
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

ON THE ISOMORPHISM CONJECTURE FOR 2-DFA
REDUCTIONS

MANINDRA AGRAWAL

Department of Computer Science and Engineering, Indian Institute of Technology
Kanpur 208016, India

and

S. VENKATESH

Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba
Bombay 400005, India

Received 4 January 1995
Revised October 3, 2006

Communicated by J. Y. Cai

ABSTRACT

The degree structure of complete sets under 2DFA reductions is investigated. It is
shown that, for any class C that is closed under log-lin reductions:

• All complete sets for the class C under 2DFA reductions are also complete under
one-one, length-increasing 2DFA reductions and are first-order isomorphic.

• The 2DFA-isomorphism conjecture is false, i.e., the complete sets under 2DFA
reductions are not isomorphic to each other via 2DFA reductions.

Keywords: Isomorphism; Completeness; Reducibility; Computational Complexity.

1. Introduction

The notion of NP-completeness has been central to the development of complex-
ity theory. Berman and Hartmanis1—motivated by analogous results in recursion
theory2 and the fact that all known NP-complete sets at the time were p-isomorphic
to each other—conjectured that all NP-complete sets are p-isomorphic to each other.
That is, all NP-complete sets are essentially the same except for polynomial-time
reencodings. This conjecture has been a target of much research over the years
(see Ref. [3] for a survey) but no definite answer has been given yet—though there
are some indications that it is false.4,5 Attempts have also been made to answer
the conjecture for classes other than NP and reducibilities other than polynomial-
time. For a class C and reducibility r, the r-isomorphism conjecture for C is that
all ≤r

m-complete sets for C are r-isomorphic to each other (here the bijection is an
r-computable function in both directions). While the answer of the p-isomorphism

conjecture for classes other than NP also remains elusive, for some reducibilities that
are weaker than polynomial-time the conjecture has been settled.6 In particular, it
has been shown that for 1-NL functions—functions computed by nondeterminis-
tic logspace TMs with a one-way input head—the 1-NL-isomorphism conjecture is
true for any class closed under log-lin reductions (see next section for the definition
of log-lin functions). On the other hand, for 1-L reductions—functions computed
by deterministic logspace TMs with a one-way input head—the 1-L-isomorphism
conjecture is false for any class closed under log-lin reductions.

In this paper, we investigate the isomorphism conjecture for 2DFA reductions.
These reductions are computed by DTMs with a read-only input tape, a write-
only output tape, and no workspace. They were defined in Ref. [7] where several
problems complete for E under these reductions were exhibited. The complete
degrees of these reductions have been investigated earlier too.8,9,10 In Ref. [8] it
was shown that for DSPACE(n) and every reasonable deterministic class above it,
≤2dfa

m -complete sets are p-isomorphic; in Ref. [9] the same result was shown for every
reasonable nondeterministic class above and including NE; and in Ref. [10] it was
shown that for every class C closed under log-lin reductions, ≤2dfa

m -complete sets for
C are p-isomorphic.

We improve upon all the above result—we show that for any class C that is
closed under log-lin reductions, all ≤2dfa

m -complete sets for C are also complete under
one-one and length-increasing 2DFA reductions and are isomorphic under first-
order reductions.11 However, the 2DFA isomorphism conjecture fails to hold—we
show that for every class closed under log-lin reductions, the 2DFA-isomorphism
conjecture is false.

The paper is organized as follows. In the next section, we introduce the basic
definitions. In section three, we define the notion of forgetful 2DFA TMs that
plays a key role in our collapse result. In section four, we prove our results for
the complete degrees under 2DFA reductions. We end with some discussion on the
results obtained in section five.

2. Preliminaries

We assume that the reader is familiar with the basic notion of Turing Machines
and complexity classes.12

The strings are over {0, 1}. For any string w ∈ {0, 1}∗, |w| will denote its length
and for any number i ≤ |w|, we denote the ith bit of w as w[i].

For a resource bound r on TMs, we denote by F(r) the class of total functions
computed by TMs within the resource bound of r. For the class of functions F(r),
we say that f is an r-computable function, or simply, an r function, if f ∈ F(r);
and f is r-invertible if there is a function g ∈ F(r) such that g(f(x)) = x for every
x. We say that a set A ≤r

m (≤r
1,li; ≤r

1,li,i) B if there is a many-one (one-one, length-
increasing; one-one, length-increasing and r-invertible) r-computable function f

reducing A to B. Set A is ≤r
m-hard for class C if for every B ∈ C, B ≤r

m A. Set
A is ≤r

m-complete for class C if A is ≤r
m-hard for C and A ∈ C. For the class NP,

an NP-complete set is a ≤p
m-complete set for NP. The ≤r

m-complete degree of C is

defined to be the class of all ≤r
m-complete sets for C. Similarly, one defines these

notions for ≤r
1,li, and ≤r

1,li,i reductions. We say that the set A is r-isomorphic to
the set B if there exists a bijection f between A and B with both f and f−1 being
r-computable.

