 and compute their DFT, \mathcal{F}_P and \mathcal{F}_Q .
- 2. Multiply \mathcal{F}_P and \mathcal{F}_Q component-wise.
- 3. Compute the inverse-DFT of resulting function by using the root ω^{-1} instead of ω .
- 4. The resulting polynomial is $P \cdot Q$.

DEFINITION

TOOL 3: AUTOMORPHISMS

DEFINITION

Polynomial Factoring

PRIMALITY TESTING

INTEGER FACTORING

DEFINITION

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

Example: Integer Factoring

INTEGER FACTORING

(日)

- Automorphism of an algebraic structure is a mapping of the structure to itself that preserves all the operations.
- Automorphisms of finite rings and fields play a crucial role in polynomial factoring and primality testing.

- Let R = Z_n[X]/(f(X)) be a finite ring, f a polynomial of degree d.
- An automorphism φ of *R* preserves both addition and multiplication in the ring.
- It is easy to see that φ is completely specified by its action on X: for any element e(X) ∈ R, φ(e(X)) = e(φ(X)).
- In addition, $\phi(f(X)) = f(\phi(X)) = 0$ in the ring.

- Let R = Z_n[X]/(f(X)) be a finite ring, f a polynomial of degree d.
- An automorphism φ of *R* preserves both addition and multiplication in the ring.
- It is easy to see that φ is completely specified by its action on X: for any element e(X) ∈ R, φ(e(X)) = e(φ(X)).
- In addition, $\phi(f(X)) = f(\phi(X)) = 0$ in the ring.

- Let R = Z_n[X]/(f(X)) be a finite ring, f a polynomial of degree d.
- An automorphism φ of *R* preserves both addition and multiplication in the ring.
- It is easy to see that φ is completely specified by its action on X: for any element e(X) ∈ R, φ(e(X)) = e(φ(X)).
- In addition, $\phi(f(X)) = f(\phi(X)) = 0$ in the ring.

- If *R* is a field, i.e., *n* is prime and *f* is irreducible over *F_p*, then the automorphisms of *R* are precisely ψ, ψ², ..., ψ^d = id where ψ(X) = X^p.
- In general, *R* is a direct sum of fields (by CRT) and its automorphisms are compositions of automorphisms of fields in the sum.

- If *R* is a field, i.e., *n* is prime and *f* is irreducible over *F_p*, then the automorphisms of *R* are precisely ψ, ψ², ..., ψ^d = id where ψ(X) = X^p.
- In general, *R* is a direct sum of fields (by CRT) and its automorphisms are compositions of automorphisms of fields in the sum.

INTEGER FACTORING

Definition

EXAMPLE: POLYNOMIAL FACTORING OVER FINITE FIELDS

Example: Primality Testing

Example: Integer Factoring

POLYNOMIAL FACTORING OVER FINITE FIELDS

• The algorithms developed by Berlekemp and others (1980s).

- Let f be a degree n monic polynomial over finite field F_p .
- We wish to compute all irreducible factors of f.
- If f is not square-free, i.e., g^2 divides f for some g, then f can be factored easily:
 - Compute $gcd(f, \frac{dt}{dx})$.
 - Since g divides both f and dt/dx, the gcd will be non-trivial.

- The algorithms developed by Berlekemp and others (1980s).
- Let f be a degree n monic polynomial over finite field F_p .
- We wish to compute all irreducible factors of *f*.
- If f is not square-free, i.e., g^2 divides f for some g, then f can be factored easily:
 - Compute $gcd(f, \frac{df}{dx})$.
 - Since g divides both f and df/dx, the gcd will be non-trivial.

- The algorithms developed by Berlekemp and others (1980s).
- Let f be a degree n monic polynomial over finite field F_p .
- We wish to compute all irreducible factors of *f*.
- If f is not square-free, i.e., g^2 divides f for some g, then f can be factored easily:
 - Compute $gcd(f, \frac{df}{dx})$.
 - Since g divides both f and $\frac{df}{dx}$, the gcd will be non-trivial.

- The algorithms developed by Berlekemp and others (1980s).
- Let f be a degree n monic polynomial over finite field F_p .
- We wish to compute all irreducible factors of *f*.
- If f is not square-free, i.e., g^2 divides f for some g, then f can be factored easily:
 - Compute $gcd(f, \frac{df}{dx})$.
 - Since g divides both f and $\frac{df}{dx}$, the gcd will be non-trivial.

- We now assume that *f* is square-free.
- Let $f = \prod_{i=1}^{t} f_i$, each f_i is irreducible and has degree d_i .
- Let $d_1 \leq d_2 \leq \cdots \leq d_t$.
- Consider ring $R = F_p[X]/(f) = \bigoplus_{i=1}^t F_p[X]/(f_i)$. [by CRT]
- Clearly, ψ^{d_1} is trivial in $F_p[X]/(f_1)$ but not in $F_p[X]/(f_j)$ when $d_j > d_1$.

- We now assume that *f* is square-free.
- Let $f = \prod_{i=1}^{t} f_i$, each f_i is irreducible and has degree d_i .
- Let $d_1 \leq d_2 \leq \cdots \leq d_t$.
- Consider ring $R = F_{\rho}[X]/(f) = \bigoplus_{i=1}^{t} F_{\rho}[X]/(f_i)$. [by CRT]
- Clearly, ψ^{d_1} is trivial in $F_p[X]/(f_1)$ but not in $F_p[X]/(f_j)$ when $d_j > d_1$.

- Therefore, $X^{p^{d_1}} = X$ in $F_p[X]/(f_1)$ but not in $F_p[X]/(f_j)$.
- So f_1 divides $gcd(X^{p^{d_1}} X, f(X))$ but not f_j .
- Computing gcd(X^{p^d} X, f(X)) starting from d = 1 to d = n/2 will factor f into equal degree factors.
- That is, each factor we get is a product of all the f_j's of the same degree.
- This also allows us to test if f is irreducible: all the gcds are 1 iff f is irreducible.

- Therefore, $X^{p^{d_1}} = X$ in $F_p[X]/(f_1)$ but not in $F_p[X]/(f_j)$.
- So f_1 divides $gcd(X^{p^{d_1}} X, f(X))$ but not f_j .
- Computing $gcd(X^{p^d} X, f(X))$ starting from d = 1 to d = n/2 will factor f into equal degree factors.
- That is, each factor we get is a product of all the f_j 's of the same degree.
- This also allows us to test if f is irreducible: all the gcds are 1 iff f is irreducible.

- Therefore, $X^{p^{d_1}} = X$ in $F_p[X]/(f_1)$ but not in $F_p[X]/(f_j)$.
- So f_1 divides $gcd(X^{p^{d_1}} X, f(X))$ but not f_j .
- Computing $gcd(X^{p^d} X, f(X))$ starting from d = 1 to d = n/2 will factor f into equal degree factors.
- That is, each factor we get is a product of all the *f_j*'s of the same degree.
- This also allows us to test if f is irreducible: all the gcds are 1 iff f is irreducible.

POLYNOMIAL FACTORING OVER FINITE FIELDS

- Now suppose f is such that $d_1 = d_2 = \cdots = d_t$.
- Then the above method does not give any factor of *f*.
- To handle this, we convert the problem to finding roots of a polynomial in F_p.
- Let

 $S = \{e(X) \in R \mid \psi(e(X)) = e(X^p) = e(X)\}.$

- S is a subring of R, $S = \bigoplus_{i=1}^{t} F_p$.
- *S* can be computed using linear algebra.

- Now suppose f is such that $d_1 = d_2 = \cdots = d_t$.
- Then the above method does not give any factor of *f*.
- To handle this, we convert the problem to finding roots of a polynomial in F_p.
- Let

$$S = \{e(X) \in R \mid \psi(e(X)) = e(X^p) = e(X)\}.$$

- S is a subring of R, $S = \bigoplus_{i=1}^{t} F_{p}$.
- S can be computed using linear algebra.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

- Choose $e(X) \in S F_p$.
- We must have $e(X) \pmod{f_i(X)} = c_i \in F_p$ for each *i*.
- Since $e(X) \notin F_p$, there exists *i* and *j* such that $c_i \neq c_j$.
- Therefore, $gcd(e(X) c_i, f(X))$ is divisible by f_i but not by f_j .
- Thus we get a factor of *f*.
- How do we compute a c_i?

- Choose $e(X) \in S F_p$.
- We must have $e(X) \pmod{f_i(X)} = c_i \in F_p$ for each *i*.
- Since $e(X) \notin F_p$, there exists *i* and *j* such that $c_i \neq c_j$.
- Therefore, $gcd(e(X) c_i, f(X))$ is divisible by f_i but not by f_j .
- Thus we get a factor of *f*.
- How do we compute a c_i?

- Choose $e(X) \in S F_p$.
- We must have $e(X) \pmod{f_i(X)} = c_i \in F_p$ for each *i*.
- Since $e(X) \notin F_p$, there exists *i* and *j* such that $c_i \neq c_j$.
- Therefore, $gcd(e(X) c_i, f(X))$ is divisible by f_i but not by f_j .
- Thus we get a factor of *f*.
- How do we compute a c_i?

- Let g(y) = Res(e(X) y, f(X)).
- Res is the **resultant** of two polynomials.
- For any c ∈ F_p, we have g(c) = 0 iff gcd(e(X) c, f(X)) is non-trivial giving a factor of f.
- So, if we can find roots of g in F_p , we can factor f!

- Let g(y) = Res(e(X) y, f(X)).
- Res is the **resultant** of two polynomials.
- For any c ∈ F_p, we have g(c) = 0 iff gcd(e(X) c, f(X)) is non-trivial giving a factor of f.
- So, if we can find roots of g in F_p , we can factor f!

- Let g(y) = Res(e(X) y, f(X)).
- Res is the **resultant** of two polynomials.
- For any c ∈ F_p, we have g(c) = 0 iff gcd(e(X) c, f(X)) is non-trivial giving a factor of f.
- So, if we can find roots of g in F_p , we can factor f!

- Compute $\hat{g}(y) = \gcd(g(y), \psi(y) y)$.
 - \hat{g} factors completely in F_p and its roots are roots of g in F_p .
- Let $\hat{g}(y) = \prod_{i=0}^{k} (y c_i)$.
- Compute $h(y) = \hat{g}(y^2 r)$ for a randomly chosen $r \in F_p$.
- So, $h(y) = \prod_{i=0}^{k} (y^2 (c_i + r)).$
- $y^2 (c_i + r)$ factors over F_p iff $c_i + r$ is a quadratic residue.

POLYNOMIAL FACTORING OVER FINITE FIELDS

- Compute $\hat{g}(y) = \gcd(g(y), \psi(y) y)$.
 - \hat{g} factors completely in F_p and its roots are roots of g in F_p .
- Let $\hat{g}(y) = \prod_{i=0}^{k} (y c_i)$.
- Compute $h(y) = \hat{g}(y^2 r)$ for a randomly chosen $r \in F_p$.
- So, $h(y) = \prod_{i=0}^{k} (y^2 (c_i + r)).$

• $y^2 - (c_i + r)$ factors over F_p iff $c_i + r$ is a quadratic residue.

