
The Discrete Time Behavior of Lazy Linear

Hybrid Automata

Manindra Agrawal and P. S. Thiagarajan

School of Computing,
National University of Singapore
agarwal,thiagu@comp.nus.edu.sg

Abstract. We study the class of lazy linear hybrid automata with finite

precision. The key features of this class are:

– The observation of the continuous state and the rate changes asso-
ciated with mode switchings take place with bounded delays.

– The values of the continuous variables can be observed with only
finite precision.

– The guards controlling the transitions of the automaton are finite
conjunctions of arbitrary linear constraints.

We show that the discrete time dynamics of this class of automata can be
effectively analyzed without requiring resetting of the continuous vari-
ables during mode changes. In fact, our result holds for guard languages
that go well beyond linear constraints.

1 Introduction

We present a class of linear hybrid automata and show that their discrete time
behavior can be effectively computed and represented as finite state automata.
A hybrid automaton of the kind we study is meant to be a model of a closed
loop system consisting of a digital controller interacting with a plant whose state
variables evolve in a continuous manner. The controller will sample the state of
the plant at periodic discrete time instances. Typically, these time instances will
be determined by the system clock of the processor implementing the controller.
This state information will consist of the current values of the relevant plant
variables as observed by the sensors. These values will be digitized with finite
precision and reported to the controller. Using this information, the controller
may decide to switch the mode of the plant by generating suitable output signals
that will be transmitted to the actuators, which in turn will effect the desired
mode change.

An important feature in this setting -and this will be reflected in our automata-
is that the sensors will report the current values of the variables and the actuators
will effect changes in the rates of evolution of the variables with bounded delays.
More specifically, the state observed at the instant Tk is a state that held at some
time in a bounded interval contained in (Tk−1, Tk). Further, if an instantaneous
mode change has taken place at Tk from the standpoint of the digital controller,

then any necessary change in the rate of a variable will not kick in immediately.
Rather, it will do so at some time in a bounded interval contained in (Tk, Tk+1).

A restriction we impose is that each variable’s allowed range of values is
bounded. In addition, we focus, for simplicity, on the case where there is a
single rate vector associated with each mode instead of a bounded (rectangular)
region of flows as is often done [1]. Our automata are a variant of linear hybrid
automata [2] in that the guards controlling the mode switches are assumed to
be conjunctions of linear inequalities.

Our main result is that the discrete time behavior of such an automaton is
regular and moreover, this behavior can be effectively computed and represented
as a finite state automaton. Indeed, any reasonable language of constraints can
be used to form the guards (for instance, conjunctions of polynomial inequalities)
and the main result will continue to hold.

As is well known, hybrid automata have a great deal of expressive power. In
a variety of settings, the control state reachability problem is undecidable, as
reported for instance in [3, 4]. A number of undecidability results in a discrete
time setting have also been reported in the literature but these results are mainly
for piecewise-affine (and not, as considered here, piecewise constant) systems
with infinite precision; see for instance [5, 6]. A sharp delineation of the boundary
between decidable and undecidable features of hybrid automata is drawn in [7]
as well as [1].

These results, as also the positive results reported for example in [8–11]
suggest that except under very restrictive settings, one can not expect to get
decidability if the continuous variables don’t get reset during mode changes (in
case their rates change as a result of the mode change). Viewed as a model of
digital controllers that interact with plants through sensors and actuators, the
resetting requirement severely restricts the modelling power of the automaton.
Our results show that by focusing on the discrete time behavior and requiring
finite precision, we can allow the continuous variables to retain their values
during mode changes. Furthermore, we can allow a rich class of guards and cope
with lazy sensors and actuators that have bounded delays associated with them.

