
comput. complex. 10 (2001), 117 – 138

1016-3328/01/020117–22 $ 1.50+0.20/0

c© Birkhäuser Verlag, Basel 2001

computational complexity

REDUCING THE COMPLEXITY OF

REDUCTIONS

Manindra Agrawal, Eric Allender, Russell
Impagliazzo, Toniann Pitassi, and Steven Rudich

Abstract. We build on the recent progress regarding isomorphisms of com-
plete sets that was reported in Agrawal et al. (1998). In that paper, it was
shown that all sets that are complete under (non-uniform) AC0 reductions are
isomorphic under isomorphisms computable and invertible via (non-uniform)
depth-three AC0 circuits. One of the main tools in proving the isomorphism
theorem in Agrawal et al. (1998) is a “Gap Theorem”, showing that all sets
complete under AC0 reductions are in fact already complete under NC0 reduc-
tions. The following questions were left open in that paper:

1. Does the “gap” between NC0 and AC0 extend further? In particular, is
every set complete under polynomial-time reducibility already complete
under NC0 reductions?

2. Does a uniform version of the isomorphism theorem hold?
3. Is depth-three optimal, or are the complete sets isomorphic under iso-

morphisms computable by depth-two circuits?

We answer all of these questions. In particular, we prove that the Berman–
Hartmanis isomorphism conjecture is true for P-uniform AC0 reductions. More
precisely, we show that for any class C closed under uniform TC0-computable
many-one reductions, the following three theorems hold:

1. If C contains sets that are complete under a notion of reduction at least as
strong as Dlogtime-uniform AC0[mod 2] reductions, then there are such
sets that are not complete under (even non-uniform) AC0 reductions.

2. The sets complete for C under P-uniform AC0 reductions are all isomor-
phic under isomorphisms computable and invertible by P-uniform AC0

circuits of depth-three.
3. There are sets complete for C under Dlogtime-uniform AC0 reductions

that are not isomorphic under any isomorphism computed by (even non-
uniform) AC0 circuits of depth two.

To prove the second theorem, we show how to derandomize a version of the
switching lemma, which may be of independent interest. (We have recently
learned that this result is originally due to Ajtai and Wigderson, but it has not
been published.)

Keywords. Isomorphisms; completeness; constant-depth circuits;
Berman–Hartmanis Conjecture; powering in finite fields.

Subject classification. 68Q17.

118 Agrawal et al. cc 10 (2001)

1. Introduction

Most of the computational problems that arise in practice turn out to be com-
plete for one of a handful of complexity classes, even under very restrictive
notions of reducibility. Indeed, it was noted in Berman & Hartmanis (1977)
that the natural complete sets can even be shown to be isomorphic to each other
under bijections computable and invertible in polynomial time, and thus they
can be viewed as simple re-encodings of each other. This and other considera-
tions led to the famous Berman–Hartmanis Conjecture (Berman & Hartmanis
1977) that all NP-complete sets are p-isomorphic.

It was shown in Agrawal et al. (1998) that a version of this conjecture is
true. More precisely, it was shown that in NP (and in most other complexity
classes of interest), all of the sets that are complete under AC0 reductions are
isomorphic to each other under bijections computable and invertible by (non-
uniform) depth-three AC0 circuits. This is a very natural re-statement of the
Berman–Hartmanis Conjecture, since (a) AC0 reductions are the most natural
notion of reducibility to consider when presenting complete sets for small classes
such as NC1 or DSPACE(log n), and (b) all of the well-known complete sets
for NP and other complexity classes are complete even under AC0 reductions.

The work mentioned above leads us to ask whether, in fact, all sets complete
for a well-known complexity class (e.g., NP) under polynomial-time reductions
are already complete under AC0 reductions. (In regard to this question, it is
interesting to note that Veith (1998) shows that all “succinctly represented”
problems that are complete under polynomial-time reductions are complete un-
der AC0 reductions. In fact, these problems are all complete under projections,
which are an even more restrictive notion of reducibility.) This possibility may
seem unlikely, especially in light of the fact that there are many functions com-
putable in polynomial time that are not computable in AC0. However, it was
shown in Agrawal et al. (1998) that all sets complete under AC0 reductions
are complete under NC0 reductions, in spite of the fact that there are many
functions computable in AC0 that are not computable in NC0. In this paper,
we give a negative answer to this question by showing:

Theorem 1.1 (“Stop Gap Theorem”). There exists a set that is complete for
NP under Dlogtime-uniform AC0[mod 2] reductions but not under non-uniform
AC0 reductions.

Also, by derandomizing the version of the Switching Lemma used in Agrawal
et al. (1998) we extend the isomorphism theorem of Agrawal et al. (1998) to
P-uniform AC0 reductions:

cc 10 (2001) Reducing the complexity of reductions 119

Theorem 1.2. All sets complete for NP under P-uniform AC0 reductions are
isomorphic to each other via isomorphisms computable and invertible by depth-
three P-uniform AC0 circuits.

Finally, we show that the above result cannot be improved to depth two:

Theorem 1.3. There exist two sets—both complete for NP under Dlogtime-
uniform AC0 reductions—such that no isomorphism between the two sets can
be computed by depth-two non-uniform AC0 circuits.

This result implies that the isomorphisms cannot be computed by NC0

circuits since any NC0 circuit can be converted to a depth-two AC0 circuit. This
observation, coupled with the fact that the two sets above are also complete
under u-uniform NC0 reductions for any reasonable notion of uniformity u,
implies that the Berman–Hartmanis Conjecture is false for NC0 reductions for
any reasonable notion of uniformity.

As in Agrawal et al. (1998), all our results hold not just for NP, but for any
class closed under Dlogtime-uniform TC0-computable many-one reductions.

The paper is organized as follows. Section 2 presents definitions for the
classes of reductions considered in this paper. In Sections 3, 4, and 5 we
prove Theorems 1.1, 1.2, and 1.3 respectively. And finally, Section 6 contains
a discussion on the results obtained and future directions for research.

2. Basic definitions and preliminaries

We assume familiarity with the basic notions of many-one reducibility as pre-
sented, for example, in Balcázar et al. (1995, 1990). In this paper, only many-
one reductions will be considered.

A circuit family is a set {Cn : n ∈ N} where each Cn is an acyclic circuit
with n Boolean inputs x1, . . . , xn (as well as the constants 0 and 1 allowed as
inputs) and some number of output gates y1, . . . , yr. {Cn} has size s(n) if each
circuit Cn has at most s(n) gates; it has depth d(n) if the length of the longest
path from input to output in Cn is at most d(n). A family {Cn} is uniform if
the function n 7→ Cn is easy to compute in some sense. In this paper, we will
consider only Dlogtime-uniformity (Barrington et al. 1990) and P-uniformity
(Allender 1989) (in addition to non-uniform circuit families).

