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The Traveling Salesman Problem

Suppose that you are given the road map of India.

You need to find a traversal that covers all the cities/towns/villages
of population ≥ 1, 000.

And the traversal should have a short distance, say, ≤ 9, 000 kms.

You will have to generate a very large number of traversals to find out
a short traversal.

Suppose that you are also given a claimed short traversal.

It is now easy to verify that given claimed traversal is indeed a short
traversal.
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The Bin Packing Problem

Suppose you have a large container of volume 1000 cubic meter and
150 boxes of varying sizes with volumes between 10 to 25 cubic
meters.

You need to fit at least half of these boxes in the container.

You will need to try out various combinations of 75 boxes (there are(150
75

)
> 1040 combinations) and various ways of laying them in the

container to find a fitting.

Suppose that you are also given a set of 75 boxes and a way of laying
them.

It is now easy to verify if these 75 boxes layed out in the given way
will fit in the container.
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Hall-I Room Allocation

Each wing of Hall-I has 72 rooms.

Suppose from a batch of 540 students, 72 need to be housed in
C-wing.

There are several students that are “incompatible” with each other,
and so no such pair should be present in the wing.

If there are a large number of incompatibilities, you will need to try
out many combinations to get a correct one.

Suppose you are also given the names of 72 students to be housed.

It is now easy to verify if they are all compatible.
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Discovery versus Verification

In all these problems, finding a solution appears to be far more
difficult than checking the correctness of a given solution.

Informally, this makes sense as discovering a solution is often much
more difficult than verifying its correctness.

Can we formally prove this?

Leads to the P versus NP problem.
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Formalizing Easy-to-solve

A problem is easy to solve if the solution can be computed quickly.

Gives rise to two questions:
I How is it computed?
I How do we define “quickly”?
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Computating Method

We will use an algorithm to compute.

In practice, the algorithm will run on a computer via a computer
program.
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Algorithms

An algorithm is a set of precise instructions for computation.

The algorithm can perform usual computational steps, e.g.,
assignments, arithmetic and boolean operations, loops.

For us, an algorithm will always have input presented as a sequence of
bits.

The input size is the number of bits in the input to the algorithm.

The algorithm stops after outputing the solution.
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Time Measurement

Let A be an algorithm and x be an input to it.

Let TA(x) denote the number of steps of the algorithm on input x .

Let TA(n) denote the maximum of TA(x) over all inputs x of size n.

We will use TA(n) to quantify the time taken by algorithm A to solve
a problem on different input sizes.

For example, an algorithm A that adds two n bit numbers using
school method has TA(n) = O(n).

An algorithm B that multiplies two n bits numbers using school
method has TA(n) = O(n2).
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Time Complexity of Problems

A problem has time complexity TA(n) if there is an algorithm A that
solves the problem on every input.

Addition has time complexity O(n).

Multiplication has time complexity O(n2).
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Quantifying Easy-to-compute

The problems of adding and multiplying are definitely easy.

Also, if a problem is easy, and another problem can be solved in time
n · T (n) where T (n) is the time complexity of the easy problem, then
the new problem is also easy.

This leads to the following definition: A problem is efficiently solvable
if its time complexity is nO(1).

Such problems are also called polynomial-time problems.
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The Class P

The class P contains all efficiently solvable problems.

Caveat

A problem with time complexity n1000 is not efficiently solvable, but such
problems do not arise in practice.

Manindra Agarwal (IIT Kanpur) The P 6= NP Problem CNR Rao Lecture, 2008 14 / 47



The Class P

The class P contains all efficiently solvable problems.

Caveat

A problem with time complexity n1000 is not efficiently solvable, but such
problems do not arise in practice.

Manindra Agarwal (IIT Kanpur) The P 6= NP Problem CNR Rao Lecture, 2008 14 / 47



The Class NP

This class contains all problems whose solutions can be efficiently
verified.

We need two properties:
I The solution to an input should be of size similar to the input; so for

an input of size n, the solution size is bounded by nO(1),
I The problem of verifying the correctness of a given solution to a given

input is in P.

The class NP contains all problems satisfying the above two properties.
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Is P 6= NP?

P = NP means that for all problems whose solutions can be efficiently
verified, the solutions can be efficiently generated too.

It is widely believed that P 6= NP.

This problem is listed as one of the seven most important unsolved
problems in mathematics.

There is a $1 million prize for anyone who proves P = NP or P 6= NP!
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Diagonalization

Diagonalization is a classical method first used by Cantor (1878) to
prove that the infinity of reals is bigger than the infinity of integers.

Since then, it has been used extensively in Computability Theory for
seperating classes.

The earliest attempts to seperate P from NP were through
diagonalization.
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A Simple Diagonalization

Each algorithm can be written down as a sequence of bits, and hence
can be viewed as a number.

Let A1, A2, . . . be the infinite sequence of algorithms such that
I Algorithm Ai is represented by number i ,
I Algorithm Ai stops within nlog log i + log i steps on inputs of size n.