A 2DFA TM is a deterministic TM with a read-only input tape, a write-only
output tape and a two-way input head. It is not clear if the class of total 2DFA
functions, F(2DFA), is closed under composition. Nevertheless, the ≤2dfa

m -complete
degree is well defined for any class.

Finally, function f is a log-lin function if there is a logspace bounded DTM that
computes f and for every x, |f(x)| = O(|x|).7

3. Forgetful 2DFA TMs

In this section, we introduce the notion of forgetful 2DFA TMs and prove a key
theorem that will be at the heart of the proof of our result about the collapse of
≤2dfa

m -complete degrees.
For any 2DFA TM, we can assume the following without loss of generality.

• The input to the TM is enclosed by special markers ‘#’. The TM scans the
input at least once, and begins as well as halts with its input head scanning
the marker ‘#’ which is to the left of the input.

• The TM has one initial state, one final state, and a set of special states called
transit states.

• During the computation on any input, whenever the TM moves the input
head, it enters one of the transit states. Also, it never enters any of the
transit states without moving the input head.

For the purpose of the definitions below, let M be a 2DFA TM with k states,
computing a total function. Since M computes a total function, it is clear that on
any input x, M can scan x[i], 1 ≤ i ≤ |x|, at most k times.
Definition 1 A configuration of M is a 3-tuple C = 〈st, inh, outh〉 where st

denotes the state of M , inh denotes the input head position and outh denotes the
output head position.

A transit configuration of M is a configuration whose state is a transit state.
We shall need to argue about the behavior of a 2DFA TM at the boundary of

two adjacent substrings of the input. This behavior is determined by the transit
configurations of the TM when it crosses the boundary between the substrings. We
identify these configurations below.
Definition 2 Let u be a substring of x, u = x[i]x[i + 1] · · ·x[j]. On input x, a
left boundary configuration of M at u is a transit configuration of M during its
computation on x, in which the input head is either (1) at the ith bit and in the
previous configuration of M , at the (i− 1)th bit, or (2) at the (i− 1)th bit and in
the previous configuration of M , at the ith bit.

Similarly, a right boundary configuration of M at u is a transit configuration of
M during its computation on x, in which the input head is either (1) at the jth bit

and in the previous configuration of M , at the (j + 1)th bit, or (2) at the (j + 1)th

bit and in the previous configuration of M , at the jth bit.
The following lemma shows that there are two strings such that the behavior of

M at their boundaries is identical.
Lemma 1 Let d0 be a constant such that 2d0 ≥ 2 · (2 ·k2 ·d0)2k. For the 2DFA TM
M , there exist two strings u0, v0, u0 6= v0, |u0| = |v0| = d0, such that for any two
strings w1 and w2, the sequence of boundary configurations of M at u0 on the input
w1u0w2 is the same as the sequence of boundary configurations of M at v0 on the
input w1v0w2.

Proof. For a string u, |u| = d0, the TM M can ‘enter’ the substring u of
the input w1uw2 at most 2k times—it can enter u in k different states from the
left or from the right. For each of these possibilities, the TM would ‘exit’ from
the substring in one of the k states and either from the left or right. Also, it may
output some bits in between. Let Su be the set of 5-tuples that record the entry-exit
behavior of M at u, i.e., Su = {(se, pe, sx, px, o), where se is one of the k possible
entry states, pe is the entry point (from left or right), and when M enters u in state
se and from direction pe, then sx is the exit state of M , px is the exit point of M ,
and o is the number of bits that the output head advances by during the period M

scans u (note that this is independent of the actual position of the output head)}.
Clearly, Su has exactly 2k tuples. Also, the value of o is bounded by k ·d0 as the

TM can make at most k · d0 steps without exiting from a string of size d0. So, the
number of different Sus is bounded by (2k2 ·d0)2k. Since there are 2d0 strings of size
d0, and 2d0/(2k2 · d0)2k ≥ 2, there must be two strings u0, v0 such that Su0 = Sv0 .
Now, for any w1, w2, the sequences of boundary configurations of M at u0 and v0

will be identical on input w1u0w2 and w1v0w2 respectively. 2

We now define the notion of a forgetful 2DFA TM.
Definition 3 A 2DFA TM is forgetful if for every n, the sequences of transit con-
figurations of M on inputs of size n are identical. A 2DFA function f is forgetful
if it can be computed by a forgetful 2DFA TM.