- Compute $\hat{g}(y) = \gcd(g(y), \psi(y) y)$.
 - \hat{g} factors completely in F_p and its roots are roots of g in F_p .
- Let $\hat{g}(y) = \prod_{i=0}^{k} (y c_i)$.
- Compute $h(y) = \hat{g}(y^2 r)$ for a randomly chosen $r \in F_p$.
- So, $h(y) = \prod_{i=0}^{k} (y^2 (c_i + r)).$
- $y^2 (c_i + r)$ factors over F_p iff $c_i + r$ is a quadratic residue.

- For any *i* and *j*, *i* ≠ *j*, the probability that exactly one of *c_i* + *r* and *c_j* + *r* is a quadratic residue in *F_p*, is at least ¹/₂.
- Therefore, using the equal degree factorization algorithm above factors h(y) with probability at least $\frac{1}{2}$.
- Let $h(y) = h_1(y) \cdot h_2(y)$.
- Both h_1 and h_2 will have only even powers of y.
- Then, $g(y) = h(\sqrt{y} + r) = h_1(\sqrt{y} + r) \cdot h_2(\sqrt{y} + r)$.
- Iterate this to completely factor g.

- For any *i* and *j*, *i* ≠ *j*, the probability that exactly one of *c_i* + *r* and *c_j* + *r* is a quadratic residue in *F_p*, is at least ¹/₂.
- Therefore, using the equal degree factorization algorithm above factors h(y) with probability at least $\frac{1}{2}$.
- Let $h(y) = h_1(y) \cdot h_2(y)$.
- Both h_1 and h_2 will have only even powers of y.
- Then, $g(y) = h(\sqrt{y} + r) = h_1(\sqrt{y} + r) \cdot h_2(\sqrt{y} + r)$.
- Iterate this to completely factor g.

- For any *i* and *j*, *i* ≠ *j*, the probability that exactly one of *c_i* + *r* and *c_j* + *r* is a quadratic residue in *F_p*, is at least ¹/₂.
- Therefore, using the equal degree factorization algorithm above factors h(y) with probability at least $\frac{1}{2}$.
- Let $h(y) = h_1(y) \cdot h_2(y)$.
- Both h_1 and h_2 will have only even powers of y.
- Then, $g(y) = h(\sqrt{y} + r) = h_1(\sqrt{y} + r) \cdot h_2(\sqrt{y} + r)$.
- Iterate this to completely factor g.
INTEGER FACTORING

Definition

Example: Polynomial Factoring over Finite Fields

EXAMPLE: PRIMALITY TESTING

Example: Integer Factoring

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Fermat's Little Theorem states that if n is prime then for every a: aⁿ = a (mod n).
- In other words: mapping $\phi(x) = x^n$ is the trivial automorphism of the ring Z_n .
- The converse of the statement is not true: there are composite n such that φ is the trivial automorphism of Z_n.
- Even if it were true, checking if φ is the trivial automorphism requires Ω(n) steps.
- So the theorem cannot be used for testing primality efficiently.

- Fermat's Little Theorem states that if *n* is prime then for every *a*: $a^n = a \pmod{n}$.
- In other words: mapping $\phi(x) = x^n$ is the trivial automorphism of the ring Z_n .
- The converse of the statement is not true: there are composite n such that φ is the trivial automorphism of Z_n.
- Even if it were true, checking if φ is the trivial automorphism requires Ω(n) steps.
- So the theorem cannot be used for testing primality efficiently.

- Fermat's Little Theorem states that if *n* is prime then for every *a*: $a^n = a \pmod{n}$.
- In other words: mapping $\phi(x) = x^n$ is the trivial automorphism of the ring Z_n .
- The converse of the statement is not true: there are composite n such that φ is the trivial automorphism of Z_n.
- Even if it were true, checking if ϕ is the trivial automorphism requires $\Omega(n)$ steps.
- So the theorem cannot be used for testing primality efficiently.

- Both the problems can be eliminated using a generalization of the theorem.
- This was shown by A, Kayal and Saxena (2004) who obtained a deterministic O⁻(n^{15/2}) algorithm for primality testing.
- Earlier, there were algorithms known for primality testing but they were either randomized or not polynomial-time.

- Both the problems can be eliminated using a generalization of the theorem.
- This was shown by A, Kayal and Saxena (2004) who obtained a deterministic O[~](n^{15/2}) algorithm for primality testing.
- Earlier, there were algorithms known for primality testing but they were either randomized or not polynomial-time.

PRIMALITY TESTING

- Fix r > 0 such that O_r(n) > 4 log² n (O_r(n) is order of n modulo r).
 - It is easy to see that such an r exists in $[4 \log^2 n, 16 \log^5 n]$.
- Let ring $R = Z_n[X]/(X^{2r} X^r)$.
- Clearly we have:

Theorem (Generalized FLT)

If n is prime then ϕ is an automorphism of R.

PRIMALITY TESTING

- Fix r > 0 such that O_r(n) > 4 log² n (O_r(n) is order of n modulo r).
 - It is easy to see that such an r exists in $[4 \log^2 n, 16 \log^5 n]$.
- Let ring $R = Z_n[X]/(X^{2r} X^r)$.
- Clearly we have:

THEOREM (GENERALIZED FLT)

If **n** is prime then ϕ is an automorphism of **R**.

INTEGER FACTORING

PRIMALITY TESTING

• Does the converse also hold?

• Yes, it does!

THEOREM (AKS, 2004) If ϕ is an automorphism of R then n is prime

INTEGER FACTORING

PRIMALITY TESTING

- Does the converse also hold?
- Yes, it does!

THEOREM (AKS, 2004) If ϕ is an automorphism of R then n is prime.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

PRIMALITY TESTING

• What about efficiency?

- Testing that ϕ is an automorphism naively requires exponential time.
- This can be eliminated too:

THEOREM (AKS, 2004)

 ϕ is an automorphism of R iff $\phi(X + a) = \phi(X) + a$ in R for $1 \le a \le 2\sqrt{r} \log n$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

PRIMALITY TESTING

- What about efficiency?
- Testing that ϕ is an automorphism naively requires exponential time.
- This can be eliminated too:

Theorem (AKS, 2004)

 ϕ is an automorphism of R iff $\phi(X + a) = \phi(X) + a$ in R for $1 \le a \le 2\sqrt{r} \log n$.

PRIMALITY TESTING

- What about efficiency?
- Testing that ϕ is an automorphism naively requires exponential time.
- This can be eliminated too:

Theorem (AKS, 2004)

 ϕ is an automorphism of R iff $\phi(X + a) = \phi(X) + a$ in R for $1 \le a \le 2\sqrt{r} \log n$.

- Since r = O(log⁵ n), testing if φ(X + a) = φ(X) + a takes time O^{*}(log⁷ n).
- So total time taken is $O^{\sim}(\log^7 n \cdot \log^{7/2} n) = O^{\sim}(\log^{21/2} n)$.
- Using an analytic number theory result by Fouvry (1985), it can be shown that $r = O(\log^3 n)$.
- This brings down time complexity to $O^{\sim}(\log^{15/2} n)$.
- Lenstra and Pomerance (2003) further bring it down to O~(log⁶ n).

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

- Since r = O(log⁵ n), testing if φ(X + a) = φ(X) + a takes time O[~](log⁷ n).
- So total time taken is $O(\log^7 n \cdot \log^{7/2} n) = O(\log^{21/2} n)$.
- Using an analytic number theory result by Fouvry (1985), it can be shown that $r = O(\log^3 n)$.
- This brings down time complexity to $O^{-}(\log^{15/2} n)$.
- Lenstra and Pomerance (2003) further bring it down to O~(log⁶ n).

- Since r = O(log⁵ n), testing if φ(X + a) = φ(X) + a takes time O^{*}(log⁷ n).
- So total time taken is O[~](log⁷ n · log^{7/2} n) = O[~](log^{21/2} n).
- Using an analytic number theory result by Fouvry (1985), it can be shown that $r = O(\log^3 n)$.
- This brings down time complexity to $O^{(\log^{15/2} n)}$.
- Lenstra and Pomerance (2003) further bring it down to O~(log⁶ n).

- Since r = O(log⁵ n), testing if φ(X + a) = φ(X) + a takes time O^{*}(log⁷ n).
- So total time taken is O[~](log⁷ n · log^{7/2} n) = O[~](log^{21/2} n).
- Using an analytic number theory result by Fouvry (1985), it can be shown that $r = O(\log^3 n)$.
- This brings down time complexity to $O^{\sim}(\log^{15/2} n)$.
- Lenstra and Pomerance (2003) further bring it down to $O^{\sim}(\log^6 n)$.

INTEGER FACTORING

Definition

Example: Polynomial Factoring over Finite Fields

Example: Primality Testing

EXAMPLE: INTEGER FACTORING

- Kayal and Saxena (2004) show that integer factoring reduces to several questions about automorphisms of rings.
- They show *n* can be factored if
 - A non-trivial automorphism of ring Z_n[X]/(X² 1) can be computed.
 - The number of automorphisms of ring Z_n[X]/(X²) can be computed.

- Kayal and Saxena (2004) show that integer factoring reduces to several questions about automorphisms of rings.
- They show *n* can be factored if
 - A non-trivial automorphism of ring $Z_n[X]/(X^2-1)$ can be computed.
 - The number of automorphisms of ring $Z_n[X]/(X^2)$ can be computed.

- Kayal and Saxena (2004) show that integer factoring reduces to several questions about automorphisms of rings.
- They show *n* can be factored if
 - A non-trivial automorphism of ring $Z_n[X]/(X^2-1)$ can be computed.
 - The number of automorphisms of ring $Z_n[X]/(X^2)$ can be computed.

INTEGER FACTORING

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

INTEGER FACTORING

THEOREM (KAYAL AND SAXENA, 2004)

An odd number n can be factored efficiently iff a non-trivial automorphism of ring $Z_n[X]/(X^2-1)$ can be computed efficiently.

INTEGER FACTORING

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

INTEGER FACTORING

Proof.

- First observe that *n* can be factored iff a non-trivial solution of $y^2 1 \pmod{n}$ can be found in Z_n :
 - If y₀ ≠ ±1 (mod n) is a non-trivial solution, then gcd(y₀ + 1, n) gives a factor.
 - If $n = n_1n_2$, then a $y_0 < n$ with $y_0 = 1 \pmod{n_1}$ and $y_0 = -1 \pmod{n_2}$ exists (by CRT) and is therefore a non-trivial solution.

INTEGER FACTORING

Proof.

- First observe that *n* can be factored iff a non-trivial solution of $y^2 1 \pmod{n}$ can be found in Z_n :
 - If $y_0 \neq \pm 1 \pmod{n}$ is a non-trivial solution, then $gcd(y_0 + 1, n)$ gives a factor.
 - If $n = n_1n_2$, then a $y_0 < n$ with $y_0 = 1 \pmod{n_1}$ and $y_0 = -1 \pmod{n_2}$ exists (by CRT) and is therefore a non-trivial solution.

INTEGER FACTORING

Proof.

- First observe that *n* can be factored iff a non-trivial solution of $y^2 1 \pmod{n}$ can be found in Z_n :
 - If $y_0 \neq \pm 1 \pmod{n}$ is a non-trivial solution, then $gcd(y_0 + 1, n)$ gives a factor.
 - If $n = n_1n_2$, then a $y_0 < n$ with $y_0 = 1 \pmod{n_1}$ and $y_0 = -1 \pmod{n_2}$ exists (by CRT) and is therefore a non-trivial solution.