All the algorithms in this enumeration are polynomial-time.

For every problem in P, there is an algorithm in the above
enumeration that solves it.
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A Simple Diagonalization

Define a new problem as: given i as input, output 1 if Ai outputs 0
on input i , else output 0.

How much time does this problem take to solve?
I An algorithm to solve the problem, given input i , needs to run the

algorithm Ai on i for at most (log i)log log i + log i steps.
I Let n be the length of input i ; hence n = log i .
I So the algorithm takes time O(nlog n) on inputs of size n.
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A Simple Diagonalization

Suppose algorithm Aj from the above sequence also solves this
problem.

What does Aj output on input j?
I Aj outputs 1 if Aj on j outputs 0.
I Aj outputs 0 if Aj on j does not output 0.

Hence such an Aj cannot exist!

Therefore, the problem is not in P.
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Seperating P from NP Using Diagonalization

It is not clear if the problem defined above is in the class NP.

Can one define a problem in NP that diagonalizes over all
polynomial-time algorithms as above?

Unlikely!
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The Relativization Barrier

Suppose we are given algorithm A for free.

This means that we can use A as subroutine in any algorithm and
execution of A does not count towards the time taken.

We can now define the classes P and NP relative to A.

These classes are represented as PA and NPA.

Such computations can be thought of as happening in another world
where A can be efficiently executed!

We can ask the same question as before: is PA 6= NPA?
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The Relativization Barrier

Baker, Gill and Solovay (1975) proved that there exists an algorithm
A such that PA = NPA and there exists an algorithm B such that
PB 6= NPB .

So any proof that works under all relativizations cannot show P = NP
or P 6= NP.

All the standard diagonalization arguments work under all
relativizations.

Hence, they are useless for proving P 6= NP!
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The Circuit Model of Computation

Algorithms provide a dynamic view of computation.

A static view of computation should be comparatively easier to
analyze.

This is provided by circuits.
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The Circuit Model of Computation

Any algorithm is eventually executed by a computer consisting of
electronic circuits.

The working of these circuits on an input of size n can be viewed as a
boolean circuit operating on n bits.
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Circuit Adding Two 2 Bit Numbers
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The Circuit Model of Computation

Unlike an algorithm, a circuit can operate only on a fixed input size.

Hence, for any problem, we need to use an infinite family of circuits
to solve it.

We only consider circuits consisting of AND, OR, and NOT gates.

Both AND and OR gates can have any number of inputs.

The size of a circuit is the number of gates in it.

We measure the size as a function of input size.
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Lower Bounds on Circuit Size

It is easy to show that: A problem is in P iff it has a circuit family of
size nO(1).

So if we can show that a problem in NP does not have a circuit
family of size nO(1), we have shown P 6= NP.

This approach was initiated in 1980s and was considered to be very
promising.

It met with many initial successes.
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Known Lower Bounds

Razborov (1985) showed that there is a problem in NP that requires
superpolynomial size monotone circuits.

I Monotone circuits are circuits without NOT gates.

Hastad (1986) showed that there is a problem in NP that requires
superpolynomial size constant depth circuits.

I Constant depth circuits are circuits such that the number of gates
between any output and input line is a constant.

While neither of the two results showed P 6= NP, they showed the
promise of the approach.

However, no further progress was made in the next 7-8 years.
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Natural Proofs

Razborov and Rudich (1994) defined the notion of natural proofs.

These proofs refer to cerain types of lower bound proofs for circuits.

These type of proofs have two properties:
I Abundance: the lower bound can be proven with high probability by

randomly picking a proof.
I Easily verifiable: given a proof, it is easy to see if it is a correct proof.
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The Natural Proof Barrier

Razborov and Rudich showed that all the previous lower bound proofs
on circuits are natural proofs.

Also, if a widely believed conjecture is true, then natural proofs
cannot be used to prove better lower bounds.

This explained why no progress was made on cicuitr lower bounds!

The conjecture they used was that pseudo-random generators exist.

The next approach uses these!
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Randomized Algorithms

Many problems can be efficiently solved using a randomized
algorithm.

Such an algorithm tosses a few random coins during computation and
uses their result to compute the solution with high probability.

For example, finding a large prime number: randomly pick a large
number and check if it is prime. Repeat a few times until a prime is
found.
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Example: 3SAT

A problem instance consists of m clauses, each over 3 variables.

A clause is a disjunction of variables and their negations:
x3 ∨ x̄7 ∨ x9.

A variable can be either true or false.

The problem is to determine an assignment to variables that make all
clauses true.

This problem is NP-complete: if it can be solved in P then NP = P.

However, it is easy to find an assignment making at least 7
8m clauses

true: randomly assign values to variables and see it this makes at
least 7

8m clauses true.
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Example: 3SAT

Under this assignment, each clause will be true with probability
exactly 7

8 .

Hence, expected number of true clauses will be exactly 7
8m.

