
On the Isomorphism Conjecture for Weak Reducibilities

Manindra Agrawal
School of Mathematics, SPIC Science Foundation

Madras 600 017, India
email : manindra@ssf.ernet.in

Abstract

According to the isomorphism conjecture all NP-complete sets are polynomial-time iso-
morphic to each other while according to the encrypted complete set conjecture there is a
p-one-way function f and an NP-complete set A such that A and f(A) are not polynomial-
time isomorphic to each other. In this paper, these two conjectures are investigated for
reducibilities weaker than polynomial-time. It is shown that:

1. Relative to reductions computed by one-way logspace DTMs, both the conjectures are
false.

2. Relative to reductions computed by one-way logspace NTMs, the isomorphism conjecture
is true.

3. Relative to reductions computed by one-way, multi-head, oblivious logspace DTMs, the
encrypted complete set conjecture is false.

4. Relative to reductions computed by constant-scan logspace DTMs, the encrypted com-
plete set conjecture is true.

It is also shown that the complete degrees for NP under the latter two reducibilities coin-
cide.

1 Introduction

The isomorphism conjecture states that all NP-complete sets are p-isomorphic to each other. It
was proposed by Berman and Hartmanis [7] based on their observation that all NP-complete
sets known at the time were indeed p-isomorphic to each other. Serious objections were raised
against this conjecture by Joseph and Young [17]. They constructed a new type of NP-complete
sets, called the k-creative sets, some of which did not appear to be p-isomorphic to the standard
NP-complete sets. These sets (as pointed out in [22]) had the form f(A) where f is a p-one-way
function (such functions are 1-1, honest, polynomial-time computable but not p-invertible) and
A, a paddable NP-complete set. Joseph and Young argued that since p-one-way functions are
not p-invertible, there may be no p-invertible reduction of A to f(A) which implies that f(A) is
not p-isomorphic to A. Based on this, they conjectured that there is a p-one-way function f and
a paddable NP-complete set A such that f(A) is not p-isomorphic to A. This conjecture has
been referred in the literature as the encrypted complete set conjecture [19]. We shall consider an
equivalent form of this conjecture which is closer to the spirit behind it, viz., there exists a p-one-
way function f and a paddable NP-complete set A such that A 6≤p

1,li,i f(A). (The equivalence
of the two statements follows from a result in [7]: if A ≤p

1,li,i B and B ≤p
1,li,i A then A and

B are p-isomorphic.) It is obvious that not both of these conjectures, viz., the isomorphism
and the encrypted complete set, can be true simultaneously. So the question is—which of the
two conjectures, if any, is true? As both the conjectures imply, amongst other things, P 6= NP,
it is a difficult question to answer. This has led to relocation of the conjectures to classes

that are provably larger than P, e.g., EXP, NEXP. As a proof of the encrypted complete set
conjecture for these classes would still imply P 6= NP, it remains a difficult problem. However,
attempts to disprove it, and hence prove the isomorphism conjecture, have not been successful
either for any of these classes. There have only been some partial collapsing results—the ≤p

m-
complete degree for EXP collapses to ≤p

1,li-complete degree [6, 24, 11]; the ≤p
m-complete degree

for NEXP collapses to ≤p
1-complete degree [11]. These failures are not surprising in view of

certain relativization results—it has been shown [20] that relative to a random oracle (see [21]
for definition), the encrypted complete set conjecture holds for NP, EXP, NEXP etc. On
the other hand, it has been recently shown [9] that relative to a sp-generic oracle (see [9] for
definition) the isomorphism conjecture is true for all these classes. A good survey of results
concerning these two conjectures can be found in [19].

As the conjectures, even when relocated to the higher classes, have proved to be difficult
to settle, one may try another approach by relocating them to weaker reducibilities. This leads
us to the following generalization of the conjectures—for any class of reductions F(r), let the
r-isomorphism conjecture be that all ≤r

m-complete sets for NP are r-isomorphic; and the r-
encrypted complete set conjecture be that there exists an r-one-way function f (i.e., f is a 1-1,
honest, function in F(r) such that its inverse does not belong to F(r)) and a ≤r

m-complete
set A for NP such that A 6≤r

1,li,i f(A). These conjectures have been investigated for various
reducibilities weaker than polynomial time [13, 5, 1], however, again, no answers have been
found. In this paper, we provide, for the first time, answers to the two conjectures for several
weak reducibilities. All the results below hold for any class closed under logspace reductions,
we restrict ourselves to NP as it is the most interesting one.

We first consider 1-L reductions, the class of functions computed by logspace bounded DTMs
with a one-way input head. Complete degrees for these reductions are non-trivial—it has been
shown [14] that all natural NP-complete sets are complete under 1-L reductions as well (though
one can easily construct an NP-complete set which is not ≤1−L

m -complete [14]). The structure of
complete degrees under 1-L reductions has been investigated before [5, 11, 15, 8, 1], we improve
on all the earlier results. We show that even though 1-L-one-way functions exist, the ≤1−L

m -
complete degree for NP collapses to ≤1−L

1,li,i-complete degree. Thus the 1-L-encrypted complete
set conjecture is false. With such a strong collapse of ≤1−L

m -complete degree, one may expect the
1-L-isomorphism conjecture to be true, however, it turns out that this conjecture too is false.
Nevertheless, by generalizing the class of reductions to 1-NL, functions computed by logspace
bounded NTMs with a one-way input head, we show that the 1-NL-isomorphism conjecture is
true.

Next, we consider another generalization of 1-L reductions: 1-omL reductions, functions
computed by logspace bounded oblivious DTMs with multiple one-way input-heads. Such TMs
can compute several p-one-way functions (defined by using the computation of TMs recognizing
languages in UP−P), and therefore, are fairly powerful. We show that even the ≤1−omL

m -complete
degree for NP collapses to a ≤1−omL

1,li,i -complete degree and therefore, the 1-omL-encrypted com-
plete set conjecture too is false. The last class of reductions we consider are c-L reductions,
computed by logspace bounded DTMs with their input head allowed a fixed constant number of
left-to-right scans of the input tape. These reductions too are a generalization of 1-L reductions
and form a proper subclass of 1-omL reductions. We show that the c-L-encrypted complete set
conjecture is true. The last two reducibilities exhibit another interesting property: ≤1−omL

m - and
≤c−L

m -complete degrees for NP coincide, and all such complete sets are complete under one-one,
length-increasing, c-L reductions with their inverses being 1-omL functions. This provides prob-
ably the first example of a reducibility (1-omL), the complete sets under which are also complete
under a strictly weaker reducibility (c-L).

We begin the paper by first introducing the basic terminology the we use (section 2) and then

2

in section 3, we define the notion of computation sequence, which plays a crucial part in almost
all our proofs. We then move on to giving the results for the four reducibilities in sections 4,
5, 6 and 7. In section 8 we discuss the implications of these results and compare our technique
with the earlier ones. Finally, we list some open questions in section 9.

2 Preliminaries

The strings are over Σ = {0, 1}. To avoid confusion between strings and numbers, we write 0’s
and 1’s of a string in boldface. For a string s, |s| denotes its length. For a finite set of strings
S, ‖S‖ denotes the number of strings in S. Set Σ=n denotes the set of all strings of length n.
For any string s and for any number i, 1 ≤ i ≤ |s|, s[i] denotes the ith bit of s.

Our model of computation is Turing machines with a read-only input tape, a write-only
output tape and a read-write work tape.

For a resource bound r on TMs, we denote by F(r) the class of total functions computed
by TMs within the resource bound of r. For the class of functions F(r), we say that f is an
r-computable function, or simply, an r function, if f ∈ F(r); and f is r-invertible if there is a
function g ∈ F(r) such that g(f(x)) = x for every x. We say that set A ≤r

m (≤r
1,li; ≤r

1,li,i; ≤r
1,qli,i)

B if there is a many-one (one-one, length-increasing; one-one, length-increasing and r-invertible;
one-one, quadratic length-increasing and r-invertible) r-computable function f reducing A to
B. Set A is ≤r

m-hard for class C if for every B ∈ C, B ≤r
m A. Set A is ≤r

m-complete for class C
if A is ≤r

m-hard for C and A ∈ C. For the class NP, an NP-complete set is a ≤p
m-complete set

for NP. The ≤r
m-complete degree for C is defined to be the class of all ≤r

m-complete sets for C.
Similarly, one defines these notions for ≤r

1,li, ≤r
1,li,i and ≤r

1,qli,i reductions. We say that the set
A is r-isomorphic to set B if there exists a bijection f between A and B with both f and f−1

being r-computable.
A 1-L TM is a deterministic Turing m/c with a read-only input tape, a write-only output

tape and a logspace-bounded work tape such that its input head is one-way, i.e., it moves from
left to right only. Further, at the beginning of the computation, 1dlog ne is written on the work
tape, where n is the length of the input. These functions were first defined in [14] for studying
complete sets for DLOG. The class of ≤1−L

m -complete sets for NP is a fairly large one: it was
shown in [14] that all known natural NP-complete sets are ≤1−L

m -complete as well.
It is worth noting at this point that 1-L functions are not closed under composition as 1-L

TMs need 1dlog ne written on the work tape at the beginning of the computation.
(Example: Let f(x) = x122dlog |x|e+1−|x| if x ends in a 0, f(x) = x022dlog |x|e−|x| otherwise; g(z) =
0x if dlog |z|e is odd and z = x01k for some k ≥ 0, g(z) = 1x if dlog |z|e is even and z = x10k

for some k ≥ 0. Both f and g are 1-L functions but their composition g ◦ f—(g ◦ f)(x0) = 0x
and (g ◦ f)(x1) = 1x—is not as shown in Proposition 4.10 below.)
Nevertheless, the notion of our interest, viz., ≤1−L

m -complete degrees, is well defined.
A 1-NL TM is a non-deterministic Turing m/c with the rest of the conditions being same

as for a 1-L TM. Class F(1-NL) contains total functions that are computed by 1-NL TMs that
output the same string on all accepting paths. These functions are closed under composition as
a 1-NL TM can guess the length of the input and verify it later on.

A k-L TM , k > 0, is a deterministic Turing m/c with the same conditions as for a 1-L TM
except that its input head is allowed a maximum of k left-to-right scans of the input tape. A c-L
TM is one that is a k-L TM for some k > 0. The class of total functions computed by c-L TMs
is F(c-L) = ∪k>0F(k-L). It is clear that the F(c-L) is closed under composition (composition
of a k1-L and k2-L function is a k2.(k1 + 1)-L function).

A 1-mL TM is a deterministic Turing m/c with a read-only input tape, a write-only output
tape and a logspace-bounded work tape. It may have more than one input heads with all of them

3

being one-way. The class F(1-mL) is closed under composition. We shall mainly be interested in
a subclass of these functions computed by 1-mL TMs that are oblivious. This condition implies
that the movement of the input heads depends only on the length of the input and not on the
particular string of that length. We refer to oblivious 1-mL TMs as 1-omL TMs. The class
F(1-omL) is not closed under composition. An example is—f(x) = y where x = 1j0y01k for
j, k ≥ 0; g(y) = 1 if y = zz, g(y) = 0 otherwise. Both f and g are 1-omL functions but their
composition g ◦ f is not. We leave the proof to the reader.

