
Polynomial-Time Isomorphism of
1-L-Complete Sets

Manindra Agrawal

School of Mathematics
SPIC Science Foundation
Madras - 600 017, INDIA

email : manindra@ssf.ernet.in

&

Somenath Biswas

Department of Computer Science and Engineering
Indian Institute of Technology

Kanpur - 208016, INDIA
email : sb@iitk.ernet.in

Running Head : Isomorphism of 1-L-Complete Sets

Mailing address :

Manindra Agrawal

School of Mathematics
SPIC Science Foundation
92, G. N. Chetty Road, T. Nagar
Madras - 600 017, INDIA

Abstract

Let C be any complexity class closed under log-lin reductions. We
show that all sets complete for C under 1-L reductions are polynomial-
time isomorphic to each other. We also generalize the result to re-
ductions computed by finite-crossing machines. As a corollary, we
show that all sets complete for C under 2-way DFA reductions are
polynomial-time isomorphic to each other.

1 Introduction

The isomorphism conjecture for a class C is: All ≤p
m-complete sets for C

polynomial-time isomorphic. Resolving this conjecture for various classes is
a fundamental problem as its answer for the class C will provide us with
important insight into the structure of the m-complete degree of C. We note
that if the conjecture is true for some class C then it immediately follows that,
from the viewpoint of structural complexity theory, all m-complete sets for C
are merely encodings of the same set. A negative answer also has important
consequences (see [14] for a survey).

Berman and Hartmanis [6] began the study of the isomorphism conjecture
for the class NP. By observing that all known NP-complete sets at that time
were indeed polynomial-time isomorphic (in short, p-isomorphic) to each
other, they provided strong evidence for the conjecture. Since then, however,
some evidences against the conjecture have been found (see, e.g., [13], [10],
[15]) and the conjecture is generally believed to be false now (though recently,
there has been some positive evidence as well [7]). Yet, the conjecture remains
far from settled. In fact, till now, there is no naturally defined unrelativized
class for which the isomorphism conjecture has been answered. There are
only some partial results for some of the classes, e.g., all ≤p

m-complete sets
for E are known to be ≤p

1,li-complete [5, 17, 8] and all ≤p
m-complete sets for

NE are known to be ≤p
1-complete [8].

As the answer to the isomorphism conjecture remains elusive for natural
classes, attempts have been made to answer weaker versions of the con-
jecture by strengthening completeness under polynomial-time reductions to
completeness under weaker reductions. Thus, the isomorphism conjecture
for class C weakened to reduction r is: All ≤r

m-complete sets for C are p-
isomorphic. When one weakens the conjecture to logspace reductions, there
is no significant progress. The only additional partial result available is that
all ≤log

m -complete sets for PSPACE are ≤log
1,li-complete [9]. However, there are

several new results for the conjecture weakened to 1-L reductions, a restric-
tion of logspace reductions. 1-L reductions, introduced in [11], are functions
computed by logspace TMs with their input head being one-way. These
reductions may appear too restrictive, however, it has been observed that
all ‘natural’ NP-complete sets are also complete under 1-L reductions [11].
Allender [4] has shown that ≤1−L

m -complete sets for all reasonable determin-
istic classes above, and including, PSPACE are p-isomorphic. Ganesan and

Homer [8] show the same result for the classes NE and NEXP. Allender [4]
also shows that for reasonable classes below PSPACE, ≤1−L

m -complete sets
are also complete under size-increasing and strongly p-invertible reductions,
though these reductions may not be one-one. Recently, Hemachandra and
Hoene [12] have improved these results for several classes by showing that for
any reasonable nondeterministic space class above NLOG, all ≤1−L

m -complete
sets are p-isomorphic (in fact, they show such sets to be isomorphic under
even nondeterministic logspace reductions). However, these results still fail
to answer the isomorphism conjecture weakened to 1-L reductions for some
of the most well known and important classes, e.g., DLOG, P, NP etc.

In this paper, we settle the isomorphism conjecture weakened to 1-L re-
ductions: we show that for any class C closed under log-lin reductions, all
≤1−L

m -complete sets for C are p-isomorphic. We are also able to generalize the
result to functions computed by finite crossing TMs (logspace TMs whose
input head crosses any cell a constant number of times). As a corollary to
this result, we get that for any class C closed under log-lin reductions, all sets
complete for C under 2-way DFA reductions (computed by TMs that do not
have any workspace) are p-isomorphic. This too generalizes some results in
[4, 8].

