
DSPACE(n) ?= NSPACE(n): A Degree Theoretic

Characterization

Manindra Agrawal
Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur 208016, INDIA
email: manindra@iitk.ernet.in

Abstract

It is shown that the following are equivalent.

1. DSPACE(n) = NSPACE(n).

2. There is a non-trivial ≤1−NL
m -degree that coincides with a ≤1−L

m -degree.

3. For every class C closed under log-lin reductions, the ≤1−NL
m -complete degree of C

coincides with the ≤1−L
m -complete degree of C.

1 Introduction

The structure of complete degrees has been extensively investigated over the years. Particular at-
tention has been paid to the polynomial-time many-one complete degrees (in short, ≤p

m-complete
degrees) of well known classes, e.g., NP, EXP, NEXP etc. For the class EXP, it has been shown
that the ≤p

m-complete degree of EXP coincides with the ≤p
1,li-complete degree [5, 22, 10] (the

definitions of ≤p
1,li and other restricted reducibilities are given in Section 2). A weaker result is

known for the class NEXP—the ≤p
m-complete degree of NEXP coincides with the ≤p

1-complete
degree [10]. For the ≤p

m-complete degree of NP, although no absolute result is known, there
exist two contradictory conjectures about its structure [6, 16]. While the isomorphism conjec-
ture, proposed in [6], states that the ≤p

m-complete degree of NP coincides with a p-isomorphism
type, the encrypted complete set conjecture, proposed in [16, 18], (effectively) states that the
≤p

1,li-complete degree of NP does not coincide with the ≤p
1,li,i-complete degree of NP. Moreover,

it has also been shown that the answer to either of the above two conjectures cannot be obtained
via relativizable techniques [8, 19]. This prompted the investigation of the following more gen-
eral question: does there exist some ≤p

1,li-degree that does not coincide with a ≤p
1,li,i-degree?

Ko, Long, and Du [17], in a surprising result, showed that the answer to the general question
is subtle—every ≤p

1,li-degree coincides with a ≤p
1,li,i-degree if and only if P = UP if and only if

every ≤p
1,li-degree within the 2-tt-complete degree of EXP coincides with a ≤p

1,li,i-degree. Since
every non-empty ≤p

1,li,i-degree coincides with a p-isomorphism type [6], the above result implies
that every non-empty ≤p

1,li-degree coincides with a p-isomorphism type if and only if P = UP.
In the same spirit as above, the relationship between ≤p

1- and p-isomorphism types has been
characterized by Fenner, Kurtz, and Royer [9]—every ≤p

1-degree coincides with a p-isomorphism
type if and only if P = PSPACE if and only if every ≤p

1-degree within the 2-tt-complete degree of
EXP coincides with a p-isomorphism type. An excellent survey of results concerning polynomial-
time many-one degrees and its functional restrictions can be found in [18].

While the structure of ≤p
m-complete degrees is not well understood at present—as is evident

from the (lack of) results above—there has been success in describing the structure of complete

degrees under reducibilities that are much weaker than polynomial-time. For example, the
structure of ≤1−L

m - and ≤1−NL
m -complete degrees has been investigated and described in [1, 3,

4, 7, 10, 12, 13, 14], where 1-L and 1-NL reductions are computed essentially by deterministic
and nondeterministic logspace TMs respectively with a one-way input head. It was shown
in [1] that ≤1−L

m -complete degrees of classes closed under log-lin reductions (see next section
for the definition of log-lin reductions) coincide with ≤1−L

1,li,i-complete degrees but not with 1-L-
isomorphism types. Also, it was shown that the ≤1−NL

m -complete degrees of classes closed under
log-lin reductions coincide with 1-NL-isomorphism types.

Sometimes, the complete degrees exhibit another interesting property: the complete degrees
under some (many-one) reducibility r coincide with the complete degrees under a (many-one) re-
ducibility weaker than r. For example, the (nonuniform) AC0-complete degrees coincide with the
(nonuniform) NC0-complete degrees for the class NC1 [2] (another such example is given in [1]).
This gives rise to the following interesting question: do complete degrees under polynomial-
time and, say, logspace reductions coincide? Or, those under 1-NL and 1-L reductions? In this
paper, we study these two questions and obtain some surprising connections of these with the
separations of complexity classes.

For 1-NL and 1-L reducibilities, we show that there is a ≤1−NL
m -degree (apart from the degrees

of Σ∗ and ∅) that coincides with a ≤1−L
m -degree if and only if DSPACE(n) = NSPACE(n) if and

only if for every class C closed under log-lin reductions, the ≤1−NL
m -complete degree of C coincides

with the ≤1−L
m -complete degree (since 1-L reductions are not closed under composition [4], ≤1−L

m -
complete degrees have to be carefully defined: see next section).

The above result implies that under the assumption DSPACE(n) 6= NSPACE(n), all ≤1−NL
m -

degrees (except for the degrees of Σ∗ and ∅) are distinct from all ≤1−L
m -degrees. Moreover, we get

the following corollary for every class C closed under nondeterministic logspace reductions: there
is a set AC ∈ C such that DSPACE(n) 6= NSPACE(n) if and only if R1−L

m (AC) 6= C (R1−L
m (A)

denotes the class of sets that are reducible to A via 1-L reductions). For any class C that is
closed under nondeterministic logspace reductions and properly contained in DSPACE(n), the
above corollary gives us an upward separation result. For example, letting C = NLOG we
get: if R1−L

m (ANLOG) 6= NLOG then DSPACE(n) 6= NSPACE(n). We get a curious result with
C = EXP: if DSPACE(n) = NSPACE(n) then the class R1−L

m (AEXP) coincides with EXP; on
the other hand, if DSPACE(n) 6= NSPACE(n) then the class R1−L

m (AEXP) does not contain even
DLOG.

As an aside, we are able to show that for all classes closed under 1-NL reductions, the
≤1−L

m -complete degree of the class coincides with the ≤1−L
1,li,i-complete degree. This result is

incomparable to a similar result shown for classes closed under log-lin reductions in [1].
For polynomial-time and logspace reducibilities, perhaps not surprisingly, we can only show

a much weaker result: if E 6= DSPACE(n) then the ≤log
m -complete degree of PSPACE (and

deterministic classes above it) is properly contained in the ≤p
m-complete degree.