3 Computation sequences of 1-L TMs

Throughout the section, we shall be dealing with Turing machines computing 1-L functions.
Without loss of generality, we can assume that these machines have a unique starting state and
they halt only when the input head is placed on the cell immediately to the right of the input.
In this section, whenever we refer to a TM, we assume it to be of the above kind.

Definition 3.1 A configuration of M of size n is a partial ID of M on the input of size n. It is
written as a 5-tuple 〈st, in, out, wk, tape〉 where st denotes the state of M ; in, out and wk denote
respectively the input head, output head and work tape head positions; and tape denotes the
contents of the work tape. We refer to the starting configuration of M of size n as Cn

init (Cn
init

may be taken to be 〈q0, 1, 1, 1,1dlog ne〉 where q0 is the start state) and a final configuration as
Cn

final (there may be more than one final configurations).

Let config(M,n) denote the set of all configurations of M of size n. The number of such
configurations is bounded by a polynomial in n as M is a logspace TM. Let ‖config(M,n)‖ ≤
qM (n) for some polynomial qM .

Definition 3.2 A computation sequence of M on input x, |x| = n, is a sequence of configurations
from config(M,n), C1, C2, . . ., Cm, such that C1 = Cn

init, Cm = Cn
final and for every i, 1 ≤ i < m,

M moves from Ci to Ci+1 in a single step when the input is x.

We say that a configuration of config(M,n) is at level i if the value of the input head position
in the configuration is i.

Definition 3.3 For any pair of configurations C and D of config(M,n) at levels i and j respec-
tively with i < j, and for any string z, we say that C goes to D on z, and write it as C

z−→D, if
(1) |z| = j− i, and (2) TM M , started on configuration C reaches the configuration D when the
string z is written on the bit positions i through j− 1 of the input. It is possible that C goes to
D on more than one string. We write C

I−→D when C goes to D on every string in the set I.

For any b and k, k ≤ n/b, we divide every input string of length n into k + 1 disjoint
adjacent blocks with the first k blocks containing b consecutive bits. We shall be interested in
the behavior of M on the boundaries of these blocks (the reason for this would become clear
later). Since M is a 1-L TM, its input head can enter any such block only from the left. Consider
the computation sequence of M on some input x of length n. In this sequence, for i > 1, a
configuration from level (i − 1)b + 1 such that the previous configuration is from level (i − 1)b
denotes the entry of M into the ith block from (i− 1)th block. We call it the entry configuration
of M into ith block. For the first block, the entry configuration is the starting configuration.

Definition 3.4 A (k, b)-block restricted computation sequence of M on input x is the sequence
obtained from the computation sequence of M on x by deleting all the configurations, except
for the final one, that are not entry configurations of M into any of the k + 1 blocks.

4

It is possible that several strings of length n have the same (k, b)-block restricted computation
sequence. Let Seq be a (k, b)-block restricted computation sequence on some input x, with
Seq = C1, . . . , Ck+2. For 1 ≤ i ≤ k + 1, denote by Str(Seq, i) the set of strings on which

configuration Ci goes to Ci+1, i.e., Ci
str(Seq,i)−→ Ci+1. Then we have,

Proposition 3.5 Seq is the (k, b)-block restricted computation sequence of M on any string in
the set

Str(Seq) = Str(Seq, 1)·Str(Seq, 2)· · · · ·Str(Seq, k + 1).

Here ‘·’ is the concatenation operation between sets, i.e., S1·S2 = {xy | x ∈ S1 ∧ y ∈ S2}.
Now we prove a crucial property of the block restricted computation sequences of 1-L

TMs. This property—and its versions for other classes of TMs—will form the basis of all
the collapsing results in the paper. The intuition behind the property is very simple. Con-
sider computation sequences of a 1-L TM on different strings of size n. Each such sequence
will begin with the configuration C1 = Cn

init and will contain configurations from the set
config(M,n). Since ‖config(M,n)‖ ≤ qM (n), by Pigeon–Hole principle, there are two strings of
length b = dlog qM (n)e+ 1 and a configuration C2 ∈ config(M,n) such that on both the strings
Cn

init goes to C2. Again, there are two more strings of length b and a configuration C3 such
that on both these strings C2 goes to C3. Continuing this way, one can construct a (k, b)-block
restricted computation sequence Seq with k ≤ n/b such that ‖Str(Seq, i)‖ ≥ 2 for each 1 ≤ i ≤ k.
The crucial property of strings in the set Str(Seq) is that the TM M , when working on these
strings, ‘forgets’ the input very quickly—for any 1 ≤ i ≤ k, it can not distinguish between the
strings in Str(Seq, i) that are written in the ith block, as long as its input head is not scanning
the block. We exploit this property to make the function computed by M to be one-one and
size-increasing on these strings. The following lemma states the above property formally and in
a way that will be useful to us.

Let b(n) = dlog qM (n2)e + 1 and n0 be the smallest number such that for any n ≥ n0,
n2 ≥ 4.b(n).n + b(n) + 1.

Lemma 3.6 Let M be a 1-L TM. There is a logspace procedure that, on input 1n, for n ≥ n0,
computes (1) a (2n, 2b(n))-block restricted computation sequence Seq = C1, C2, . . ., C2n+2 of M
on strings of size n2; and (2) 2n sets I1, . . ., I2n satisfying the following conditions.

1. For every i, 1 ≤ i ≤ 2n, ‖Ii‖ = 2, Ii = {vivi, wivi} and |vi| = |wi| = b(n).

2. C1
I1−→C2

I2−→C3 · · ·
I2n−→C2n+1

01b(n)0r

−→ C2n+2, where r = n2 − 4.b(n).n− b(n)− 1.

Proof. We give below a logspace procedure for computing the sequence Seq and the sets Ii and
show that they satisfy all the conditions.

We shall proceed with the construction of Seq in stages such that after jth stage, 1 ≤ j ≤
2n + 1, Cj is the entry configuration of M into jth block after reading any string from the set
I1· · · · ·Ij−1.

Stage 1 : C1 = Cn2

init.

Stage j, 1 < j ≤ 2n + 1 : Find the smallest configuration C and the smallest two strings v

and w of length b(n) with v > w, such that Cj−1
{vv,wv}−→ C. Let Cj = C, Ij = {vv, wv} and

goto next stage.

Stage 2n + 2 : Let C2n+2 be the final configuration of the TM such that C2n+1
01b(n)0r

−→ C2n+2.

5

The above procedure is clearly computable within logspace as b(n) = dlog qM (n2)e+1 = O(log n).

We now show that two strings vv and wv such that Cj−1
{vv,wv}−→ Cj will exist for every j. Since

|v| = |w| = b(n), there are a total of 2b(n) such strings. Since there are at most qM (n2)
configurations in config(M,n2), there are at least 2b(n)/qM (n2) ≥ 2 such strings, say v and w,
such that Cj−1

v−→D and Cj−1
w−→D for some configuration D. Now, M will enter the jth block

in the same configuration on both vv and wv. This completes the proof.

We shall refer to the strings in the set

I1·I2· · · · ·I2n·{01b(n)0r},

I1, I2, . . ., I2n as defined in the lemma above, as the proper strings of size n2.

4 1-L reductions

In this section, we consider complete degrees under 1-L reductions. The isomorphism question
for such degrees (and for ones complete under 1-NL reductions) has been considered earlier too.
Allender [4] showed that ≤1−L

m -complete sets for PSPACE and EXP are p-isomorphic; Ganesan
and Homer [11] showed the same result for the class NEXP; Hemachandra and Hoene [15] showed
that ≤1−L

m - (or, ≤1−NL
m -) complete sets for non-deterministic space classes above NLOG are also

≤1−L
1,li - (resp., ≤1−NL

1,li -) complete and hence NLOG-isomorphic; Hoene and Burtschick [8] showed
that ≤1−L

m -complete sets for PSPACE are not 1-L-isomorphic; and finally Agrawal and Biswas [1]
showed that ≤1−L

m -complete sets for classes closed under logspace reductions are p-isomorphic.
Our results, in this and the next section, generalize all the previous ones, both for 1-L and 1-NL
reductions.

The section is divided into three subsections. In the first one, we prove our main result, viz.,
that for any class closed under logspace reductions, ≤1−L

m -complete degree collapses to ≤1−L
1,qli,i-

complete degree. In the next subsection we show that there exist 1-L-one-way functions and in
the last one we show that the 1-L-isomorphism conjecture does not hold.

4.1 Collapse of complete degrees

In this subsection, we show that all ≤1−L
m -hard sets for any class C closed under logspace reduc-

tions, are also ≤1−L
1,qli,i-hard. The outline of the proof is as follows. Given a ≤1−L

m -hard set A
and a set L ∈ C, we first define a ‘coded’ version of L, called code(L), that belongs to C and
is tailored to exploit the property of 1-L reductions shown in Lemma 3.6. Then, using the 1-L
reduction, say f , of code(L) to A, we define a 1-L reduction gf of L to code(L) such that the
composition f ◦ gf is one-one and length-increasing on all strings in Σ=n for every n that is an
exact power of two and greater than some fixed constant.

Now, a ≤1−L
1,qli,i-reduction of any set B ∈ C to A is obtained in the following way. First

define a ‘padded’ version B̃ of B, B̃ ∈ C. Next, using the fact that code(B̃) ∈ C, we fix a 1-L
reduction f of code(B̃) to A. Define reduction gf of B̃ to code(B̃) as above and finally define
a 1-L reduction gp of B to B̃, using f and gf , that is one-one, quadratic length-increasing, and
maps every string to a string whose size is an exact power of two. Now, it can be shown that
the function f ◦ gf ◦ gp is a 1-L reduction of B to A that is one-one, quadratic length-increasing
and also 1-L-invertible.

We begin with defining the ‘coded’ version code(L) of set L. Say that a string u is duplicated
if u = vv for some v. For any set L, define the set code(L) as:

y ∈ code(L) iff y = u1u2 · · ·u2n01b0r for r ≥ 0 satisfying the following conditions—

6

1. |u1| = · · · = |u2n| = 2.b,

2. Let x = x[1] · · ·x[n] with x[i] = 1 if ui is duplicated, 0 otherwise. Then, either
for every i, n + 1 ≤ i ≤ 2n, ui is duplicated and x ∈ L, or there is a j,
n + 1 ≤ j ≤ 2n, such that for every i, n + 1 ≤ i 6= j ≤ 2n, ui is duplicated, uj

is not duplicated and x[j − n] = 1.

One may say that the first n blocks (of 2b bits each) of a string y in code(L) code a string x of
length n and the next n blocks represent n ‘switches’ such that either all the switches are ‘on’
and x ∈ L or exactly one switch is ‘off’ and the corresponding bit of x is 1.

The following proposition is obvious.

Proposition 4.1 For any L, L 6= ∅,Σ∗, code(L) ≤log
m L.

The following lemma captures the required property of the set code(L).

Lemma 4.2 Let f be a 1-L reduction, computed by TM M , of the set code(L) to some set A.
For any n ≥ n0 (n0 as in Lemma 3.6), let C1 = Cn2

init, C2, . . . , C2n+2 = Cn2

final be the (2n, 2b(n))-
block restricted computation sequence of the TM M on proper strings of size n2 as computed in
Lemma 3.6. Then, for each i, 1 ≤ i ≤ n, the TM M , while moving from Ci to Ci+1, will output
different equal length strings on reading strings vivi and wivi, where vivi, wivi ∈ Ii (as defined
in Lemma 3.6).