A forgetful 2DFA TM does not ‘remember’ the input—except possibly the cur-
rently scanned bit—during any stage of the computation. This severely limits the
power of the TM. However, we shall show that for any class that is closed under
log-lin reduction, any set that is complete for the class under 2DFA reductions is
also complete under forgetful 2DFA functions. First, we prove a technical lemma
regarding composition of 2DFA functions.

We shall need to compose two 2DFA functions and shall require the composition
to remain a 2DFA function. As this may not hold in general, we define the conditions
under which the composition is a 2DFA function. Say that a 2DFA function g is a
simple 2DFA function if there exist four strings b0, b1, bi, and bf such that for all
x, g(x) = bibx[1]bx[2] · · · bx[|x|]bf .
Lemma 2 Let f be a 2DFA function computed by the TM M , and g be a simple
2DFA function. Then, the function f ◦ g is also a 2DFA function. Further, if f is
a forgetful 2DFA function, then f ◦ g is also forgetful.

Proof. The following TM M ′ computes f ◦ g:

On input x, start the simulation of M on g(x) by writing the string #bi

on the work tape. As and when M needs more bits of g(x), look up the
corresponding bit of x and write the appropriate string b0, b1, #bi or
bf# on the work tape (overwriting the earlier string). (Note that the
strings #bi and bf# are written when the input head of the TM scans
the left and right # respectively.) Output any bit that M outputs.

The TM M ′ needs only a constant amount of worksapce. A TM that needs a
constant amount of workspace can be replaced by a TM that needs no workspace
and does all the computation in its states. Thus, the function f ◦g is 2DFA function.

Any time the TM M ′ moves its input head, its state need only record the current
state of M . And so, if M is a forgetful 2DFA TM, then M ′ is also a forgetful 2DFA
TM. 2

Theorem 1 Let C be any class closed under log-lin reductions. Any set A that is
hard for C under 2DFA reductions is also hard for C under forgetful 2DFA reduc-
tions.

Proof. Let A be a ≤2dfa
m -hard set for C and B be an arbitrary set in C. We

shall exhibit a reduction of B to A computed by a forgetful 2DFA TM. We first
define a set D as accepted by the following procedure.

Input z. Let z = y10b. If b does not divide |y| then reject. Otherwise,
let y = w0w1w2 . . . wn where |wi| = b for 0 ≤ i ≤ n. Define a new string
x, |x| = n, with x[i] = 1 if wi = w0, 0 otherwise, for 1 ≤ i ≤ n. Accept
iff x ∈ B.

It is easy to see that if B 6= ∅, Σ∗, D reduces to B via a log-lin reduction, and if
B = ∅ or Σ∗, D reduces to any set in C −{∅,Σ∗} via a log-lin reduction. Therefore,
D ∈ C. Let f be a 2DFA reduction of D to A computed by the TM M with k

states. We define a reduction, g, of B to D based on the TM M as given by the
following procedure.

Input x. Let u0 and v0 be the two strings of size d0 that are identified
in Lemma 1 for the TM M . Output v0w1w2 . . . w|x|10d0 where wi = v0

if x[i] = 1, u0 otherwise, for 1 ≤ i ≤ |x|.

It is clear, from the definition of the set D that g is a reduction of B to D. Also,
it is easily seen that g is a simple 2DFA reduction. Therefore, h = f ◦ g is a 2DFA
reduction of B to A by Lemma 2. Further, the TM M ′ computing h, as defined
in the proof of Lemma 2, can be shown to be a forgetful TM as follows. The TM
M ′, on any input of size n, simulates M on the string v0w1 · · ·wn10d0 with wis as
defined above. Using Lemma 1, it can be shown that during this simulation, the
state of M at the boundary of any of wis is independent of its value as wi ∈ {u0, v0}.
Since M ′ moves the input head only when M is at the boundary of one of these
strings, it follows that M ′ is forgetful. 2

For complete sets under forgetful 2DFA reductions, following ideas from Ref. [6],
we can show that they are also complete under size-increasing reductions that are
one-one on Σn for every n ≥ 1. However, it does not provide us with the desired
result as there can be two strings of different lengths, on which the reduction is not
one-one. To get around this problem, we need to have an even stronger notion than
forgetful TMs.
Definition 4 A right scan of the TM M on some input is the period during which
the input head of the TM moves from the marker on the left of the input to the
marker on the right. Similarly, a left scan is the period during which the input
head moves from the marker on the right to the marker on the left. We adopt the
convention that a right scan ends the moment input head reaches the marker on the
right, and then the next (left) scan begins. Similarly, a left scan ends the moment
input head reaches the marker on the left, and then the next (right) scan begins
(except when the input head reaches the left marker for the last time).