To obtain the above results, we have used a technique which is different
from the standard one that diagonalizes over all possible reductions. We
argue that our technique is more useful in certain situations.

2 Preliminaries

The strings are over Σ = {0, 1}. We denote, by Σ=n, the set of all strings
over Σ of length n. We shall denote, by x ⊕ y, the XOR of strings x and y,
|x| = |y|. (XOR of two strings x and y of length n is a string of length n
whose ith bit is 1 iff exactly one bit amongst the ith bit of x and the ith bit
of y is 1.)

For sets A and B, if B reduces to A via a (one-one, one-one and size-
increasing, one-one and size-increasing and polynomial-time invertible) many-
one polynomial-time function, then we say that B(≤p

1,≤
p
1,li,≤

p
1,li,i) ≤p

m A. For
a class C and set A, we say that A is (≤r

1,≤
p
1,li,≤

p
1,li,i) ≤p

m-complete for C if
for every set B in C, B(≤p

1,≤
p
1,li,≤

p
1,li,i) ≤p

m A and A ∈ C.
A log-lin function [16] f is a function computable by a logspace TM such

that for all x, |f(x)| = O(|x|). 1-L TMs are logspace-bounded Turing ma-
chines which have an input tape, an output tape and a work tape such that
the input head never makes a left move and at the beginning of the compu-
tation, dlog ne cells are marked off on the work tape. Functions computed by
1-L TMs are called 1-L functions. They were introduced in [11] for studying
complete sets for DLOG. As above, we say that B ≤1−L

m A if B reduces to
A via a 1-L function, and A is ≤1−L

m -complete for C if A ∈ C and for every
B ∈ C, B ≤1−L

m A.
We shall mainly be dealing with 1-L TMs computing total functions in

the paper. Without loss of generality, we can assume that these machines
have a unique halting state and just before the machine enters this state,
it moves the input head to the right of the rightmost input bit. We also
assume that a special symbol B is written to the right of the input string on
the input tape of M . From now on, whenever we refer to a TM, we assume
it to be a 1-L TM of the above kind, unless explicitly stated otherwise.

Definition 2.1 A configuration of M of size n is a partial ID of M for
input strings of size n. It is written as a 5-tuple 〈st, in, out, wk, tape〉 where
st denotes the state of M ; in, out and wk denote respectively the input head,
output head and work tape head positions; and tape denotes the contents of
the work tape.

Definition 2.2 The computation graph of M for input strings of size n,
called Gn

M , is defined as follows:

1. Gn
M = G(V n, En) where edges in En are directed and labelled. Further,

there may be multiple edges between two vertices. These multiple edges
are distinguished by their labels. The vertices in V n are configurations
of M of size n.

2. The edge 〈C, D〉 ∈ En has label 〈i, o〉, i ∈ Σ ∪ {B}, o ∈ Σ∗, (C, D are
vertices of V n) iff there is a sequence of configurations C0, C1, . . . , Ck−1, Ck

such that

(a) C0 = C and Ck = D.

(b) Let the input head position in C0 be at r. Then for every j,
0 < j < k, the input head position in Cj is at r. If r ≤ n then the
input head position in Ck is at r + 1. If r = n + 1 then the input
head position in Ck is at r and the state in Ck is the halting state.

(c) For every j, 0 ≤ j < k, M moves from configuration Cj to config-
uration Cj+1 in a single step on reading input i. (The graph may
have multiple edges as M may move from C0 to Ck on reading
both 0 and 1. It follows that there may be at most two edges
between any pair of vertices.)

(d) String o is the output of M while moving from configuration C0

to Ck.

Strings i and o are respectively called input label and output label of
the edge. The above condition ensures that every edge 〈C, D〉 of the
graph Gn

M corresponds to the consumption of a single input symbol
except possibly when D is the halting configuration.