Our work here is in a sense a generalization and in another sense specializa-
tion of the work reported in [12]. Finite precision was not demanded in [12] but
the guards were required to be rectangular. In contrast we permit here the guards
to be far more general. We do not know at present whether the finite precision
assumption can be dropped for our linear hybrid automata though it is a natural
one in the setting that we are considering. A closely related earlier work is [13]
where the discrete time behavior of rectangular hybrid automata is studied but
with the requirement that all instantaneous transitions should take place only at
integer-valued instances of time. In our terms, [13] assumes that the sensors and
actuators function with zero delays which considerably simplifies the analysis.
On the other hand, [13] does not assume finite precision and yet establishes a
decidability result for automata with triangular guards (i.e. conjunctions of con-
straints of the form x − y ∼ c where ∼ ∈ {<,≤, >,≥}) and rectangular initial
regions. It turns out that, as we observe in a later section, without finite pre-

cision but with zero delays sensors and actuators and linear constraints we can
show a corresponding decidability result. As its title suggests, [13] is concerned
with controller synthesis problems too. By viewing our automata as suitable
open systems, we can also tackle controller synthesis problems using standard
techniques.

Though not directly related to our work here, there have been a number
of previous attempts to reduce the expressive power of timed and rectangular
automata by taking away their ability to define trajectories with infinite precision
[14–16]. Typically one demands, the set of admitted trajectories to be “fuzzy”; if
a trajectory is admitted by the automaton then it should also admit trajectories
that are sufficiently close to the trajectory where “closeness” is captured using a
natural topology over the trajectories. This does not lead to more tractability as
shown in [15] and [16]. The key difference between our work and these previous
works is that in our automata, the fuzziness lies in the gap between the observed
continuous state based on which a mode change takes place and the actual
continuous state that holds at that instant. Further, the actual rate at which a
variable may be evolving at an instant may be different from the rate demanded
by the current mode of the automaton.

In the next section, we formulate the model of lazy linear hybrid automata
with finite precision. In section 3 we prove our main result, namely, the language
of state sequences and action sequences generated by our automaton are regular
and that finite state automata representing these languages can be effectively
computed. In section 4 we discuss the restrictions placed on our automata and
point out that many of them can be easily relaxed. We also point how our main
result can be easily extended to a much richer class of guards. In the concluding
section we discuss the prospects for extending the results reported here.

2 Lazy Linear Hybrid Automata

Fix a positive integer n and one function symbol xi for each i in {1, 2, . . . , n}.
We view each xi as a function xi : IR≥0 7→ IR with IR being the set of reals and
IR≥0, the set of non-negative reals. We let Q denote the set of rationals.

A linear constraint is an inequality of the form a1 ·x1+a2 ·x2+. . .+an ·xn ∼ c
where a1, a2, . . . an as well as c are rational numbers and ∼ ∈ {<,≤, >,≥}. A
guard is a finite conjunction of linear constraints. We let Grd denote the set of
guards.

A valuation is just a member of IRn. The valuation V will be viewed as
prescribing the value V (i) to each variable xi. The notion of a valuation satisfying
a guard is defined in the obvious way.

A lazy linear hybrid automaton is a structure
A = (Q, Act, qin, Vin, D, ε, {ρq}q∈Q, B,−→) where:

– Q is a finite set of control states.
– Act is a finite set of actions.
– qin ∈ Q is the initial control state.

– Vin ∈ Qn is the initial valuation.
– D = {g, δg, h, δh} ⊆ Q is the set of delay parameters such that

0 < g < g + δg < h < h + δh < 1.
– ε is the precision of measurement, ε ∈ Q.

– ρq ∈ Qn is a rate vector which specifies the rate ρq(i) at which each xi

evolves when the system is in the control state q.
– B = {v | Bmin ≤ v ≤ Bmax, Bmin, Bmax ∈ Q} is the allowed range.

– −→⊆ Q × Act × Grd × Q is a transition relation such that q 6= q′ for every
(q, a, ϕ, q′) in −→.

We shall study the discrete time behavior of our automata. At each time instant
Tk, the automaton receives a measurement regarding the current values of the
xi’s. However, the value of xi that is observed at Tk is the value that held at some
t ∈ [Tk−1 +h, Tk−1 +h+ δh]. Further, the value is observed with a precision of ε.
More precisely, any value of xi in the half-open interval [(l− 1/2)ε, (l + 1/2)ε) is
reported as lε where l is an integer. For any real number v, we will denote this
rounded-off value relative to ε as 〈v〉.