Proof. Since configurations store the position of the output head as well, the output of M
will be of the same length on any string while moving from Ci to Ci+1. Suppose that for some
j, 1 ≤ j ≤ n, the output of the TM M is the same while moving from Cj to Cj+1 on reading
strings vjvj and wjvj . Now consider string

x̃ = v1v1 · · · vj−1vj−1vjvjvj+1vj+1 · · · vn+j−1vn+j−1wn+jvn+jvn+j+1vn+j+1 · · · v2nv2n01b(n)0r

and

ỹ = v1v1 · · · vj−1vj−1wjvjvj+1vj+1 · · · vn+j−1vn+j−1wn+jvn+jvn+j+1vn+j+1 · · · v2nv2n01b(n)0r

Both x̃ and ỹ are proper strings of size n2. Further, they differ only on the string written in the
jth block. Therefore, by our assumption, the output of M will be identical on both of them.
However, by the definition of code(L), x̃ ∈ code(L) and ỹ 6∈ code(L). This contradicts the fact
that M is a reduction of code(L) to A. Therefore, the output of M is indeed different.

The above lemma guarantees that if f is a 1-L reduction of code(L) to A then it will be
one-one on proper strings of size n2 that differ only on the first n blocks, for all n ≥ n0. Now
we compose f with a reduction of L to code(L) that maps strings of size n = 2k for k > 0, to
such proper strings of size n2. Let M be a 1-L TM computing function f . Define function gf

as computed by the following procedure.

On input x, let n = 2dlog |x|e. If n < n0 then output x(1)1 · · ·x(|x|)112.|x|01 and
halt. Otherwise, for each 1 ≤ i ≤ 2.|x|, do the following.

Compute the set Ii = {vivi, wivi} as in the Lemma 3.6. If i ≤ |x|, output vivi if
x(i) = 1, wivi otherwise. If i > |x| then output vivi.

Finally, output 01b(n)0r where r = n2 − 4.b(n).|x| − b(n)− 1 and halt.

Lemma 4.3 gf is a 1-1, size-increasing, 1-L reduction of L to code(L).

7

Proof. That gf is logspace computable follows from Lemma 3.6, and the fact that n = 2dlog |x|e

can be easily computed from 1dlog |x|e. The function can be computed by a 1-L TM as the input
needs to be scanned only once—bit x[i] is needed only at the time of outputting string vivi

or wivi. By the construction it is obvious that gf is 1-1 and size-increasing function. It is a
reduction of L to code(L) as the ‘switches’ in its output are always ‘on’ and it codes string x.

One can see that function gf maps all strings of size n ≥ n0 and n = 2k for some k ≥ 0, to a
proper string of size n2. The following lemma shows that it forces f to be one-one and honest
on these proper strings.

Lemma 4.4 Let f be a 1-L reduction, computed by TM M , of the set code(L) to A. For
every n, n = 2k ≥ n0 for some k ≥ 0, and for every x and y, x 6= y, |x| = |y| = n = 2k,
f(gf (x)) 6= f(gf (y)) and |f(gf (x))| ≥ |x|.

Proof. For any x and y with |x| = |y| = n = 2k for some k ≥ 0, and n ≥ n0, gf (x) and gf (y)
are proper strings of size n2 with the last n + 1 blocks having identical strings. Further, if the
ith bit of x is different from that of y then the string in the ith block of gf (x) would be different
from that of gf (y). By Lemma 4.2, it follows that the output of M while scanning ith block of
these strings would be different. Therefore, f(gf (x)) 6= f(gf (y)). Since M will end up in the
same final configuration on both x and y, we have |f(gf (x))| = |f(gf (y))|. And since there are
2n different strings of size n, |f(gf (x))| ≥ n = |x| as otherwise two such strings will be mapped
to same string.

Now, we prove the main result of this section.

Theorem 4.5 For any class C closed under logspace reductions, every ≤1−L
m -hard set for C is

also ≤1−L
1,qli,i-hard.

Proof. Let A be a ≤1−L
m -hard set for C and L ∈ C. Using Lemma 4.4 we can only get a reduction

of L to A that is one-one and size-increasing on strings in Σ=2k for large enough k. To get a
reduction that is one-one everywhere, we first pad the strings to make their length an exact
power of two. Define set L̃ as:

L̃ = {0k1x10j | k, j ≥ 0 ∧ x ∈ L}

It is easy to see that that L̃ ≤log
m L and therefore, L̃ ∈ C. Therefore, by Proposition 4.1,

code(L̃) ∈ C. Let f be a 1-L reduction, computed by TM M , of code(L̃) to A. Let qM (n) ≤ (2n)c

for some constant c > 0 (where qM bounds the number of configurations in config(M,n), which,
in turn, bounds the running time of TM computing f on input of size n). Define function r as:
r(0) = max(n0, 2) (n0 as in Lemma 3.6) and r(l) = 2c.r(l − 1) + c for l > 0. Define function
gp, reducing L to L̃ as: gp(x) = 0k1x10j where k = 2dlog |x|e, j = 22.r(l) − 2dlog |x|e − |x| − 2,
l = minm(2r(m) ≥ |x|). Therefore, |gp(x)| = 22.r(l). Function gp is a 1-L function—on input x,
compute k = 2dlog |x|e and output 0k1x. Now start from r(0) and calculate r(1), r(2), . . . till an
r(m) is obtained with r(m) ≥ dlog |x|e; compute j = 22.r(l) − 2dlog |x|e − |x| − 2 and output 10j .
This function maps strings of length between 2r(l) + 1 and 2r(l+1) to strings of length 22.r(l+1)

and therefore, is quadratic length-increasing. Note that in the computation of gp(x), the 1-L
TM knows only the number 2dlog |x|e before scanning x and therefore to make the output length
a power of two, it needs to pad 0’s at the end as well. Of course, this could have been done by
padding 0’s only at the end, however, to strengthen the isomorphism between ≤1−L

m -complete
sets, it is necessary to pad 2dlog |x|e many 0’s at the beginning (see Corollary 4.9 below).

Let function gf be the reduction of L̃ to code(L̃) as defined above and h
def= f ◦ gf ◦ gp. The

following claims show that h is the required reduction of L to A.

8

Claim 4.5.1 L ≤1−L
m A via h.

Proof of Claim 4.5.1. That h is a reduction of L to A follows immediately. To see that h
is a 1-L function, we first note that functions gp, gf , f are all 1-L functions. Further, we have,
|gp(x)| = 22.r(l) where l is the smallest number such that r(l) ≥ dlog |x|e and |gf (gp(x))| = 24.r(l).
These numbers can be computed within logspace using 1dlog |x|e and without scanning the input.
Therefore, a 1-L TM for computing h is—on input x, compute 22.r(l) and 24.r(l); run 1-L TMs
for gp, gf and f by interleaving their computation with 12.r(l) and 14.r(l) written on the work
tapes of TMs computing gf and f respectively. 2

Claim 4.5.2 h is quadratic length-increasing.

Proof of Claim 4.5.2. For every x, |gp(x)| ≥ 2r(0) ≥ n0 and further, gp is quadratic
length-increasing. Now it follows from Lemma 4.4 that |f(gf (gp(x)))| ≥ |gp(x)| ≥ |x|2. 2

Claim 4.5.3 h is one-one.

Proof of Claim 4.5.3. For any x and y, consider two cases.

Case 1: |gp(x)| = |gp(y)|. By Lemma 4.4, and since |gp(x)| = 2k for some k ≥ 0, it follows that
h(x) 6= h(y).

Case 2: |gp(x)| < |gp(y)|. Let |gp(x)| = 22.r(m) and |gp(y)| = 22.r(n) with n > m. So, |h(x)| =
|f(gf (gp(x)))| ≤ qM (24.r(m)) (by the bounds on the output lengths of f , gf , and gp)
≤ 24c.r(m)+c (as qM (n) ≤ (2n)c) ≤ 22.r(m+1)−c (by the definition of r) ≤ 22.r(n)−c ≤
1/2 ∗ |gp(y)| ≤ 1/2 ∗ |f(gf (gp(y)))| (by Lemma 4.4) = |h(y)|. It follows that h(x) 6= h(y).

2

Claim 4.5.4 h is 1-L-invertible.

Proof of Claim 4.5.4. We define a 1-L TM M ′ that, on input x, outputs h−1(x) and halts in
an accepting state if the inverse exists, otherwise halts in a rejecting state (this will be useful in
computing the isomorphism, see Corollary 4.9 below). It will be a composition of the following
two 1-L TMs.

TM M1: This TM computes the function (f ◦ gf)−1 correctly on the range of the function h.
The range of function gp has strings of length 22.r(l) only. So, on input z, M1 executes
the following procedure. Compute an l such that, letting n = 22.r(l), if w = f(gf (1n))
then 1dlog |w|e = 1dlog |z|e. There will be at most one such l since |h(x)| ≤ 1/2 ∗ |h(y)|
if |gp(x)| < |gp(y)| (from Claim 4.5.3). If there is no such l then output 0 and halt in a
rejecting state. Otherwise, do the following. We know that function gf maps strings of size
n to proper strings of size n2 that have the same (2n, 2b(n))-block restricted computation
sequence, say, C1, . . . , C2n+2. Compute the set I1 = {v1v1, w1v1} for this sequence and then
the output of M on both these strings while it moves from C1 to C2. By Lemma 4.2, these
two outputs will be of the same length and different. Check if one of these is a prefix of z.
If not then output 0 and halt in a rejecting state. Otherwise, output 1 or 0 respectively if
the output on v1v1 and w1v1 matches. Repeat this process for every Ii, 1 < i ≤ n. Now,
check if the rest of the input matches the output of M on string vn+1vn+1 · · · v2nv2n01b(n)0r

while moving from Cn+1 to C2n+2. Reject if not, accept otherwise.

9

TM M2: This TM computes the function g−1
p in the following way. On input y, output x if

y = 0k1x10j for some k, j ≥ 0 (a 1-L TM can extract x out of y by dropping all leading
0’s and the first 1 of y; then outputting x using the following strategy: the moment a
1 is encountered count the number of contiguous zeroes immediately after it, say i, and
output 10i only if there is more input) and accept if |y| = 22r(l), 2r(l−1) < |x| ≤ 2r(l) and
k = 2dlog |x|e for some l. Reject otherwise.

TM M ′ will, on input z, simulate TM M1 on z and simulate TM M2 on M1’s output
simultaneously. It outputs the output of M2, accepts if both the TMs accept, rejects otherwise.
Since both M1 and M2 are 1-L TMs and M2 does not require the length of the input, M ′ is also
a 1-L TM. 2

The above claims show that L ≤1−L
1,qli,i A via h. Since L was an arbitrary set of C, and A an

arbitrary ≤1−L
m -hard set of C, the theorem follows.

Corollary 4.6 For any class C closed under logspace reductions, ≤1−L
m -complete degree for C

collapses to a ≤1−L
1,qli,i-complete degree.

Corollary 4.7 For any class C closed under logspace reductions, if A is a ≤1−L
m -hard set for C

and t is a 1-1, 1-L function then t(A) is also ≤1−L
m -hard.