We refer to the starting configuration of M of size n as Cn
init (Cn

init may
be taken to be 〈q0, 1, 1, 1, 1

dlog ne〉 where q0 is the start state). We shall also
assume that Gn

M does not contain any vertex not reachable from Cn
init (this

can be ensured by deleting all such non-reachable vertices). It follows that
Gn

M is acyclic as the existence of a cycle will imply that M does not halt
on some input which clearly is not possible. Thus, for every n, graph Gn

M

captures the computation of M on input strings of size n. The number of
vertices in Gn

M is bounded by a polynomial in n as M works in logspace. Let
‖Vn‖ ≤ q(n) for some polynomial q.

Definition 2.3 Let p be a path of Gn
M from configuration C1 to C2. (A path

is an ordered sequence of adjacent edges in the graph.) The input label ip
of path p is the concatenation of input labels of the edges in the path p. In
other words, ip is the input read by M while moving from configuration C1

to C2 along the path p. Similarly, we define the output label op of the path p
to be the concatenation of output labels of the edges in the path p.

We say that a vertex of Gn
M is at level i if the position of the input head

at the vertex is i. There are exactly n + 1 levels in Gn
M . Let Li be the set of

vertices at level i.
Since vertices at any level i have edges going out to vertices at level i + 1

only, if there is a path from a vertex at level i to a vertex at level j then it
must have exactly j− i edges. Since every path has a unique input label, the
following lemma is immediate.

Lemma 2.4 For every n, for every k, k ≤ n, and for each string s of length
k, there is a unique path with input label s in Gn

M , starting from Cn
init and

ending in some vertex at level k + 1.

Lemma 2.5 Let n0 be smallest number such that (∀n)n ≥ n0 ⇒ 2n ≥
2.q(5n), where q(n) is the polynomial bounding the number of vertices in
Gn

M . For every n, n ≥ n0, there is a vertex, C̃, at level 2n + 1 of G5n
M such

that there are at least 2n+1 different paths from C5n
init to C̃.

Proof. By the above lemma there will be exactly 22n paths from C5n
init to

vertices in L2n+1. Since the number of vertices in L2n+1 is obviously bounded
by the total number of vertices q(5n) in G5n

M , there will a vertex C̃ in L2n+1

with at least 22n/q(5n) ≥ 2n+1 (as n ≥ n0) different paths from C5n
init.

The above lemma will be the key to the proof in the next section. It
essentially says that TM M , after reaching the configuration C̃, does not
‘remember’ which of the 2n+1 strings it has read. By exploiting this property,
we force f , the function computed by M , to be 1-1 on such strings.

3 Main Result

We shall use l(x) to denote the position of the string x in the standard
lexicographic ordering of strings. For any set L, define

code(L) = {yyx : |y| = 2|x|∧x ∈ L}∪{y1y2x : |y1| = |y2| = 2|x|∧l(y1) > l(y1⊕y2)}

The following proposition is obvious.

Proposition 3.1 For any L, L 6= ∅, Σ∗, code(L) reduces to L via a log-lin
function.

We now prove our main theorem.

Theorem 3.2 Let C be a class closed under log-lin reductions. If A is a
≤1−L

m -complete set for C then for every B ∈ C, B ≤p
1,li,i A.

Proof. Let B ∈ C. Define set D as:

D = {x10k | k ≥ 0 ∧ x ∈ B}

It is easy to see that that D reduces to B via a log-lin function and therefore,
D ∈ C. Further, since code(D) reduces to D via a log-lin function (from
Proposition 3.1), code(D) ∈ C. Let code(D) ≤1−L

m A via 1-L function f
which is computed by TM M .

The outline of the proof is as follows. We first obtain a polynomial-time
reduction gM

D of D to code(D) based on the reduction f of code(D) to the
set A. Then, we show that the composition of f and gM

D is a reduction of D
to A that is one-one and size-nondecreasing on Σ=n for all large enough n.
Finally, we give a reduction gp of B to D such that f ◦ gM

D ◦ gp is a one-one,
size-increasing and p-invertible reduction of B to A.

Let n0 be as defined in Lemma 2.5. Define function gM
D as computed by

the following polynomial-time TM.

On input x, let n = |x|. If n < n0 then output 14nx and halt.
Otherwise, for graph G5n

M , compute the configuration C̃ as in
Lemma 2.5. Let I be the set of input labels of paths from C5n

init to
C̃ (each such label will be of length 2n) and ip be the l(x)th largest
label, in the lexicographic ordering, in I. (Since l(x) < 2|x|+1 =
2n+1 ≤ ‖I‖, there will always be such a label in I.) Output ipipx
and halt.