2 Preliminaries

All strings that we consider here are over Σ = {0, 1}. For a string s, |s| denotes its length.
The set Σ=n denotes the set of all strings of length n. For any string s and for any number i,
1 ≤ i ≤ |s|, s[i] denotes the ith bit of s.

Our model of computation is Turing machines with a read-only input tape, a write-only
output tape and a read-write work tape.

For a resource bound r on TMs, we denote by F(r) the class of total functions computed
by TMs within the resource bound of r. For the class of functions F(r), we say that f is an
r-computable function, or simply, an r function, if f ∈ F(r); and f is r-invertible if there is

2

a function g ∈ F(r) such that g(f(x)) = x for every x. We say that set A ≤r
m (≤r

1; ≤r
1,li;

≤r
1,li,i) B if there is a many-one (one-one; one-one, length-increasing; one-one, length-increasing

and r-invertible) r-computable function f reducing A to B. The ≤r
m-degrees are the strongly

connected components of the relation ≤r
m. Similarly, one can define the ≤r

1-, ≤r
1,li- and ≤r

1,li,i-
degrees. For sets Σ∗ and ∅, their ≤r

m-degrees contain no other set and thus are trivial. We shall
refer to all other ≤r

m-degrees as non-trivial ≤r
m-degrees.

Set A is ≤r
m-hard for class C if for every B ∈ C, B ≤r

m A. Set A is ≤r
m-complete for class C if

A is ≤r
m-hard for C and A ∈ C. The ≤r

m-complete degree of C is defined to be the ≤r
m-degree of

≤r
m-complete sets for C. The ≤r

1-, ≤r
1,li-, and ≤r

1,li,i-complete degrees are similarly defined. Set
A is r-isomorphic to set B, A ≡r B, if there exists a bijection f between A and B with both
f and f−1 being r-computable. The r-isomorphism types are the smallest equivalence classes
induced by the relation ≡r.

Whenever we talk of a function computed by a nondeterministic TM, we assume that the
TM, on any input, outputs the same string on all accepting paths.

A 1-L TM is a deterministic Turing machine with a read-only input tape, a write-only output
tape and a logspace-bounded work tape such that its input head is one-way, i.e., it moves from
left to right only. Further, at the beginning of the computation, 1dlog ne is written on the work
tape, where n is the length of the input. The class F(1-L) denotes the class of total functions
computed by these TMs. These functions were first defined in [12] for studying complete sets
for DLOG. The class of ≤1−L

m -complete sets for NP is a fairly large one: it was shown in [12]
that all known natural ≤p

m-complete sets for NP are ≤1−L
m -complete as well.

In general, 1-L functions are not closed under composition as 1-L TMs have 1dlog ne written
on the work tape at the beginning of the computation [4]. Therefore, it is possible that there are
two sets in a ≤1−L

m -degree that do not reduce to each other via a 1-L reduction. Nevertheless,
it can be shown that the ≤1−L

m -complete degree of any class closed under logspace reductions
consists entirely of ≤1−L

m -complete sets and therefore, every pair of sets in such degrees reduce to
each other via 1-L reductions (this result follows directly from results in [1, Theorem 4.2 & Corol-
lary 4.4], however, it has not been proved explicitly since the ≤1−L

m -complete degrees were defined
there to be just the class of all ≤1−L

m -complete sets).
A 1-NL TM is a nondeterministic Turing machine with the rest of the conditions being same

as for a 1-L TM. Class F(1-NL) contains total functions that are computed by 1-NL TMs (as
these TMs are nondeterministic, they output the same string on all accepting paths). These
functions are closed under composition—to compute f ◦ g on input x (both f and g are 1-NL
functions computed by TMs Mf and Mg respectively), a 1-NL TM first guesses the length of
g(x), then simulates Mg on x and Mf on its output with the guessed length and accepts iff the
guessed length turns out to be correct. It is obvious that every ≤1−L

m -degree is contained in a
≤1−NL

m -degree.
Finally, function f is a log-lin function [20] if it can be computed by logspace bounded DTMs

and for all x: |f(x)| = O(|x|).

3 The characterization

The structure of ≤1−L
m - and ≤1−NL

m -complete degrees for various classes has been investigated
intensively (see [1, 3, 4, 7, 10, 14]). As a culmination of this research, the structure of these
degrees (for classes closed under log-lin reductions) was completely described in [1]. It was shown
there that for every class closed under log-lin reductions, the ≤1−L

m -complete degree coincides
with the ≤1−L

1,li,i-complete degree, and sets in this degree are 2-L-isomorphic (2-L reductions are
computed by logspace DTMs with a one-way input head that are allowed to make two left-to-
right scans of the input) but not 1-L-isomorphic. For 1-NL reducibility, it was shown that for

3

any class closed under log-lin reductions, the ≤1−NL
m -complete degree coincides with the ≤1−NL

1,li,i -
complete degree, which, in turn, is a 1-NL-isomorphism type. In the proof of our results below,
we shall be using several results and ideas of [1]. We shall also need the following definitions
about 1-NL TMs.

For the purpose of definitions below, let M be a 1-NL TM computing a total function f .
Without loss of generality, we can assume that M has a set of special states called the transit
states such that M enters one of these states when and only when it moves the input head.
Also, we can assume that once M reads all the input bits, it behaves deterministically.

Definition 3.1 A configuration of M of size n is a partial ID of M on the input strings of size
n. It is written as a 5-tuple 〈st, in, out, wk, tape〉 where st denotes the state of M ; in, out and wk
denote respectively the input head, output head and work tape head positions; and tape denotes
the contents of the work tape. We refer to the starting configuration of M of size n as Cn

init and
an accepting configuration as Cn

accept (there may be more than one accepting configuration).
A transit configuration of M of size n is a configuration of M of size n whose state is a

transit state.

A 1-NL TM, on any input of size n, and on any of its nondeterministic paths, passes through
exactly n transit configurations.

Forgetful TMs were defined in [1]. There, a slightly different, but essentially equivalent
notion of transit configurations was used.

Definition 3.2 A 1-NL TM M is forgetful if, for every n, there is a sequence S of transit
configurations of M of size n such that, for every input x of size n there is an accepting path
of M on input x such that S is the sequence of transit configurations that M goes through on
this path. A function computed by a forgetful 1-NL TM is called a forgetful 1-NL function.