A function f is said to be in AC0 if there is a circuit family {Cn} of size
nO(1) and depth O(1) consisting of unbounded fan-in AND and OR and NOT
gates such that for each input x of length n, the output of Cn on input x is
f(x). Note that, according to this strict definition, a function f in AC0 must

120 Agrawal et al. cc 10 (2001)

satisfy the restriction that |x| = |y| =⇒ |f(x)| = |f(y)|. However, the imposi-
tion of this restriction is an unintentional artifact of the circuit-based definition
given above, and it has the effect of disallowing any interesting results about
the class of sets isomorphic to SAT (or other complete sets), since there could
be no AC0-isomorphism between a set containing only even length strings and
a set containing only odd length strings—and it is precisely this sort of indiffer-
ence to encoding details that motivates much of the study of isomorphisms of
complete sets. Thus we allow AC0-computable functions to consist of functions
computed by circuits of this sort, where some simple convention is used to en-
code inputs of different lengths (for example, “00” denotes zero, “01” denotes
one, and “11” denotes end-of-string; other reasonable conventions yield exactly
the same class of functions). For technical reasons, we will adopt the following
specific convention: each Cn will have nk + k log(n) output bits (for some k).
The last k log n output bits will be viewed as a binary number r, and the output
produced by the circuit will be the binary string contained in the first r output
bits. It is easy to verify that this convention is AC0-equivalent to the other
convention mentioned above, and for us it has the advantage that only O(log n)
output bits are used to encode the length. It is worth noting that, with this def-
inition, the class of Dlogtime-uniform AC0-computable functions admits many
alternative characterizations, including expressibility in first-order logic with
{+,×,≤} (Barrington et al. 1990; Lindell 1992)1, the logspace-rudimentary
reductions of Jones (Allender & Gore 1991; Jones 1975), logarithmic-time al-
ternating Turing machines with O(1) alternations (Barrington et al. 1990) and
others. This lends additional weight to our choice of this definition.

TC0 is the class of functions computed in this way by circuit families of
MAJORITY gates of size nO(1) and depth O(1); NC1 and NC0 are the classes
of functions computed in this way by circuit families of size nO(1) and depth
O(log n) (or O(1), respectively), consisting of fan-in two AND and OR and
NOT gates. Note that for any NC0 circuit family, there is some constant c
such that each output bit depends on at most c different input bits. The class
of functions in NC0 was considered previously in H̊astad (1987).

For a complexity class C, a C-isomorphism is a bijection f such that both
f and f−1 are in C. (To eliminate unnecessary notation, we follow standard
practice in ignoring the distinction between the set of decision problems C and
the closely-related set of functions. Thus, for instance, AC0 can be viewed as

1Lindell (1992) shows only that this coincides with first-order expressibility in first order
logic with {+,×,≤, exp}, where “exp” denotes exponentiation. However, personal commu-
nication from K. Regan and S. Lindell shows that exponentiation can be eliminated. For
details, see Immerman (1998).

cc 10 (2001) Reducing the complexity of reductions 121

either a set of languages or as a set of functions, with no confusion.) Since only
many-one reductions are considered in this paper, a “C-reduction” is simply a
function in C.

The theorems we prove in this paper hold for most complexity classes
that are of interest to theoreticians; we require only closure under Dlogtime-
uniform TC0 reductions. (That is, if A is in C, and B is reducible to A
via a many-one reduction computable in TC0, then B is in C.) Note that
most complexity classes, such as NP, P, PSPACE, BPP, etc., have this closure
property.

In fact, inspection of our proofs shows that our results hold even for any
class C that is closed under reductions computed by Dlogtime-uniform threshold
circuits of depth five. (The number five can probably be reduced.) We do not
know how to weaken the assumption to closure under reductions computed in
ACC0; it is easy to see that our results do not hold for some classes closed
under AC0 reductions. (For instance, the sets {1} and {1, 11} are both hard
for AC0 under AC0 reductions, but they are not isomorphic, and they are not
hard under NC0 reductions.)

A function is length-nondecreasing (resp. length-increasing, length-squaring)
if, for all x, |x| ≤ |f(x)| (resp. |x| < |f(x)|, |x|2 ≤ |f(x)|); it is C-invertible if
there is a function g ∈ C such that for all x, f(g(f(x))) = f(x).

3. Proof of Theorem 1.1

Let SAT be the set of strings coding satisfiable Boolean formulas (under some
standard coding scheme). SAT is complete for NP under Dlogtime-uniform
AC0 reductions (and, in fact, even under projections). Let PARITY be the set
of all binary strings with an odd number of ones. PARITY is in NP.

The idea behind the proof is as follows. We first define a function f that
is computable by AC0[mod 2] circuits, and is an error-correcting code capable
of correcting a “large” fraction of errors. Since f is 1-1, and computable in
Dlogtime-uniform AC0[mod 2], SAT is AC0[mod 2] reducible to f(SAT). Thus,
f(SAT) is complete for NP under AC0[mod 2] reductions. Assuming f(SAT) is
also complete under AC0 reductions (in that case, it is also complete under NC0

reductions by the Gap Theorem (Agrawal et al. 1998)), we consider an NC0

reduction of PARITY to f(SAT). For any input length n, most of the input
bits of the reduction circuit can influence very few output bits whereas the
strings in f(SAT) are very far apart. Thus, this circuit must map all inputs
in PARITY to the same output. This gives an AC0 circuit for PARITY, a
contradiction.

122 Agrawal et al. cc 10 (2001)

It turns out that the standard Reed–Solomon code can be used to define
function f . For the purpose of self-containment, we provide a description of
function f :

Input x, |x| = n. Let y = x10k with k being the smallest number
such that |y| is divisible by t (t = O(log n) to be fixed later). Let
y = a0a1 · · ·as where each ai has t bits. Let polynomial Y (z) =∑s

i=0 ai · zi where each ai is treated as an element of F2t—the finite
field of 2t elements. Let b1, . . . , b2t be an enumeration of all elements
of F2t. Output the string

Y (b1) · · ·Y (b2t),

where Y (bi) is evaluated over F2t.

Note that if x 6= x′ are two strings of length n, then f(x) and f(x′) differ
in at least 2t − s bits (and thus the fraction of the bit positions in which they
differ is at least (2t − s)/(t2t)). To see this, let Y and Y ′ be the associated
polynomials as defined above. Clearly f(x) and f(x′) agree in block j if and
only if (Y − Y ′)(bj) = 0. Since Y − Y ′ is a non-zero polynomial of degree s,
this can happen only for s distinct bj’s, and hence f(x) and f(x′) differ in at
least 2t − s blocks of t bits, which establishes the claim.

Number t should be O(logn) to ensure that f is polynomially bounded.
It should also be greater than log s = Θ(log n), since otherwise the code is
meaningless. To facilitate computing in F2t, we choose t = 2 ·3` for the smallest
` such that 2t ≥ 2n. For this choice of t, the polynomial zt+zt/2+1 is irreducible
in F2[z] and thus F2[z]/(zt + zt/2 + 1) = F2t .