If at Tk, the automaton is in control state q and the observed n-tuple of values
(〈v1〉 , 〈v2〉 , . . . , 〈vn〉) satisfies the guard ϕ with (q, a, ϕ, q′) being a transition,
then the automaton may perform this transition instantaneously by executing
the action a and move to the control state q′. As a result, as usual, the xi’s
will cease to evolve at the rates ρq and instead start evolving at the rates ρq′ .
However, this change in the rate of evolution will not kick in at Tk but at some
time t ∈ [Tk + g, Tk + g + δg]. In this sense, both the sensing of the values of the
xi’s and the rate changes associated with mode switching take place in a lazy
fashion but with bounded delays. We expect g to be close to 0, h to be close to
1 and both δg and δh to be small compared to 1.

Thus in the idealized setting, which we shall consider briefly later, the change
in rates due mode switching would kick in immediately (g = 0 = δg) and the
value observed at Tk is the value that holds at exactly Tk (h = 1 and δh = 0).
In addition, assuming perfect precision would boil down to setting 〈v〉 = v for
every real number v.

B specifies the range of values within which the automaton’s dynamics are
valid. The automaton gets stuck if any of the xi’s ever assume a value outside the
allowed range [Bmin, Bmax]. A number of the restrictions that we have imposed
are mainly for ease of presentation. Later, we will discuss how these restrictions
can be relaxed.

Our main result is that the control state and action sequence languages gen-
erated by a lazy linear hybrid automaton are both regular. Furthermore, these
languages can be computed effectively.

2.1 The Transition System Semantics

Through the rest of this section we fix a lazy linear hybrid automaton A as
defined above and assume its associated notations and terminology. We shall

often say “automaton” to mean “lazy linear hybrid automaton”. The behavior
of A will be defined in terms of an associated transition system.

A configuration is a triple (q, V, q′) where q, q′ are control states and V is a
valuation. q is the control state holding at the current time instant and q′ is the
control state that held at the previous time instant. V captures the actual values
of the variables at the current instance. The configuration (q, V, q′) is feasible iff
V (i) ∈ [Bmin, Bmax] for every i. The initial configuration is, by convention,
the triple (qin, Vin, qin). We assume without loss of generality that the initial
configuration is feasible. We let CA denote the set of configurations. Since A
will be clear from the context, we will often write C instead of CA.

As in the case of timed automata [17], a convenient way to understand the
dynamics is to break up each move of the automaton into a time-passage move
followed by an instantaneous transition. At T0, the automaton will be in its
initial configuration.

We assume that the unit of time has been fixed at some suitable level of
granularity and that the rate vectors {ρq} have been scaled accordingly. Sup-
pose the automaton is in the configuration (qk, Vk, q′k) at Tk. Then one unit of
time will pass and at time instant Tk+1, the automaton will make an instan-
taneous move by performing an action a or the silent action τ and move to a
configuration (qk+1, Vk+1, q

′
k+1). The silent action will be used to record that

no mode change has taken place during this move. Again, as often done in the
case of timed automata, we will collapse these two sub-steps of a move (unit-
time-passage followed by an instantaneous transition) into one “time-abstract”
transition labelled by a member of Act or by τ .

With this scheme in mind, we now define the transition relation
=⇒⊆ C × (Act ∪ {τ}) × C as follows.

– Let (q, V, q′) and (q1, V 1, q1′) be configurations and a ∈ Act. Then

(q, V, q′)
a

=⇒ (q1, V 1, q1′) iff q1′ = q and there exists in A a transition

of the form q
a,ϕ
−→ q1 and there exist t̂1 ∈ [g, g + δg]

n and t̂2 ∈ [h, h + δh]n

such that the following conditions are satisfied.

(1) Let vi = V (i) + ρq′(i) · t̂1(i) + ρq(i) · (t̂2(i) − t̂1(i)) for each i. Then
(〈v1〉 , 〈v2〉 , . . . , 〈vn〉) satisfies ϕ.

(2) V 1(i) = V (i) + ρq′(i) · t̂1(i) + ρq(i) · (1 − t̂1(i)) for each i.

– Let (q, V, q′) and (q1, V 1, q1′) be configurations. Then

(q, V, q′)
τ

=⇒ (q1, V 1, q1′) iff q1 = q1′ = q

and there exists t̂1 ∈ [g, g + δg]
n such that

V 1(i) = V (i) + ρq′(i) · t̂1(i) + ρq(i) · (1 − t̂1(i)) for each i.