- Let $\phi(X) = a \cdot X + b$ be a non-trivial automorphism of $R = Z_n[X]/(X^2 1)$.
- Let $d = \gcd(a, n)$.
- Consider $\phi(\frac{n}{d}X) = \frac{n}{d} \cdot a \cdot X + \frac{n}{d} \cdot b = \frac{n}{d} \cdot b$.
- Since φ is a 1-1 map, this is only possible when d = gcd(a, n) = 1.

- Let $\phi(X) = a \cdot X + b$ be a non-trivial automorphism of $R = Z_n[X]/(X^2 1)$.
- Let $d = \gcd(a, n)$.
- Consider $\phi(\frac{n}{d}X) = \frac{n}{d} \cdot a \cdot X + \frac{n}{d} \cdot b = \frac{n}{d} \cdot b$.
- Since φ is a 1-1 map, this is only possible when d = gcd(a, n) = 1.

- Let $\phi(X) = a \cdot X + b$ be a non-trivial automorphism of $R = Z_n[X]/(X^2 1)$.
- Let $d = \gcd(a, n)$.
- Consider $\phi(\frac{n}{d}X) = \frac{n}{d} \cdot a \cdot X + \frac{n}{d} \cdot b = \frac{n}{d} \cdot b$.
- Since ϕ is a 1-1 map, this is only possible when $d = \gcd(a, n) = 1$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

INTEGER FACTORING

• We have:

$$0 = \phi(X^2 - 1) = (aX + b)^2 - 1 = 2abX + a^2 + b^2 - 1$$

- This gives $2ab = 0 = a^2 + b^2 1 \pmod{n}$.
- Since n is odd and gcd(a, n) = 1, we get $b = 0 \pmod{n}$ and $a^2 = 1 \pmod{n}$.
- Therefore, $\phi(X) = a \cdot X$ with $a^2 = 1 \pmod{n}$.
- As ϕ is non-trivial, $a \neq \pm 1 \pmod{n}$.
- So, given ϕ , we can use *a* to factor *n*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

INTEGER FACTORING

• We have:

$$0 = \phi(X^2 - 1) = (aX + b)^2 - 1 = 2abX + a^2 + b^2 - 1$$

- This gives $2ab = 0 = a^2 + b^2 1 \pmod{n}$.
- Since n is odd and gcd(a, n) = 1, we get $b = 0 \pmod{n}$ and $a^2 = 1 \pmod{n}$.
- Therefore, $\phi(X) = a \cdot X$ with $a^2 = 1 \pmod{n}$.
- As ϕ is non-trivial, $a \neq \pm 1 \pmod{n}$.
- So, given ϕ , we can use *a* to factor *n*.

INTEGER FACTORING

• We have:

$$0 = \phi(X^2 - 1) = (aX + b)^2 - 1 = 2abX + a^2 + b^2 - 1$$

- This gives $2ab = 0 = a^2 + b^2 1 \pmod{n}$.
- Since n is odd and gcd(a, n) = 1, we get $b = 0 \pmod{n}$ and $a^2 = 1 \pmod{n}$.
- Therefore, $\phi(X) = a \cdot X$ with $a^2 = 1 \pmod{n}$.
- As ϕ is non-trivial, $a \neq \pm 1 \pmod{n}$.
- So, given ϕ , we can use *a* to factor *n*.

INTEGER FACTORING

• We have:

$$0 = \phi(X^2 - 1) = (aX + b)^2 - 1 = 2abX + a^2 + b^2 - 1$$

- This gives $2ab = 0 = a^2 + b^2 1 \pmod{n}$.
- Since n is odd and gcd(a, n) = 1, we get $b = 0 \pmod{n}$ and $a^2 = 1 \pmod{n}$.
- Therefore, $\phi(X) = a \cdot X$ with $a^2 = 1 \pmod{n}$.
- As ϕ is non-trivial, $a \neq \pm 1 \pmod{n}$.
- So, given ϕ , we can use *a* to factor *n*.

INTEGER FACTORING

- Conversely, assume that we know a number *a* such that $a \neq \pm 1 \pmod{n}$ and $a^2 = 1 \pmod{n}$.
- This *a* defines a non-trivial automorphism of *R*.

- Conversely, assume that we know a number *a* such that $a \neq \pm 1 \pmod{n}$ and $a^2 = 1 \pmod{n}$.
- This *a* defines a non-trivial automorphism of *R*.

Definition

Example: Polynomial Division

TOOL 4: HENSEL LIFTING

DEFINITION

Example: Polynomial Division

OUTLINE

DEFINITION

Example: Polynomial Division

HENSEL LIFTING

- Let $R = \mathbb{Z}$ or F[x], and $m \in R$.
- Hensel (1918) designed a method to compute factorization of any element of *R* modulo *m^l* given its factorization modulo *m*.
- The method is called Hensel Lifting.
- It is used in several places: polynomial division, polynomial factorization etc.

HENSEL LIFTING

- Suppose we are given $f, g, h, s, t \in R$ such that $f = g \cdot h \pmod{m}$, $gcd(g, h) = 1 \pmod{m}$, and $sg + th = 1 \pmod{m}$.
- Compute $e = f gh \pmod{m^2}$, $g' = g + te \pmod{m^2}$, $h' = h + se \pmod{m^2}$.
- Then we get:

 $g'h' (mod m^2) = gh + sge + the + ste^2 (mod m^2)$ $= gh + (sg + th)(f - gh) (mod m^2)$ $= f (mod m^2).$

HENSEL LIFTING

- Suppose we are given $f, g, h, s, t \in R$ such that $f = g \cdot h \pmod{m}$, $gcd(g, h) = 1 \pmod{m}$, and $sg + th = 1 \pmod{m}$.
- Compute $e = f gh \pmod{m^2}$, $g' = g + te \pmod{m^2}$, $h' = h + se \pmod{m^2}$.
- Then we get:

 $g'h' (mod m^2) = gh + sge + the + ste^2 (mod m^2)$ $= gh + (sg + th)(f - gh) (mod m^2)$ $= f (mod m^2).$

HENSEL LIFTING

- Suppose we are given $f, g, h, s, t \in R$ such that $f = g \cdot h \pmod{m}$, $gcd(g, h) = 1 \pmod{m}$, and $sg + th = 1 \pmod{m}$.
- Compute $e = f gh \pmod{m^2}$, $g' = g + te \pmod{m^2}$, $h' = h + se \pmod{m^2}$.
- Then we get:

 $g'h' \pmod{m^2} = gh + sge + the + ste^2 \pmod{m^2}$ $= gh + (sg + th)(f - gh) \pmod{m^2}$ $= f \pmod{m^2}.$

HENSEL LIFTING

• Also compute $d = sg' + th' - 1 \pmod{m^2}$, $s' = s(1-d) \pmod{m^2}$, $t' = t(1-d) \pmod{m^2}$.

• Then:

$$\begin{aligned} s'g' + t'h' \pmod{m^2} &= sg'(1-d) + th'(1-d) \pmod{m^2} \\ &= (1+d)(1-d) \pmod{m^2} \\ &= 1 \pmod{m^2}. \end{aligned}$$

- Thus we can 'lift' the factorization to modulo *m*².
- Iterating this $\log \ell$ times gives factorization modulo m^{ℓ} .

HENSEL LIFTING

• Also compute $d = sg' + th' - 1 \pmod{m^2}$, $s' = s(1 - d) \pmod{m^2}$, $t' = t(1 - d) \pmod{m^2}$.

• Then:

$$s'g' + t'h' \pmod{m^2} = sg'(1-d) + th'(1-d) \pmod{m^2}$$

= (1+d)(1-d) (mod m²)
= 1 (mod m²).

- Thus we can 'lift' the factorization to modulo m².
- Iterating this $\log \ell$ times gives factorization modulo m^{ℓ} .

HENSEL LIFTING

• Also compute $d = sg' + th' - 1 \pmod{m^2}$, $s' = s(1-d) \pmod{m^2}$, $t' = t(1-d) \pmod{m^2}$.

• Then:

$$s'g' + t'h' \pmod{m^2} = sg'(1-d) + th'(1-d) \pmod{m^2}$$

= (1+d)(1-d) (mod m²)
= 1 (mod m²).

- Thus we can 'lift' the factorization to modulo m².
- Iterating this $\log \ell$ times gives factorization modulo m^{ℓ} .

DEFINITION

EXAMPLE: POLYNOMIAL DIVISION

Definition

EXAMPLE: POLYNOMIAL DIVISION

- Let f(x) and g(x) be two monic polynomials over field F, deg f = n, deg g = m < n.
- We wish to compute d(x) and r(x) such that f = dg + r and deg r < m.
- A naive algorithm takes $O(n^2)$ field operations.
- Using Hensel Lifting, we can do it in $O(n \log n)$ operations.

- Let f(x) and g(x) be two monic polynomials over field F, deg f = n, deg g = m < n.
- We wish to compute d(x) and r(x) such that f = dg + r and deg r < m.
- A naive algorithm takes $O(n^2)$ field operations.
- Using Hensel Lifting, we can do it in $O(n \log n)$ operations.

POLYNOMIAL DIVISION VIA HENSEL LIFTING

- For any polynomial p(x) of degree d, define $\tilde{p}(x) = x^d p(\frac{1}{x})$.
- The coefficients of \tilde{p} are 'reversed'.

• If f(x) = d(x)g(x) + r(x), then

$$\widetilde{f}(x) = \widetilde{d}(x)\widetilde{g}(x) + x^{n-m+1}\widetilde{r}(x).$$

• Therefore,

$$\widetilde{f}(x) = \widetilde{d}(x)\widetilde{g}(x) \pmod{x^{n-m+1}}.$$

POLYNOMIAL DIVISION VIA HENSEL LIFTING

- For any polynomial p(x) of degree d, define $\tilde{p}(x) = x^d p(\frac{1}{x})$.
- The coefficients of \tilde{p} are 'reversed'.
- If f(x) = d(x)g(x) + r(x), then

$$\widetilde{f}(x) = \widetilde{d}(x)\widetilde{g}(x) + x^{n-m+1}\widetilde{r}(x).$$

Therefore,

$$\widetilde{f}(x) = \widetilde{d}(x)\widetilde{g}(x) \pmod{x^{n-m+1}}.$$

- Since g̃(x) has degree zero coefficient 1, it is invertible modulo x^{n-m+1}.
- So, $\widetilde{d}(x) = \widetilde{f}(x) \cdot \widetilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.
- So if we can compute g̃⁻¹(x) (mod x^{n−m+1}), then one multiplication would give d̃(x) from which d(x) and then r(x) = f(x) − d(x)g(x) can be easily recovered.
- We use Hensel Lifting to compute $\tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.

- Since g̃(x) has degree zero coefficient 1, it is invertible modulo x^{n-m+1}.
- So, $\widetilde{d}(x) = \widetilde{f}(x) \cdot \widetilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.
- So if we can compute g̃⁻¹(x) (mod x^{n−m+1}), then one multiplication would give d̃(x) from which d(x) and then r(x) = f(x) − d(x)g(x) can be easily recovered.
- We use Hensel Lifting to compute $\tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.