With this value of t, the fraction of bits in which two codewords differ is

δ =
2t − s

t · 2t ≥
2t − 2t−1

t · 2t =
1

2t
≥ 1

24 logn

for large enough n.
Let us now consider the complexity of computing f(x). Consider any par-

ticular output bit. This bit of the output is one of the bits of Y (bj) for some
j ≤ 2t, where Y (z) is the polynomial

∑
i ai · zi, where each ai consists of

t = O(log n) bits of x.
Note that bij is a constant, not depending on the input x. It follows from

recent progress on the circuit complexity of division (Hesse 2001) that bij can
actually be made available as a constant in Dlogtime-uniform AC0; details can
be found in Theorem 3.2 below. Thus we can view the constants bij as being

cc 10 (2001) Reducing the complexity of reductions 123

“hardwired” into the circuit computing f . Next, consider how to compute
ai ·w, where w is any t-bit constant (such as w = bij). Of course, since ai is the
bitwise sum of its components, ai ·w can be expressed as a sum of t = O(log n)
terms of the form 0 . . . 0xj0 . . . 0 · z, where xj is one of the bits of x. The term
0 . . . 0xj0 . . . 0 · z can be computed by (1) obtaining a 2t-bit vector representing
the polynomial q of degree ≤ 2(t − 1) that one obtains by multiplying z by
0 . . . 0xj0 . . . 0 · z (this is just a left shift of z, unless xj is 0), and then (2)
finding (by table look-up) the t-bit vector vj such that q is equivalent to vj
mod zt + zt/2 + 1. Note that vj can be found in Dlogtime-uniform AC0, by
checking if there exists a vector v′ such that q − vj = v′ · (zt + zt/2 + 1). That
is, ai · w can be expressed a sum of O(log n) terms of the form vj, where each
component of vj is either 0 or xj. Thus ai · z can be computed by t PARITY
gates, each of which is computing the sum in F2 of a component of the vj’s.

The final output
∑

i ai · bij can thus be computed by t PARITY gates, each
connected to some of the PARITY gates computing ai · bij. This establishes
that f can be computed in Dlogtime-uniform AC0[mod 2].

A closer examination of the foregoing algorithm shows that the AND and
OR gates are used only in computing certain constants that do not depend on
the input, and that each bit of the output is simply the PARITY of some of
the input bits (and these connections can be computed in Dlogtime-uniform
AC0). This establishes that f is computed by very uniform depth-one circuits
consisting only of PARITY gates.

Let S = {f(x) : x ∈ SAT}. Since f is 1-1, it is a reduction from SAT
to S. Since f is computable in (Dlogtime-uniform) AC0[mod 2], and SAT
is NP-complete under AC0 reductions, S is NP-complete under (Dlogtime-
uniform) AC0[mod 2] reductions. Suppose, for a contradiction, that S is NP-
complete under non-uniform AC0 reductions. In particular, there must be an
AC0 reduction from PARITY to S. By invoking the Gap Theorem of Agrawal
et al. (1998), we see that there must be an NC0 reduction from PARITY to S.
In fact, it is shown in Agrawal et al. (1998) that this NC0 reduction has the
property that the length of the output depends only on the length of the input.
Let this reduction be computed by circuit family Cn.

Fix an integer n, and consider the circuit Cn that defines the reduction on
strings of length n. Let Cn have m output bits. There is a constant b such
that each output bit of the circuit Cn depends on at most b input bits. Let oi
be the number of output bits that depend on variable xi. The sum of oi’s is
therefore bounded by mb. Hence at most 2b/δ = O(log n) oi’s can be greater
than δm/2. In other words, at most 2b/δ input variables influence (i.e., are
inputs to) ≥ δm/2 output bits. Thus we can set these O(log n) additional

124 Agrawal et al. cc 10 (2001)

input variables and obtain an NC0 circuit family on n′ ≥ n − O(log n) input
variables that also reduces PARITY to S, and has the property that every
input variable influences fewer than δm/2 output bits. Call this new circuit
Dn′, and let g be the function computed by it.

Consider two strings x1, x2 of length n′ that are in PARITY and that differ
in exactly two locations i and j. We claim that g(x1) = g(x2). Otherwise
g(x1) and g(x2) differ in at least δm locations (since they map to two distinct
codewords in f(SAT)), and these δm locations are influenced by variables i and
j, in contradiction to the construction of Dn′. Since any string x of length n′ in
PARITY can be obtained from 10n

′−1 by a sequence 10n
′−1 = x1, x2, . . . , xr = x

where xi and xi+1 differ in exactly two locations, it follows that the strings of
length n′ in PARITY can be characterized as the set {x : g(x) = g(10n

′−1)}.
Thus, we can construct a circuit that first computes g(x) using Dn′ and then
checks equality with g(10n

′−1) using a single “AND” gate of fan-in m. This

constant-depth circuit has size O(|Cn|) = nO(1) = n′O(1), and since n′ gets
arbitrarily large as n does, this contradicts the lower bounds for computing
parity via constant-depth circuits (Ajtai 1983; Furst et al. 1984).

Examining the proof, we used only the facts that PARITY ∈ NP, NP
has a complete set for AC0[mod 2] reductions, and that NP is closed under
AC0[mod 2] reductions. Generalizing, we get:

Theorem 3.1. Let R be a class of functions closed under composition and
containing Dlogtime-uniform AC0[mod 2]. Let C be a complexity class closed
under both Dlogtime-uniform TC0 reductions and R-reductions, and having a
set that is complete under R-reductions. Then C contains an R-complete set
that is not complete under non-uniform AC0 reductions.

3.1. Powering in finite fields. To complete the proof of Theorem 1.1, we
need only provide the proof that powering in small finite fields can be performed
in Dlogtime-uniform AC0.

Theorem 3.2. Let t = 2 ∗ 3` for some `, where t = O(log n). Then, given
input (a, i, b) of length O(log n), it can be determined in Dlogtime-uniform
AC0 if ai = b, where a and b are elements of F2t.

We remark that the restriction on t is merely so that we can be explicit
about our choice of an irreducible polynomial. In Dlogtime-uniform AC0, it
is possible to locate the lexicographically-first irreducible polynomial of degree
t = O(log n), and use it to represent F2t, for any choice of t.

cc 10 (2001) Reducing the complexity of reductions 125

Proof. By Hesse (2001), it is sufficient to show that a Dlogtime-uniform
AC0 circuit family exists that takes as input the binary representations of
r elements of F2t (where r = O(log n); call these elements (a1, . . . , ar)) and
computes

∏
i ai.

Each of the ai’s can be viewed as a polynomial over F2 (taken modulo the
irreducible polynomial zt + zt/2 + 1). Our approach, modeled on Frandsen
et al. (1994), will be to use Chinese Remaindering over the ring of polynomials
over F2.