In [1, Theorem 5.3], the following is proved for forgetful 1-NL TMs.

Lemma 3.3 For any class C closed under log-lin reductions, any ≤1−NL
m -hard set for C is also

hard under forgetful 1-NL reductions.

We do not prove the lemma here: its proof is similar to the proof of Claim 4.3.3 in the next
section. The above lemma will be the key to our proof of the theorem below, which gives the
first implication of our characterization.

Theorem 3.4 If DSPACE(n) = NSPACE(n), then for every class C closed under log-lin re-
ductions, the ≤1−NL

m -complete degree of C coincides with the ≤1−L
m -complete degree.

Proof. Let A be a ≤1−NL
m -complete set for C and B ∈ C. By Lemma 3.3, there is a forgetful

1-NL reduction f of B to A, computed by, say, TM M . We show that, assuming DSPACE(n) =
NSPACE(n), f can be computed by a 1-L TM too.

Denote by p(D) the input head position in the configuration D of M . We define three sets:

O1 = {(m, i,D1, D2) | D1 and D2 are configurations of M of size m with D2 being a
transit configuration, and p(D1) = i, and p(D2) = i + 1, and for any bit
written on the ith cell of the input tape, there is a guess path on which
the TM M moves from D1 to D2},

O2 = {(m, i,D) | D is a configuration of M of size m, and p(D) = i, and there exist
transit configurations Di+1, Di+2, . . ., Dm+1 of M such that for every
j, i ≤ j ≤ m: (m,Dj , Dj+1) ∈ O1 where Di = D, and M moves from
Dm+1 to an accepting configuration},

4

O3 = {(m, i,D1, D2, b, D′) | D1, D2, and D′ are configurations of M of size m with
D2 being a transit configuration, and b ∈ {0, 1}, and p(D1) = i, and
p(D2) = i + 1, and there is a guess on which the TM M moves from
D1 to D′ in a single step and there is a guess path on which the TM M
moves from D′ to D2 when the bit b is written at the ith input cell of
the input tape}.

All the above three sets are easily seen to be in NSPACE(n). Thus, by our assumption, they
belong to DSPACE(n). Using these sets, we can define a 1-L TM which computes f .

Input x, |x| = n. Let D1 = Cn
init, i = p(D1) = 1, and repeat the following until

i = n + 1.

Find D2 such that (n, i, D1, D2) ∈ O1 and (n, i + 1, D2) ∈ O2. Repeat the
following until D1 = D2.

Let D′ be a configuration such that (n, i, D1, D2, x[i], D′) ∈ O3.
Find out the output o, if any, of M while it moves from D1 to
D′ (as D′ is just one step away from D1 it can be easily done).
Output o, let D1 = D′, and continue.

Let i = i + 1.

Finally, output the string output by M while moving from D1 to an accepting con-
figuration (as M behaves deterministically after reading the input, this is easily
simulated).

The above procedure is logspace computable as the input queries to the sets O1, O2, and O3

are of size O(log n). It is also easy to see that the above procedure can be carried out by a 1-L
TM. We now show that the procedure computes f(x).

Lemma 3.3 guarantees that (n, 1, Cn
init) ∈ O2. And by the accepting criteria of O2, it is

clear that a configuration D2, as required inside the first loop of the above procedure, always
exists. Inside the second loop, the procedure simulates M between configuration D1 and D2

along one guess path. Since M is constrained to output the same string on every accepting path,
it must output the same string along every path from D1 to D2 (recall that a configuration also
stores the position of the output head). The accepting criteria of O2 also guarantees that, after
scanning all the input bits, the configuration of M , D1, must lead to an accepting configuration.
Thus, the procedure computes f(x) correctly.

Therefore, we have B ≤1−L
m A via h. This completes the proof.

We now show the other non-trivial direction of the characterization.

Theorem 3.5 If there is a non-trivial ≤1−NL
m -degree that coincides with a ≤1−L

m -degree then
DSPACE(n) = NSPACE(n).

Proof. Let B be a set in the ≤1−NL
m -degree that coincides with a ≤1−L

m -degree. Define B̂ to be
the set {0x | x ∈ B} ∪ 1∗. Clearly, B̂ is in the same ≤1−NL

m -degree as B.
Let L be the following ‘universal’ set for NSPACE(n):

L = {i | NTM Mi accepts i within |i| space}.

Here we assume that each TM Mi works over binary alphabet Σ. It is easy to see that L ∈
DSPACE(n) iff DSPACE(n) = NSPACE(n). We show that L ∈ DSPACE(n).

Let χm
L denote the characteristic vector of L for the first m bits (in the lexicographic ordering)

of Σ∗, i.e., χm
L [i] = 1 iff the ith string of Σ∗ is in L. Define the set B̂L as:

5

x ∈ B̂L iff (1) x = yz with |y| = |z|, (2) y ∈ B̂, and (3) z = χ
|z|
L .

Claim 3.5.1 Set B̂L is in the same ≤1−NL
m -degree as B̂.

Proof of Claim 3.5.1. To reduce B̂ to B̂L, a 1-NL TM first outputs the input string x and
then computes and outputs χ

|x|
L (it can be done within nondeterministic logspace by the TM as

every such string has length at most log |x| and NSPACE(n) is closed under complement [15, 21]).
To reduce B̂L to B̂, a 1-NL TM works in the following way: first it guesses n to be the length

of the input (note that the string written on the worktape gives it an upper bound on the input
length). If n is odd then it outputs a fixed string not in B̂. It then checks if the input length
equals n. If yes, it accepts, else aborts. If n is even then it branches into two paths.

On the first path, it outputs the first n/2 bits of the input, then checks if the next n/2 bits
equal χ

n/2
L . If yes, and the input length equals n, it accepts. In all other cases, it aborts.

On the second path, it outputs a fixed string not in B̂, skips the first n/2 bits of the input,
then checks if the next n/2 bits equal χ

n/2
L . If no, and the input length equals n, it accepts. In

all other cases, it aborts. 2

Using ideas from [1], we can prove the following lemma (see next section).

Lemma 4.3 If a non-trivial ≤1−NL
m -degree coincides with a ≤1−L

m -degree then any two sets in
the degree reduce to each other via size-increasing 1-L reductions.