Claim 3.2.1 gM
D is a 1-1, size-increasing, p-invertible and polynomial-time

computable reduction of D to code(D).

Proof of Claim 3.2.1. That gM
D is 1-1, size-increasing and a reduction of D to

code(D) follows immediately. To compute gM
D in polynomial-time, we need to

compute vertex C̃ and the l(x)th largest label of I in polynomial-time. This
can be done easily using dynamic programming techniques. Polynomial-time
procedures to compute these values are given in the Appendix. Now, the p-
invertibility of gM

D follows easily: given z, check if |z| = 5n for some n. If
yes, then let x be the postfix of z of length n, check if gM

D (x) = z. If yes then
output x else reject. 2

The following claim shows that f ◦ gM
D is 1-1 and size-nondecreasing on

Σ=n for any n ≥ n0 where n0 is as defined in Lemma 2.5.

Claim 3.2.2 For any n, n ≥ n0: for any x and y, |x| = |y| = n and x 6= y:
f(gM

D (x)) 6= f(gM
D (y)) and |f(gM

D (x))| ≥ |x|.

Proof of Claim 3.2.2. Assume that f(gM
D (x)) = f(gM

D (y)) for some x and y
with x 6= y and |x| = |y| = n ≥ n0. Let x̃ = gM

D (x) and ỹ = gM
D (y). By the

definition of gM
D , it follows that x̃ = ip1ip1x and ỹ = ip2ip2y, where ip1 and

ip2 are respectively the l(x)th and l(y)th largest input labels in the set I, the
set of input labels of all paths from C5n

init to C̃. Since both the paths p1 and
p2 end at C̃, it follows that their output labels, respectively op1 and op2 , will
have the same length (recall that a configuration stores the position of the
output head also). By the assumption f(gM

D (x)) = f(gM
D (y)), it follows that

op1 = op2 .
Since there are at least 2n+1 labels in I (as n ≥ n0) and x 6= y, it must hold

that ip1 6= ip2 . Without loss of generality, assume that l(ip1) > l(ip2). Let
z = ip1 ⊕ ip2 . Define strings, x̃1 = ip1z1n and ỹ1 = ip2z1n. Since ip1 ⊕ z = ip2

and ip2 ⊕ z = ip1 , it follows, by the definition of code(D), that x̃1 ∈ code(D)
and ỹ1 6∈ code(D). However, since op1 = op2 and the input to M , computing
f on x̃1 or ỹ1, after it reaches the configuration C̃ is same, it must be that
f(x̃1) = f(ỹ1). This contradicts the fact that f is a reduction of code(D) to
A. Therefore, op1 6= op2 . It also follows that |op1| = |op2| ≥ n as there are 2n

different such output labels (one for each string of length n). This implies,
firstly that f(gM

D (x)) 6= f(gM
D (y)) and secondly that |f(gM

D (x))| ≥ |x|. 2

Now, to get a 1-1, size-increasing reduction of B to A, we use a simple
padding technique. Define function r as: r(0) = n0 and r(m) = q(5.r(m −
1)) + 1 for m > 0 (recall that q(n) bounds the number of vertices of Gn

M and
therefore also bounds |f(x)| for any x of size n).

Define function gp, reducing B to D as: gp(x) = x10k−1 where k =
r(l) − |x| and l = minm(r(m) > |x|). Function gp can be computed in
polynomial-time: start from r(0) and calculate r(1), r(2), . . . till an r(m) is
obtained with r(m) > |x|; compute k and output x10k−1. This function maps
strings of length between r(l) and r(l + 1) − 1 to strings of length r(l + 1)
and therefore, is size-increasing.

Let h
def
= f ◦ gM

D ◦ gp. We claim that h is the required reduction of B to
A. It is clearly a polynomial-time computable reduction of B to A.

Claim 3.2.3 h is size-increasing.

Proof of Claim 3.2.3. For every x, |gp(x)| ≥ r(0) = n0 and further, gp is
size-increasing. Now it follows from the Claim 3.2.2 that |f(gM

D (gp(x)))| ≥
|gp(x)| > |x|. 2

Claim 3.2.4 h is one-one.