Proof. As 1-L functions are not closed under composition in general, it is conceivable that t(A)
is not ≤1−L

m -hard for C for some ≤1−L
m -hard set A and 1-1, 1-L function t. However, this is not

possible due to the properties of the constructed 1-1, quadratic length-increasing, 1-L-invertible,
1-L reduction, h, of the set L to A in the proof of above theorem. This reduction has the
following easily verifiable property: for all x, |h(x)| = |h(12dlog |x|e)|. Therefore, function t ◦ h
can be computed by a 1-L TM that on input x, first computes |h(x)| using the above equality
and then runs the 1-L TMs of t and h in an interleaved fashion.

Corollary 4.8 The 1-L-encrypted complete set conjecture is false.

It trivially follows, from the above theorem and a result in [13], that all ≤1−L
m -complete

sets are logspace-isomorphic. However, one can do better than this and show that these sets
are 2-L-isomorphic, where 2-L functions are computed by logspace TMs that are allowed two
left-to-right scans of the input.

Corollary 4.9 For any class C closed under logspace reductions, all ≤1−L
m -complete sets for C

are 2-L-isomorphic.

Proof. In [13], it was shown that all sets complete under ≤log
1,qli,i-reductions are logspace-

isomorphic. We shall proceed along exactly the same lines. The construction in [13] is inspired
from the one for polynomial-time reducibilities given in [7] which, in turn, is essentially the
Cantor-Schröder-Bernstein construction of the isomorphism between two sets. We first give
the construction of [13] and then mention the modifications needed to make it work for 1-L
reductions.

Let A and B be two sets with A ≤log
1,qli,i B via u and B ≤log

1,qli,i A via v. For any x, define
the inverse chain at x to be the sequence x0, x1, x2, . . ., xl where x0 = x, xi = v−1(xi−1) if i is
odd, u−1(xi−1) if i is even, for 1 ≤ i ≤ l and v−1(xl) (u−1(xl)) does not exist if l is even (odd).
Number l is called the length of the chain.

10

Define function t as: t(x) = u(x) if the length of the inverse chain at x is even; v−1(x)
otherwise. It is easy to see that t is an isomorphism between A and B. Since both u and v are
length squaring and their inverses are computable in logspace, it follows that the length of the
inverse chain at x can be computed in logspace by an interleaved simulation of all inverses, and
therefore, t can be computed in logspace.

In our case, u and v are 1-1, length-squaring, 1-L-invertible, 1-L functions. Define t as before.
We show that the length of the inverse chain at x can be computed in a single pass over the
input and therefore t can be computed in two passes (use the second pass to compute u(x) or
v−1(x) depending on whether the length is even or odd). In a similar manner, t−1 can also be
computed.

We have, by the proof of Theorem 4.5, two 1-L TMs Mu and Mv that, on input x, output
u−1(x) and v−1(x) respectively if they exists and halt in accepting state. Otherwise the TMs
halt in rejecting state. The following procedure to compute the length of the chain suggests
itself—on input x, start the computation of Mv on x; the moment some output appears, start
the computation of Mu on it; and so on for all the intermediate strings. If at any point, some
computation ends in rejecting state (the inverse is not defined), abort all the computations
started after it. Eventually, first k computations will end in accepting state and (k + 1)th in
rejecting state for some k ≥ 0 and then k will be the length of the chain. However, this procedure
does not work as to be able to compute v−1(xi) or u−1(xi) in a single pass at any intermediate
string xi, one needs 1dlog |xi|e also written on the tape. It is for this reason that the function
gp was defined in a somewhat complicated way in the proof of Theorem 4.5. Assume that
u = f1 ◦ gf1 ◦ gp1 and v = f2 ◦ gf2 ◦ gp2 as given in the proof. The above procedure is modified
in the following way.

On input x, start the computation of (f2 ◦ gf2)
−1 on x and count the number of leading

zeros. If the inverse exists, there must be exactly 2dlog |x1|e such zeroes. Thus, we get to know
dlog |x1|e. Continue with the computation, it must now output x1. Simultaneously, start the
computation of u−1(x1); it can be computed properly as we know dlog |x1|e. In this way, we
can know the length of all intermediate strings before their computation begins. The rest of the
procedure remains the same. Thus the entire computation can be performed in a single pass on
the input.

In [14], it was shown that all natural NP-complete sets are ≤1−L
m -complete as well. It follows

that all these sets are 2-L-isomorphic. This is an improvement on the result that they are all
logspace-isomorphic [13] while it does not compare with a recent result that they are first-order-
isomorphic [3].

4.2 Existence of one-way functions

It is fairly straightforward to see that there are 1-L-one-way functions. Define f(bx) = xb where
b ∈ Σ. Clearly f is a 1-L function. Moreover, it is a 1-1 and onto function. Now we show that
f−1 is not a 1-L function.

Proposition 4.10 Function h, h(xb) = bx, b ∈ Σ, is not a 1-L function.

Proof Sketch. Any DTM computing h must read the last bit of the input before outputting any
bit. Any such DTM working within logspace will ‘forget’ most of the string x, for large enough
x, by the time it reaches the end of the input and therefore to output h(xb) correctly, it must
scan the input once more.

11

4.3 Failure of the isomorphism conjecture

Can we say that ≤1−L
m -complete degrees collapse completely? I.e., are all ≤1−L

m -complete sets
1-L-isomorphic? The answer is no. It was shown in [8] that ≤1−L

m -complete degree for PSPACE
does not collapse to a single 1-L-isomorphic degree. We generalize this result for all classes
closed under logspace reductions. Our proof is considerably simpler as well.

Theorem 4.11 For any class C closed under logspace reductions, ≤1−L
m -complete degree for C,

if it exists, does not collapse to a single 1-L-isomorphic degree.

Proof. Assume that for some class C, ≤1−L
m -complete degree collapses to 1-L-isomorphic degree.

Let L be a ≤1−L
m -complete set for C. Let Xb and bX be the set of strings that are obtained

by concatenating bit b, b ∈ Σ, at the end and beginning respectively, to each string of the set
X. Now define, L1 = L1 and L2 = 0L ∪ 1Σ∗. Both these sets are ≤1−L

m -complete for the class
C. Therefore, by our assumption, there is an isomorphism between L1 and L2 given by a 1-L
function h, say. Since h is a reduction of L1 to L2, h−1(1Σ∗) ⊂ L1. Since h is honest, there
exists a polynomial p such that for every x, p−1(|x|) ≤ |h(x)| ≤ p(|x|). So, the set h−1(1Σ=n)
contains strings of at most p(n) different sizes and since h is onto, there is an m, m < p(n), such
that h−1(1Σ=n)∩Σ=m1 contains at least 2n/p(n) strings. Let y1 ∈ h−1(1Σ=n)∩Σ=m1 for such
an m. Since h is a reduction of L1 to L2, h(y0) ∈ 0Σ∗. Therefore, the 1-L TM Mh, computing
h, before outputting any bit, must scan the whole input and check if the last bit is 0 or 1 for
all such y’s. Now there are 2n/p(n) such y’s. This means that when n is large enough so that
2n/p(n) is greater than total number of configurations of Mh on input of size m + 1 (which is
bounded by a polynomial in n), Mh will end up in the same configuration after reading first
m bits of two different such input strings y11 and y21 of size m + 1. Mh will not have output
anything by then and therefore its output on both the strings will be the same. This contradicts
the fact that h is one-one.

Corollary 4.12 The 1-L-isomorphism conjecture if false.

The above theorem, along with the Corollary 4.9, provides a tight upper and lower bound
on the isomorphism of ≤1−L

m -complete sets.

5 1-NL reductions

The failure of the 1-L-isomorphism conjecture is due to the inability of 1-L TMs to carry out
the Cantor-Schröder-Bernstein kind of construction of the isomorphism as in [13]. Moreover,
Theorem 4.11 tells us that a second scan of the input can not be avoided while computing the
isomorphism. So now the question is—can one generalize 1-L reductions so that one can carry
out the isomorphism construction within these reductions and the collapsing result still holds?
That would provide us with an example of a reducibility for which the isomorphism conjecture
is true. In this section, we answer this question affirmatively for 1-NL reductions.

The section is divided in two subsections. In the first subsection we prove a result similar
to the Lemma 3.6 for 1-NL TMs, and in the next one we prove that ≤1−NL

m -complete degrees
collapse to 1-NL-isomorphic degrees for all classes closed under logspace reductions.

5.1 Computation sequences of 1-NL TMs

We begin with defining the notion of block restricted computation sequences of 1-NL TMs. For
a 1-NL TM M , let config(M,n) be the set of configurations on input strings of size n as before.

12

We also assume that ‖config(M,n)‖ ≤ qM (n) for some polynomial qM . One can define (k, b)-
block restricted computation sequence of 1-NL TMs in a way similar to that of 1-L TMs. The
difference being that (1) for configurations C and D we say C

z−→D if the 1-NL TM moves from
configuration C to D on some guess path when z is written in the appropriate bit positions of
the input tape; and (2) the last configuration of the sequence, instead of a final configuration, is
an accepting configuration. Due to non-determinism, there may be several (k, b)-block restricted
computation sequences on a single string.

We now prove the analog of Lemma 3.6. Let b(n) = d3. log qM (n2)e + log n + 4 (note that
the block size here is somewhat larger than the one for 1-L TMs) and n0 be the least number
such that for all n ≥ n0, n2 ≥ 4.b(n).n + b(n) + 1.

Lemma 5.1 Let M be a 1-NL TM. There is a non-deterministic logspace procedure that, on
input 1n, for n ≥ n0, computes (1) a (2n, 2b(n))-block restricted computation sequence Seq = C1,
C2, . . ., C2n+2 of M on strings of size n2; and (2) 2n sets I1, . . ., I2n satisfying the following
conditions.

1. For every i, 1 ≤ i ≤ 2n, ‖Ii‖ = 2, Ii = {vivi, wivi} and |vi| = |wi| = b(n).

2. C1
I1−→C2

I2−→C3 · · ·
I2n−→C2n+1

01b(n)0r

−→ C2n+2, where r = n2 − 4.b(n).n− b(n)− 1.

Proof. As in the proof of Lemma 3.6, we first give an NLOG procedure to compute the sequence
Seq and sets I1, . . ., I2n and then show that they satisfy all the conditions. Both the procedure
and the proof of its correctness become more involved due to the presence of non-determinism.

We cannot use the procedure described in the proof of Lemma 3.6 here because it is possible

that C1
{vv,wv}−→ C2 for some strings v and w but there is no accepting path from C2. To avoid this

problem, we first define the following sets.

L0 = {(1n, C, D) | C,D ∈ config(M,n2), and D is an accepting configuration such

that C
01b(n)0r

−→ D }
L1 = {(1n, C, s, D) | C,D ∈ config(M,n2) and C

s−→D}
L2 = {(1n, C, D) | C and D are entry configurations for two successive blocks, and the

number of strings s such that |s| = b(n) and (1n, C, ss, D) ∈ L1,
is at least 2.qM (n2) }

L3 = {(1n, C) | C = Dj is an entry configuration for the jth block, there exist
Dj+1, . . ., D2n+2 such that (1n, Di, Di+1) ∈ L2 for j ≤ i ≤ 2n,
and (1n, D2n+1, D2n+2) ∈ L0 }

It is easy to see that all these sets are in NLOG. Now, to compute the sequence Seq we do the
following stage-wise construction.

Stage 1 : C1 = Cn2

init.