- Since g̃(x) has degree zero coefficient 1, it is invertible modulo x^{n-m+1}.
- So, $\widetilde{d}(x) = \widetilde{f}(x) \cdot \widetilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.
- So if we can compute g̃⁻¹(x) (mod x^{n−m+1}), then one multiplication would give d̃(x) from which d(x) and then r(x) = f(x) − d(x)g(x) can be easily recovered.
- We use Hensel Lifting to compute $\tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.

- Let $h(x) = \tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.
- So, $h(x) \cdot \tilde{g}(x) = 1 \pmod{x^{n-m+1}}$.
- Notice that $\tilde{g}(x) \pmod{x} = 1$ and so $h(x) \pmod{x} = 1$.
- Let s(x) = 1 and t(x) = 0 so $s \cdot h + t \cdot \tilde{g} = 1 \pmod{x}$.
- Use Hensel Lifting iteratively ℓ = ⌈log(n m + 1)⌉ times to compute h(x) (mod x^{2^ℓ}) such that h(x) · ğ(x) = 1 (mod x^{2^ℓ}).
 - As we start with t = 0, t will remain zero through all the iterations.
 - Therefore, function \tilde{g} will also not change, as required.

- Let $h(x) = \tilde{g}^{-1}(x) \pmod{x^{n-m+1}}$.
- So, $h(x) \cdot \tilde{g}(x) = 1 \pmod{x^{n-m+1}}$.
- Notice that $\widetilde{g}(x) \pmod{x} = 1$ and so $h(x) \pmod{x} = 1$.
- Let s(x) = 1 and t(x) = 0 so $s \cdot h + t \cdot \tilde{g} = 1 \pmod{x}$.
- Use Hensel Lifting iteratively ℓ = ⌈log(n m + 1)⌉ times to compute h(x) (mod x^{2^ℓ}) such that h(x) · g̃(x) = 1 (mod x^{2^ℓ}).
 - As we start with t = 0, t will remain zero through all the iterations.
 - Therefore, function \tilde{g} will also not change, as required.

- This gives the inverse of $\widetilde{g}(x) \pmod{x^{n-m+1}}$.
- The algorithm uses only multiplication and addition.
- The *k*th iteration uses a constant number of multiplication and addition of polynomials of degree 2^{*k*}.
- Therefore, the whole algorithm requires $O(\sum_{k=1}^{\ell} M_P(2^k)) = O(M_P(2^{\ell}) = O(M_P(n)) = O(n \log n)$ operations.

- This gives the inverse of $\tilde{g}(x) \pmod{x^{n-m+1}}$.
- The algorithm uses only multiplication and addition.
- The kth iteration uses a constant number of multiplication and addition of polynomials of degree 2^k.
- Therefore, the whole algorithm requires $O(\sum_{k=1}^{\ell} M_P(2^k)) = O(M_P(2^{\ell}) = O(M_P(n)) = O(n \log n)$ operations.

- This gives the inverse of $\widetilde{g}(x) \pmod{x^{n-m+1}}$.
- The algorithm uses only multiplication and addition.
- The *k*th iteration uses a constant number of multiplication and addition of polynomials of degree 2^{*k*}.
- Therefore, the whole algorithm requires $O(\sum_{k=1}^{\ell} M_P(2^k)) = O(M_P(2^{\ell}) = O(M_P(n)) = O(n \log n)$ operations.

TOOL 5: SHORT VECTORS IN A LATTICE

POLYNOMIAL FACTORING

LATTICES AND LLL ALGORITHM

Example: Solving Modular Equations

Example: Polynomial Factoring Over Rationals

LATTICES

- Let $\hat{v}_1, \ldots, \hat{v}_n \in \mathbb{R}^n$ be linearly independent vectors.
- Then,

$$\mathcal{L} = \{\sum_{i=1}^{n} \alpha_i \hat{v}_i \mid \alpha_1, \dots, \alpha_n \in \mathbb{Z}\}$$

is lattice generated by $\hat{v}_1, \ldots, \hat{v}_n$.

• Vector \hat{v} is shortest vector in lattice \mathcal{L} if $\|\hat{v}\|_2$ is minimum.

LATTICES

- Let $\hat{v}_1, \ldots, \hat{v}_n \in \mathbb{R}^n$ be linearly independent vectors.
- Then,

$$\mathcal{L} = \{\sum_{i=1}^{n} \alpha_i \hat{v}_i \mid \alpha_1, \dots, \alpha_n \in \mathbb{Z}\}$$

is lattice generated by $\hat{v}_1, \ldots, \hat{v}_n$.

• Vector \hat{v} is shortest vector in lattice \mathcal{L} if $\|\hat{v}\|_2$ is minimum.

◆□> <□> <=> <=> <=> <=> <=> <=> <<=>

LATTICES

- Let $\hat{v}_1, \ldots, \hat{v}_n \in \mathbb{R}^n$ be linearly independent vectors.
- Then,

$$\mathcal{L} = \{\sum_{i=1}^{n} \alpha_i \hat{v}_i \mid \alpha_1, \dots, \alpha_n \in \mathbb{Z}\}$$

is lattice generated by $\hat{v}_1, \ldots, \hat{v}_n$.

• Vector \hat{v} is shortest vector in lattice \mathcal{L} if $\|\hat{v}\|_2$ is minimum.

LATTICES

- For lattice \mathcal{L} , its norm $|\mathcal{L}|$ is defined to be det $(\hat{v}_1 \ \hat{v}_2 \ \dots \ \hat{v}_n)$.
- $|\mathcal{L}|$ is independent of the choice of basis of \mathcal{L} .

THEOREM (MINKOWSKI, 1896) The length of shortest vector of \mathcal{L} is at most $\sqrt{n} \cdot |\mathcal{L}|^{1/n}$.

LATTICES

- For lattice \mathcal{L} , its norm $|\mathcal{L}|$ is defined to be det $(\hat{v}_1 \ \hat{v}_2 \ \dots \ \hat{v}_n)$.
- $|\mathcal{L}|$ is independent of the choice of basis of \mathcal{L} .

THEOREM (MINKOWSKI, 1896)

The length of shortest vector of \mathcal{L} is at most $\sqrt{n} \cdot |\mathcal{L}|^{1/n}$.

LLL Algorithm

- Lenstra, Lenstra and Lovasz (1982) designed a polynomial-time algorithm for computing a short vector in any lattice.
- The algorithm computes a vector whose length is at most $2^{\frac{n-1}{2}}$ times the length of shortest vector in the lattice.
- It is now known that finding a vector within a $\sqrt{2}$ factor of shortest vector length is NP-hard.

LLL Algorithm

- Lenstra, Lenstra and Lovasz (1982) designed a polynomial-time algorithm for computing a short vector in any lattice.
- The algorithm computes a vector whose length is at most $2^{\frac{n-1}{2}}$ times the length of shortest vector in the lattice.
- It is now known that finding a vector within a $\sqrt{2}$ factor of shortest vector length is NP-hard.

LLL Algorithm

- Lenstra, Lenstra and Lovasz (1982) designed a polynomial-time algorithm for computing a short vector in any lattice.
- The algorithm computes a vector whose length is at most $2^{\frac{n-1}{2}}$ times the length of shortest vector in the lattice.
- It is now known that finding a vector within a $\sqrt{2}$ factor of shortest vector length is NP-hard.

LATTICES AND LLL ALGORITHM

Modular Equations

POLYNOMIAL FACTORING

OUTLINE

Lattices and LLL Algorithm

EXAMPLE: SOLVING MODULAR EQUATIONS

Example: Polynomial Factoring Over Rationals

FINDING SMALL SOLUTIONS OF MODULAR EQUATIONS

- Modular equations for prime moduli can be solved using polynomial factorization.
- But this does not work for composite moduli.
- For this, short lattice vectors can be used to find small solutions.
 - Small = solutions much smaller than the moduli in absolute value
- An example is breaking low-exponent RSA when part of the message is known.

FINDING SMALL SOLUTIONS OF MODULAR EQUATIONS

- Modular equations for prime moduli can be solved using polynomial factorization.
- But this does not work for composite moduli.
- For this, short lattice vectors can be used to find small solutions.
 - Small = solutions much smaller than the moduli in absolute value
- An example is breaking low-exponent RSA when part of the message is known.

FINDING SMALL SOLUTIONS OF MODULAR EQUATIONS

- Modular equations for prime moduli can be solved using polynomial factorization.
- But this does not work for composite moduli.
- For this, short lattice vectors can be used to find small solutions.
 - Small = solutions much smaller than the moduli in absolute value
- An example is breaking low-exponent RSA when part of the message is known.

BREAKING LOW EXPONENT RSA

- Let (n, 3) be the public-key of an RSA cryptosystem.
- Notice that the exponent of encryption is set to 3.
- Let $c = m^3 \pmod{n}$ be a ciphertext.
- Suppose that leading $\frac{11}{12}|n|$ bits of *m* are known.
- This is possible in certain situations, e.g., when there is a fixed ¹¹/₁₂|n|-bit header appended to each message.
- Let $m = h \cdot 2^{|n|/12} + x$ where h is known.

BREAKING LOW EXPONENT RSA

- Let (n, 3) be the public-key of an RSA cryptosystem.
- Notice that the exponent of encryption is set to 3.
- Let $c = m^3 \pmod{n}$ be a ciphertext.
- Suppose that leading $\frac{11}{12}|n|$ bits of *m* are known.
- This is possible in certain situations, e.g., when there is a fixed $\frac{11}{12}|n|$ -bit header appended to each message.
- Let $m = h \cdot 2^{|n|/12} + x$ where h is known.
- Let (n, 3) be the public-key of an RSA cryptosystem.
- Notice that the exponent of encryption is set to 3.
- Let $c = m^3 \pmod{n}$ be a ciphertext.
- Suppose that leading $\frac{11}{12}|n|$ bits of *m* are known.
- This is possible in certain situations, e.g., when there is a fixed $\frac{11}{12}|n|$ -bit header appended to each message.
- Let $m = h \cdot 2^{|n|/12} + x$ where h is known.

- Let (n, 3) be the public-key of an RSA cryptosystem.
- Notice that the exponent of encryption is set to 3.
- Let $c = m^3 \pmod{n}$ be a ciphertext.
- Suppose that leading $\frac{11}{12}|n|$ bits of *m* are known.
- This is possible in certain situations, e.g., when there is a fixed $\frac{11}{12}|n|$ -bit header appended to each message.
- Let $m = h \cdot 2^{|n|/12} + x$ where h is known.

BREAKING LOW EXPONENT RSA

• Therefore, $c = (h \cdot 2^{|n|/12} + x)^3 \pmod{n} = x^3 + a_2 x^2 + a_1 x + a_0 \pmod{n}.$

- So if we can find all the roots of the above polynomial that are less than $2^{|n|/12} = n^{1/12}$ then *m* can be recovered.
- For a vector $\hat{v} \in \mathbb{Z}^d$, $\hat{v} = [v_{d-1} \ v_{d-2} \ \cdots \ v_0]$, let $v(x) = \sum_{i=0}^{d-1} v_i x^i$ and vice-versa.
- Let $p_3(x) = x^3 + a_2x^2 + a_1x + (a_0 c)$.
- Then $\hat{p}_3 = [0 \ 0 \ 1 \ a_2 \ a_1 \ a_0 c] \in \mathbb{Z}^6$.