By our assumption, the ≤1−NL
m -degree of B̂ coincides with the ≤1−L

m -degree of B̂. Therefore,
by the above lemma, there exists a size-increasing 1-L reduction, say f , of B̂ to B̂L. Now, the
following procedure recognizes L.

On input x, let x be the nth string in the lexicographic ordering of strings of Σ∗.
Compute the length of the string f(12n). Let it be m. Now, compute the (m/2 + n)th

bit of f(12n) and accept iff this bit is 1.

The above procedure is deterministic and works within linear space. To see that it recognizes
L, we note that 12n ∈ B̂ and f is a size-increasing reduction of B̂ to B̂L. Therefore, f(12n) must
belong to B̂L, and its length, m, must be at least 2n. Since f(12n) ∈ B̂L, m is even and the last
m/2 bits of f(12n) represent the characteristic vector of L for the first m/2 ≥ n strings of Σ∗.
Thus, the (m/2 + n)th bit of f(12n) is 1 iff x ∈ L.

Therefore, L ∈ DSPACE(n), which implies NSPACE(n) = DSPACE(n).

Combining the results of the above two theorems, we get:

Theorem 3.6 The following three statements are equivalent.

1. DSPACE(n) = NSPACE(n).

2. There is a non-trivial ≤1−NL
m -degree that coincides with a ≤1−L

m -degree.

3. For every class C closed under log-lin reductions, the ≤1−NL
m -complete degree of C coincides

with the ≤1−L
m -complete degree of C.

Proof. (2 ⇒ 1): from Theorem 3.5.
(1 ⇒ 3): from Theorem 3.4.
(3 ⇒ 2): Follows from the fact that there are classes having non-empty ≤1−L

m -complete degrees,
e.g., NLOG [12].

Let R1−L
m (D) denote the class of sets that are reducible to D via 1-L reductions. We get the

following corollary.

6

Corollary 3.7 For any class C closed under both 1-NL and log-lin reductions that has a ≤1−NL
m -

complete set the following holds. There exists a set AC ∈ C such that:

DSPACE(n) 6= NSPACE(n) iff R1−L
m (AC) 6= C.

Proof. Let B be a ≤1−NL
m -complete set for C. Take AC to be the set B̂L defined in the proof

of Theorem 3.5. Then, since C is closed under 1-NL reductions and B̂L ≤1−NL
m B, AC is ≤1−NL

m -
complete for C. If AC is also ≤1−L

m -complete for C then, by [1, Theorem 4.2] and the fact that C
is closed under log-lin reductions, AC is ≤1−L

li -complete as well. Now, as proved in Theorem 3.5,
DSPACE(n) = NSPACE(n). On the other hand, if DSPACE(n) = NSPACE(n) then indeed AC
is ≤1−L

m -complete for C (by Theorem 3.4).

When C is any class closed under both 1-NL and log-lin reductions and is properly contained
in DSPACE(n), e.g., NLOG, NSPACE(log2 n) etc., the above corollary gives us an upward
separation result.

A curious result follows by setting C = EXP.

Corollary 3.8 There is a set AEXP ∈ EXP such that if DSPACE(n) = NSPACE(n) then
R1−L

m (AEXP) = EXP, and if DSPACE(n) 6= NSPACE(n) then DLOG − R1−L
m (AEXP) is non-

empty.

Proof. Again, we let AEXP to be the set B̂L defined in the proof of Theorem 3.5 for a
≤1−NL

m -complete set B of EXP. The case when DSPACE(n) = NSPACE(n) follows from the
Corollary 3.7 above. If DLOG ⊆ R1−L

m (AEXP) then AEXP is ≤1−L
m -hard for DLOG. So, by [1,

Theorem 4.2], AEXP is also ≤1−L
li -hard for DLOG. Therefore, there is a size-increasing 1-L

reduction of 1∗ to AEXP. Now, observe that the only fact required in the proof of Theo-
rem 3.5 is that 1∗ ≤1−L

li B̂L. So, the same proof yields here that L ∈ DSPACE(n) and therefore
DSPACE(n) = NSPACE(n).

We can easily obtain the following result for complete degrees under logspace and polynomial-
time reductions, using the proof idea of Theorem 3.5.

Theorem 3.9 If E 6= DSPACE(n) then the ≤p
m-complete degree of PSPACE properly contains

the ≤log
m -complete degree of PSPACE.

Proof. Suppose that the ≤p
m-complete degree of PSPACE coincides with the ≤log

m -complete
degree. Then, as in the proof of Theorem 3.5, we take a set A in the ≤p

m-complete degree of
PSPACE and a ≤log

m -complete set L of E, and define the set AL. Set AL is ≤p
m-complete for

PSPACE and by our assumption, is also ≤log
m -complete. For PSPACE, it is known that the

≤log
m -complete degree coincides with the ≤log

1,li-complete degree [11]. Therefore, set AL is ≤log
1,li-

complete for PSPACE. Let f be a size-increasing logspace reduction of 1∗ to AL. Again, as in
the proof of Theorem 3.5, we get that L ∈ DSPACE(n).

Results analogous to the above theorem can be shown for any class whose ≤log
m -complete

degree coincides with the ≤log
1,li-complete degree, e.g., the deterministic classes above PSPACE.

4 ≤1−L
m -Complete sets

In this section, we first give a proof of Lemma 4.3 and then prove a result on the structure of
≤1−L

m -complete degrees of classes closed under 1-NL reductions.
As for 1-NL functions, one can define the notion of forgetful 1-L TMs and functions.

7

Definition 4.1 A 1-L TM M is forgetful if, for every n, the sequence of transit configurations
of M on every input of size n is identical. A forgetful 1-L function is one computed by a forgetful
1-L TM.

Function g is said to be a length-restricted 1-L function if it is a 1-L function satisfying
the property that for every x, |g(x)| = |g(12dlog |x|e

)|. Such 1-L functions satisfy the following
property which we shall make use of.

Proposition 4.2 Let f be a 1-L function and g a length-restricted 1-L function. Then, f ◦ g is
also a 1-L function. Further, if both f and g are forgetful, then f ◦ g is also forgetful.