Stage j, 1 < j ≤ 2n + 1 : Find the smallest C, C an entry configuration for the jth block,
such that (1n, Cj−1, C) ∈ L2 and (1n, C) ∈ L3. Now, find the smallest two strings v and
w of length b(n), w < v, such that (1n, Cj−1, vv, C) ∈ L1 and (1n, Cj−1, wv, C) ∈ L1. Let
Cj = C, Ij = {vv, wv} and goto next stage.

Stage 2n + 2 : Find the smallest accepting configuration C2n+2 such that (1n, C2n+1, C2n+2) ∈
L0.

13

Since NLOG is closed under complementation [16, 23], it follows that the above procedure is
also computable within NLOG.

Now we show that the output of the procedure is as desired. Clearly, it is sufficient to show
that the configuration C and strings v and w as computed in Stage j, 1 < j ≤ 2n+1, always exist.
Suppose that (1n, Cn2

init) ∈ L3. Then by the definition of L3, at every stage j, 1 < j ≤ 2n + 1,
a configuration Cj = C can be found such that (1n, Cj−1, C) ∈ L2 and (1n, C) ∈ L3. By the
definition of L2 we know that there are at least 2.qM (n2) strings of the form uu with |u| = b(n),
such that Cj−1

uu−→Cj . Therefore, there must be at least 2.qM (n2)/qM (n2) = 2 such strings, say

vv and ww such that Cj−1
{v,w}−→D and D

{v,w}−→Cj for some configuration D. Thus, Cj−1
{vv,wv}−→ Cj

as required.
So, all that we now need to show is that (1n, Cn2

init) ∈ L3. For 1 ≤ i ≤ 2n, let Xi be the set
of all (2n, 2b(n))-block restricted computation sequences D1, D2, . . ., D2n+1, D2n+2 on strings

of size n2 such that (1) D2n+1
01b(n)0r

−→ D2n+2, and (2) (1n, Di, Di+1) 6∈ L2.
Now, let

S = {v1v1v2v2 · · · v2nv2n01b(n)0r | (∀i)|vi| = b(n)}.

Clearly, ‖S‖ = 22nb(n). How many strings in S have a (2n, 2b(n))-block restricted computation
sequence belonging to the set Xi for some i? As there are less than 2qM (n2) strings of the form vv
such that Di

vv−→Di+1 for Di, Di+1 belonging to any computation sequence in Xi (by the defini-
tion of set L2), and there are at most (qM (n2))2 possible choices for pair Di, Di+1, it follows that
less than (qM (n2))2.2qM (n2).2(2n−1)b(n) strings in S have a (2n, 2b(n))-block restricted compu-
tation sequence belonging to the set Xi. Therefore, less than 4n.(qM (n2))3.2(2n−1)b(n) ≤ 22nb(n)

strings in S have a (2n, 2b(n))-block restricted computation sequence belonging to the set⋃
1≤i≤2n Xi. This implies that there is at least one string in S whose (2n, 2b(n))-block restricted

computation sequence does not belong to the set
⋃

1≤i≤2n Xi. The existence of such a sequence
proves that (1n, Cn2

init) ∈ L3.

The definition of proper strings remains the same.

5.2 Collapse of complete degrees

In this subsection we will prove that for every class closed under logspace reduction, 1-NL-
isomorphism conjecture is true. Towards this, we first prove a collapse result similar to The-
orem 4.5 for ≤1−NL

m -complete degrees. The proof structure remains identical to the proof of
Theorem 4.5. The definitions of the set code(L) and function gf remains the same except that
the function f is a 1-NL reduction and to compute gf the procedure given in the proof of
Lemma 5.1 is used (with the larger block size b(n) as given in the subsection 5.1). For these
definitions, Proposition 4.1 and Lemmas 4.2, 4.3, 4.4 can be proved in the same manner as
before with functions f and gf being 1-NL reductions instead of 1-L reductions.

Theorem 5.2 For any class C closed under logspace reductions, every ≤1−NL
m -hard set for C is

also ≤1−NL
1,qli,i-hard.

Proof Sketch. Let A be a ≤1−NL
m -hard set for C and L ∈ C. Define L̃ and reduction gp as in

the proof of Theorem 4.5. Let code(L̃) ≤1−NL
m A via f and h = f ◦ gf ◦ gp. That h is a one-one,

length-squaring, 1-NL reduction of L to A can be derived in a manner identical to the one in
the proof of Theorem 4.5. We now show that h is also 1-NL-invertible.

As in the proof of Claim 4.5.4, we define the inverting 1-NL TM M ′ as a composition of
two 1-NL TMs M1 and M2. The definition of M2 remains the same. TM M1 also works in an
identical manner except that it has to do some extra work when it is computing the output of M

14

(M computes f) on strings in the set Ii = {vivi, wivi} while M moves from Ci to Ci+1 for any i.
The reason is that M , being a non-deterministic TM, may go to more that one configurations
from Ci on reading some bit of a string u in the set Ii. And it is possible that from one of these
several configurations M may never reach configuration Ci+1. Therefore, after computing all
these possible configurations of M , M1 has to choose the one from which M will reach Ci+1 on
string u. To identify such a configuration, M1 uses the set L1 defined in the proof of Lemma 5.1.
Of course there may be more than one such configurations. M1 can choose any one of them as
M must output identically on all accepting paths. The rest of the procedure for M1 remains
the same. It is easy to verify that M ′ is a 1-NL TM computing the inverse of h.

Using the above Theorem and the construction of isomorphism as given in Corollary 4.9, the
following follows easily.

Corollary 5.3 For any class C closed under logspace reductions, ≤1−NL
m -complete degree for C

collapses to a single 1-NL-isomorphic degree.

Proof Sketch. Take any two sets A and B that are ≤1−NL
m -complete for C. By Theorem

5.2, we have that they are reducible to each other via 1-1, length-squaring and 1-NL-invertible
reductions. To construct the isomorphism, we use the same construction as in the proof of
Corollary 4.9. The function t is defined as before, with functions u and v being 1-1, length-
squaring, 1-NL-invertible, 1-NL reductions between A and B. Again, it is easy to see that t can
be computed by a non-deterministic logspace TM with two scans of the input—first to compute
the length of the inverse chain and second to output. Using non-determinism, one can combine
these two scans in one in the following way. At the beginning of the computation on x, guess
the length of the chain. Now, verify the guess while simultaneously outputting u(x) or v−1(x)
based on the guessed length. If a guess turns out to be wrong, abort the computation on that
path. Thus, in a single scan, one gets the output. Similarly, t−1 can also be computed.

Corollary 5.4 The 1-NL-isomorphism conjecture is true.

This is the first non-trivial example of a reducibility for which the isomorphism conjecture
holds.

6 1-omL reductions

In the previous two sections, we have seen examples of reducibilities for which the encrypted
complete set conjecture fails while the isomorphism conjecture fails for one and holds for the
other. In this and next section, we study two reducibilities, viz., 1-omL and c-L, such that the
encrypted complete set conjecture fails for one and holds for the other. These two reducibilities
also exhibit an interesting property—the complete degrees under both are the same even though
the class of 1-omL functions is larger than the class of c-L functions. There is another reason
for investigating the complete degree under 1-omL reductions—these reductions are powerful
enough to include several p-one-way functions. We first identify such p-one-way functions.

Recall that p-one-way functions exist if and only if P 6= UP [18, 12]. Assuming P 6= UP, one
can construct the following ‘natural’ class of p-one-way functions.

Take any set A ∈ UP − P. Let M be a polynomial-time NDTM accepting A. A typical
encoding of an accepting computation of M on input x is of the form ID1ID2 · · · IDm where
m = p(|x|) for some polynomial p, |IDi| = m, ID1 and IDm are the starting and accepting IDs
respectively of M , and for every i, 1 ≤ i < m, M moves from IDi to IDi+1 in a single step.
Define function fM as: fM (x) = 1y if x is the above encoding of the accepting computation of
M on y; 0x otherwise. Now we have,

15

Proposition 6.1 If P 6= UP, then fM is a 1-omL function with f−1
M not computable in polynomial-

time.

Proof Sketch. It is easy to see that fM is not p-invertible. An accepting computation x of M
on input y is of the form ID1ID2 · · · IDm, m = p(|y|), and each IDi itself is of length m. fM is
a 1-omL function since it can be recognized by an 1-omL TM with four input heads—calculate
the length of the input using the first head, check if it is equal to [p(n)]2 for some n. If not then
output 0x. Otherwise, compare successive IDs using the next two heads to ensure that they
form a valid computation, the first ID is initial ID and the final ID is an accepting one; if it is
indeed an accepting computation then using the last head extract y and output 1y else output
0x. In all these calculations, obliviousness of the input heads can be easily maintained.

To obtain the collapsing result for 1-omL reductions, we follow the same path as for 1-L
and 1-NL reductions. However, there are several obstacles that we have to overcome before we
can obtain a lemma similar to Lemma 3.6 for computation sequences of 1-omL TMs. We can
assume, without loss of generality, that (1) the jth input head of a 1-omL TM is never ahead of
the ith one, for j > i, (2) on each move of the TM, at most one of the heads move, and (3) the
TM halts only when all its heads have scanned the entire input. A configuration of a 1-omL TM
stores the position of all the heads along with the other information. We let config(M,n) denote
the set of configurations of a 1-omL TM on input strings of size n with ‖config(M,n)‖ ≤ qM (n)
as before.

The first problem we encounter is in finding an appropriate definition of a configuration
going to some other configuration on a string. As a configuration for a 1-omL TM stores the
positions of all the input heads, the TM may not read a contiguous block of bits from the input
tape while moving from a configuration C to another configuration D. In fact, we do not use
this notion at all. Instead we define later on a somewhat similar notion for the kind of strings
we are interested in.

A bigger problem awaits us in the definition of proper strings. Recall that the most crucial
step in the proofs of Theorems 4.5 and 5.2 was the identification of a subset of strings (referred
as proper strings) on which the 1-L (or, 1-NL) TM works in a ‘forgetful’ manner—for the first
2n blocks of proper strings of size n2, we have two possible choices of strings and for any of the
first 2n blocks, the 1-L (or, 1-NL) TM does not remember which of these two strings is written
in the block while it is scanning a different block. Moreover, the two possible choices of strings
for these blocks have the form vv and wv. To make the TM act in a ‘forgetful’ manner—in other
words, to end up in the same configuration on these two strings—we ensured that it ends up in
the same configuration on scanning either of v and w. Both of these properties do not appear
to hold for 1-omL TMs as they have multiple heads and therefore they can simultaneously scan
two different blocks or two different places within a block.

To achieve this ‘forgetfulness’ property for 1-omL reductions, we change the definition of
proper strings by introducing redundant blocks, i.e., blocks that do not have anything useful
written on them. The proper strings will be of size n2a

, instead of n2, where a is the number of
input heads. They will have 1/2∗(8n)2

a−1
blocks of length b(n) each (for a suitably defined b(n))

with 4n of them being labelled live and the rest dead. The live blocks will have two possible
choices of strings as before, and the dead ones will just have a sequence of zeros written on it.
There will be a further restriction: the (2i− 1)th and (2i)th live blocks, for 1 ≤ i ≤ 2n, will
have the same set of two strings as their possible choices. These two blocks will be used to code
a single bit (in the earlier two proofs, a single block was used for this purpose). The idea of
introducing dead blocks is to ensure that at any time during the computation, the input heads
of the TM are not scanning two different live blocks. And since we code all useful information
in live blocks, the ‘forgetfulness’ property of the TM is restored.