BREAKING LOW EXPONENT RSA

• Therefore,

 $c = (h \cdot 2^{|n|/12} + x)^3 \pmod{n} = x^3 + a_2 x^2 + a_1 x + a_0 \pmod{n}.$

- So if we can find all the roots of the above polynomial that are less than $2^{|n|/12} = n^{1/12}$ then *m* can be recovered.
- For a vector $\hat{v} \in \mathbb{Z}^d$, $\hat{v} = [v_{d-1} \ v_{d-2} \ \cdots \ v_0]$, let $v(x) = \sum_{i=0}^{d-1} v_i x^i$ and vice-versa.
- Let $p_3(x) = x^3 + a_2x^2 + a_1x + (a_0 c)$.
- Then $\hat{p}_3 = [0 \ 0 \ 1 \ a_2 \ a_1 \ a_0 c] \in \mathbb{Z}^6$.

BREAKING LOW EXPONENT RSA

• Therefore,

 $c = (h \cdot 2^{|n|/12} + x)^3 \pmod{n} = x^3 + a_2 x^2 + a_1 x + a_0 \pmod{n}.$

- So if we can find all the roots of the above polynomial that are less than $2^{|n|/12} = n^{1/12}$ then *m* can be recovered.
- For a vector $\hat{v} \in \mathbb{Z}^d$, $\hat{v} = [v_{d-1} \ v_{d-2} \ \cdots \ v_0]$, let $v(x) = \sum_{i=0}^{d-1} v_i x^i$ and vice-versa.
- Let $p_3(x) = x^3 + a_2x^2 + a_1x + (a_0 c)$.
- Then $\hat{p}_3 = [0 \ 0 \ 1 \ a_2 \ a_1 \ a_0 c] \in \mathbb{Z}^6$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

• Let
$$p_4(x) = x \cdot p_3(x)$$
, $p_5(x) = x^2 \cdot p_3(x)$, $p_0(x) = n$,
 $p_1(x) = n \cdot x$, and $p_2(x) = n \cdot x^2$.

- Let \mathcal{L} be the lattice generated by vectors $\hat{p}_0, \ldots, \hat{p}_5$.
- Let vector $\hat{v} \in \mathcal{L}$, $\hat{v} = \sum_{i=0}^{5} \alpha_i \hat{p}_i$.
- Notice that polynomial
 v(x) = ∑⁵_{i=0} α_ip_i(x) = p₃(x) ⋅ q(x) (mod n) for some q(x) of degree two.
- Hence, every root of p₃(x) (mod n) is also a root of v(x) (mod n).

- Let $p_4(x) = x \cdot p_3(x)$, $p_5(x) = x^2 \cdot p_3(x)$, $p_0(x) = n$, $p_1(x) = n \cdot x$, and $p_2(x) = n \cdot x^2$.
- Let L be the lattice generated by vectors p̂₀, ..., p̂₅.
- Let vector $\hat{\mathbf{v}} \in \mathcal{L}$, $\hat{\mathbf{v}} = \sum_{i=0}^{5} \alpha_i \hat{\mathbf{p}}_i$.
- Notice that polynomial
 v(x) = ∑⁵_{i=0} α_ip_i(x) = p₃(x) ⋅ q(x) (mod n) for some q(x) of degree two.
- Hence, every root of p₃(x) (mod n) is also a root of v(x) (mod n).

- Let $p_4(x) = x \cdot p_3(x)$, $p_5(x) = x^2 \cdot p_3(x)$, $p_0(x) = n$, $p_1(x) = n \cdot x$, and $p_2(x) = n \cdot x^2$.
- Let \mathcal{L} be the lattice generated by vectors $\hat{p}_0, \ldots, \hat{p}_5$.
- Let vector $\hat{v} \in \mathcal{L}$, $\hat{v} = \sum_{i=0}^{5} \alpha_i \hat{p}_i$.
- Notice that polynomial $v(x) = \sum_{i=0}^{5} \alpha_i p_i(x) = p_3(x) \cdot q(x) \pmod{n}$ for some q(x) of degree two.
- Hence, every root of p₃(x) (mod n) is also a root of v(x) (mod n).

- We have $|\mathcal{L}| = n^3$.
- By the property of lattices, \mathcal{L} has a shortest vector of length at most $\sqrt{6}n^{3/6} = \sqrt{6n}$.
- Run LLL algorithm to find a short vector \hat{u} in \mathcal{L} .
- The length of \hat{u} is at most $2^{5/2}\sqrt{6n} = 4\sqrt{12n}$.
- Let $u(x) = \sum_{i=0}^5 \beta_i x^i$.
- We have $|\beta_i| \leq 4\sqrt{12n}$.

- We have $|\mathcal{L}| = n^3$.
- By the property of lattices, \mathcal{L} has a shortest vector of length at most $\sqrt{6}n^{3/6} = \sqrt{6n}$.
- Run LLL algorithm to find a short vector \hat{u} in \mathcal{L} .
- The length of \hat{u} is at most $2^{5/2}\sqrt{6n} = 4\sqrt{12n}$.
- Let $u(x) = \sum_{i=0}^5 \beta_i x^i$.
- We have $|\beta_i| \leq 4\sqrt{12n}$.

- We have $|\mathcal{L}| = n^3$.
- By the property of lattices, \mathcal{L} has a shortest vector of length at most $\sqrt{6}n^{3/6} = \sqrt{6n}$.
- Run LLL algorithm to find a short vector \hat{u} in \mathcal{L} .
- The length of \hat{u} is at most $2^{5/2}\sqrt{6n} = 4\sqrt{12n}$.
- Let $u(x) = \sum_{i=0}^{5} \beta_i x^i$.
- We have $|\beta_i| \leq 4\sqrt{12n}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Consider a root γ of $p_3(x) \pmod{n}$ with $\gamma \leq n^{1/12}$.
- As argued above, γ is a root of $u(x) \pmod{n}$ too.
- Now, $|u(\gamma)| \le 24\sqrt{12n} \cdot \gamma^5 < n$ for $n > (24\sqrt{12})^{12}$.
- Therefore, $u(\gamma) = 0$ over rationals!
- Factor *u*(*x*) over rationals to compute all its roots.
- Identify the root that yields the ciphertext.

(日)

- Consider a root γ of $p_3(x) \pmod{n}$ with $\gamma \leq n^{1/12}$.
- As argued above, γ is a root of $u(x) \pmod{n}$ too.
- Now, $|u(\gamma)| \le 24\sqrt{12n} \cdot \gamma^5 < n$ for $n > (24\sqrt{12})^{12}$.
- Therefore, $u(\gamma) = 0$ over rationals!
- Factor *u*(*x*) over rationals to compute all its roots.
- Identify the root that yields the ciphertext.

(日)

- Consider a root γ of $p_3(x) \pmod{n}$ with $\gamma \leq n^{1/12}$.
- As argued above, γ is a root of $u(x) \pmod{n}$ too.
- Now, $|u(\gamma)| \le 24\sqrt{12n} \cdot \gamma^5 < n$ for $n > (24\sqrt{12})^{12}$.
- Therefore, $u(\gamma) = 0$ over rationals!
- Factor u(x) over rationals to compute all its roots.
- Identify the root that yields the ciphertext.

- This breaks exponent-3 RSA when first $\frac{11}{12}$ -fraction of bits of plaintext are known.
- This can be improved to first $\frac{1}{2}$ -fraction.
- Also generalizes to any small exponent.

- This breaks exponent-3 RSA when first ¹¹/₁₂-fraction of bits of plaintext are known.
- This can be improved to first $\frac{1}{2}$ -fraction.
- Also generalizes to any small exponent.

(日)

- This breaks exponent-3 RSA when first ¹¹/₁₂-fraction of bits of plaintext are known.
- This can be improved to first $\frac{1}{2}$ -fraction.
- Also generalizes to any small exponent.

LATTICES AND LLL ALGORITHM

MODULAR EQUATIONS

POLYNOMIAL FACTORING

OUTLINE

Lattices and LLL Algorithm

Example: Solving Modular Equations

EXAMPLE: POLYNOMIAL FACTORING OVER RATIONALS

POLYNOMIAL FACTORING

(日)

The Problem

- Given a monic polynomial f(x) of degree n, factor f over rationals.
- A deterministic polynomial time algorithm for this was given by Lenstra, Lenstra, Lovasz (1982).
- The algorithm uses Hensel Lifting and short vectors in lattices.

(日)

The Problem

- Given a monic polynomial f(x) of degree n, factor f over rationals.
- A deterministic polynomial time algorithm for this was given by Lenstra, Lenstra, Lovasz (1982).
- The algorithm uses Hensel Lifting and short vectors in lattices.

- Choose a small prime p, and factor f over F_p .
- Let $f = g_1 \cdot g_2 \pmod{p}$ with g_1 being irreducible.
- Let ℓ be the smallest integer greater than $\frac{3}{2}(n^2-1) + (2n+1)\log ||f||_2$.
- Use Hensel Lifting to compute factors of f modulo p^{ℓ} .
- Let $f = g'_1 \cdot g'_2 \pmod{p^\ell}$.
- Note that g'_1 remains irreducible modulo p^{ℓ} .

- Choose a small prime p, and factor f over F_p .
- Let $f = g_1 \cdot g_2 \pmod{p}$ with g_1 being irreducible.
- Let ℓ be the smallest integer greater than $\frac{3}{2}(n^2-1) + (2n+1)\log ||f||_2$.
- Use Hensel Lifting to compute factors of f modulo p^{ℓ} .
- Let $f = g'_1 \cdot g'_2 \pmod{p^{\ell}}$.
- Note that g'_1 remains irreducible modulo p^{ℓ} .

- Without loss of generality, assume g'_1 is monic and $\deg(g'_1) = d$.
- Define polynomials $h_i(x) = p^{\ell} x^i$ for $0 \le i < d$.
- Define polynomials $h_{d+i}(x) = x^i \cdot g'_1(x)$ for $0 \le i < n d$.
- As before, let \mathcal{L} be the *n*-dimensional lattice generated by vectors $\hat{h}_0, \ldots, \hat{h}_{n-1}$.
- The lattice contains precisely degree n − 1 polynomials that are multiples of g'₁ modulo p^ℓ.
- This lattice has a shortest vector of length at most $\sqrt{n}p^{d\ell/n}$.
- So, LLL algorithm produces a vector of length at most $2^{\frac{n-1}{2}}\sqrt{n}p^{d\ell/n}$.

- Without loss of generality, assume g'_1 is monic and $\deg(g'_1) = d$.
- Define polynomials $h_i(x) = p^{\ell} x^i$ for $0 \le i < d$.
- Define polynomials $h_{d+i}(x) = x^i \cdot g'_1(x)$ for $0 \le i < n d$.
- As before, let *L* be the *n*-dimensional lattice generated by vectors *h*₀, ..., *h*_{n-1}.
- The lattice contains precisely degree n − 1 polynomials that are multiples of g'₁ modulo p^ℓ.
- This lattice has a shortest vector of length at most $\sqrt{n}p^{d\ell/n}$.
- So, LLL algorithm produces a vector of length at most $2^{\frac{n-1}{2}}\sqrt{n}p^{d\ell/n}$.