Proof. Let M1 and M2 be 1-L TMs computing f and g respectively. A 1-L TM M can
compute f ◦ g by simulating M2 on input x and M1 on its output in parallel. However, to
start the computation of M1, it needs to have 1dlog |g(x)|e written on the worktape. Since g is
length-restricted, this string can be computed without scanning the input. The TM M just runs
M2 on the input 12dlog |x|e

and calculates the length of the output (= |g(12dlog |x|e
)|). Using this,

dlog |g(x)|e can be easily computed.
If both M1 and M2 are forgetful, then M would also be forgetful as M needs to store only the

configurations of these two TMs on the worktape (besides some input independent information).

Lemma 4.3 If a non-trivial ≤1−NL
m -degree coincides with a ≤1−L

m -degree then any two sets in
the degree reduce to each other via size-increasing 1-L reductions.

Proof. It follows from [1, Theorem 4.2 & Corollary 4.4] that, for every class closed under log-lin
reductions, the ≤1−L

m -complete degree of the class coincides with the ≤1−L
1,li,i-complete degree. A

somewhat easier proof can be given to show that the ≤1−L
m -complete degree coincides with the

≤1−L
li -complete degree. We adopt this proof for our purposes. However, we need to modify the

proof in several places to make it work here.
The outline of the proof in [1] is as follows. Given a ≤1−L

m -complete set A of class C that is
closed under log-lin reductions, first it is shown that the set is also complete under forgetful 1-L
reductions. And then, given any set B ∈ C, a coded version of the set B, D, is constructed such
that the forgetful 1-L reduction of D to A composed with a straightforward reduction of B to
D is a size-increasing 1-L reduction of B to A.

While adopting the above proof, we have to take care of the following two points. Firstly,
we have only a ≤1−NL

m -degree instead of a class closed under log-lin reductions. So the proof
has to be modified to work for ≤1−NL

m -degrees. Secondly, although the ≤1−NL
m -degree under

consideration coincides with a ≤1−L
m -degree (under the hypothesis), it is not clear if every pair

of sets in the degree are reducible to each other via 1-L reductions. Instead, for two sets A1 and
A2 in the degree, we can only say that there is a finite sequence of sets B1, B2, . . ., Bt such that
A1 ≤1−L

m B1 ≤1−L
m B2 ≤1−L

m · · · ≤1−L
m Bt ≤1−L

m A2 (since a ≤1−L
m -degree is defined as the strongly

connected components of ≤1−L
m relation). Thus, to show that A1 ≤1−L

li A2, we must do some
more work.

Let d be the ≤1−NL
m -degree that coincides with a ≤1−L

m -degree. We now describe our con-
struction which is in two stages. In the first stage, we show that every pair of sets in d are
reducible to each other via forgetful 1-L reductions (under the assumption that the degree co-
incides with a ≤1−L

m -degree), and in the second stage we show that these reductions can also be
made length-increasing.

Stage 1. Let B ∈ d. We first define a somewhat complicated looking partial function based
on B which will play a crucial role in obtaining a forgetful 1-L reduction from B to any set in
the degree. The function is given by the following procedure.

8

Function l(y).

If |y| is not an exact power of two then reject.

If y = 0y′ then output y.

If y = 1y′ then

If |y| 6= n2 for any n then reject.

Else, let y′ = 1b0y′′01r with |y′| = n2 − 1.

If |y′′| 6= 2bn then reject.

Else, let y′′ = u1u2 · · ·un with |ui| = 2b for each i.

If for some i, ui is not of the form vi0ji−110b−ji for any ji then reject.

Else, let string x, |x| = n, be such that x[i] = 1 iff ui = vi0ji−110b−ji and
the ji

th bit of vi, vi[ji], is 1. Output x.

Recall that a partial function p is computed by a strong NTM if the TM, on input x, outputs
p(x) on all the accepting paths whenever p(x) is defined, otherwise the TM rejects. Further, the
TM never both accepts and rejects on two different paths on the same input (it may abort on
some of the paths though).

Claim 4.3.1 Function l can be computed by a strong 1-NL TM.

Proof of Claim 4.3.1. The following 1-NL TM computes l. On input y, it begins by checking
if y = 0y′. If yes, it outputs y and then verifies if |y| is an exact power of two. If yes, then
accepts else rejects. Otherwise, if y = 1y′, it scans the initial part of the input (1b0) to compute
the value of b.

Now the TM scans the remaining string y′′01r. To detect that it has read entire y′′ it employs
the following ‘delayed processing’ strategy: after reading any zero, the TM scans the input for
the next zero and keeps a count of the number of ones read. On finding a zero it concludes that
it is within y′′, and if there is no zero then the number of ones give the value of r.

The TM, while scanning y′′, does the following. It processes the input in blocks of 2b bits
and also keeps a count of the number of blocks read so far. For every such block, before reading
it, the TM branches into b + 1 paths. On the jth path, 1 ≤ j ≤ b, it assumes the last b bits of
the block to be of the form 0j−110b−j , while on the (b + 1)th path it assumes the last b bits to
be not of the above form. On the jth path, 1 ≤ j ≤ b, the TM outputs the jth bit of the block
while disregarding the rest of the first b bits, and then goes on to verify if the last b bits are
indeed of the form 0j−110b−j . If yes, the TM continues otherwise aborts. On the (b + 1)th path,
the TM disregards the first b bits and then verifies if the last b bits do not have exactly one one.
If yes, the TM halts in a rejecting state, otherwise aborts.

Once the TM has scanned y′′ completely, it computes the number of blocks in y′′, say n, and
the length of the input, say m, and checks that m is an exact power to two, and m = n2. If any
of these conditions is not satisfied, the TM rejects, otherwise accepts.

It is easy to see that the above TM computes l correctly and is a strong 1-NL TM. 2

Define the function p by p(x01r) = x. The function p is a 1-L function: a 1-L TM computing
p employs the ‘delayed processing’ strategy as above. Specifically, the TM, on reading a zero in
the input, counts the number of successive ones, and outputs a zero followed by the number of
ones counted only if it reads another zero.

9

We now define a the following set using B, l, and p:

C = {y | (∃i ≥ 1)(p ◦ l)i(y) = 0x ∧ x ∈ B}

(here (p ◦ l)i(y) denotes (p(l(p(l(· · · p(l︸ ︷︷ ︸
i times

(y)) · · ·))))).