Proof of Claim 3.2.4. Take any two strings x and y. If |gp(x)| = |gp(y)|
then, by Claim 3.2.2, it follows that h(x) 6= h(y). Now consider the case
when |gp(x)| < |gp(y)|. Let |gp(x)| = r(m) and |gp(y)| = r(n) with n > m.
So, |h(x)| = |f(gM

D (gp(x)))| ≤ q(5.r(m)) (by size bounds of f , gM
D and gp)

< r(m + 1) (by the definition of r) ≤ r(n) = |gp(y)| ≤ |f(gM
D (gp(y)))| (by

Claim 3.2.2) = |h(x)|. Therefore, h(x) 6= h(y). 2

Claim 3.2.5 h is p-invertible.

Proof of Claim 3.2.5. Both the functions gM
D and gp are p-invertible. The p-

invertibility of f when restricted to the range of gM
D ◦ gp follows from a result

by Allender [4] showing that all 1-1, honest 1-L functions can be inverted
in polynomial-time. In the following we give a more direct proof of the
invertibility of f ◦ gM

D .
Given any z, with |z| = m, for each n, n0 ≤ n ≤ m do the following.

Compute the graph G5n
M and the vertex C̃. Check if there exists a path in

G5n
M from the vertex C5n

init to some vertex in level 5n + 1 and passing through
vertex C̃ whose output label is z (by Claim 3.2.2, there can exist at most one
such path). If yes, then consider the subpath, say p, of this path, from C5n

init

to C̃. Calculate the position of the input label ip of p in the lexicographic
ordering of the input labels of all the paths from C5n

init to C̃. Let ip be the tth

largest such label and t = l(x) for some string x. Check if f(ipipx) = z. If
yes and |x| = n then output x and stop.

If there is no such x for any n then there is no inverse of z. It is easy
to see that the above procedure can be carried out in time polynomial in |z|
using the procedures defined in the Appendix. 2

From the above claims it follows that B ≤p
1,li,i A via h. This completes

proof of the theorem.

Corollary 3.3 For any class C closed under log-lin reductions, all 1-L com-
plete sets for C are p-isomorphic.

Proof. In [6], it was shown that all sets reducible to each other via ≤p
1,li,i-

reductions are p-isomorphic. The corollary follows from the above theorem.

Corollary 3.4 1-L complete sets for classes DLOG, NLOG, P, NP, Σp
k,

PSPACE, E, NE etc. are p-isomorphic.

Proof. As all these classes are closed under log-lin reductions, the corollary
follows.

It has been observed [11] that all ‘natural’ NP-complete sets are com-
plete under 1-L reductions as well. Therefore, it follows that they are all p-
isomorphic to each other, a fact which had earlier been shown using paddabil-
ity [6].

4 Discussion

In most of the previous results that show complete sets for a certain class to
be 1-1 complete, e.g. [5, 17, 8, 12], the following technique is employed in
their proofs. To ensure that the reduction from a set B to a complete set A
is one-one, an intermediate set I is constructed so that a composition of the
reduction from B to I and the reduction from I to A is one-one. The set I is
constructed by diagonalizing over all possible reductions to (effectively) en-
sure that no many-one function can be a reduction of I to A (see, e.g., [8, 12]).
However, it has the drawback of making the set I ‘hard’. For example, to
diagonalize over the class of 1-L reductions superlogarithmic space is needed
thus forcing the set I to go beyond DLOG (and possibly even NP) even when
B belongs to DLOG. This is one of the reasons why the results in [12] hold
only for space classes beyond NLOG.

We have used a different technique in our proof. The outline of our tech-
nique is the same as above except that the set I (= code(D)) is constructed
differently. The set code(D) contains only ‘potentially’ diagonalizable infor-
mation. The reduction of B to code(D) exploits this information to force

its composition with the reduction of code(D) to A to be one-one (and size-
increasing). It has the advantage of making the set code(D) ‘easy enough’
to make it fall in the logspace degree of B. This allows our result to hold
for any class closed under logspace reductions, e.g., DLOG, NP etc. This
technique has been used by Allender [4] as well, though its full potential has
not been realized there.