16

By an entry configuration of an input head of M into a block we mean a configuration that
denotes the entry by that head into the block. So, corresponding to each block, there will be
a entry configurations. We define an exit configuration of an input head of M from a block
to be the entry configuration of the head into the next block. We will consider computation
sequences restricted only to entry and exit configurations of input heads into and from the live
blocks. Define a (k, b)-live-block restricted computation sequence to be a computation sequence
from which all the configurations, except the first and last one, that are not entry or exit
configurations of input heads into/from live blocks are deleted.

Now we are ready to prove the analog of Lemma 3.6. Let b(n) = d4a. log qM (n2a
)e+2, m(k) =

1/2∗(8n)2
k−1

, and n0 be the smallest number such that for all n ≥ n0, n2a ≥ m(a).b(n)+b(n)+1.

Lemma 6.2 Let M be a 1-omL TM. There is a logspace procedure that, on input 1n, for n ≥ n0,
computes (1) a (4n, b(n))-live-block restricted computation sequence Seq of M on strings of size
n2a

; (2) m(a) sets I1, . . ., Im(a); and (3) a division of the input heads of M into d disjoint
groups H1, H2, . . ., Hd satisfying the following conditions.

1. For every i, 1 ≤ i ≤ m(a), either ‖Ii‖ = 2, Ii = {vi, wi}, 0b(n) < wi < vi, |vi| = |wi| =
b(n); or Ii = {0b(n)}.

2. There are exactly 4n Iis with cardinality two (corresponding to live blocks). Let these be
Ii1, . . ., Ii4n. Then for every j, 1 ≤ j ≤ 2n, Ii2j−1 = Ii2j .

3. On any input string of size n2a
, for every i, 1 < i ≤ d, heads in the group Hi enter the

first live block only after all the heads in the group Hi−1 have exited from the last (i.e.,
(4n)th) live block. Further, for every i, 1 ≤ i ≤ d, and for every j, 1 < j ≤ 4n, a head in
the group Hi enters the jth live block only after all the heads in Hi have exited from the
(j − 1)th live block. (It follows from the above two conditions that at no time during the
computation, input heads of M scan two different live blocks.)

4. Let r = n2a −m(a).b(n)− b(n)− 1. Then Seq is the (4n, b(n))-live-block restricted compu-
tation sequence of M on every string in the set

S = I1·I2· · · · ·Im(a)·{01b(n)0r}.

Proof. Note that the condition 3 of the lemma restricts the head movement in a much stronger
way than just that they should not scan two different live blocks simultaneously. It is, as we
shall see, required to make the proof go through. We proceed with the proof in two parts. First,
we show that live blocks satisfying the condition 3 exist and then show that one can choose the
assignments to the live blocks and a (4n, b(n))-live restricted computation sequence to satisfy
the conditions 1, 2, and 4. As for the logspace procedure, it is indicated as we go along.

We now show the first part. We have to choose 4n live blocks in a way that condition 3 holds.
Since the TM is oblivious, we can find out about its head movement on any string of size n2a

by
running it on the string 0m(a).b(n)01b(n)0r (the obliviousness of the TM is crucial to the proof).
We divide the above string in m(a) + 1 blocks with the first m(a) blocks of size b(n) each. The
last block is of size 1 + b(n) + r and is labelled dead. Now we label all of first m(a) blocks live,
let H1 = {1} and proceed inductively. Suppose that the first c heads have been divided into
groups H1, . . ., Hr such that the condition 3 holds for these heads with m(a + 1− c) live blocks
(instead of 4n live blocks). Divide the first m(a − c) ∗ (1 + m(a − c)) live blocks into m(a − c)
groups of 1+m(a− c) successive live blocks each. Since m(a− c)∗ (1+m(a− c)) ≤ m(a+1− c),
such a division is possible. Now for each of these groups, check whether by the time head c
has entirely scanned all the blocks in the group, head c + 1 entirely scans the first block of the
group. If there is a group for which it is not true, then label the last m(a − c) blocks of that

17

group live and the rest of the m(a + 1− c)−m(a− c) blocks as dead. Also, let Hr+1 = {c + 1}.
On the other hand, if for every group the condition holds, then label the first block of each of
m(a− c) groups live and the rest as dead. Also, let Hr = Hr ∪{c+1}. In either case, we end up
with m(a− c) live blocks and the condition 3 holds for the first c + 1 heads with m(a− c) live
blocks. Therefore, in the end, we will have m(1) = 4n live blocks with the condition 3 holding
for all the heads. To decide, in logspace, if the given block is (eventually) live or not, we just
need to note that at any time during the entire process above, all live blocks are equidistant.
So a logspace TM can simulate the above process by storing the position of the first live block
and the distance between two successive ones.

Now we proceed to show the second part. Since we have fixed the positions of live blocks,
we can talk of (4n, b(n))-live-block restricted computation sequences. We give below, the con-
struction of a (4n, b(n))-live-block restricted computation sequence Seq and sets I1, I2, . . ., Im(a)

satisfying the conditions 1, 2, and 4.
Let us assume—for the next two paragraphs—that the (4n, b(n))-live-block restricted com-

putation sequence Seq as desired exists. We denote by Cj
i and Dj

i respectively the entry and
exit configuration, in Seq, of the ith input head into and from the jth live block. Let the input
heads be divided into disjoint groups H1, . . ., Hd as above with Hk = {tk, tk + 1, . . . , tk+1 − 1}
for 1 ≤ k ≤ d, t1 = 1 and td+1 = a + 1. Since the condition 3 of the Lemma is satisfied, we
have that in sequence Seq, for any 1 ≤ j ≤ 4n, any 1 ≤ k ≤ d, configurations Cj

tk
, . . ., Cj

tk+1−1,

Dj
tk

, . . ., Dj
tk+1−1, form a consecutive subsequence (not necessarily in the given order) with Cj

tk

and Dj
tk+1−1 as the first and last configuration of the subsequence (ordering of the rest of the

configurations is immaterial). We let C̃(k, j) denote this subsequence. Therefore,

Seq = Cinit, C̃(1, 1), . . . , C̃(1, 4n), C̃(2, 1), . . . , C̃(2, 4n), , C̃(d, 1), . . . , C̃(d, 4n), Cfinal

where Cinit and Cfinal are the initial and final configurations respectively. Strictly speaking, the
above equality may not hold as in the right hand side, a configuration may get repeated when
the jth and (j + 1)th live blocks are adjacent (Dj

i = Cj+1
i for every i in that case). However, it

is more convenient to think in terms of subsequences of configurations like C̃(k, j), and since it
does affect the proof, we will continue to use them.

A string written in the jth live block will be scanned by the TM while passing through the
configuration subsequences C̃(1, j), . . ., C̃(d, j) corresponding to the scan by each of the d group
of heads. We say that the subsequence C̃(k, j) is valid for a string s of length b(n), if the TM,
started on the configuration Cj

tk
with s written on the jth live block, passes through each of the

configurations in C̃(k, j) when zeros are written on all the dead blocks except the last one in
which the string 01b(n)0r is written. Note that while the TM passes through C̃(k, j), none of
its heads will scan any other live block and therefore, the notion is well defined.

We do a stage-wise construction of the sequence Seq. At the end of the stage 2n(k − 1) + j,
1 ≤ k ≤ d, 1 ≤ j ≤ 2n, we will have computed subsequences up to C̃(k, 2j). Since we
require that the (2j − 1)th and (2j)th live blocks have the same choices of strings, we do the
computation of C̃(k, 2j−1) and C̃(k, 2j) in a single stage. Further, since we can not store all the
computed subsequences within the available space, we only store the subsequences C̃(1, 2j − 1),
. . ., C̃(k, 2j − 1), and C̃(1, 2j), . . ., C̃(k, 2j) at the end of stage 2n(k − 1) + j.

Stage 2n(k − 1) + j, 1 ≤ k ≤ d, 1 ≤ j ≤ 2n : We have subsequences C̃(1, 2j−2), . . ., C̃(k, 2j−
2) from the previous stage if j > 1, and subsequences C̃(1, 4n), . . ., C̃(k − 1, 4n) if j = 1
and k > 1. In either case, we can easily compute the first configurations of C̃(1, 2j − 1),
. . ., C̃(k, 2j − 1) by first computing the position of the (2j − 1)th live block, then starting
the TM on the last configurations of the given subsequences and running it on dead blocks
till it enters the live block.

18

Carry out the simulation as in the Stage 2n(k − 2) + j if k > 1. This will compute
C̃(1, 2j − 1), . . ., C̃(k − 1, 2j − 1), C̃(1, 2j), . . ., C̃(k − 1, 2j). We now compute C̃(k, 2j −
1) and C̃(k, 2j) as follows. For every possible pair of subsequences C̃∗(k, 2j − 1) and
C̃∗(k, 2j) denoting some entry and exit configurations of the kth group of heads into/from
the (2j − 1)th and (2j)th live blocks respectively, do the following. Count the number of
strings v, |v| = b(n), on which all of C̃(1, 2j−1), . . ., C̃(k−1, 2j−1), C̃∗(k, 2j−1), C̃(1, 2j),
. . ., C̃(k − 1, 2j), C̃∗(k, 2j) are valid subsequences. Let C̃(k, 2j − 1) and C̃(k, 2j) be that
pair C̃∗(k, 2j − 1) and C̃∗(k, 2j) for which this number is the maximum (in case of a tie,
choose the lexicographically smallest pair). When k = d, let Ii2j−1 = Ii2j = {vv, wv} where
v and w are the smallest two non-zero strings on which all the subsequences C̃(1, 2j − 1),
. . ., C̃(d, 2j − 1), C̃(1, 2j), . . ., C̃(d, 2j) are valid.

It is straightforward to check that the above procedure can be carried out by a logspace
TM and the constructed sequence satisfies the condition 4. To see that it also satisfies the
conditions 1 and 2, we have to verify that for every j, 1 ≤ j ≤ 2n, there are at least two non-
zero strings on which all the subsequences C̃(1, 2j − 1), . . ., C̃(d, 2j − 1), C̃(1, 2j), . . ., C̃(d, 2j)
are valid.

For any j, we show, by induction, that for any k, 0 ≤ k ≤ d, there will be 2b(n)/[qM (n2a
)]4(tk+1−1)

strings on which the all the subsequences C̃(1, 2j − 1), . . ., C̃(k, 2j − 1), C̃(1, 2j), . . ., C̃(k, 2j)
are valid. It is trivially true for k = 0. Assume for k − 1. There are tk+1 − tk heads in the
kth group and therefore the subsequences C̃(k, 2j − 1) and C̃(k, 2j) have 4.(tk+1 − tk) configu-
rations in all (for every head two entry and two exit configurations). By induction hypothesis,
there are 2b(n)/[qM (n2a

)]4(tk−1) strings on which all the subsequences up to (k − 1)th group of
heads are valid. We choose the subsequences for the kth group of heads that are valid on the
largest number of strings from the above set and therefore, the number of such strings is at least
1/[qM (n2a

)]4.(tk+1−tk) ∗2b(n)/[qM (n2a
)]4(tk−1) = 2b(n)/[qM (n2a

)]4(tk+1−1). Therefore, there will be
at least 2b(n)/[qM (n2a

)]4a ≥ 4 strings on which all the subsequences are valid. This proves the
conditions 1 and 2 and therefore the sequence Seq is the desired one.