Claim 4.3.2 The set C is in degree d.

Proof of Claim 4.3.2. B ≤1−L
m C via mapping h0(x) = 0x012dlog |x|e+2−|x|−2.

C ≤1−NL
m B via the mapping h, where h(y) = x if there is an i ≥ 1 such that (p ◦ l)i(y) = 0x;

h(y) = z2 (for some fixed z2 6∈ B) otherwise. To see that h is a 1-NL function we first note that
p ◦ l can be computed by a strong 1-NL TM; for any z, |p(z)| < |z|; and if l(z) is defined then
either l(z) = z (this happens exactly when z begins with a 0) or |l(z)| ≤ |z|1/2. So, to compute
h(y), a 1-NL TM branches out in two paths. In the first path, it starts the computation of p ◦ l
on y, and the computation of p ◦ l on (p ◦ l)(y), and so on. It also keeps checking if the first bit
of the output of (p◦ l)i(y) for any i, is 0. If yes, then it outputs (p◦ l)i(y) except for the first bit.
It can simulate all the copies within the available space as the space requirements are halved
for every next copy, essentially as described in [11, 1]. Eventually, all the computations halt,
and if any of them aborts or rejects, the TM aborts; and if all of them accept, the TM accepts.
On the second path also the TM does the same simulation but without outputting any string.
If any of the computations aborts or all the computations accept, the TM aborts; otherwise it
outputs z2 and accepts. 2

The set C has the following interesting property:

Claim 4.3.3 Let C ≤1−L
m A for any set A. Then, C ≤1−L

m A via a forgetful, length-restricted
1-L reduction.

Proof of Claim 4.3.3. Let the TM M compute a 1-L reduction f of C to A. Let qM (n) be
the polynomial bounding the number of configurations of M of size n. Define a reduction g of
C to itself as given by the following stage-wise procedure:

On input x, let n0 be the smallest number such that n2
0 ≥ (1+2 ·n0) ·(dlog qM (n2

0)e+
1) + 3. Let n = max{2dlog n0e, 2dlog |x|e}, and b = dlog qM (n2)e+ 1.

Stage 0 : Let C0 be the configuration of size n2 such that M moves from Cn2

init

to C0 on reading the string 11b0 written on the first b + 2 bits positions of the
input string. Output 11b0.

Stage i, 1 ≤ i ≤ n : Find the smallest configuration C of size n2 and the smallest
two strings v and w of length b with v > w and the ji

th bit being the first one
where v and w differ, such that M moves from Ci−1 to C when either of the
strings v0ji−110b−ji and w0ji−110b−ji is written on the bit positions b+2+(i−
1) · 2b + 1 thru b + 2 + i · 2b (the ith block) of the input string. Let Ci = C. If
i ≤ |x|, output v0ji−110b−ji if x[i] = 1, w0ji−110b−ji otherwise. If i = |x| + 1,
output w0ji−110b−ji . And if i > |x|+ 1, outout v0ji−110b−ji . Goto next stage.

Stage n + 1 : Output 01r where r = n2− (b+2bn+3). By the choice of n we have
that r ≥ 0.

The above procedure is clearly computable within logspace as b = dlog qM (n2)e + 1 =
O(log n). We now show that the two strings u and v as required in Stage i of the procedure,

10

exist for every i, 1 ≤ i ≤ n. Since |v| = |w| = b, there are a total of 2b such strings. Since there
are at most qM (n2) configurations of M on inputs of size n2, there are at least 2b/qM (n2) ≥ 2
such strings, say v and w, v > w, and a configuration D such that M moves from Ci−1 to D
when either of v and w is written on the first half of the ith block of input. Now, M will enter
the (i + 1)th block in the same configuration on both vs and ws for any string s of size b. It is
easy to verify that p(l(g(x))) = x. Thus, function g is a 1-L reduction of C to itself.

We now show that the function f ◦g is a forgetful, length-restricted 1-L reduction of C to A.
The TM that computes f ◦ g works as follows. On input x, it first computes the output of the
Stage 0 of the above procedure computing g, and then simulates M on this output. Next, for
each i, 1 ≤ i ≤ n, it computes the output of the Stage i of the procedure (it would need to read
the bit x[i] if i ≤ |x|), and simulates the TM M on the output. After completing the simulation,
it erases the output from the worktape and only keeps the configuration of M stored. Finally,
it computes the output of Stage n + 1 and simulates M on it. Therefore, any time the TM
moves the input head, it has only the configuration of M written on the worktape, and by the
construction of g, this configuration is independent of the bits read so far. Also, the TM needs
to scan the input only once. Thus, f ◦ g is a forgetful 1-L function. To see that it is also length-
restricted, it is sufficient to observe that |g(x)| = |g(12dlog |x|e

)|, and the TM M , on inputs of size
n from the range of g, halts in the same configuration. Therefore, |f(g(x))| = |f(g(12dlog |x|e

))|.
2

Using the set C, we can construct a forgetful and length-restricted 1-L reduction of B to
any set in the degree d. Let A ∈ d. Since C ∈ d, and d coincides with a ≤1−L

m -degree, we
have that there exist sets B1, B2, . . ., Bt such that C ≤1−L

m B1 ≤1−L
m B2 ≤1−L

m · · · ≤1−L
m Bt ≤1−L

m

A. By Claim 4.3.3, C ≤1−L
m B1 via a forgetful, length-restricted 1-L function. Therefore, by

Proposition 4.2, C ≤1−L
m B2. Iterating this process t + 1 times, we get C ≤1−L

m A via a forgetful,
length-restricted 1-L function. The reduction of B to C in the proof of Claim 4.3.2 is also
a forgetful and length-restricted 1-L function. Therefore, by Proposition 4.2, B ≤1−L

m A via
forgetful 1-L function. This completes the Stage 1.

Stage 2. Let B ∈ d. In this stage we show that B reduces to every set in d via a length-
increasing 1-L function. As in the previous stage, we construct an intermediate set which will
be used to obtain a length-increasing reduction of B. Define the set D as given by the following
procedure:

On input y, let y = v01r. Reject if |v| is not even. Otherwise, let v = xw with
|x| = |w|. Accept iff either w = 1|w| and x ∈ B, or for some j, w = 1j−101|w|−j and
x[j] = 1.