In our technique part of the diagonalization work is transferred to the
reduction g (= gM

D ◦ gp) of B to code(D). So, one would expect that now the
reduction g will become ‘hard’. Indeed, g needs polynomial-time to compute
(Claim 3.2.1), and therefore, the one-one reduction of B to A is a polynomial-
time function even though A is ≤1−L

m -complete. This was not the case with
the earlier technique, where the one-one reduction of B to A remains a 1-L
function when A is ≤1−L

m -complete [12]. Therefore, there appears to be a
trade-off between the complexities of the set I and the reduction of B to I1.

From the discussion above, it is clear that our technique is more useful in
obtaining isomorphism results than the usual diagonalization technique, at
least in the case of weak reductions like 1-L.

5 A generalization

The result in the section 3 can be generalized to functions computed by finite
crossing machines. A finite crossing machine is a logspace bounded TM such
that its input head can cross any cell only a constant number of times. TMs
computing 1-L functions form a subset of finite crossing TMs as their input
head is allowed to cross any cell exactly once. We refer to total functions
computed by finite crossing machines as f-L functions.

Theorem 5.1 Let C be a class closed under log-lin reductions. Then all sets
complete for C under f-L reductions are p-isomorphic to each other.

The proof of this theorem builds on the proof for 1-L reductions. We
omit the details, which can be found in [2].

1However, surprisingly, this is not so. In a recent work [1] it is shown that one can
construct the set code(D) and reduction g such that g remains a 1-L function. In fact,
it is shown there that not only is the one-one reduction of B to A a 1-L function, it is
1-L-invertible as well, thus providing a very strong collapse of 1-L-complete degrees.

The class of f-L functions contains the class of total functions computed by
2-way DFA machines. A 2-way DFA machine is a TM that has no workspace.
Therefore, the input head of any such machine computing a total function
cannot cross any cell more than a constant number of times (equal to the
number of states of the TM). Therefore, we have

Corollary 5.2 Let C be a class closed under log-lin reductions. Then all sets
complete for C under 2-way DFA reductions are p-isomorphic to each other.

The above corollary generalizes some earlier results on 2-way DFA func-
tions: Allender [4] had shown that all complete sets for E under 2-way DFA
reductions are p-isomorphic while Ganesan and Homer [8] did the same for
the class NE.

6 Conclusion

Our results here generalize the results of Allender [4] and Ganesan and Homer
[8]. In comparison with the results of Hemachandra and Hoene [12], our
results are weaker but hold for a larger number of classes ([12] shows that
for any reasonable nondeterministic space class above NLOG, ≤1−L

m -complete
sets are also complete under one-one and size-increasing 1-L reductions).

One can consider some other natural classes of weak reductions and ad-
dress the isomorphism conjecture weakened to them. For example, in [3],
it has been shown that all complete sets under first order projections for
reasonable classes are first order isomorphic. One may try to generalize this
result to prove it for all first order computable (equivalently, uniform-AC0)
reductions or at least, for all uniform-NC0 reductions.

Acknowledgment: We thank the anonymous referees for many helpful sug-
gestions and improvements.

References

[1] M. Agrawal. On the isomorphism problem for weak reducibilities. In
Proceedings of the Structure in Complexity Theory Conference, pages
338–355, 1994.

[2] M. Agrawal and S. Biswas. Isomorphism of f-L-complete sets. Technical
report, Indian Institute of Technology, Kanpur, India, 1993.

[3] E. Allender, J. Balcázar, and N. Immerman. A first-order isomorphism
theorem. In Proceedings of the Symposium on Theoretical Aspects of
Computer Science, 1993.

[4] E. W. Allender. Isomorphisms and 1-L reductions. In Proceedings of
the Structure in Complexity Theory Conference, pages 12–22. Springer
Lecture Notes in Computer Science 223, 1986.

[5] L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis,
Cornell University, 1977.

[6] L. Berman and J. Hartmanis. On isomorphism and density of NP and
other complete sets. SIAM Journal on Computing, 1:305–322, 1977.

[7] S. Fenner, L. Fortnow, and S. Kurtz. The isomorphism conjecture holds
relative to an oracle. In Proceedings of Annual IEEE Symposium on
Foundations of Computer Science, pages 30–39, 1992. To appear in
SIAM J. Comput.