The TM M , since it is a 2DFA TM with k states computing a total function,
can make at most k left and right scans of the input.
Definition 5 A 2DFA DTM is completely forgetful if for every n, (1) the sequences
of transit configurations of M on inputs of size n are identical, and (2) during any
scan (left or right) of the input, the states in the transit configurations of M are
also identical. A 2DFA function f is completely forgetful if it is computed by a
completely forgetful 2DFA TM.
Theorem 2 Let C be any class closed under log-lin reductions. Any set A that
is hard for C under 2DFA reductions is also hard for C under completely forgetful
2DFA reductions.

Proof. Let A be a ≤2dfa
m -hard set for C and B be an arbitrary set in C. We

shall exhibit a reduction of B to A computed by a completely forgetful 2DFA TM.
We first define a set E as accepted by the following procedure.

Input z. Let z = 0a1b0by0b1b0c for some a, b, and c. If b does not
divide |y| then reject. Otherwise, let y = w1w2 . . . wn where |wi| = b for
1 ≤ i ≤ n. Define a new string x, |x| = n, with x[i] = 0 if wi = 0b, 1
otherwise, for 1 ≤ i ≤ n. Accept iff x ∈ B.

Set E can clearly be reduced to B via a log-lin reduction (or to some other set
in C if B = ∅ or Σ∗) and therefore, E ∈ C. By Theorem 1, we have that E reduces
to A via a forgetful 2DFA reduction, say f . Let f be computed by the forgetful
2DFA TM M with k states. We shall define a reduction g of B to E such that f ◦ g

is a completely forgetful reduction of B to A.
Function g will be a simple 2DFA function with b0 = 0b, b1 = 0k1b−2k0k,

bi = 0a1b0b, and bf = 0b1b0c for some a, b > 2k, and c to be specified later. It is
easy to see that g is a reduction of B to D. The string g(x) can be divided into
|x|+6 blocks of consecutive bits—the first block with a bits, the next |x|+4 blocks
with b bits each, and the last block with c bits. The numbers a, b and c are chosen
in such a way that the TM M , on input g(x) and for any scan of the input, is in

the same state when it crosses the boundary between any two of these blocks for
the last time during the scan.
Claim There exist numbers a, b > 2k, and c such that for any n ≥ 0, and for any
scan of the input 0a+(n+4)·b+c, the state of the TM M is the same when it crosses,
for the last time during the scan, the boundary between any two blocks of the input,
where the blocks are defined as—the first block has a bits, the next n+4 blocks have
b bits, and the last block has c bits.

Proof of Claim. The proof of the claim is by induction on the number of
the scans of the TM. The induction hypothesis: For any l ≥ 0, there exist numbers
al ≥ k, bl > 2k, and cl ≥ k, such that for any n ≥ 0, and for any of the first l scans
of the input 0al+(n+4)·bl+cl , the state of the TM M is the same when it crosses, for
the last time during the scan, the boundary between any two blocks of the input,
where the blocks are defined as—the first block has al bits, the next n + 4 blocks
have bl bits, and the last block has cl bits.

Base step (l = 0): Let a0 = k = c0, and b0 = 2k + 1. Since the TM has not made
any scan of the input yet, the hypothesis trivially holds.

Induction step: Let the hypothesis be true for l. Consider the computation of M

on the input 0al+k·bl+cl . We know, by the induction hypothesis, that for any of the
first l scans of the input, the state of the TM is the same when it crosses, for the
last time during the scan, the boundaries between any two of the k + 2 blocks in
the input. Consider the (l + 1)th scan. Suppose that it is a right scan. Note that,
since the input consists of only zeroes and M has only k states, either the TM never
crosses the first k bits of the input, or it reaches the marker on the right. In the
first case, since al ≥ k, the TM never reaches even the boundary between the first
two blocks and thus the hypothesis trivially holds.

So, let us assume that the TM reaches the marker on the right. Let the states of
the TM, when it crosses, for the last time during the (l + 1)th scan, the boundaries
between the k + 2 blocks of the input, be q1, . . ., qk+1. Since the TM has k states,
at least two of these states, say qi and qj , i < j, must be the same. We call the
state qi as the fixed state for the (l + 1)th scan. Define al+1 = al + (i − 1) · bl,
bl+1 = (j − i) · bl, and cl+1 = cl. It is easy to verify that for these values, the
hypothesis holds for l + 1.

The proof for the case when the (l + 1)th scan is a left scan is very similar (in
that, the value of al+1 remains the same while bl+1 and cl+1 are incremented). 2

The above claim will, in fact, hold for any string in Σa+(n+4)·b+c since the TM
M is forgetful. Now, the completely forgetful TM M ′ described below computes
the function f ◦ g. TM M ′ has, in its finite control, the numbers a, b, c, k and the
fixed states of M for every scan (as identified above) written.