Set D also belongs to the degree d: g(x) = x1|x|012dlog |x|e+2−2|x|−1 is a length-restricted 1-L
reduction of B to D, and a 1-NL reduction of D to B is computed by a TM as follows. Let
z1 ∈ B and z2 6∈ B be two fixed strings. On input y = v01r, guess the length of the string v to
be n (the upper bound on n is given by 2dlog |y|e which can be computed without scanning the
input). If n is odd, then output z2 and scan the input to compute |v| (the TM computes |v| by
using the usual delayed processing strategy described above). If |v| = n then accept otherwise
abort. If n is even, then branch into n/2 + 2 paths. On the first path, output the first n/2 bits
of the input, and then check if the next n/2 bits are all ones. If yes, and |v| = n then accept,
otherwise abort. On the second path, output z2, ignore first n/2 bits, and check if the next n/2
bits have at least two zeroes. If yes, and |v| = n then accept, otherwise abort. On the (j + 2)th

path, 1 ≤ j ≤ n/2, output z1 if y[j] = 1, output z2 otherwise. Check if the second block of n/2
bits is of the form 1j−101n/2−j . If yes, and |v| = n then accept, otherwise abort.

11

Let A ∈ d be any other set. From Stage 1, we know that there is a forgetful 1-L reduction,
say f computed by TM M , of D to A. By Proposition 4.2, function h = f ◦ g is a forgetful
1-L reduction of B to A since g is both forgetful and length-restricted. Consider two different
strings x and y with |x| = |y| = n. Since h is forgetful, |h(x)| = |h(y)|. Suppose h(x) = h(y). By
definition, g(x) = x1n01r, g(y) = y1n01r for some r. Clearly, |g(x)| = |g(y)|, and g(x) 6= g(y).
Let jth bit be the first one where x and y differ. Let x′ = x1j−101n−j01r and y′ = y1j−101n−j01r.
By the definition of D, exactly one of x′ and y′ belongs to D. Consider f(x′) and f(y′). The
TM M , after reading the first n bits of either x′ or y′ would end up in the same configuration
since it is forgetful. Since the first n bits of x′ are y′ are identical to those of g(x) and g(y)
respectively, and f(g(x)) = f(g(y)), M would output the same string while reading the first n
bits of either of x′ or y′. And since the remaining bits of x′ and y′ are the same, the output of M
on either of x′ or y′ is identical. Therefore, f(x′) = f(y′). However, this is a contradiction since
f is a reduction of D to A. Therefore, h(x) 6= h(y). Since |h(x)| = |h(y)|, we get that for every
x, |h(x)| ≥ |x|. Now, a simple padding (see the proof of Theorem 4.4) yields a size-increasing
reduction of B to A.

It was shown in [1] that for every class closed under log-lin reductions, the ≤1−L
m -complete

degree of the class coincides with the ≤1−L
1,li,i-complete degree. We now show that this result

holds for all classes closed under 1-NL reductions too. Our result is not comparable to the one
in [1] as there are classes closed under 1-NL reductions but not under log-lin reductions (e.g.,
the class of sets recognized by 1-NL TMs), and if DSPACE(n) 6= NSPACE(n) then there are
classes closed under log-lin reductions but not under 1-NL reductions (e.g., DLOG).

Theorem 4.4 For any class C closed under 1-NL reductions, any set ≤1−L
m -hard for C is also

≤1−L
1,li,i-hard for C.

Proof. Let A be a ≤1−L
m -hard set for C and B be any set in C. We need to show that B ≤1−L

1,li,i A.
Define set E as:

E = {x01l | l ≥ 0 ∧ x ∈ B}.

Proceed exactly as in the proof of Lemma 4.3 to obtain a forgetful 1-L reduction h of E to A (as
in Stage 2). The only point to note is that the sets C and D as constructed there, are reducible
to E via 1-NL reductions, and so it suffices for the class C to be closed under 1-NL reductions.

Function h, as shown in Stage 2, is size-nondecreasing. In fact, it is also shown to be one-one
on Σn for every n > 0. To get a reduction of B to A that is one-one everywhere, we just
need to do some padding. Let |h(x)| ≤ 2c·dlog |x|e+c for some constant c and for all x. Define
r(m) = c · r(m − 1) + c + 1, r(0) = 1. Let g(x) = x01l where l = 2r(m) − |x| − 1, and m is
the smallest number such that 2r(m) ≥ |x| + 1. Function g is clearly a forgetful and length-
restricted 1-L reduction of B to E. Let ĥ = h ◦ g. Function ĥ, by Proposition 4.2, is a forgetful
1-L reduction of B to A. It is clearly also length-increasing. We now show that it is one-one
as well. For any two different strings x and y, if |g(x)| = |g(y)| then ĥ(x) 6= ĥ(y) since h is
one-one on equal length strings. Consider the case when |g(x)| = 2r(m) < |g(y)| = 2r(n). Then,
|ĥ(x)| ≤ 2c·r(m)+c = 2r(m+1)−1 < 2r(n) = |g(y)| ≤ |ĥ(y)|. Therefore, ĥ is one-one.

To complete the proof, we need to show that ĥ is 1-L-invertible too. We provide only a
sketch of this, a complete proof can be found in [1]. The TM M computing the inverse of ĥ
exploits the fact that h is a forgetful 1-L function. TM M consists of two TMs: the first one,
say M1, computes the inverse of h on strings that are in the range of ĥ, and the second one, say
M2, computes the inverse of g on the output of M1. On input z, M1 first calculates the possible
size of h−1(z) (the TM must do this accurately and without scanning the input; this can be
achieved since the strings in the range of g are ‘widely spaced’). Then, it checks to see which of
the two outputs of Mh (the forgetful TM computing h) is a prefix of z. These two outputs must

12

be of the same length and different since Mh is forgetful and h is one-one on equal sized strings.
If none match, it rejects, otherwise it outputs the bit whose output matches. Continuing this
way, the TM can compute the inverse of h if it exists. The TM M2, computing g−1, simply
deletes trailing ones and the last zero using the delayed processing strategy.

Following [1, Corollary 8 & Theorem 10], the following corollary can be easily shown.