This implies that with probability at least 1
2 , a random assignment

will make at least 7
8m clauses true.
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Generating Random Bits

In practice, however, there is no way to generate random bits without
using quantum measurements.

So how does one provide “coin tossing” operation to such algorithms?

A good way is to provide a sequence of bits to the algorithm that
appear random to it.

In other words, this sequence of bits fools the algorithm into believing
that it is random sequence.

This is not possible if the algorithm has enough time to differentiate
it from a random sequence.

However, the algorithm is efficient, and so has only polynomial time
available.

So this limitation can be turned against it!
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Pseudo-random generators

Pseudo-random generators are algorithms that produce seemingly
random bits which fool a whole class of algorithms.

The strength of a pseudo-random generator is determined by how
much real randomness they need to produce their output, and what
class of algorithms they fool.

Idea developed in 1990s.

Has become a fundamental concept in theory of computation.
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Example: Pseudo-random Generator Fooling

3SAT Algorithm

Instead of using random values for variables, pick them in 3-wise
independent fashion.

This guarantees that each clause will be true with probability exactly
7
8 .

The expected number of true clauses will remain the same by linearity
of expectation principle.

How does one generate 3-wise independent assignment?
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3-Wise Independent Source

Fix a finite field F of size 2k with n ≤ 2k < 2n (n is the number of
variables).

Pick 3 elements a, b, c randomly from F .

Let e1, . . ., en be n distinct elements of F .

Define di = a · e2
i + b · ei + c .

If the first bit of di is 0, assign variable xi value false, else true.
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Derandomizing 3SAT Algorithm

This assignment results in exactly the same property: with probability
at least 1

2 , an assignment will make at least 7
8m clauses true.

But this still requires randomness (in choosing a, b and c).

Recall: F is such that |F | = 2k ≤ 2n.

Hence, the number of possibilites for a are 2n (same for b and c).

So we can try out all possibilities (at most 8n3) for these!

We will find at least half of them to be “good” ones for us.

Therefore we get a deterministic algorithm that efficiently solves the
problem.
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Formal Definition

Definition

Function f is an optimal pseudo-random generator if:

f maps c log n bit input to n bit output, c is a fixed constant,

Every output bit can be computed in time logO(1) n,

For every circuit C of size n on n inputs:

| Prx [C (x) = 1]− Pry [C (f (y)) = 1] | ≤ 1

n
.
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Derandomization

Theorem

If optimal pseudo-random generators exist then all problems that can be
solved using efficient randomized algorithms are in P.

Randomized efficient algorithms can be viewed as small sized circuits
with random bits as inputs.

These circuits can be made to output 1 or 0 depending on whether
the solution has been found.

Replacing the random bits with the output of an optimal
pseudo-random generator will not change the probability of finding a
solution by much.

Finally, one can go through all possible c log n inputs to the generator
to find one that will yield a solution.
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Lower Bounds

It was proved by Nisan and Wigderson (1989) that:

Theorem

If optimal pseudo-random generators exist then P 6= NP.
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Current Status

This approach does not suffer from the natural proof barrier.

It will have to cross relativization barrier since an algorithm defining a
generator must be non-relativizable.

The aim here is to find an efficient algorithm for a problem.

And this shows that no efficient algorithm exists for a number of
other problems!

Over the last few years, generators have been defined that fool special
classes of circuits.

Manindra Agarwal (IIT Kanpur) The P 6= NP Problem CNR Rao Lecture, 2008 46 / 47



Current Status

This approach does not suffer from the natural proof barrier.

It will have to cross relativization barrier since an algorithm defining a
generator must be non-relativizable.

The aim here is to find an efficient algorithm for a problem.

And this shows that no efficient algorithm exists for a number of
other problems!

Over the last few years, generators have been defined that fool special
classes of circuits.

Manindra Agarwal (IIT Kanpur) The P 6= NP Problem CNR Rao Lecture, 2008 46 / 47



Current Status

This approach does not suffer from the natural proof barrier.

It will have to cross relativization barrier since an algorithm defining a
generator must be non-relativizable.

The aim here is to find an efficient algorithm for a problem.

And this shows that no efficient algorithm exists for a number of
other problems!

Over the last few years, generators have been defined that fool special
classes of circuits.

Manindra Agarwal (IIT Kanpur) The P 6= NP Problem CNR Rao Lecture, 2008 46 / 47



Current Status

This approach does not suffer from the natural proof barrier.

It will have to cross relativization barrier since an algorithm defining a
generator must be non-relativizable.

The aim here is to find an efficient algorithm for a problem.

And this shows that no efficient algorithm exists for a number of
other problems!

Over the last few years, generators have been defined that fool special
classes of circuits.

Manindra Agarwal (IIT Kanpur) The P 6= NP Problem CNR Rao Lecture, 2008 46 / 47



Is there a barrier out there against this approach too?

OR

Is this the right approach for proving P 6= NP?
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