On input x, M ′ simulates M on g(x). It remembers which scan of M

is currently being simulated. At the beginning of the simulation of a
right scan of M , the input head of M ′ would be at the left marker of the
input. M ′ then writes the string #0a1b0b on the work tape and starts
the simulation of M on this string.

During the simulation of this scan, M ′ moves its input head only when
M is in the fixed state for the scan and the input head of M is to the
right of the string written on the work tape. This ensures that, during
the simulation of M on any string written on the work tape, the input
head of M never moves to the left of the string. And when the input
head of M moves to the right of the string, say u, M ′ checks if the
state of M is the fixed state for this scan. If it is, M ′ moves its input
head to the right, and depending on the bit written on the new cell, 0
or 1, writes 0b or 0k1b−2k0k on the work tape (overwriting the previous
string) and continues with the simulation. In case M ′ reads the right
end marker, it signals the end of the current scan.

On the other hand, if the state of M is not the fixed state for the current
scan, M ′ writes the string 0k after u and simulates M on this string
without moving its input head. This simulation is correct since the first
k bits of all the three strings 0b, 0k1b−2k0k, and 0b1b0c# are zeroes. The
crucial point to note here is that the input head of M cannot go beyond
u0k without returning to the right boundary of u. This is because M

must cross the right boundary of the string u at least once more during
the scan (since M is not yet in the fixed state for the scan), and this it
cannot do if its input head goes k bits away from u (there being only k

states of M). Thus, M would eventually cross the right boundary of u

in the fixed state for the scan. Now, M ′ works as above.

A left scan of M can be similarly simulated. During the entire simula-
tion, M ′ outputs any bit that M does.

M ′ uses only a constant amount of workspace, and thus can be converted to a 2DFA
TM. It is also a completely forgetful 2DFA TM since during any scan of the input,
it always moves the input head in one direction only, and whenever it moves the
input head, it only needs to records the current scan number in its finite control
apart from the information that is scan-independent. 2

4. The Structure of ≤2dfa
m -Complete Degrees

In this section we prove our main results, viz., for every class C closed under
log-lin reductions, the ≤2dfa

m -complete sets for C are also ≤2dfa
1,li -complete but not

2DFA-isomorphic.
We first give a useful property of completely forgetful reductions.

Lemma 3 Let f be a completely forgetful reduction. Then there exists an even
number l ≥ 0, and strings Oi

0, Oi
1, Ei, El+1 with |Oi

0| = |Oi
1| for 1 ≤ i ≤ l, such

that for every x,

f(x) = E1O1
x[1]O

1
x[2] · · ·O

1
x[|x|]E

2O2
x[|x|]O

2
x[|x|−1] · · ·O

2
x[1]E

3 · · · · · ·

· · · · · ·El−1Ol−1
x[1]O

l−1
x[2] · · ·O

l−1
x[|x|]E

lOl
x[|x|]O

l
x[|x|−1] · · ·O

l
x[1]E

l+1.

Proof. Let M be a completely forgetful 2DFA TM computing f . By definition,
we have that during any scan of the input tape, the TM M is in the same state in

any transit configuration, and the transit configuration is independent of the value
of the bit just scanned. This implies that (1) the TM makes the same number of
scans on any input, (2) the output of the TM while it scans a bit during any scan is
independent of the position of the bit, and (3) the number of bits output on reading
a bit is independent of the value of the bit. Let l be the number of scans the TM
makes on any input, Oi

0 and Oi
1 be the output of M on reading 0 and 1 respectively

during the ith scan. The TM may also output some bits while scanning the markers
at the two ends of the input. Let Ei denote the output of M while scanning the
marker # at the beginning of the ith scan for 1 ≤ i ≤ l (if i is odd, the TM scans
the marker on the left, otherwise the marker on the right), and El+1 denote the
output of M while scanning the left marker at the end of the computation. It is
straightforward now to see that for any string x, f(x) is as described above. 2

Theorem 3 For any class C closed under log-lin reductions, ≤2dfa
m -hard sets for C

are also ≤2dfa
1,li -hard.

Proof. Let A be a ≤2dfa
m -hard set for C. Let B ∈ C. We show that B is

reducible to A via a one-one, size-increasing, 2DFA reduction. Define a set F as:

F = {1x | x ∈ B} ∪ {1}.