Let h(z) be the polynomial z2b − z, where b is the smallest number such
that 2b > rt = O(log2 n). As pointed out in Frandsen et al. (1994), h has 2b

distinct factors in F2b , and thus each of the irreducible factors of h (call them
h1, . . . , hk) has degree bounded by b = O(log t) = O(log log n).

By Lemma 3.3 below, in uniform AC0 we can test, for each short bit string
representing a small polynomial h′, if h′ divides h. Also, it is simple to check,
for such a polynomial h′, that no other polynomial divides h′. Thus we can
find the irreducible factors of h in uniform AC0.

Let A be the polynomial of degree O(log2 n) that results by taking the
product of the polynomials representing (a1, . . . , ai) in F2[z]. By Chinese Re-
maindering, A can be represented by the sequence (Â1, . . . , Âk), where Âj is
the remainder obtained when dividing the polynomial A by hj. Similarly, if we

let âi,j be the remainder of dividing ai by hj, then we have Âj =
∏

i âi,j, where
the product is taken in F2[z]/hj . Since the multiplicative group of F2[z]/hj
is cyclic and of size logO(1) n, it is easy in Dlogtime-uniform AC0 to find a
generator of F2[z]/hj , and compute a table of discrete logs relative to this gen-
erator. (To see this, for each potential generator g, build a graph with nodes
for group elements and edges representing multiplication by g. Each node can
be represented with O(log log n) bits; thus a path of length log n/log log n can
be represented with O(log n) bits. Hence it is easy in Dlogtime-uniform AC0

to determine if there is a path of length i < log n/log log n between two nodes.
Iterating this construction O(1) times allows one to look for paths of length
logO(1) n. The node g is a generator if and only if the graph is connected.) Now
the product

∏
i âi,j can be computed by adding the discrete logs. Since addition

of logO(1) n numbers can be performed in Dlogtime-uniform AC0, it is clear that
we can compute the Chinese Remainder representation of A, (Â1, . . . , Âk), in
Dlogtime-uniform AC0.

To complete the proof, we need only show how we can obtain the coefficients
of A from the Chinese Remainder representation, and then divide A by zt +
zt/2 +1 to obtain the representative element of F2[z]/(zt+zt/2 +1). (This latter
division can be accomplished, by appeal to Lemma 3.3.)

126 Agrawal et al. cc 10 (2001)

By the Chinese Remainder Theorem, A is equivalent to
∑k

i=1 Âicidi modulo
h, where ci = h/hi, and di is an element of F2[z]/hi such that cidi = 1 mod hi.
By Lemma 3.3, the representation of ci can be computed in Dlogtime-uniform
AC0. Since F2[z]/hi is so small, di can be found by brute force. Thus we can
compute each term of the sum. Since there are only log n terms in the sum, and
each component of the term can be computed by taking the parity of O(log n)
elements, we can compute the coefficients of A, as required. �

Lemma 3.3. Let k ∈ N. Then there is a Dlogtime-uniform AC0 circuit family
that takes as input a sequence of coefficients defining two polynomials h1 and
h2 ∈ F2[z] of degree logk n, and outputs the sequence of coefficients for polyno-
mials q and r such that the degree of r is less than the degree of h2, and such
that h1 = h2 · q + r. That is, division with polynomials of degree logO(1) n, and
finding remainders, can be performed in Dlogtime-uniform AC0.

Proof. Let m = logk n. Eberly (1989) shows that division of polynomials of
degree m is reducible to the problem of computing the product of mO(1) integers,
each having mO(1) bits. Eberly claims only an NC1-Turing reduction, but an
examination of his proof shows that it can be implemented as a Dlogtime-
uniform AC0-Turing reduction. However, it is shown in Hesse (2001) that
computing the product of logO(1) n integers, each of length logO(1) n, can be
computed in Dlogtime-uniform AC0. �

4. Proof of Theorem 1.2

Our proof of Theorem 1.2 results from a technical improvement of one of the
steps from the proof of the Isomorphism Theorem in Agrawal et al. (1998).
We will not repeat the construction here, but we will provide a very high-level
sketch of the approach taken there. There are three main parts of the argument
in Agrawal et al. (1998):

◦ a gap theorem (to which we have already referred in this paper), stating
that sets complete under AC0 reductions are also complete under NC0

reductions,

◦ a technical theorem, showing that all sets complete under NC0 reductions
are complete under easily invertible reductions called superprojections,
and

◦ an isomorphism theorem, showing that all sets complete under superpro-
jections are isomorphic under depth-three AC0 isomorphisms.

cc 10 (2001) Reducing the complexity of reductions 127

The technical theorem and the isomorphism theorem of Agrawal et al. (1998)
also hold in the P-uniform setting. Thus, in order to prove Theorem 1.2, it
suffices to prove a P-uniform version of the Gap Theorem:

Theorem 4.1. All sets hard for NP under P-uniform AC0 reductions are hard
for NP under P-uniform NC0 reductions.

We now outline the proof of the Gap Theorem of Agrawal et al. (1998)
in order to identify the non-uniform step. Let A be a hard set for NP under
AC0 reductions. We need to show that any set B in NP has an NC0 reduction
to A. For this, first a version B ′ of B is defined with a lot of redundancy:
corresponding to a string x in B, B ′ has many strings with each such string y
having |x| blocks of bits such that the ith bit of x equals the parity of the ith block
of bits of y (this is not the exact definition of B ′ as in Agrawal et al. (1998) but
captures the essential idea). The set B ′ also is in NP and therefore there is an
AC0 reduction, given by circuit family {Cm}, of B′ to A. It is implicit in Furst
et al. (1984) and Ajtai (1983) (and a detailed proof is provided in Agrawal
et al. (1998)) that a random restriction2 of the input variables of circuit Cm

transforms it (with high probability) to an NC0 circuit on at least mε bits for
some ε > 0. If we divide the input into n blocks of equal length with n = mε/2,
a simple probability calculation shows that in the random restriction, with high
probability, each of these blocks would have at least three unset bits. Fix a
restriction τm that has both the above properties. Modify this restriction as
follows: in each block, set all but one of the unset bits in such a way that parity
of all the set bits in the block becomes zero. (Since each block starts with at
least three unset bits, we can always do this—actually two unset bits suffice
for this but three unset bits are needed for technical reasons in Agrawal et al.
(1998).) Let this modified restriction be τ ′m (clearly, τ ′m transforms Cm to an
NC0 circuit on n bits). We now define a reduction of B to B ′ as: given x,
|x| = n, output τ ′m(x) which is the string constructed from τ ′m by filling in the
ith bit of x into the unset bit of the ith block of τ ′m. By the definition of B′,
x ∈ B iff τ ′m(x) ∈ B′. Also, this reduction has trivial circuit complexity—it is
just a projection. A composition of this circuit with Cm yields an NC0 circuit
which reduces B to A, completing the proof.