To compute the sets Ii2j−1 and Ii2j , where i2j−1 and i2j are respectively the positions of the
(2j − 1)th and (2j)th live blocks, we simply pick up the smallest two non-zero strings respecting
every subsequence in Stage 2n(d− 1) + j.

The proper strings are the strings in the set S defined in the condition 4 of the above lemma.
As the definitions of proper strings has changed, we need a slightly different definition of the set
code(L): y ∈ code(L) iff y = u1u2 · · ·ut01b0r for r ≥ 0 satisfying the following conditions—

1. |u1| = · · · = |ut| = b,

2. Let {uk1 , . . . , uk4n} be the set of all non-zero uis and x = x(1) · · ·x(n) with x(i) = 1 if
uk2i−1

= uk2i
, 0 otherwise. Then either for every i, n + 1 ≤ i ≤ 2n, uk2i−1

= uk2i
and

x ∈ L, or there is a j, n + 1 ≤ j ≤ 2n, such that for every i, n + 1 ≤ i 6= j ≤ 2n,
uk2i−1

= uk2i
, uk2j−1

6= uk2j
and x(j − n) = 1.

The construction of gf also changes suitably:

On input x, let n = 2dlog |x|e. If n < n0 then output

x[1]11x[1]x[2]11x[2] · · ·x[|x|]11x[|x|]14.|x|011

and halt. Otherwise, for each 1 ≤ j ≤ 2.|x|, do the following.

Compute the positions of (2j − 1)th and (2j)th live blocks, say i2j−1 and i2j , and the
set Ii2j−1 = Ii2j = {wj , vj}. Output 0(i2j−1−i2j−2−1).b(n)vj0(i2j−i2j−1−1).b(n)vj if j > |x|
or x[i] = 1, 0(i2j−1−i2j−2−1).b(n)wj0(i2j−i2j−1−1).b(n)vj otherwise (letting i0 = 0).

19

Finally, output 0(m(a)−i4|x|).b(n)01b(n)0r where m(a) = 1/2∗(8n)2
a−1

and r = m(a).b(n)−
b(n)− 1, and halt.

Function gf , in fact, is a 1-L function. Analogues of Proposition 4.1, and Lemmas 4.2, 4.3,
and 4.4 continue to hold as the output of M while any of the d group of heads are scanning
a live block is independent of the assignment of other live blocks when the TM is working on
proper strings. We now prove the collapsing result for 1-omL reductions.

Theorem 6.3 For any class C closed under logspace reductions, every ≤1−omL
m -hard set for C is

also ≤1−omL
1,qli,i -hard.

Proof Sketch. Let A be a ≤1−omL
m -hard set for C and L ∈ C. Set L̃ and function gp are defined

analogously. Let h = f ◦ gf ◦ gp, where code(L̃) ≤1−omL
m A via f . It is clear that h is a one-

one, and length-squaring reduction of L to A. To show that it a 1-omL computable as well as
1-omL-invertible function, we have to do a little more work as the class of 1-omL functions is
not closed under composition.

Define a TM to be bi-oblivious if, in addition to the input head(s), movement of its output
head also depends only on the input length. It is easy to see that the composition of a 1-omL
function with a bi-oblivious 1-mL function is a 1-omL function. Now to see that h is a 1-omL
function, it is sufficient to note that the functions gf and gp can be computed by a bi-oblivious
1-L TM.

Finally, to invert the function h, we again define a TM M ′ that is a composition of the
following two TMs.

TM M1: This TM, as before, computes the function (f ◦ gf)−1 correctly on the range of the
function h. Let the function f be computed by TM M with a input heads. TM M1 also
has a input heads and it executes the following procedure. Given input z, first find out
the size, say n, of the input string on which the size of the output of f ◦ gf is |z|. (Again,
the padding by function gp ensures that there can be at most one such n.) If none, then
reject. Otherwise, compute the division of input heads of the TM M (computing f) into
d disjoint groups (on strings of size n2a

) as in Lemma 6.2. Now, say that an output bit is
produced by the kth group of heads of TM M if the bit is outputted while the TM is moving
between the configurations C1

tk
and C1

tk+1
(we take C1

td+1
to be the final configuration). If a

bit is outputted while M moves from the initial configuration to C1
1 , we say it is produced

by the first group. It follows that the output can thus be divided in d disjoint contiguous
blocks corresponding to the output produced by each of the d group of heads. Calculate
the positions of these d blocks of bits in the input z—these positions will remain the same
for all strings of length |z|—and place one head (of M1) at the beginning of the each such
block. Now compute the configuration subsequences C̃(1, 1), C̃(2, 1), . . ., C̃(d, 1), C̃(1, 2),
C̃(2, 2), . . ., C̃(d, 2), and the sets Ii1 and Ii2 , Ii1 = Ii2 = {v, w}, for the first two live blocks
and then simulate all the heads on the two assignments vv and wv to these blocks to decide
if the output of M on any of these two assignments matches with the prefix of each of the
d groups in the given input. If none then reject; otherwise output 1 or 0 accordingly. Do
it for every successive pair of live blocks. This procedure computes the inverse in logspace
with d one-way input heads. Of course, the value of d varies with the size of z, however,
it is always bounded by a. The function gp ensures that the output length of f ◦ gf ◦ gp

is different for different input lengths. Thus, TM M1 is bi-oblivious as its output head
moves by exactly one bit after simulation for every pair of blocks.

TM M2: This TM remains identical to the one defined in the proof of Theorem 4.5. It would
be an oblivious 1-L TM.

20

The composition of the above two TMs computes the inverse of h and the TM computing it
is a 1-omL TM.

Immediate corollaries:

Corollary 6.4 For any class C closed under logspace reductions, ≤1−omL
m -complete degree for C

collapses to ≤1−omL
1,qli,i -complete degree.

Corollary 6.5 For any class C closed under logspace reductions, if A is a ≤1−omL
m -hard set for

C and t is a 1-1, 1-omL function then t(A) is also ≤1−omL
m -hard.

Proof. To prove this, we just need to observe that the function h of the above theorem is
a bi-oblivious 1-mL function. Function gf ◦ gp, as noted above, is a bi-oblivious 1-L function.
Since all the heads of TM M , computing f , enter and exit from each live block in the same
configuration on any string of a fixed length n in the range of gf ◦ gp, and each live block is
O(log n) bits long, there is a 1-mL TM that computes h by ‘spacing’ the output of M on the live
blocks so that the output head movement does not depend on the string written on the block.
This makes the TM bi-oblivious. Now, it follows that t ◦ h is a 1-omL function.

Corollary 6.6 The 1-omL-encrypted complete set conjecture is false.

Corollary 6.7 For any class C closed under logspace reductions, all ≤1−omL
m -complete sets for

C are logspace-isomorphic.

Is the 1-omL-isomorphism conjecture true? We suspect not, as to compute the length of
f−1-g−1 chain as in [13], it appears that a polynomial number of input heads are needed instead
of just a constant.

7 c-L reductions

In this section, we study yet another reducibility, viz., c-L. It behaves differently from the above
three ones in that the c-L-encrypted complete set conjecture is true. We first show that this
reducibility is closely related to 1-omL reducibility.

Corollary 7.1 For any class C closed under logspace reductions, every ≤1−omL
m -hard set for C

is also ≤c−L
1,qli-hard via a function that is 1-omL-invertible.

Proof Sketch. In fact the reduction h constructed in the proof of Theorem 6.3 is a c-L function.
This follows from the Lemma 6.2 and the constructions of functions gf and gp in the proof above.
Lemma 6.2 allows us to construct function gf such that the a heads of the TM M , computing
function f on the range of gf , can be divided into d disjoint groups, d ≤ a, d varying with the
input length, satisfying the following properties.

1. For each k, 1 < k ≤ d, heads in the kth group start scanning the live blocks only after the
heads in the (k − 1)th group have scanned all the live blocks.

2. For each k, 1 ≤ k ≤ d, and for each live block, all the heads in the kth group scan it before
any head in the group starts scanning the next one.

21

Now a a-L TM can compute the function f on the range of gf in the following way—in the kth

scan of the input, compute the output of M while its kth group of heads are scanning the live
blocks. This can be done by a single head as, for each live block, the TM can write its contents
in its work tape and simulate all the heads in the kth group on it. The above two properties
ensure that no other live block is scanned during this simulation. Therefore, the function f ◦ gf

is a c-L function and so is the function h = f ◦ gf ◦ gp (remember that c-L functions are closed
under composition and both gf and gp are 1-L functions).

The above result immediately raises the following question: is the class of c-L functions
properly contained in the class of 1-omL functions? If so, then we have an interesting collapse
of ≤1−omL

m -complete degrees to complete degrees under a strictly weaker class of reductions. The
following proposition shows that it is indeed so.

Proposition 7.2 F(c-L) ⊂ F(1-omL).

Proof Sketch. Any c-L function f can be computed by an oblivious c-L TM in the following
way—suppose that a TM, say M , computing f works for at most p(n) steps on input strings of
size n. Then a TM that takes exactly p(n) steps to simulate steps of M between two consecutive
movements of the input head will be an oblivious c-L TM computing f since the movement of
the input head is one-way. Now, this oblivious TM can be simulated by a 1-omL TM—put one
head for each scan of the input. Therefore, F(c-L) ⊆ F(1-omL).

By Proposition 7.6 proved below, the inverse of the function t(x) = xx is computable by a
1-omL TM but not by a c-L TM. This completes the proof.

Thus, as a reduction from complete sets, 1-omL functions are no more powerful than c-L
functions!

Corollary 7.3 For any class C closed under logspace reductions, set A is ≤1−omL
m -hard set for

C iff A is ≤c−L
m -hard for C iff A is ≤c−L

1,qli-hard for C via a function that is 1-omL-invertible.

Can we obtain a further collapse by making the reductions in the above corollary c-L-
invertible? Surely, it would be possible if the c-L-encrypted complete set conjecture is false.
However, it turns out that, unlike the previous three reducibilities, c-L-encrypted complete set
conjecture is true. Towards this, we first define c-L-annihilating functions in the same spirit
as [20].

Definition 7.4 A function f is c-L-annihilating function if it is a 1-1, length-increasing, c-L
function such that every subset of the range of f that is recognized by a c-L TM is sparse.

Now, the following proposition follows.

Proposition 7.5 If c-L-annihilating functions exist then the c-L-encrypted complete set con-
jecture is true.

Proof. Suppose the conjecture is false. Let A be a ≤c−L
m -complete set for NP and f be a c-L-

annihilating function. Define B = 1A ∪ 0Σ∗. Set B too is ≤c−L
m -complete for NP. Consider the

set f(B). Since the conjecture is false, there is a 1-1, length-increasing, c-L function g reducing
B to f(B) such that g is c-L-invertible as well. Define the set C as: x ∈ C iff g−1(x) exists and
belongs to 0Σ∗. C is a non-sparse set recognizable by a c-L TM as well as a subset of the range
of f . A contradiction.

It is easy to show that c-L-annihilating functions exist. Define t(x) = xx.

22

Proposition 7.6 t is a c-L-annihilating function.