The set F is clearly in C. Let f be a completely forgetful reduction of F to A com-
puted by the TM M (the existence of such a function is guaranteed by Theorem 2).
By Lemma 3, we have that for any y, f(y) can be written as:

f(y) = E1O1
y[1]O

1
y[2] · · ·O

1
y[|y|]E

2O2
y[|y|]O

2
y[|y|−1] · · ·O

2
y[1]E

3 · · · · · ·

· · · · · ·El−1Ol−1
y[1]O

l−1
y[2] · · ·O

l−1
y[|y|]E

lOl
y[|y|]O

l
y[|y|−1] · · ·O

l
y[1]E

l+1, (1)

for some l, Oi
0, Oi

1, Ei, El+1, 1 ≤ i ≤ l. Also, we have that |Oi
0| = |Oi

1|. So,

|f(y)| = |y| · (
∑
i=1,l

|Oi
1|) +

∑
i=1,l+1

|Ei|. (2)

Suppose that for every i, 1 ≤ i ≤ l, Oi
0 = Oi

1. Then, by (1), for every n, and for
every pair of strings y1 and y2 with |y1| = |y2| = n, f(y1) = f(y2). In particular,
f(1) = f(0). However, this is not possible since 1 ∈ F , 0 6∈ F and f is a reduction
of F to A. Therefore, there exists an i, 1 ≤ i ≤ l, such that Oi

0 6= Oi
1. It follows

that
∑

i=1,l |Oi
1| ≥ 1. Therefore, by (2), |f(y)| ≥ |y| for every y.

For any two strings y1 and y2, y1 6= y2, if |y1| = |y2|, then by (1), f(y1) 6= f(y2).
And if |y1| > |y2|, then by (2), |f(y1)| − |f(y2)| = (|y1| − |y2|) · (

∑
i=1,l |Oi

1|) ≥ 1
since

∑
i=1,l |Oi

1| ≥ 1. Therefore, f is one-one.
Let g(x) = 1x. It is obvious that g is a one-one, size-increasing, simple 2DFA

reduction of B to F , and the function h◦g is a completely forgetful 2DFA reduction
of B to A. Since both f and g are one-one and size-increasing, h is also one-one
and size-increasing. This complete the proof of the theorem. 2

Corollary 1 For any class C closed under log-lin reductions, ≤2dfa
m -complete sets

for C are also ≤2dfa
1,li -complete.

Recall that first-order functions are functions computed by DLOGTIME-uniform
AC0 circuits.11

Corollary 2 For any class C closed under log-lin reductions, ≤2dfa
m -complete sets

for C are first-order isomorphic.
Proof. By Theorem 2, any ≤2dfa

m -complete set for C is also complete under
completely forgetful 2DFA reductions. Any completely forgetful 2DFA function f

has the structure described in Lemma 3. Any such function is actually a projection13

since every bit of the output depends on at most one bit of the input. In Ref. [14],
it is shown that any two sets complete for a ‘nice’ complexity class under first-order
projections15 (these are a uniform version of projections) are first-order isomorphic,
and their proof also works for any class closed under log-lin reductions. So, all we
need to show is that a completely forgetful 2DFA function is actually a first-order
projection.

Let f be a completely forgetful 2DFA function computed by the TM M , and
BIT(i) be a unary predicate that is 1 iff the ith bit of the input to f is 1. For
the output of f , we define a predicate OUT(i, r, a) which denotes the ath bit of the
output of M while scanning the ith bit of the input during the rth scan of the input
if i > 0; and the ath bit of the output of M while scanning the corresponding #
marker during the rth scan if i = 0. In other words, OUT(i, r, a), for an input of
size n, is the ath bit of the string Or

BIT(i) if 1 ≤ i ≤ n, and the ath bit of the string
Er if i = 0. Note that we must allow r to go up to l + 1 when i = 0 to take care of
the string El+1. It is straightforward to see that, depending on the values of a and
r (which are only a constantly many), the value of OUT(i, r, a) is either fixed, or
determined in a fixed way by BIT(i). Thus, OUT(i, r, a) can be written as a finite
disjunction of conjuncts with each conjunct having at most one occurrence of the
BIT predicate. This shows that f is a first-order projection.14 2

Though there are no ≤2dfa
m -complete sets for the classes P, NP, PSPACE etc., the

classes DSPACE(nk), NSPACE(nk), E, NE etc. are closed under log-lin reductions
and have ≤2dfa

m -complete sets. For example, the following set is ≤2dfa
m -complete for

DSPACE(nk).

K = {i | DTM Mi accepts i within space k · |i|k + k}.

So, we have,
Corollary 3 For any class C, C ∈ {DSPACE(nk), NSPACE(nk), E, NE}, ≤2dfa

m -
complete sets for C are also ≤2dfa

1,li -complete, and are first-order isomorphic to each
other.

Corollaries 1 and 2, while proving a strong collapse of ≤2dfa
m -complete degrees,

do not show that these degrees collapse to 2DFA-isomorphic degrees. We now show
that such a collapse is not possible.

We first translate the notion of annihilating functions defined in Ref. [5] to our
settings. A function f is a 2DFA-annihilating function if f is one-one, length-
increasing and all 2DFA-computable subsets of the range of f are sparse.
Lemma 4 Function t(x) = xx is a 2DFA-annihilating function.