In the above construction, although the circuit computing the reduction
of B to B′ is trivial, it is non-uniform since it requires a “good” random re-
striction τm. In the lemma below, we show how to compute such a restriction

2A random restriction here leaves each bit unset with probability 1/m1−2ε, and sets it to
1 or 0 with probability 1

2 (1− 1/m1−2ε) each.

128 Agrawal et al. cc 10 (2001)

in polynomial-time given the circuit Cm. Now if the circuit family {Cm} is
P-uniform, the entire construction becomes P-uniform, proving the uniform
version of the Gap Theorem.

Lemma 4.2. For any AC0 reduction computed by a family {Cm} of circuits,
there exists an a ∈ N such that, for all large m of the form r2a, there is a
restriction τm such that τm transforms Cm into an NC0 circuit, and τm assigns
∗ to at least three variables in each block of length r2a−1. Furthermore, τm can
be computed in time polynomial in m if {Cm} is P-uniform.

The remainder of this section is devoted to proving Lemma 4.2.

4.1. Derandomizing the switching lemma. In this section we provide
a proof that the switching lemma can be carried out feasibly. More precisely,
given a circuit C of depth d, and size S = nk, with n = rm underlying variables
arranged into r blocks, each of size m = ra (a depends on d and k), there exists
a restriction ρ to the variables such that each output bit of Cdρ depends only
on a constant number of variables, and each of the r blocks has at least r2

variables left unset. Furthermore, we give a uniform algorithm for finding ρ in
time polynomial in the size of C.

The switching lemma statement and proof that we will follow is a simplifi-
cation of that due to Furst, Saxe and Sipser but with two additional compli-
cations: (1) we need to take the blocks into account and (2) we need to give
polynomial-time algorithms for finding the restrictions.

Let C be a depth d, size S = nk circuit. It will be convenient for us to
consider a modified class of circuits, consisting of usual AND and OR gates,
but at each “input” gate to the circuit we instead attach a decision tree; the
circuit receives as input the value (0 or 1 or xi) that is reached by querying
the input bits specified by the decision tree and proceeding to a leaf of the
decision tree. Thus an ordinary circuit corresponds to the case where we use
decision trees of height zero. We will assume without loss of generality that C
is arranged into d alternating levels of AND and ORs, and at the leaves of the
circuit are constant-depth decision trees of height ≤ c1. The constant c1 will
be chosen to be sufficiently large as a function of k, where nk = S is the size
of the original circuit. The proof will proceed in d steps. At step one, we will
apply c1 successive restrictions in order to replace the bottom levels of (ANDs
of constant-depth-c1 decision trees) by (constant-depth-c2 decision trees), or
similarly, in order to replace the bottom levels of (ORs of constant-depth-c1

decision trees) by (constant-depth-c2 decision trees). In general in step i, we
will be applying ci restrictions in order to replace the bottom levels of ANDs

cc 10 (2001) Reducing the complexity of reductions 129

and ORs of constant-depth-ci decision trees by depth-ci+1 decision trees. Thus
after d steps, the total number of restrictions applied will be c1 + · · ·+ cd, with
ci restrictions at step i, for d steps. The underlying variables will always be
grouped into r blocks, where the block size will be m = m1 at the start. After
applying one restriction, we will still have r blocks, and exactly m

1/4
1 variables

will remain unset within each block. (If a restriction is applied to r blocks,
each of size m, then the restriction will consist of a first part where rm1/2

variables are chosen uniformly to be set to ∗, and with the condition that no
block will have size less than m1/4, and then a second clean-up part where we
set additional variables so that each block will have uniform size m1/4.) Thus

after one step, there will be r blocks, each of size m2 = m
1/4c1

1 , and finally after

d steps, there will be r blocks, each of size md+1 = m
1/4c1+···+cd
1 .

We will now describe one step. Assume that the bottom level subcircuits
have the form: AND of depth-c1 decision trees. Then each such subcircuit
can be expressed as an AND of size-c1 ORs. Let S1, . . . , Sq be the set of
(polynomially many) ANDs of size-c1 ORs. The first step proceeds in c1 stages
as follows.

In stage 1, we will find a restriction ρ such that for each i, Sidρ has a partial
decision tree of constant depth c′1, and where each leaf is labeled by either a
constant, or by an AND of size-(c1 − 1) ORs. The restriction ρ is obtained by
using Algorithm A. Stage j is the same as stage 1, but now the set of formulas
under consideration (the Si’s) are the non-constant formulas labeling the leaves
of the decision trees that have been created thus far. After stage j, we have
created partial decision trees for the original Si’s, where now the leaves of the
tree are labeled either by constants or by ANDs of size-(c1 − j) ORs. For each
stage, we use Algorithm A to find the restriction. Finally after c1 stages, we
have decision trees for the original Si’s where all leaves are labeled by constants.

After one step, we have gone from a depth-d size-S circuit with rm1 un-
derlying variables, arranged into r blocks, where each block has size m1, to a
depth-(d − 1) size-S circuit, where now the number of underlying variables is
rm2, again arranged into r blocks, and where each block has size m2. It is easy
to see that now the bottom level consists of decision trees of depth c′1c1, which
will be chosen to be at most c2. After repeating this for d steps, each output
gate of the original circuit will be represented by a depth-cd+1 decision tree on
the remaining variables. At the end, there will be rmd+1 remaining variables,
again consisting of r blocks, each containing md+1 variables.

We will now define the relationships between the various parameters. First,
c1 = O(k), and for all i ≥ 2, ci = 8ci−1 . For all i ≥ 1, c′i = 6ci. Thus, for
each i, we have c′ici ≤ ci+1 as required. Initially there are rm1 variables. One

130 Agrawal et al. cc 10 (2001)

restriction ρ will set all but m
1/4
1 variables per block. Thus after one restriction,

there are rm
1/4
1 variables remaining, and after one step, there are rm2 variables

remaining (m2 variables per block), where m2 = m
1/4c1

1 .

The number of variables remaining after d steps is md+1 = m
1/4c1+···+cd
1 ≥

m
1/5cd
1 . Recall that initially, there are r blocks, each of size m1 = ra for some a,

and we want it to be the case that after all restrictions are successfully applied
to reduce the circuit, the final block size, md+1, is at least r2. It should be clear
that a can be chosen to be sufficiently large (depending on k and d) such that
this holds.

We will now describe Algorithm A.

4.2. Algorithm A. The input to this algorithm is a collection of polynomi-
ally many formulas Q1, . . . , Qq, where each Qi is an AND of size-c ORs. (Or
alternatively, each Qi is an OR of size-c ANDs. This case is handled dually
so we will not consider it here.) There are rm underlying variables, arranged
into blocks b1, . . . , br, where each block has size m. (The value of m will be
ra for a appropriately chosen. Thus, m is a polynomial in r.) The output is
a restriction ρ such that: (1) ρ assigns exactly m1/4 ∗’s to each block, and all
other variables are set to 0 and 1; (2) for each Qi, we can construct a depth-c′

decision tree for Qidρ such that the leaves of the decision tree are all labeled
by either a constant, or by an AND of size-(c− 1) ORs.