- Without loss of generality, assume g'_1 is monic and $\deg(g'_1) = d$.
- Define polynomials $h_i(x) = p^{\ell} x^i$ for $0 \le i < d$.
- Define polynomials $h_{d+i}(x) = x^i \cdot g'_1(x)$ for $0 \le i < n d$.
- As before, let *L* be the *n*-dimensional lattice generated by vectors *h*₀, ..., *h*_{n-1}.
- The lattice contains precisely degree n − 1 polynomials that are multiples of g'₁ modulo p^ℓ.
- This lattice has a shortest vector of length at most $\sqrt{n}p^{d\ell/n}$.
- So, LLL algorithm produces a vector of length at most $2^{\frac{n-1}{2}}\sqrt{n}p^{d\ell/n}$.

- But we can do better!
- Suppose $f = f_1 \cdot f_2$ over rationals.
- Since f = g'₁ ⋅ g'₂ (mod p^ℓ), g'₁ is irreducible and Z_{p^ℓ}[x] is a UFD, g'₁ divides either f₁ or f₂ modulo p^ℓ.
- Without loss of generality, assume that $f_1 = f'_1 \cdot g'_1 \pmod{p^{\ell}}$.
- Then the vector \hat{f}_1 is in the lattice \mathcal{L} .
- What is the length of \hat{f}_1 ?

- But we can do better!
- Suppose $f = f_1 \cdot f_2$ over rationals.
- Since f = g'₁ ⋅ g'₂ (mod p^ℓ), g'₁ is irreducible and Z_{p^ℓ}[x] is a UFD, g'₁ divides either f₁ or f₂ modulo p^ℓ.
- Without loss of generality, assume that $f_1 = f'_1 \cdot g'_1 \pmod{p^{\ell}}$.
- Then the vector \hat{f}_1 is in the lattice \mathcal{L} .
- What is the length of \hat{f}_1 ?

- But we can do better!
- Suppose $f = f_1 \cdot f_2$ over rationals.
- Since f = g'₁ ⋅ g'₂ (mod p^ℓ), g'₁ is irreducible and Z_{p^ℓ}[x] is a UFD, g'₁ divides either f₁ or f₂ modulo p^ℓ.
- Without loss of generality, assume that $f_1 = f'_1 \cdot g'_1 \pmod{p^{\ell}}$.
- Then the vector \hat{f}_1 is in the lattice \mathcal{L} .
- What is the length of \hat{f}_1 ?

- Mignotte's bound shows that $||f_1||_2 \leq 2^{n-1} ||f||_2$.
- Therefore, length of $\hat{f}_1 = \|f_1\|_2 \le 2^{n-1} \|f\|_2$.
- So, the LLL algorithm will produce a vector \hat{v} of length at most $2^{\frac{3(n-1)}{2}} ||f||_2$.
- Consider polynomial v(x).
- Since $\hat{v} \in \mathcal{L}$, $g'_1(x)$ divides v(x) modulo p^{ℓ} .

- Mignotte's bound shows that $||f_1||_2 \leq 2^{n-1} ||f||_2$.
- Therefore, length of $\hat{f}_1 = \|f_1\|_2 \le 2^{n-1} \|f\|_2$.
- So, the LLL algorithm will produce a vector \hat{v} of length at most $2^{\frac{3(n-1)}{2}} ||f||_2$.
- Consider polynomial v(x).
- Since $\hat{v} \in \mathcal{L}$, $g'_1(x)$ divides v(x) modulo p^{ℓ} .

- Mignotte's bound shows that $||f_1||_2 \leq 2^{n-1} ||f||_2$.
- Therefore, length of $\hat{f}_1 = \|f_1\|_2 \le 2^{n-1} \|f\|_2$.
- So, the LLL algorithm will produce a vector \hat{v} of length at most $2^{\frac{3(n-1)}{2}} ||f||_2$.
- Consider polynomial v(x).
- Since $\hat{v} \in \mathcal{L}$, $g'_1(x)$ divides v(x) modulo p^{ℓ} .

FACTORING POLYNOMIALS OVER RATIONALS

- Therefore, $gcd(v(x), f(x)) > 1 \pmod{p^{\ell}}$.
- Using the resultant, we can say $\operatorname{Res}(v(x), f(x)) = 0 \pmod{p^{\ell}}$.
- Resultant of v(x) and f(x) is an $(2n + 1) \times (2n + 1)$ matrix whose columns are essentially vectors \hat{v} and \hat{f} .
- From Hadamard's Inequality it follows that

 $\operatorname{Res}(v(x), f(x)) \le \|v\|_2^{n+1} \|f\|_2^n \le 2^{\frac{3(n^2-1)}{2}} \|f\|_2^{2n+1}.$

- Therefore, $gcd(v(x), f(x)) > 1 \pmod{p^{\ell}}$.
- Using the resultant, we can say $\operatorname{Res}(v(x), f(x)) = 0 \pmod{p^{\ell}}$.
- Resultant of v(x) and f(x) is an $(2n + 1) \times (2n + 1)$ matrix whose columns are essentially vectors \hat{v} and \hat{f} .
- From Hadamard's Inequality it follows that

$$\operatorname{Res}(v(x), f(x)) \le \|v\|_2^{n+1} \|f\|_2^n \le 2^{\frac{3(n^2-1)}{2}} \|f\|_2^{2n+1}.$$

(日)

FACTORING POLYNOMIALS OVER RATIONALS

- By the choice of ℓ , $\ell > \frac{3}{2}(n^2 1) + (2n + 1)\log ||f||_2$, it follows that $\operatorname{Res}(v(x), f(x)) < p^{\ell}.$
- Coupled with the fact that Res(v(x), f(x)) = 0 (mod p^ℓ), we get

$$\operatorname{Res}(v(x), f(x)) = 0$$

over rationals.

 In other words, gcd(v(x), f(x)) > 1 over rationals and thus we get a factor of f.

(日)

FACTORING POLYNOMIALS OVER RATIONALS

- By the choice of ℓ , $\ell > \frac{3}{2}(n^2 1) + (2n + 1)\log ||f||_2$, it follows that $\operatorname{Res}(v(x), f(x)) < p^{\ell}.$
- Coupled with the fact that Res(v(x), f(x)) = 0 (mod p^ℓ), we get

$$\mathsf{Res}(v(x), f(x)) = 0$$

over rationals.

 In other words, gcd(v(x), f(x)) > 1 over rationals and thus we get a factor of f.

FACTORING POLYNOMIALS OVER RATIONALS

- By the choice of ℓ , $\ell > \frac{3}{2}(n^2 1) + (2n + 1)\log ||f||_2$, it follows that $\operatorname{Res}(v(x), f(x)) < p^{\ell}.$
- Coupled with the fact that $\operatorname{Res}(v(x), f(x)) = 0 \pmod{p^{\ell}}$, we get

$$\operatorname{Res}(v(x),f(x))=0$$

over rationals.

 In other words, gcd(v(x), f(x)) > 1 over rationals and thus we get a factor of f.
TOOL 6: SMOOTH NUMBERS

◆□> <□> <=> <=> <=> <=> <=> <=> <<=>

OUTLINE

DEFINITION

Example: Integer Factoring via Quadratic Sieve

Example: Discrete Log Computation via Index Calculus

Smooth Numbers

• Number n > 0 is *m*-smooth if all prime divisors of *n* are $\leq m$.

 Let Ψ(x, y) denote the size of the set of numbers ≤ x that are y-smooth.

THEOREM (DENSITY OF SMOOTH NUMBERS) $\Psi(x, y) = x \cdot r^{-r(1+o(1))}$ where $r = \frac{\ln x}{\ln y}$, and $y = \Omega(\ln^2 x)$.

Smooth Numbers

- Number n > 0 is *m*-smooth if all prime divisors of *n* are $\leq m$.
- Let Ψ(x, y) denote the size of the set of numbers ≤ x that are y-smooth.

THEOREM (DENSITY OF SMOOTH NUMBERS) $\Psi(x, y) = x \cdot r^{-r(1+o(1))}$ where $r = \frac{\ln x}{\ln y}$, and $y = \Omega(\ln^2 x)$.

Smooth Numbers

- Number n > 0 is *m*-smooth if all prime divisors of *n* are $\leq m$.
- Let Ψ(x, y) denote the size of the set of numbers ≤ x that are y-smooth.

THEOREM (DENSITY OF SMOOTH NUMBERS) $\Psi(x, y) = x \cdot r^{-r(1+o(1))}$ where $r = \frac{\ln x}{\ln y}$, and $y = \Omega(\ln^2 x)$.

Smooth Numbers

- Smooth numbers are used in Elliptic Curve Factoring, Quadratic Sieve and Number Field Sieve, the three most popular integer factoring algorithms.
- They are also used in index calculus method for discrete log problem.

Definition

EXAMPLE: INTEGER FACTORING VIA QUADRATIC SIEVE

Example: Discrete Log Computation via Index Calculus

- Designed by Carl Pomerance (1983).
- Let *n* be an odd number with at least two distinct prime factors.
- *n* can be factored if non-trivial solution of the equation $x^2 = y^2 \pmod{n}$ can be computed.
 - A non-trivial solution is (x_0, y_0) such that $x_0^2 = y_0^2 \pmod{n}$ and $x_0 \neq \pm y_0 \pmod{n}$.
 - Given such a solution, $gcd(x_0 + y_0, n)$ gives a factor of n.
- We will use this approach for factoring *n*.

- Designed by Carl Pomerance (1983).
- Let *n* be an odd number with at least two distinct prime factors.
- *n* can be factored if non-trivial solution of the equation $x^2 = y^2 \pmod{n}$ can be computed.
 - A non-trivial solution is (x_0, y_0) such that $x_0^2 = y_0^2 \pmod{n}$ and $x_0 \neq \pm y_0 \pmod{n}$.
 - Given such a solution, $gcd(x_0 + y_0, n)$ gives a factor of n.
- We will use this approach for factoring n.

- Designed by Carl Pomerance (1983).
- Let *n* be an odd number with at least two distinct prime factors.
- *n* can be factored if non-trivial solution of the equation $x^2 = y^2 \pmod{n}$ can be computed.
 - A non-trivial solution is (x_0, y_0) such that $x_0^2 = y_0^2 \pmod{n}$ and $x_0 \neq \pm y_0 \pmod{n}$.
 - Given such a solution, $gcd(x_0 + y_0, n)$ gives a factor of n.
- We will use this approach for factoring *n*.

QUADRATIC SIEVE

- 1. Let $m = \lceil \sqrt{n} \rceil$, $B = e^{\frac{1}{2}\sqrt{\ln n \ln \ln n}}$, and p_1, \ldots, p_t the set of all primes $\leq B$.
- 2. For $k = 1, 2, 3, \ldots$ do the following:
 - 2.1 Let v = m + k.
 - 2.2 Let $u = v^2 \pmod{n}$, 0 < u < n.
 - 2.3 Check if *u* is *B*-smooth.
 - 2.4 If yes, compute complete factorization of $u = \prod_{i=1}^{t} p_i^{e[i]}$.
 - 2.5 Store the triple (u, v, \hat{e}) where $\hat{e} = (e[1] \ e[2] \ \cdots \ e[t])$.