[8] K. Ganesan and S. Homer. Complete problems and strong polynomial
reducibilities. In Proceedings of the Symposium on Theoretical Aspects of
Computer Science, pages 240–250. Springer Lecture Notes in Computer
Science 349, 1988.

[9] J. Hartmanis. On log-tape isomorphisms of complete sets. Theoretical
Computer Science, pages 273–286, 1978.

[10] J. Hartmanis and L. Hemchandra. One-way functions and the non-
isomorphism of NP-complete sets. Theoretical Computer Science,
81(1):155–163, 1991.

[11] J. Hartmanis, N. Immerman, and S. Mahaney. One-way log-tape reduc-
tions. In Proceedings of Annual IEEE Symposium on Foundations of
Computer Science, pages 65–72, 1978.

[12] L. A. Hemchandra and A. Hoene. Collapsing degrees via strong com-
putation. In Proceedings of the International Colloquium on Automata,

Languages and Programming, pages 393–404. Springer Lecture Notes in
Computer Science 510, 1991.

[13] D. Joseph and P. Young. Some remarks on witness functions for non-
polynomial and noncomplete sets in NP. Theoretical Computer Science,
39:225–237, 1985.

[14] S. Kurtz, S. Mahaney, and J. Royer. The structure of complete degrees.
In A. Selman, editor, Complexity Theory Retrospective, pages 108–146.
Springer-Verlag, 1988.

[15] S. Kurtz, S. Mahaney, and J. Royer. The isomorphism conjecture fails
relative to a random oracle. In Proceedings of Annual ACM Symposium
on the Theory of Computing, pages 157–166, 1989.

[16] L. J. Stockmeyer. The Complexity of Decision Problems in Automata
Theory and Logic. PhD thesis, Massachusetts Institute of Technology,
1974.

[17] O. Watanabe. On one-one polynomial time equivalence relations. The-
oretical Computer Science, 38:157–165, 1985.

Appendix

procedure number-of-paths;

begin
/* P [u, v] is the number of distinct paths from u to v */
for all u, v ∈ V 5n do /* initialization */

if u = v then
P [u, v] = 1;

else
P [u, v] = 0;

for all i = 1, 5n do
/* compute the number of paths between every pair of vertices
* that are i levels apart in G5n

M */
for all j = 1, 5n− i + 1 do

/* compute the number of paths between vertices at level j and j + i */
for all u ∈ Lj and v ∈ Lj+i do

/* compute P [u, v] */
Let v1, v2 ∈ Lj+1 such that 〈u, v1〉, 〈u, v2〉 ∈ E5n

with input label 0 and 1 respectively;
P [u, v] = P [v1, v] + P [v2, v];

end;

Figure 1: Procedure to compute the number of paths between vertices of G5n
M

function configuration;

begin
number-of-paths;
/* At this point the array P is defined */
Find the lexicographically smallest configuration C̃ ∈ L2n+1

such that P [C5n
init, C̃] ≥ 22n/q(5n);

return C̃;
end;

Figure 2: Function to compute the configuration C̃ of G5n
M

function pathno(k);

begin
number-of-paths;
/* At this point the array P is defined */
C̃ = configuration;
/* P [C5n

init, C̃] ≥ 22n/q(5n) */
I = ε; /* length 0 prefix of the label of the kth largest path */
v = Cn

init; /* first vertex on the kth largest path */
l = k; /* lth largest path from v is to be chosen */

for all i = 1, 2n do
/* Invariants: v is the ith vertex on the kth largest path;
* I is the length i− 1 prefix of the label of the kth largest path;
* kth largest path is the lth largest path from v */
Let v1, v2 ∈ Li+1 such that 〈v, v1〉, 〈v, v2〉 ∈ E5n with input label 0 and 1 respectively;

if P [v1, C̃] ≥ l then /* lth largest path occurs in the 〈v, v1〉 branch */
I = I · 0;
v = v1;

else /* lth largest path occurs in the 〈v, v2〉 branch */
I = I · 1;
v = v2;

l = l − P [v1, C̃];

return I;
end;

Figure 3: Function to compute the input label of kth largest path from C5n
init

to C̃