We follow the usual convention and refer to an OR of literals as a clause.
Given a Qi, we define a set Maxset(Qi) of clauses as follows. First find the lex-
icographically first set of clauses in Qi that are variable-disjoint. If the number
of clauses in this set is greater than f log m (for a suitably chosen constant f
whose value will be fixed later), then let Maxset(Qi) be the lexicographically
first f log m of these clauses. (So |Maxset(Qi)| ≤ f log m.) We divide the Qi’s
into two disjoint sets: First, {n1, . . . , ns}, the narrow formulas, are those Qi’s
such that |Maxset(Qi)| < f log m. Secondly, {w1, . . . , wt}, the wide formulas,
are those Qi’s such that |Maxset(Qi)| = f log m. We will find a restriction ρ
setting all but rm1/2 variables such that:

(1) ρ assigns at least m1/4 ∗’s to each block;

(2) for each ni, the number of underlying literals in Maxset(ni) that are set
to ∗ by ρ is at most c′; and

(3) for each wj, at least one clause in Maxset(wj) is set to 0 by ρ.

Once we have found such a restriction, we set additional variables in order
to set all but exactly m1/4 variables per block. Secondly, for each wj, we can

cc 10 (2001) Reducing the complexity of reductions 131

create the trivial decision tree for wjdρ labeled by 0. Thirdly, for each ni, we
can create a depth c′ decision tree for nidρ by querying the ∗’d variables in
Maxset(ni)dρ. By property (2), there are at most c′ such variables. Once these
have all been queried, we are left at each leaf with either a constant or with an
AND of size-(c− 1) ORs, since any other clause intersects at least one variable
of Maxset(ni), and all variables in Maxset(ni) have been set.

The following three lemmas show that for suitable choices of the parameters,
such a restriction ρ exists.

Lemma 4.3. Let {b1, . . . , br} be a partition of the underlying rm variables into
r blocks. Let Bi be the event that block bi has less than m1/4 ∗’s after ρ is
applied. Then

∑
i Pr[Bi] ≤ 1/4, where the probability is over all restrictions ρ

setting exactly rm1/2 variables to ∗.

Proof. Let p be the probability that a particular element is ∗’d. Then
p = 1/

√
m. Let the size of bi be m and let l = m1/4 − 1. Then we have, for all

large m,

Pr[Bj] =
l∑

i=0

(|bj|
i

)
pi(1− p)|bj |−i ≤

l∑

i=0

e−mp
(

m

i

)

≤ l(mle−pm) ≤ 2−m
1/4

.

Summing up over all Bj shows that the total probability is at most 1/4. �
We will apply the above lemma repeatedly, for smaller and smaller values

of m. However, for each application, m will be equal to mε
1 for some very tiny ε,

which will be equal to rδ for δ = lε, and thus the above probability will always
be less than 1/4.

Lemma 4.4. Consider the set {s1, . . . , sS} where each si is a collection of at
most cf log m literals, where S is a polynomial in m, and where the si’s are
pairwise disjoint. (For a given narrow formula ni, si is the set of variables that
underly the clauses in Maxset(ni); since there are fewer than f log m clauses
in Maxset(ni), the total number of variables in si is at most cf log m.) Let Ni

be the event that si has more than c′ ∗’s after ρ is applied. (I.e., Ni is the bad
event that the narrow formula ni does not have property (2) above.) Then as
long as S < mc′/4,

∑
i Pr[Ni] ≤ 1/4.

Proof. Let rm be the original number of variables, and let m′ = r
√

m be the
number of ∗’d variables in ρ. Then p = m′/m = 1/

√
m is the probability that a

particular variable is set to ∗ by a random ρ. We will first get an upper bound
on Pr[Ni]. The expected number of elements in si set to ∗ is |si|p ≤ O(logm)p.

132 Agrawal et al. cc 10 (2001)

The probability that there are more than c′ ∗’s in si is at most

(|si|
c′

)
pc
′ ≤

(
e|si|p

c′

)c′
=

(
ecf log m

c′
√

m

)c′
< (f log m/

√
m)c

′
.

Since there are S many si’s, the total probability of failure is at most

(f log m/
√

m)c
′
S ≤ m−c

′/4S/4

for sufficiently large m. Thus, as long as S < mc′/4, the overall probability is
at most 1/4. �

We will apply the above lemma repeatedly. At the start of each step i,
S ≤ nk, and at the end of stage j in step i, S will be bounded by 2jc

′
ink. Thus

in all cases where we apply the lemma, S will be bounded by 2ci+1nk < 2ci+1m2k
1 .

At step i, m will be equal to mi, c will be equal to ci, and c′ will be equal to c′i.

For our choices of parameters (c′i = 6ci and mi > m
1/5ci
1), our condition that S

be less than mc′/4 thus holds if 2ci+1m2k
1 < m

6/5ci/4
1 , which holds for all large m1.

Lemma 4.5. Let {w1, . . . , wS} be ANDs of size-c ORs, where for each wi,
|Maxset(wi)| = f log m. (The wi’s are the wide formulas.) Let the underlying
universe be of size rm. For a given wi, let Wi be the bad event that no clause
in Maxset(wi) is set to zero. Then if S < e(f logm)/4c/4, then

∑
i Pr[Wi] ≤ 1/4.

(That is, with probability at most 1/4, a random restriction setting rm1/2

variables to ∗ has the property that for some wi, no clause in Maxset(wi) is set
to 0 by ρ.)

Proof. For a given wi, let s1, . . . , sf logm denote the underlying (disjoint)
clauses in Maxset(wi). We will first show that for a given polynomial p(m)
there exists an f (depending on p(m) and c) such that Pr[Wi] < 1/(4p(m)):

Pr[Wi] =

f logm∏

j=1

Pr[sj is not all zero] =

f logm∏

j=1

(1− Pr[sj is all zero])

=

f logm∏

j=1

(
1−

(
rm− r

√
m

2rm

)c)
≤

f logm∏

j=1

(1− (1/4)c)

= (1− (1/4)c)f logm ≤ e−(f logm)/4c .

Since the total number of wi’s is S, the total probability that some wi does
not have a clause in Maxset(wi) that is set to 0, is at most 1/4, by our choice
of parameters. �

cc 10 (2001) Reducing the complexity of reductions 133

Once again, we will be applying the above lemma repeatedly for various

values of c and m. At step i, m is equal to mi > m
1/5ci
1 ≥ m

1/5cd
1 , and in all

cases c ≤ cd. In all applications, we will pick the constant f to be equal to
cd+2. As in our analysis of Lemma 4.4, in all applications S will be bounded
by 2cd+1m2k

1 . Hence,

S < 2cd+1m2k
1 < 2cd+1e2k logm1 < e(cd+2/20cd) logm1 = e(f logm

1/5cd
1)/4cd < ef logm/4c .