◆□▶ <圖▶ < 目▶ < 目▶ <目■ のへで</p>

QUADRATIC SIEVE

- 1. Let $m = \lceil \sqrt{n} \rceil$, $B = e^{\frac{1}{2}\sqrt{\ln n \ln \ln n}}$, and p_1, \ldots, p_t the set of all primes $\leq B$.
- 2. For $k = 1, 2, 3, \ldots$ do the following:
 - 2.1 Let v = m + k.
 - 2.2 Let $u = v^2 \pmod{n}$, 0 < u < n.
 - 2.3 Check if *u* is *B*-smooth.

2.4 If yes, compute complete factorization of $u = \prod_{i=1}^{t} p_i^{e[i]}$. 2.5 Store the triple (u, v, \hat{e}) where $\hat{e} = (e[1] \ e[2] \ \cdots \ e[t])$.

◆□▶ <圖▶ < 目▶ < 目▶ <目■ のへで</p>

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

- 1. Let $m = \lceil \sqrt{n} \rceil$, $B = e^{\frac{1}{2}\sqrt{\ln n \ln \ln n}}$, and p_1, \ldots, p_t the set of all primes $\leq B$.
- 2. For $k = 1, 2, 3, \ldots$ do the following:

2.1 Let
$$v = m + k$$
.

- 2.2 Let $u = v^2 \pmod{n}$, 0 < u < n.
- 2.3 Check if *u* is *B*-smooth.
- 2.4 If yes, compute complete factorization of $u = \prod_{i=1}^{t} p_i^{e[i]}$.
- 2.5 Store the triple (u, v, \hat{e}) where $\hat{e} = (e[1] \ e[2] \ \cdots \ e[t])$.

QUADRATIC SIEVE

- 3. Exit the previous step after t + 1 triples are stored.
- 4. Let these be $\{u_j, v_j, \hat{e}_j\}_{1 \le j \le t+1}$.
- 5. Find $\alpha_j \in \{0,1\}$ for $1 \le j \le t+1$ such that $\sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{2}$ and not all α_j 's are zero. [always possible]
- 6. Let

$$x = \prod_{j=1}^{t+1} v_j^{\alpha_j}$$

and

$$y = \prod_{i=1}^{t} p_i^{\frac{1}{2} \sum_{j=1}^{t+1} \alpha_j e_j[i]} = \prod_{j=1}^{t+1} \prod_{i=1}^{t} p_i^{\frac{1}{2} \alpha_j e_j[i]} = \prod_{j=1}^{t+1} u_j^{\frac{1}{2} \alpha_j}.$$

INTEGER FACTORING

DISCRETE LOG

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

QUADRATIC SIEVE

- 3. Exit the previous step after t + 1 triples are stored.
- 4. Let these be $\{u_j, v_j, \hat{e}_j\}_{1 \le j \le t+1}$.
- 5. Find $\alpha_j \in \{0,1\}$ for $1 \le j \le t+1$ such that $\sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{2}$ and not all α_j 's are zero. [always possible]

and

$$y = \prod_{i=1}^{t} p_i^{\frac{1}{2} \sum_{j=1}^{t+1} \alpha_j e_j[i]} = \prod_{j=1}^{t+1} \prod_{i=1}^{t} p_i^{\frac{1}{2} \alpha_j e_j[i]} = \prod_{j=1}^{t+1} u_j^{\frac{1}{2} \alpha_j}.$$

INTEGER FACTORING

DISCRETE LOG

QUADRATIC SIEVE

- 3. Exit the previous step after t + 1 triples are stored.
- 4. Let these be $\{u_j, v_j, \hat{e}_j\}_{1 \le j \le t+1}$.
- 5. Find $\alpha_j \in \{0,1\}$ for $1 \le j \le t+1$ such that $\sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{2}$ and not all α_j 's are zero. [always possible]
- 6. Let

$$x = \prod_{j=1}^{t+1} v_j^{lpha_j}$$

and

$$y = \prod_{i=1}^{t} p_{i}^{\frac{1}{2}\sum_{j=1}^{t+1} \alpha_{j} e_{j}[i]} = \prod_{j=1}^{t+1} \prod_{i=1}^{t} p_{i}^{\frac{1}{2}\alpha_{j} e_{j}[i]} = \prod_{j=1}^{t+1} u_{j}^{\frac{1}{2}\alpha_{j}}.$$

- 7. Compute gcd(x + y, n) and check if a proper factor of n is obtained.
- 8. If not, generate more triples and repeat.

QUADRATIC SIEVE ANALYSIS

- First note that for each j, $\sum_{j=1}^{t+1} \alpha_j e_j[i]$ is divisible by two and so y is an integer.
- We have

 $x^{2} = \prod_{j=1}^{t+1} \{v_{j}^{2}\}^{\alpha_{j}} = \prod_{j=1}^{t+1} u_{j}^{\alpha_{j}} \pmod{n} = y^{2} \pmod{n}.$

- Since x and y are computed using very different numbers (x is a product of numbers of the form m + k and y is a product of powers of p_i's), it is likely that x ≠ ±y (mod n).
- This results in a factor of *n*.

QUADRATIC SIEVE ANALYSIS

- First note that for each j, $\sum_{j=1}^{t+1} \alpha_j e_j[i]$ is divisible by two and so y is an integer.
- We have

 $x^{2} = \prod_{j=1}^{t+1} \{v_{j}^{2}\}^{\alpha_{j}} = \prod_{j=1}^{t+1} u_{j}^{\alpha_{j}} \pmod{n} = y^{2} \pmod{n}.$

- Since x and y are computed using very different numbers (x is a product of numbers of the form m + k and y is a product of powers of p_i's), it is likely that x ≠ ±y (mod n).
- This results in a factor of *n*.

QUADRATIC SIEVE ANALYSIS

- First note that for each j, ∑_{j=1}^{t+1} α_je_j[i] is divisible by two and so y is an integer.
- We have

 $x^{2} = \prod_{j=1}^{t+1} \{v_{j}^{2}\}^{\alpha_{j}} = \prod_{j=1}^{t+1} u_{j}^{\alpha_{j}} \pmod{n} = y^{2} \pmod{n}.$

- Since x and y are computed using very different numbers (x is a product of numbers of the form m + k and y is a product of powers of p_i's), it is likely that x ≠ ±y (mod n).
- This results in a factor of *n*.

- So how many k's are required to generate t + 1 triples?
- Number $u = (m + k)^2 \pmod{n} \approx 2\sqrt{nk} + k^2 \approx 2\sqrt{nk}$ when k is small compared to \sqrt{n} .
- Assume that u is uniformly distributed over $[1, 2\sqrt{nk}]$ as k varies.
- Then the probability that u is B-smooth is around $\left(\frac{\ln n}{2\ln B}\right)^{-\frac{\ln n}{2\ln B}} \sim e^{-\frac{1}{2}\sqrt{\ln n \ln \ln n}} = \frac{1}{B}.$
- So we need $B^{2+o(1)}$ k's to generate required triples.

- So how many k's are required to generate t + 1 triples?
- Number $u = (m + k)^2 \pmod{n} \approx 2\sqrt{nk} + k^2 \approx 2\sqrt{nk}$ when k is small compared to \sqrt{n} .
- Assume that u is uniformly distributed over $[1, 2\sqrt{nk}]$ as k varies.
- Then the probability that u is B-smooth is around $\left(\frac{\ln n}{2\ln B}\right)^{-\frac{\ln n}{2\ln B}} \sim e^{-\frac{1}{2}\sqrt{\ln n \ln \ln n}} = \frac{1}{B}.$
- So we need $B^{2+o(1)}$ k's to generate required triples.

- So how many k's are required to generate t + 1 triples?
- Number $u = (m + k)^2 \pmod{n} \approx 2\sqrt{nk} + k^2 \approx 2\sqrt{nk}$ when k is small compared to \sqrt{n} .
- Assume that u is uniformly distributed over $[1, 2\sqrt{nk}]$ as k varies.
- Then the probability that u is B-smooth is around $\left(\frac{\ln n}{2\ln B}\right)^{-\frac{\ln n}{2\ln B}} \sim e^{-\frac{1}{2}\sqrt{\ln n \ln \ln n}} = \frac{1}{B}.$
- So we need $B^{2+o(1)}$ k's to generate required triples.

- Using a clever sieving trick, it can be shown that time taken to compute all the triples remains $B^{2+o(1)}$.
- α_j 's can be computed by solving a system of t + 1 linear equations.
- Time taken to compute these can be shown to be $O(t^2) = O(B^2)$.
- Therefore, the time complexity of the whole algorithm is $B^{2+o(1)} = e^{(1+o(1))\sqrt{\ln n \ln \ln n}}$.

- Using a clever sieving trick, it can be shown that time taken to compute all the triples remains $B^{2+o(1)}$.
- α_j 's can be computed by solving a system of t + 1 linear equations.
- Time taken to compute these can be shown to be $O(t^2) = O(B^2)$.
- Therefore, the time complexity of the whole algorithm is $B^{2+o(1)} = e^{(1+o(1))\sqrt{\ln n \ln \ln n}}$.

- Using a clever sieving trick, it can be shown that time taken to compute all the triples remains $B^{2+o(1)}$.
- α_j 's can be computed by solving a system of t + 1 linear equations.
- Time taken to compute these can be shown to be $O(t^2) = O(B^2)$.
- Therefore, the time complexity of the whole algorithm is $B^{2+o(1)} = e^{(1+o(1))\sqrt{\ln n \ln \ln n}}$.

INTEGER FACTORING

DISCRETE LOG

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

NUMBER FIELD SIEVE

- Designed by Pollard, Pomerance, Lenstra, ... (1990s).
- Uses arithmetic in a number field instead of Q.
- This allows one to reduce the size of *u*'s thus increasing the chances of finding a smooth number.
- The time complexity comes down to $e^{c(\ln n)^{1/3}(\ln \ln n)^{2/3}}$, $c \approx 1.903$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

NUMBER FIELD SIEVE

- Designed by Pollard, Pomerance, Lenstra, ... (1990s).
- Uses arithmetic in a number field instead of \mathbb{Q} .
- This allows one to reduce the size of *u*'s thus increasing the chances of finding a smooth number.
- The time complexity comes down to $e^{c(\ln n)^{1/3}(\ln \ln n)^{2/3}}$, $c \approx 1.903$.

Definition

Example: Integer Factoring via Quadratic Sieve

EXAMPLE: DISCRETE LOG COMPUTATION VIA INDEX CALCULUS

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

DISCRETE LOG PROBLEM OVER FINITE FIELDS

- Let *p* be a large prime.
- Let $g \in F_p$ be a generator of F_p^* and $\gamma \in F_p^*$.
- The discrete log problem over finite fields is: given p, g, and γ , compute m such that $g^m = \gamma \pmod{p}$.
- The hardness of this problem is the basis for security of El Gamal type encryption algorithms over finite fields and Diffie-Hellman key exchange scheme.

DISCRETE LOG PROBLEM OVER FINITE FIELDS

- Let *p* be a large prime.
- Let $g \in F_p$ be a generator of F_p^* and $\gamma \in F_p^*$.
- The discrete log problem over finite fields is: given p, g, and γ , compute m such that $g^m = \gamma \pmod{p}$.
- The hardness of this problem is the basis for security of El Gamal type encryption algorithms over finite fields and Diffie-Hellman key exchange scheme.

- Compute r and s such that $g^r \gamma^s = 1 \pmod{p}$ and gcd(s, p-1) = 1.
- Then $g^{r+ms} = 1 \pmod{p}$ giving $m = -rs^{-1} \pmod{p-1}$.
- How does one quickly find such r and s?
- We use a method similar to one used for integer factoring.