Proof. Function t is clearly a one-one, length-increasing 2DFA function. Let
a 2DFA TM M∗ recognize a subset R of its range. We show that R has only a
constantly many strings of every length. For any n, and for any x of length n,
consider the sequence of right boundary configurations of M∗ at the first x of the
input f(x) = xx. There are at most k such configurations where k is the number of
states of M∗. Therefore, the number of different such sequences of configurations is
bounded by kk. If two strings xx and yy in R have the same sequence of configura-
tions as above, then xy and yx will also have the same sequence. This implies that
strings xy and yx also belong to R which is not possible if x 6= y as R is a subset
of the range of t. Hence R has at most kk strings of length n, for any n. 2

Theorem 4 For every class C closed under log-lin reductions, the 2DFA-isomor-
phism conjecture is false.

Proof. Consider a ≤2dfa
m -complete set A for C. Define,

B = {x | (x = 1y ∧ y ∈ A) ∨ x = 0y}.

The set B reduces to A via a log-lin reduction and is therefore in C. It is also
≤2dfa

m -complete for C since any 2DFA reduction to A can be transformed to a 2DFA
reduction to B by just appending a ‘1’ at the beginning of its output.

Let t(x) = xx, and consider the set t(B). This set also belong to C as it can
be reduced to B via a log-lin reduction. It is also ≤2dfa

m -complete for C since any
2DFA reduction to B can be transformed to a 2DFA reduction to t(B) by making
it output the same string twice. Suppose that B is 2DFA-isomorphic to t(B) via
h. So, B ≤2dfa

1,i t(B) via h. A 2DFA TM that accepts any input whose image under
h−1 begins with a zero recognizes a dense subset of the set t(B). This contradicts
Lemma 4 since t(B) is contained in the range of t. 2

5. Concluding Remarks

Theorem 4 shows that the 2DFA-encrypted complete set conjecture is true for
any class C closed under log-lin reductions. This conjecture was proposed by Joseph
and Young4 contradicting the isomorphism conjecture. In Ref. [6], the r-encrypted
complete set conjecture for class C was defined as: there is a ≤r

m-complete set A and
an r-computable one-one, length-increasing function f such that A 6≤r

1,li,i f(A). As
shown in Theorem 4, B 6≤2dfa

1,li,i t(B) for the function t(x) = xx.
Say that (1) reducibility r is simple for class C if ≤r

m-complete sets for C are also
≤r

1,li-complete; and (2) reducibility r is deterministically invertible for class C if—for
every resource bound s, s ≥ r, such that the inverses of one-one, length-increasing r-
computable functions can be computed by non-deterministic TMs within a resource
bound of s—the ≤r

1,li-complete sets for C are also ≤r
1,li-complete via reductions

whose inverses are computable by deterministic TMs within a resource bound of s.
In Ref. [6], the r-complete degree conjecture for class C was proposed stating

that reducibility r is both simple and deterministically invertible for the class C. It
was shown there that if the p-complete degree conjecture is true for a class C then
the p-isomorphism conjecture is also true for the class C. Further, it was shown

that for several weak reducibilities, including 1-L and 1-NL, the complete degree
conjecture holds for all classes closed under log-lin reductions.

Does the 2DFA-complete degree conjecture also hold for classes closed under
log-lin reductions? It appears so. Firstly, 2DFA reducibility is simple for any class
closed under log-lin reductions (follows from Corollary 1). Moreover, the inverses
of one-one, length-increasing 2DFA reductions can be computed by mu-NFA TMs
where a mu-NFA TM is a multihead, nondeterministic TM with a read-only input
tape, a write-only output tape such that each of its input heads is unidirectional,
i.e., it either moves left or right. The input heads are also assumed to be ‘sensitive’,
i.e., a head can detect whether any other head is scanning the same input cell as
itself.
Proposition Any one-one, length-increasing 2DFA function is mu-NFA-invertible.

Proof Sketch. Let M be a 2DFA TM computing a function g. For an
input string y, we now describe a multihead, unidirectional NFA TM M̂ computing
x = g−1(y). Let the number of states of M be k. Then, M can visit any input cell
at most k times. Each input cell can be visited from left or right corresponding to
whether the previously visited cell was to the right or left of the current cell. M̂

has 2k heads—k left moving and k right moving. The left moving heads are for the
left visits to cells and the right moving ones are for the right visits. The output of
M on some cell is defined to be the output produced while M is scanning that cell.