Corollary 4.5 For any class C closed under 1-NL reductions, the sets in the ≤1−L
m -complete

degree of C are 2-L-isomorphic to each other but not 1-L-isomorphic.

5 Concluding Remarks

Our result has a different flavor from the ones in [17, 9]: while [17] and [9] show that if P 6=
UP (or, P 6= PSPACE) then some ≤p

1,li-degree (or, ≤p
1-degree) does not coincide with any p-

isomorphism type, we show that if DSPACE(n) 6= NSPACE(n) then no ≤1−NL
m -degree coincides

with a ≤1−L
m -degree. Also, we are able to relate complete degrees.

We have also shown that if DSPACE(n) = NSPACE(n) then ‘several’ ≤1−NL
m -degrees coincide

with ≤1−L
m -degrees. Can this result be strengthened to show that if DSPACE(n) = NSPACE(n)

then every ≤1−NL
m -degree coincides with a ≤1−L

m -degree? Unfortunately, proving such a result is
as hard as proving DSPACE(n) 6= NSPACE(n). This is because there exists at least one ≤1−NL

m -
degree that does not coincide with any ≤1−L

m -degree. This degree is the smallest ≤1−NL
m -degree,

i.e., the ≤1−NL
m -degree containing the finite sets. By Lemma 4.3, if this degree coincides with

a ≤1−L
m -degree then any two sets in the degree would reduce to each other via size-increasing

reductions. However, this is not possible as the degree contains finite sets.
An important corollary of our result is the upward separation given in Corollary 3.7. It

is easy to obtain downward separation results, i.e., to show that if two classes C1 and C2 are
distinct then some other two classes that are properly contained in C1 and C2 respectively are
also distinct. An example is that if E 6= NE then P 6= NP. However, it has been hard to show
an upward separation, i.e., if two classes C1 and C2 are distinct then two classes that properly
contain C1 and C2 respectively are also distinct. Corollary 3.7 provides several such results—one
each for every class closed under nondeterministic logspace reductions and properly contained
in DSPACE(n), e.g., NLOG, NSPACE(log2 n), NSPACE(log3 n), . . . etc.

For logspace and polynomial-time complete degrees, we have been able to show only one
direction of a possible characterization, and that too for some classes only. It would be interesting
to know if there is a class C such that the ≤p

m-complete degree of C coincides with the ≤log
m -

complete degree of C iff E = DSPACE(n).

Acknowledgments

The author wishes to thank the two anonymous referees whose thoughtful comments helped
improve the paper. Also, thanks are due to Eric Allender for going through the paper carefully,
and suggesting improvements.

References

[1] M. Agrawal. On the isomorphism problem for weak reducibilities. To appear in J. Comput.
Sys. Sci.. A preliminary version appeared in Proc. 9th Structure in Complexity Theory
Conference, pages 338–355, 1994.

13

[2] M. Agrawal and E. Allender. An isomorphism theorem for circuit complexity. In Proc. 11th
Conference on Computational Complexity, pages 2–11, 1996.

[3] M. Agrawal and S. Biswas. Polynomial isomorphism of 1-L-complete sets. In Proc. 8th
Structure in Complexity Theory Conference, pages 75–80, 1993.

[4] E. W. Allender. Isomorphisms and 1-L reductions. J. Comput. Sys. Sci., 36(6):336–350,
1988.

[5] L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell University,
1977.

[6] L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete sets.
SIAM J. Comput., 1:305–322, 1977.

[7] H. Burtschick and A. Hoene. The degree structure of 1-L reductions. In Proc. Math. Foun-
dation of Computer Science, pages 153–161. Springer Lecture Notes in Computer Science
629, 1992.

[8] S. Fenner, L. Fortnow, and S. Kurtz. The isomorphism conjecture holds relative to an
oracle. In Proc. 33rd IEEE Sypm. on Foundations of Computer Science, pages 30–39, 1992.
To appear in SIAM J. Comput.

[9] S. Fenner, S. Kurtz, and J. Royer. P = PSPACE iff every 1-degree collapses. In Proc. 30th
IEEE Sypm. on Foundations of Computer Science, pages 624–629, 1989.

[10] K. Ganesan and S. Homer. Complete problems and strong polynomial reducibilities. In
Proc. Symposium on Theoretical Aspects of Computer Science, pages 240–250. Springer
Lecture Notes in Computer Science 349, 1988.

[11] J. Hartmanis. On log-tape isomorphisms of complete sets. Theoretical Computer Science,
pages 273–286, 1978.

[12] J. Hartmanis, N. Immerman, and S. Mahaney. One-way log-tape reductions. In Proc. 19th
IEEE Sypm. on Foundations of Computer Science, pages 65–72, 1978.

[13] J. Hartmanis and S. Mahaney. Languages simultaneously complete for one-way and two-way
log-tape automata. SIAM J. Comput., 10(2):383–390, 1981.

[14] L. A. Hemchandra and A. Hoene. Collapsing degrees via strong computation. In Proc. Inter-
national Colloquium on Automata, Languages and Programming, pages 393–404. Springer
Lecture Notes in Computer Science 510, 1991.

[15] N. Immerman. Nondeterministic space is closed under complementation. SIAM J. Comput.,
17:935–938, 1988.

[16] D. Joseph and P. Young. Some remarks on witness functions for nonpolynomial and non-
complete sets in NP. Theoretical Computer Science, 39:225–237, 1985.

[17] K. Ko, T. Long, and D. Du. A note on one-way functions and polynomial-time isomor-
phisms. Theoretical Computer Science, 47:263–276, 1987.

[18] S. Kurtz, S. Mahaney, and J. Royer. The structure of complete degrees. In A. Selman,
editor, Complexity Theory Retrospective, pages 108–146. Springer-Verlag, 1988.

14

[19] S. Kurtz, S. Mahaney, and J. Royer. The isomorphism conjecture fails relative to a random
oracle. In Proc. 21st ACM Sypm. on Theory of Computing, pages 157–166, 1989.

[20] L. J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic.
PhD thesis, Massachusetts Institute of Technology, 1974.

[21] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Informatica, 26:279–284, 1988.

[22] O. Watanabe. On one-one polynomial time equivalence relations. Theoretical Computer
Science, 38:157–165, 1985.

15