We now want to obtain a good ρ using the method of conditional proba-
bilities (Alon & Spencer 1992). We will obtain ρ by choosing one element at
a time to be set. That is, we first choose one of the rm variables and set it
to 1 or 0; equivalently we choose one of the 2rm literals and set it to 1. Then
we choose one of the remaining 2(rm− 1) literals and set it to 1. The process
terminates after we have set a total of rm− rm1/2 variables.

The algorithm for finding ρ proceeds as follows. First, for each of the 2rm
literals l, we calculate the following quantities exactly: Pr[Bi | l], Pr[Nj | l]
and Pr[Wk | l], where Pr[Bi | l] is the probability of event Bi, over a ran-
domly chosen ρ, given that literal l is set to 1. Each of these quantities can
be calculated exactly in polynomial time. We choose a literal l to be set to 1
such that the sum

∑
i Pr[Bi | l] +

∑
j Pr[Nj | l] +

∑
k Pr[Wk | l] is minimized.

By the three lemmas above,
∑

i Pr[Bi] +
∑

j Pr[Nj] +
∑

k Pr[Wk] is at most
3/4. Thus it follows that for some variable l we do at least as well as 3/4.
(There are two arguments to see that this follows: (1) you can view the sample
space of possible ρ’s as larger than the original one, where the rm − rm′ set
variables are ordered, and then do the following calculations relative to this
enlarged sample space. In this case, the conditions l are independent so when
we do the above sum over all 2rm conditions l we get exactly the same number
as the original unconditional sum. Or (2) work in the original sample space
of possible ρ’s. In this case, the conditional spaces given l are not indepen-
dent, but they are completely symmetric so the averaging argument is still
valid.)

We repeat this argument rm − rm1/2 times, at each point conditioning
upon the set H of variables set thus far. At the end, we are guaranteed to have
obtained a good restriction since we maintain that the conditional probability
is always no greater than the original probability which is less than 1.

It remains to show how to exactly calculate the quantities Pr[Bi | H],
Pr[Nj | H], and Pr[Wk | H], where H is a collection of at most rm − rm1/2

variables that have been set.
Let A be a set of size a; let H be a set of h variables that have been set; let

|A ∩ H| = d; let rm be the original universe size, and let rm′ be the number

134 Agrawal et al. cc 10 (2001)

of ∗’s after ρ has been applied. Then the probability that Adρ has more than l
∗’s, given that every variable in H has already been set to 0 or 1, is

a∑

i=l+1

(
a−d
i

)(
rm−a−h+d
rm′−i

)
(
rm−h
rm′
) .

This quantity is used to calculate exactly Pr[Nj | H], and a very similar
formula can be used to calculate Pr[Bi | H]. Calculating Pr[Wk | H] exactly
is more work. Consider a particular wk, and let s1, . . . , st, t = f log m, de-
note the f log m disjoint clauses in Maxset(wk), each consisting of the OR
of at most c disjoint literals. Recall that Wk is the event that none of the
si’s are set to 0 by ρ. In order for this to happen, each si must have at
most |si| − 1 of its literals set to 0, and the remaining literals in si can be
set to either ∗ or 1. We calculate this quantity straightforwardly by con-
sidering all possible subsets xi and yi of si, where xi is the set of at most
|si| − 1 literals in si set to 0, and yi is the subset of remaining literals in
si set to 1. While doing the calculation, we have to keep track of which of
these possibilities are actually not valid due to the fact that H has already
been set. Let I(x1, y1, . . . , xf logm, yf logm, H) be an indicator random variable
that outputs 1 if the assignment given by setting all literals in the xi’s to
zero, and setting all literals in the yi’s to one, is consistent with the assign-
ment H. Also let b = |H ∩ (s1 ∪ . . . ∪ st)|. We can compute Pr[Wk | H]
as A/(

(
rm

rm−rm′
)
2rm−rm

′
), where A is given by the sum over all x1, y1, . . . , xt, yt

of the following quantity, where the xi’s and yi’s satisfy: x1 ⊂ s1, |x1| ≤
|s1| − 1, y1 ⊂ s1, x1 ∩ y1 = ∅, . . . , xt ⊂ st, |xt| ≤ |st| − 1, yt ⊂ st,
xt ∩ yt = ∅:

I(x1, y1, . . . , xt, yt, H)

×
(

rm− |s1| − · · · − |st| − h + b

rm− rm′ − |x1| − |y1| − · · · − |xt| − |yt| − h + b

)

× 2rm−rm
′−|x1|−|y1|−···−|xt|−|yt|−h+b.

Since |si| ≤ c, there are at most 2c values for the variables xi and yi. Thus
the total number of terms in the above summation is bounded by 2ct = 2cf logm,
which is polynomial in m.

To see that the entire algorithm is polynomial time, note that the num-
ber of iterations of the above algorithm is rm − rm′, and each iteration takes
time polynomial in m. Furthermore, the entire procedure for finding ρ is poly-
nomial time, since we apply the above algorithm for a constant number of
stages, and at each stage the number of formulas under consideration is also
polynomial.

cc 10 (2001) Reducing the complexity of reductions 135

5. Proof of Theorem 1.3

Let A be any AC0-complete set for NP. Define two sets based on A:

E = {x : (x = 10y and y ∈ A) or (10 is not a prefix of x)},
F = {x : x = yz, and z = ȳ, and y ∈ A}.

(Here, ȳ denotes the binary string that is the bitwise complement of y.)
It is obvious that both of these sets are AC0-complete for NP. Now suppose

that these two sets are isomorphic to each other under isomorphism h, com-
puted by a depth-two AC0 circuit family. Let {Dn} be the family of depth-two
AC0 circuits computing h that reduces F to E.

We first observe that 01Σ∗ ⊆ E. Therefore, h−1(01Σ∗) ⊆ F . Since h−1 can
blow up the size only polynomially, there exists a polynomial p such that for
any n there is a number m ≤ p(n) such that the set h−1(01Σn)∩Σ2m contains
at least 2n/p(n) strings.

Choose a large enough n, and the corresponding m as above. Consider the
circuit D2m. Assume that D2m has OR gates at the bottom level, and AND
gates at the top. Observe that if, on an input x, the first (i.e., leftmost) output
bit of D2m is zero, then h(x) ∈ E, and therefore x ∈ F , which, in turn, means
that x = yȳ for some string y of length m. Let this first output bit be denoted
by `. The subcircuit computing ` is an AND of ORs. Thus, ` can be written as

` = c1 ∧ · · · ∧ cr

where each ci is a disjunction of literals. We now claim that each ci must
contain all the 2m input variables. Suppose not. Let cj be a disjunction not
containing all the variables. Set all the variables occurring in cj to make it
evaluate to false. Therefore, ` = 0. This implies that x = yȳ for some y as
noted above. However, since not all bits of x are set, we can assign the unset
bits a value so as to have x /∈ F . Contradiction. Therefore, each of ci must
contain all the variables.