M̂ initially guesses the positions in the input y of the output of M as well as
the states of M during each scan of x[1]. It places a right moving head each at
the positions corresponding to the output of M on x[1] during a right visit, and a
left moving head each at the positions corresponding to the output during a left
visit. Now it guesses the bit x[1] and verifies if the output of M agrees with the bits
written at the guessed positions. For this, M̂ has to guess the previous states for
the left moving heads and verify that these previous states lead M to the current
states on x[1]. For right moving heads, M̂ just needs to compute the next state of
M . If the output of M agrees then M̂ outputs the guessed bit x[1] and proceeds
with the simulation otherwise aborts.

Now, M̂ guesses the bit x[2] and does the same verification as above. Note that
it is possible that M may have made a ‘turn’ at x[2] without touching x[1] at some
time. So, M̂ also guesses these ‘turning’ points and corresponding states for the
verification for x[2]. In this way the simulation is continued. Whenever a right
moving head meets with a left moving head (this corresponds to the situation when
M makes a ‘turn’), M̂ checks if their corresponding states are the same. If yes, then
it continues with the simulation freezing the two heads (no more simulation needs
to be done for these two heads), otherwise aborts.

It is easy to verify that the above simulation computes g−1(y) correctly. 2

In fact, there appears to be no better way of computing the inverses of arbi-
trary one-one, length-increasing 2DFA functions—Lemma 4 already provides some
evidence for this by showing that t(x) = xx cannot be inverted by a 2DFA TM.
Moreover, it is easy to see that the function f(x) = xxR where xR is the reverse of
string x, cannot be computed by one-way, multihead DTMs without workspace.

By modifying the construction of the set F and the function g in the proof of
Theorem 3 a little bit, one can show that the ≤2dfa

m -complete sets for any class closed
under log-lin reductions are also complete under one-one, size-increasing reductions
whose inverses can be computed by mu-DFA TMs which are deterministic versions
of mu-NFA TMs. Thus, the 2DFA reducibility appears to be deterministically
invertible for any class closed under log-lin reductions implying that the 2DFA-
complete degree conjecture for these classes is likely to be true.

Acknowledgements

The authors wish to thank the two anonymous referees whose thoughtful com-
ments helped in improving the paper.

References

1. L. Berman and J. Hartmanis, “On isomorphism and density of NP and other com-
plete sets,” SIAM J. Comput. 1 (1977) 305–322.

2. J. Myhill, “Creative sets,” zeitschrift für Mathematische Logic und Grundlagen der
Mathematik 1 (1955) 97–108.

3. S. Kurtz, S. Mahaney and J. Royer, “The structure of complete degrees,” in Com-
plexity Theory Retrospective, ed. A. Selman (Springer-Verlag, 1988) pp. 108–146.

4. D. Joseph and P. Young, “Some remarks on witness functions for nonpolynomial
and noncomplete sets in NP,” Theoretical Computer Science 39 (1985) 225–237.

5. S. Kurtz, S. Mahaney and J. Royer, “The isomorphism conjecture fails relative to a
random oracle,” in Proc. Symposium on Theory of Computation, 1989, pp. 157–166.

6. M. Agrawal, “On the isomorphism problem for weak reducibilities,” to appear in
J. Comput. System Sci. A preliminary version appeared in Proc. 9th Structure in
Complexity Theory Conference, Amsterdam, Jun. 1994, pp. 338–355.

7. L. J. Stockmeyer, “The Complexity of decision problems in automata theory and
logic,” Ph. D. Thesis, Massachusetts Institute of Technology, 1974.

8. E. W. Allender, “Isomorphisms and 1-L reductions,” J. Comput. System Sci. 36
(1988) 336–350.

9. K. Ganesan and S. Homer, “Complete problems and strong polynomial reducibili-
ties,” SIAM J. Comput. 21 (1992) 733–742.

10. M. Agrawal and S. Biswas, “Polynomial isomorphism of 1-L-complete sets,” to ap-
pear in J. Comput. System Sci. A preliminary version appeared in Proc. 8th
Structure in Complexity Theory Conference, San Diego, May 1993, pp. 75–80.

11. D. Barrington, N. Immerman and H. Straubing, “On uniformity within NC1,” J.
Comput. System Sci. 74 (1990) 274–306.

12. J. Hopcroft and J. D. Ullman, Introduction to Automata, Languages and Computa-
tion (Addison-Wesley, 1979).

13. L. G. Valiant, “Reducibility by algebraic projections,” L’Enseignement mathéma-
tique 28 (1982) 253–268.

14. E. Allender, J. Balcázar and N. Immerman, “A first-order isomorphism theorem,”
to appear in SIAM J. Comput. A preliminary version appeared in Proc. 10th
Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer
Science 665, 1993, pp. 163–174.

15. N. Immerman and S. Landau, “The complexity of iterated multiplication,” Infor-
mation and Computation 116 (1995) 103–116.