- Compute r and s such that $g^r \gamma^s = 1 \pmod{p}$ and gcd(s, p-1) = 1.
- Then $g^{r+ms} = 1 \pmod{p}$ giving $m = -rs^{-1} \pmod{p-1}$.
- How does one quickly find such r and s?
- We use a method similar to one used for integer factoring.

- Compute r and s such that $g^r \gamma^s = 1 \pmod{p}$ and gcd(s, p-1) = 1.
- Then $g^{r+ms} = 1 \pmod{p}$ giving $m = -rs^{-1} \pmod{p-1}$.
- How does one quickly find such r and s?
- We use a method similar to one used for integer factoring.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

- 1. Let $B = e^{\frac{1}{2}\sqrt{\ln p \ln \ln p}}$ and p_1, \ldots, p_t be all primes $\leq B$.
- 2. Randomly select r and s, 0 < r, s < p 1.
- 3. Compute $u = g^r \gamma^s \pmod{p}$.
- 4. Check if *u* is *B*-smooth.
- 5. If yes, compute complete factorization of $u = \prod_{i=1}^{t} p_i^{e[i]}$.
- 6. Store the 4-tuple (r, s, u, \hat{e}) where $\hat{e} = (e[1] \ e[2] \ \cdots \ e[t])$.

- 1. Let $B = e^{\frac{1}{2}\sqrt{\ln p \ln \ln p}}$ and p_1, \ldots, p_t be all primes $\leq B$.
- 2. Randomly select r and s, 0 < r, s .
- 3. Compute $u = g^r \gamma^s \pmod{p}$.
- 4. Check if *u* is *B*-smooth.
- 5. If yes, compute complete factorization of $u = \prod_{i=1}^{t} p_i^{e[i]}$.
- 6. Store the 4-tuple (r, s, u, \hat{e}) where $\hat{e} = (e[1] \ e[2] \ \cdots \ e[t])$.
INDEX CALCULUS METHOD

- 1. Let $B = e^{\frac{1}{2}\sqrt{\ln p \ln \ln p}}$ and p_1, \ldots, p_t be all primes $\leq B$.
- 2. Randomly select r and s, 0 < r, s < p 1.
- 3. Compute $u = g^r \gamma^s \pmod{p}$.
- 4. Check if *u* is *B*-smooth.
- 5. If yes, compute complete factorization of $u = \prod_{i=1}^{t} p_i^{e[i]}$.
- 6. Store the 4-tuple (r, s, u, \hat{e}) where $\hat{e} = (e[1] e[2] \cdots e[t])$.

INDEX CALCULUS METHOD

- 7. Exit the previous step after t + 1 4-tuples are stored.
- 8. Let these be $\{r_j, s_j, u_j, \hat{e}_j\}_{1 \le j \le t+1}$.
- 9. Find $\alpha_j \in Z_{p-1}$ for $1 \le j \le t+1$ such that $\sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{p-1}$ and not all α_j 's are zero.

10. Let

$$r = \sum_{j=1}^{t+1} \alpha_j r_j \; (mod \; p-1)$$

and

$$s = \sum_{j=1}^{t+1} \alpha_j s_j \; (mod \; p-1).$$

INTEGER FACTORING

DISCRETE LOG

INDEX CALCULUS METHOD

- 7. Exit the previous step after t + 1 4-tuples are stored.
- 8. Let these be $\{r_j, s_j, u_j, \hat{e}_j\}_{1 \le j \le t+1}$.
- 9. Find $\alpha_j \in Z_{p-1}$ for $1 \le j \le t+1$ such that $\sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{p-1}$ and not all α_j 's are zero. 0. Let

$$r = \sum_{j=1}^{t+1} \alpha_j r_j \; (mod \; p-1)$$

and

$$s = \sum_{j=1}^{t+1} \alpha_j s_j \; (mod \; p-1).$$

◆□▶ <圖▶ < 目▶ < 目▶ <目■ のへで</p>

INTEGER FACTORING

DISCRETE LOG

(日)

INDEX CALCULUS METHOD

- 7. Exit the previous step after t + 1 4-tuples are stored.
- 8. Let these be $\{r_j, s_j, u_j, \hat{e}_j\}_{1 \le j \le t+1}$.
- 9. Find $\alpha_j \in Z_{p-1}$ for $1 \le j \le t+1$ such that $\sum_{j=1}^{t+1} \alpha_j \hat{e}_j = 0 \pmod{p-1}$ and not all α_j 's are zero.

10. Let

$$r = \sum_{j=1}^{t+1} \alpha_j r_j \pmod{p-1}$$

and

$$s = \sum_{j=1}^{t+1} \alpha_j s_j \; (mod \; p-1).$$

DISCRETE LOG

◆□> <□> <=> <=> <=> <=> <=> <=> <<=>

INDEX CALCULUS METHOD

- 11. Check if gcd(s, p 1) = 1.
- 12. If yes, $m = -rs^{-1} \pmod{p-1}$ is the answer.

Analysis of Index Calculus Method

Note that

$$g^{r}\gamma^{s} = \prod_{j=1}^{t+1} (g^{r_{j}}\gamma^{s_{j}})^{\alpha_{j}} (mod p)$$
$$= \prod_{j=1}^{t+1} u_{j}^{\alpha_{j}} (mod p)$$
$$= \prod_{j=1}^{t+1} \prod_{i=1}^{t} p_{i}^{\alpha_{j}e_{j}[i]} (mod p)$$
$$= \prod_{i=1}^{t} p_{i}^{\sum_{j=1}^{t+1} \alpha_{j}e_{j}[i]} (mod p)$$
$$= 1 (mod p).$$

- In addition, the probability that gcd(s, p-1) = 1 is high since s_j 's are randomly chosen.
- Therefore, the algorithm computes discrete log with high probability.
- For time complexity we proceed exactly as before.
- The probability that u is B-smooth is $\frac{\Psi(p-1,B)}{p-1} \sim \left(\frac{\ln p}{\ln B}\right)^{-\frac{\ln p}{\ln B}} \sim e^{-\ln p \ln \ln p} = \frac{1}{B^2}$

- In addition, the probability that gcd(s, p-1) = 1 is high since s_j 's are randomly chosen.
- Therefore, the algorithm computes discrete log with high probability.
- For time complexity we proceed exactly as before.
- The probability that u is B-smooth is $\frac{\Psi(p-1,B)}{p-1} \sim \left(\frac{\ln p}{\ln B}\right)^{-\frac{\ln p}{\ln B}} \sim e^{-\ln p \ln \ln p} = \frac{1}{B^2}.$

(日)

- Therefore, we need to generate $B^{3+o(1)}$ u's.
- Testing each *u* for smoothness takes $B^{1+o(1)}$ steps (no savings here!).
- Also, solving the system of linear equation takes $O(B^3)$ steps.
- This gives the total complexity of $B^{4+o(1)} = e^{(2+o(1))\sqrt{\ln p \ln \ln p}}$.

- Therefore, we need to generate $B^{3+o(1)}$ *u*'s.
- Testing each u for smoothness takes B^{1+o(1)} steps (no savings here!).
- Also, solving the system of linear equation takes $O(B^3)$ steps.
- This gives the total complexity of $B^{4+o(1)} = e^{(2+o(1))\sqrt{\ln p \ln \ln p}}$.

- Therefore, we need to generate $B^{3+o(1)}$ *u*'s.
- Testing each u for smoothness takes B^{1+o(1)} steps (no savings here!).
- Also, solving the system of linear equation takes $O(B^3)$ steps.
- This gives the total complexity of $B^{4+o(1)} = e^{(2+o(1))\sqrt{\ln p \ln \ln p}}$.

(日)

Comments

- As in case of factoring, number fields can be used to bring the time complexity down to $e^{c(\ln n)^{1/3}(\ln \ln n)^{2/3}}$.
- The index calculus method can be generalized to work for any finite commutative group.
- However, it does not work well in groups with no good notion of 'smoothness'.
- For example, in group of points on an elliptic curve E_p .

Comments

- As in case of factoring, number fields can be used to bring the time complexity down to $e^{c(\ln n)^{1/3}(\ln \ln n)^{2/3}}$.
- The index calculus method can be generalized to work for any finite commutative group.
- However, it does not work well in groups with no good notion of 'smoothness'.
- For example, in group of points on an elliptic curve E_p .

Comments

- As in case of factoring, number fields can be used to bring the time complexity down to $e^{c(\ln n)^{1/3}(\ln \ln n)^{2/3}}$.
- The index calculus method can be generalized to work for any finite commutative group.
- However, it does not work well in groups with no good notion of 'smoothness'.
- For example, in group of points on an elliptic curve E_p .

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●□■ のへ⊙

THANK YOU!

- Let f and v be two polynomials over field F of degree n and m respectively.
- We have gcd(f(x), v(x)) > 1 iff there exist r(x) and s(x), of degrees < m and < n respectively, such that r(x)f(x) + s(x)v(x) = 0.

(日)

- Define map T(r(x), s(x)) = r(x)f(x) + s(x)v(x) for deg(r) < m and deg(s) < n.
- T is a bilinear map and so can be represented by a $(n+m) \times (n+m)$ matrix, $M_{f,v}$.
- Further, T is invertible iff gcd(f(x), v(x)) = 1.
- Let $\operatorname{Res}(f, v) = \det M_{f,v}$.

- Let f and v be two polynomials over field F of degree n and m respectively.
- We have gcd(f(x), v(x)) > 1 iff there exist r(x) and s(x), of degrees < m and < n respectively, such that r(x)f(x) + s(x)v(x) = 0.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Define map T(r(x), s(x)) = r(x)f(x) + s(x)v(x) for deg(r) < m and deg(s) < n.
- T is a bilinear map and so can be represented by a $(n+m) \times (n+m)$ matrix, $M_{f,v}$.
- Further, T is invertible iff gcd(f(x), v(x)) = 1.
- Let $\operatorname{Res}(f, v) = \det M_{f,v}$.

- Let f and v be two polynomials over field F of degree n and m respectively.
- We have gcd(f(x), v(x)) > 1 iff there exist r(x) and s(x), of degrees < m and < n respectively, such that r(x)f(x) + s(x)v(x) = 0.

(日)

- Define map T(r(x), s(x)) = r(x)f(x) + s(x)v(x) for deg(r) < m and deg(s) < n.
- T is a bilinear map and so can be represented by a $(n+m) \times (n+m)$ matrix, $M_{f,v}$.
- Further, T is invertible iff gcd(f(x), v(x)) = 1.
- Let $\operatorname{Res}(f, v) = \det M_{f,v}$.

- Let f and v be two polynomials over field F of degree n and m respectively.
- We have gcd(f(x), v(x)) > 1 iff there exist r(x) and s(x), of degrees < m and < n respectively, such that r(x)f(x) + s(x)v(x) = 0.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Define map T(r(x), s(x)) = r(x)f(x) + s(x)v(x) for deg(r) < m and deg(s) < n.
- T is a bilinear map and so can be represented by a $(n+m) \times (n+m)$ matrix, $M_{f,v}$.
- Further, T is invertible iff gcd(f(x), v(x)) = 1.
- Let $\operatorname{Res}(f, v) = \det M_{f,v}$.