Proof. Function t is clearly a 1-1, length-increasing, c-L function. Let the c-L TM M recognize
a subset S of its range. Let M be a k-L TM with qM (n) being the number of configurations in
config(M, 2n). We show that ‖S=2n‖ ≤ [qM (n)]2k. Consider the (1, n)-block restricted compu-
tation sequences on input strings of size 2n. There will be two configurations in these sequences
corresponding to each pass of the input by the input head, and therefore, 2k + 2 configurations
in all (including initial and final configurations). How many different such sequences exist?
Clearly, not more than [qM (n)]2k (we can take initial and final configurations to be fixed). If
there are two strings in S, say xx and yy, that share the same (1, n)-block restricted compu-
tation sequence then strings xy and yx would also belong to S. But this is not possible since
x 6= y and S is a subset of the range of t. Therefore, S can contain at most [qM (n)]2k strings of
size 2n. Note that S will have no string of odd length. Therefore, S is sparse. Since the TM M
was arbitrary, it follows that t is a c-L-annihilating function.

Corollary 7.7 c-L-encrypted complete set conjecture is true.

8 Discussion

The motivation for relocating the conjectures to weaker reducibilities, or to higher classes, has
been that an answer of the relocated conjectures may shed some light on the answer of the
conjectures in their original form. So, what, if any, is the implication of the above results in
this sense? At a first glance, they do not seem to favor any conjecture as all three possible
answers to the two conjectures have been shown to exist for different reducibilities—both are
false for 1-L while the isomorphism conjecture is true for 1-NL and the encrypted complete set
conjecture is true for c-L reductions. However, on a closer look these results appear to support
the p-isomorphism conjecture. To see this, we first identify two properties of a reducibility r.

Simple reducibility. Reducibility r is simple for class C if every ≤r
m-complete set for C is also

≤r
1,li-complete.

Easily invertible reducibility. Reducibility r is easily invertible for class C if—given that
the inverse of every one-one, length-increasing function in F(r) is computable by a non-
deterministic TM working within a resource bound of s, s ≥ r (i.e., the inverting TM is
allowed to use more resources but not less)—every ≤r

1,li-complete set for C is also ≤r
1,li-

complete via reductions whose inverses are computable by deterministic TMs working
within a resource bound of s.

It is straightforward to see that the p-isomorphism conjecture holds if and only if the
polynomial-time reducibility is both simple and easily invertible for NP as the inverse of any
one-one length-increasing polynomial-time function is computable by an NDTM working in
polynomial-time. We shall refer to the conjecture that reducibility r is both simple and easily-
invertible for class C as the r-complete degree conjecture for C. We now show that for re-
ducibilities 1-L, 1-omL, and c-L—for which we have been unable to prove the isomorphism
conjecture—the r-complete degree conjecture for NP either holds or is very likely to hold.

That the conjecture holds for reducibilities 1-L and 1-omL follows directly from Theorems 4.5
and 6.3 respectively. In fact, as shown in Proposition 6.1, there are 1-omL functions whose
inverses are computable only by polynomial-time NDTMs and yet the ≤1−omL

1,li -complete sets for
NP are also ≤1−omL

1,li,i -complete. So, for 1-omL reductions, the inverses are stronger than desired.

23

The interesting case is that of c-L reductions. It can be shown—by a direct adaptation of the
proof of Proposition 7.6—that there are one-one, length-increasing c-L functions whose inverses
are not computable by non-deterministic c-L TMs (t(x) = xx is one such function). In fact,
there seems no better way to invert a general c-L function than by a non-deterministic 1-mL
TM—keep one head for the output produced during each scan of the c-L TM; guess the length of
the output produced during each scan and position the heads accordingly; now guess the input
to the c-L TM bit-by-bit and verify. Therefore—as by Corollary 7.1 the ≤c−L

1,li -complete sets for
NP are also ≤c−L

1,li -complete via reductions that are 1-omL-invertible—the c-L reducibility too
appears to be easily invertible for NP. It is also simple for NP (direct from Corollary 7.1).

The 1-NL-complete degree conjecture is clearly true (follows from Theorem 5.2). The only
point to note is that in the definition of the easily invertible property we require the resource
bound on the inverting TM to be at least as much as r which in case of 1-NL TMs is 1-NL (we
count non-determinism also as a resource). And so the conclusion that a deterministic TM must
compute the inverse within a resource bound of s is satisfied as non-determinism is still allowed
in the resource bound s.

Thus, for all the four reducibilities that we have considered the r-complete degree conjecture
for NP (in fact for any class closed under logspace reductions) is true (or very likely true). So,
our results can be interpreted as providing evidence for the p-isomorphism conjecture provided
one believes that the complete degrees for these weak reducibilities have similar ‘structure’ as the
complete degree for polynomial-time reducibility. However, this is far from clear. The reducibil-
ities that we considered have the special feature of scanning the input tape only constantly many
times and that too in only one direction. The proofs make heavy use of this property and do
not work for any non-constant number of scans.

In view of the above, more investigation is needed—particularly of r-complete degree con-
jectures for various other reducibilities—before we can positively conclude anything about the
p-isomorphism conjecture. For some other reducibilities also the answer to the above conjecture
is known. In [2] it is shown that the 2DFA-complete degree conjecture for NP is most likely true
(2DFA denotes the class of reductions computed by two-way DFA transducers), and it can be
easily inferred from the results in [3] that FOP-complete degree conjecture for NP is true (FOP
denotes the class of first order projections, see [3] for definition). However, these two classes
of reductions are extremely weak and so do not add much to the evidence(?) already provided
above for p-complete degree conjecture being true for NP.

Finally, a few words on the technique. The technique that we use is essentially a refinement
of the one used in [1]. In [1], the function gf , mapping L to code(L), ‘codes’ the entire string in
one go whereas here we do the coding ‘bit-by-bit’. This allows us to obtain a stronger collapse
of complete degrees—in [1] it could only be shown that all ≤1−L

m -complete sets for NP are p-
isomorphic. Further, our results show that this technique is more useful than the standard
diagonalization one at least for weak reductions like 1-L, 1-NL etc. In [15] it was shown, using
the diagonalization technique, that ≤1−L

m - (and ≤1−NL
m -) complete sets for non-deterministic space

classes above NLOG are also ≤1−L
1,li - (resp. ≤1−NL

1,li -) complete. We have been able to improve this
result in two ways—one, we show that the ≤1−L

m - and ≤1−NL
m -complete sets are also respectively

≤1−L
1,li,i- and ≤1−NL

1,li,i -complete; and two, this result holds for all classes closed under logspace
reductions.

9 Open questions

As we have observed above, it would be interesting to investigate the r-complete degree conjec-
ture for NP for various reducibilities r, the most important ones being of course, logspace and
polynomial-time. We list here a few reducibilities for which the answer to the complete degree

24

conjecture appears more tractable.

1. We have not been able to answer the conjecture for the more natural class of 1-mL re-
ductions. The obliviousness condition appears crucial for our proof to work. As shown in
section 6, the inverses of one-one, length-increasing 1-mL reductions can only be computed
by non-deterministic polynomial-time TMs in general. So, to prove the 1-mL-complete
degree conjecture for NP, we have to show that all ≤1−mL

m -complete sets for NP are also
≤1−mL

1,li -complete via reductions that are p-invertible.

2. We have concentrated on functions computed by TMs with one-way input head(s) as they
are provably weaker than polynomial-time functions. However, there are other such classes
of functions, e.g., uniform-AC0 or first-order functions [10]. It is easy to show that there
are p-one-way functions that are first-order computable (the p-one-way 1-omL function
exhibited in section 6 is also first-order computable), so to prove the complete degree
conjecture for NP for these reductions we have to show that all ≤fo

m -complete sets for NP
are also ≤fo

1,li-complete via p-invertible reductions.

Acknowledgement: I would like to thank Professor Somenath Biswas for several suggestions
and corrections in an earlier draft. I am also grateful to Professor Steve Homer for providing
constant encouragement and support.

References

[1] M. Agrawal and S. Biswas. Polynomial isomorphism of 1-L-complete sets. In Proceedings
of the Structure in Complexity Theory Conference, pages 75–80, 1993.

[2] M. Agrawal and S. Venkatesh. The isomorphism problem for 2-DFA reductions. Technical
Report TCS-94-4, School of Mathematics, SPIC Science Foundation, Madras, India, 1994.

[3] E. Allender, J. Balcázar, and N. Immerman. A first-order isomorphism theorem. In Pro-
ceedings of the Symposium on Theoretical Aspects of Computer Science, 1993.

[4] E. W. Allender. Isomorphisms and 1-L reductions. In Proceedings of the Structure in
Complexity Theory Conference, pages 12–22. Springer Lecture Notes in Computer Science
223, 1986.

[5] E. W. Allender. Isomorphisms and 1-L reductions. J. Comput. Sys. Sci., 36(6):336–350,
1988.

[6] L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell University,
1977.

[7] L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete sets.
SIAM Journal on Computing, 1:305–322, 1977.

[8] H. Burtschick and A. Hoene. The degree structure of 1-L reductions. In Proceedings of
Math. Foundation of Computer Science, pages 153–161. Springer Lecture Notes in Com-
puter Science 629, 1992.

[9] S. Fenner, L. Fortnow, and S. Kurtz. The isomorphism conjecture holds relative to an
oracle. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science,
pages 30–39, 1992. To appear in SIAM J. Comput.

25

[10] M. Furst, J. Saxe, and M. Sipser. Parity, circuits and the polynomial time hierarchy.
Mathematical Systems Theory, 17:13–27, 1984.

[11] K. Ganesan and S. Homer. Complete problems and strong polynomial reducibilities. In
Proceedings of the Symposium on Theoretical Aspects of Computer Science, pages 240–250.
Springer Lecture Notes in Computer Science 349, 1988.

[12] J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems. In Pro-
ceedings of Annual IEEE Symposium on Foundations of Computer Science, pages 495–503,
1984.

[13] J. Hartmanis. On log-tape isomorphisms of complete sets. Theoretical Computer Science,
pages 273–286, 1978.

[14] J. Hartmanis, N. Immerman, and S. Mahaney. One-way log-tape reductions. In Proceedings
of Annual IEEE Symposium on Foundations of Computer Science, pages 65–72, 1978.

[15] L. A. Hemchandra and A. Hoene. Collapsing degrees via strong computation. In Proceedings
of the International Colloquium on Automata, Languages and Programming, pages 393–404.
Springer Lecture Notes in Computer Science 510, 1991.

[16] N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on
Computing, 17:935–938, 1988.

[17] D. Joseph and P. Young. Some remarks on witness functions for nonpolynomial and non-
complete sets in NP. Theoretical Computer Science, 39:225–237, 1985.

[18] K. Ko. On some natural complete operators. Theoretical Computer Science, 37:1–30, 1985.

[19] S. Kurtz, S. Mahaney, and J. Royer. The structure of complete degrees. In A. Selman,
editor, Complexity Theory Retrospective, pages 108–146. Springer-Verlag, 1988.

[20] S. Kurtz, S. Mahaney, and J. Royer. The isomorphism conjecture fails relative to a random
oracle. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages
157–166, 1989.

[21] S. Kurtz, S. Mahaney, and J. Royer. Average dependence and random oracles. In Proceed-
ings of the Structure in Complexity Theory Conference, pages 306–317, 1992.

[22] A. L. Selman. A survey of one-way functions in complexity theory. Mathematical Systems
Theory, 25:203–221, 1992.

[23] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Informatica, 26:279–284, 1988.

[24] O. Watanabe. On one-one polynomial time equivalence relations. Theoretical Computer
Science, 38:157–165, 1985.

26