Now, ` would be zero for exactly r of the input strings where r is bounded
by a polynomial in n. However, at least 2n/p(n) strings must be mapped by
D2m to strings beginning with a zero. Since n was chosen to be large enough,
this is a contradiction.

A similar argument can be given for the case when D2m is an OR of ANDs
using the second bit of the output of D2m (whenever this bit is 1, the input
must belong to F). Therefore, there is no depth-two AC0 circuit family that
computes an isomorphism between E and F .

136 Agrawal et al. cc 10 (2001)

6. Conclusions

Although Theorem 1.1 shows that not all sets complete under AC0[mod 2] re-
ductions are AC0-isomorphic, it is natural to wonder if they are all AC0[mod 2]-
isomorphic, or if there is some other sort of Gap Theorem that still awaits
discovery. In this regard, it is worth noting that the sets constructed in the
proof of the Stop Gap Theorem are, in fact, all AC0[mod 2]-isomorphic to SAT.
(Sketch of proof: The sets we construct are all complete under reductions com-
putable by depth-one circuits consisting entirely of parity gates. Reductions
of this sort are trivial to invert: If the string y is given, and we want to see if
there is an x such that f(x) = y, then the conditions on the xi form a system
of linear equations in the yj, and in fact each xi is the parity of some subset
of the yj. Thus we simply find what the xi would have to be if they map to y,
and then do a few consistency checks. At this point the techniques of Agrawal
et al. (1998) can be used to build the isomorphisms.) It is not clear how to
extend this observation to handle sets complete under (PARITY of AND) or
(AND of PARITY) reductions.

We especially call attention to the following problems:

1. Does the Berman–Hartmanis Conjecture hold for AC0[mod 2] reductions?
That is, are all of the sets that are complete under AC0[mod 2] reductions
isomorphic under AC0[mod 2] isomorphisms?

2. Assuming the existence of a function that is one-way in a very strong
average case sense, is it possible to construct a counter-example to the
original Berman–Hartmanis Conjecture?

3. Is there any class C such that Dlogtime-uniform AC0-complete sets for C
are all Dlogtime-uniform AC0-isomorphic?

Very recently, Agrawal has provided a very strong affirmative answer to
question 3: Every class C closed under Dlogtime-uniform TC0 reductions has
this property. More precisely, Agrawal (2001b) improves our Theorem 1.2 to
replace the P-uniformity condition by L-uniformity, and then this is improved
further in Agrawal (2001a) to achieve Dlogtime-uniformity.

Acknowledgements

We acknowledge helpful conversations with O. Goldreich, J. Lafferty, M. Ogi-
hara, D. van Melkebeek, R. Pruim, M. Saks, D. Sivakumar, William Hesse,
David Mix Barrington, and D. Spielman.

cc 10 (2001) Reducing the complexity of reductions 137

A preliminary version of this work appeared in Proc. 29th ACM Symposium
on Theory of Computing (STOC 1997).

Part of the first author’s research was done while visiting the University of
Ulm under an Alexander von Humboldt Fellowship. The research of the second
author was supported in part by NSF grants CCR-9509603, CCR-9734918,
and CCR-0104823. The research of the third author was supported by NSF
Awards CCR-92-570979 and CCR-0098197, by Sloan Research Fellowship BR-
3311, and USA-Israel BSF Grant 97-00188. The research of the third author
was supported by NSF Award CCR-94-57782, and USA-Israel BSF Grant 95-
00238.

References

M. Agrawal (2001a). The first-order isomorphism theorem. In Proc. 21st
Foundations of Software Technology and Theoretical Computer Science Conference
(FST&TCS), Lecture Notes in Comput. Sci., Springer, to appear.

M. Agrawal (2001b). Towards uniform AC0-isomorphisms. In Proc. 16th IEEE
Conference on Computational Complexity, 13–20.

M. Agrawal, E. Allender & S. Rudich (1998). Reductions in circuit complexity:
An isomorphism theorem and a gap theorem. J. Comput. System Sci. 57, 127–143.

M. Ajtai (1983). Σ1
1 formulae on finite structures. Ann. Pure Appl. Logic 24, 1–48.

E. Allender (1989). P-uniform circuit complexity. J. Assoc. Comput. Mach. 36,
912–928.

E. Allender & V. Gore (1991). Rudimentary reductions revisited. Inform. Pro-
cess. Lett. 40, 89–95.

N. Alon & J. Spencer (1992). The Probabilistic Method. Wiley.

J. Balcázar, J. Dı́az & J. Gabarró (1995, 1990). Structural Complexity Theory I
and II. Springer.

D. A. M. Barrington, N. Immerman & H. Straubing (1990). On uniformity
within NC1. J. Comput. System Sci. 41, 274–306.

L. Berman & J. Hartmanis (1977). On isomorphism and density of NP and other
complete sets. SIAM J. Comput. 6, 305–322.

W. Eberly (1989). Very fast parallel polynomial arithmetic. SIAM J. Comput. 18,
955–976.

138 Agrawal et al. cc 10 (2001)

G. Frandsen, M. Valence & D. M. Barrington (1994). Some results on uniform
arithmetic circuit complexity. Math. Systems Theory 27, 105–124.

M. Furst, J. B. Saxe & M. Sipser (1984). Parity, circuits, and the polynomial-
time hierarchy. Math. Systems Theory 17, 13–27.

J. Håstad (1987). One-way permutations in NC0. Inform. Process. Lett. 26, 153–
155.

W. Hesse (2001). Division is in Uniform TC0. In Proc. Twenty-Eighth International
Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in
Comput. Sci. 2076, Springer, 104–114.

N. Immerman (1998). Descriptive Complexity. Graduate Texts in Computer Sci.,
Springer.

N. D. Jones (1975). Space-bounded reducibility among combinatorial problems.
J. Comput. System Sci. 11, 68–85.

S. Lindell (1992). A purely logical characterization of circuit uniformity. In Proc.
7th IEEE Conference on Structure in Complexity Theory, 185–192.

H. Veith (1998). Succinct representation, leaf languages, and projection reductions.
Inform. and Comput. 142, 207–236.

Manuscript received 30 September 1999

Manindra Agrawal
Department of Computer Science
Indian Institute of Technology
Kanpur, India
manindra@iitk.ac.in

Eric Allender
Department of Computer Science
Rutgers University
Piscataway, NJ, USA
allender@cs.rutgers.edu

Russell Impagliazzo
Department of Computer Science
University of California
San Diego, CA, USA
russell@cs.ucsd.edu

Toniann Pitassi
Department of Computer Science
University of Toronto
Toronto, Ontario, Canada
toni@cs.toronto.edu

Steven Rudich
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA
rudich@cs.cmu.edu