Basically there are four possible transition types depending on whether q = q′

and α ∈ Act. Suppose (q, V, q′)
a

=⇒ (q1, V 1, q1′) with a ∈ Act. Assume that

q
a,ϕ
−→ q1 in A and t̂1 ∈ [g, g + δg]

n and t̂2 ∈ [h, h + δh]n are as specified above.
We first note that q1 6= q by the definition of the transition relation of A. The

requirement q1′ = q follows from our convention that q1′ is the control state
that held in the previous instant and we know this was q.

First consider the case q 6= q′ and let us suppose that the configuration
(q, V, q′) holds at Tk. We take q 6= q′ to mean that a change of mode from
q′ to q has just taken place (instantaneously) at Tk based on the observations
that were made available at Tk. However, at Tk, the automaton will continue
to evolve at the rate dictated by ρq′ . Indeed, each xi will, starting from Tk,
evolve at rate ρq′(i) until some Tk + t1 with t1 ∈ [g, g + δg]. It will then start
to evolve at rate ρq(i) until Tk+1. Consequently, at Tk+1, the value of xi will
be V 1(i) = V (i) + ρq′(i) · t1 + ρq(i) · (1 − t1). On the other hand, q1 6= q
implies that another instantaneous mode change has taken place at Tk+1 based
on the measurements made in the interval [Tk + h, Tk + h + δh]. Suppose xi was
measured at Tk+t2 with t2 ∈ [Tk+h, Tk+h+δh]. Then in order for the transition

q
a,ϕ
−→ q1 of A to be enabled at Tk+1, it must be the case that the observed values

of xi’s at Tk + t2 satisfy the guard ϕ. But then these values are 〈vi〉 with vi =
V (i)+ρq′(i)·t1+ρq(i)·(t2−t1). This explains the demands placed on the transition

(q, V, q′)
a

=⇒ (q1, V 1, q1′). It is worth noting that if q = q′ (i.e. no mode change
has taken place at Tk) then V 1(i) = V (i)+ρq(i) ·t1+ρq(i) ·(1−t1) = V (i)+ρq(i)
as it should be. Furthermore, V (i)+ρq(i) · t1 +ρq(i) · (t2 − t1) = V (i)+ρq(i) · t2.

Similar (and simpler) considerations motivate the demands placed on transi-

tions of the form (q, V, q′)
τ

=⇒ (q1, V 1, q1′). Here again, it is worth noting that,
in case q = q′, V 1(i) is determined uniquely, namely, V 1(i) = V (i) + ρq(i).

We now define the transition system
TSA = (RCA, (qin, Vin, qin), Act ∪ {τ}, =⇒A) via:

– RCA, the set of reachable configurations of A is the least subset of C that
contains the initial configuration (qin, Vin, qin) and satisfies:
Suppose (q, V, q′) is in RCA and is a feasible configuration. Suppose further,

(q, V, q′)
α

=⇒ (q1, V 1, q) for some α ∈ Act ∪ {τ}. Then (q1, V 1, q) ∈ RCA.

– =⇒A is =⇒ restricted to RCA × (Act ∪ {τ}) × RCA.

We will often write RC instead of RCA and write =⇒ instead of =⇒A. We
note that a reachable configuration can be the source of a transition in TSA

only if it is feasible. Thus infeasible reachable configurations will be deadlocked
in TSA.

A run of TSA is a finite sequence of the form
σ = (q0, V0, q

′
0) α0 (q1, V1, q

′
1) α1 (q2, V2, q

′
2) . . . (qk, Vk, q′k) where (q0, V0, q

′
0) is the

initial configuration and (qm, Vm, q′m)
αm=⇒ (qm+1, Vm+1, q

′
m+1) for 0 ≤ m < k.

The st-sequence (state sequence) induced by the run σ above is denoted as st(σ)
and it is the sequence q0q1 . . . qk. On the other hand, the act-sequence induced
by σ is denoted as act(σ) and it is the sequence α0α1 . . . αk. We now define the
languages Lst(A) and Lact(A) as :

– Lst(A) = {st(σ) | σ is a run of A}.

– Lact(A) = {act(σ) | σ is a run of A}.

Our main result is that Lst(A) is a regular subset of Q? while Lact(A) is
a regular subset of (Act ∪ {τ})?. Moreover, we can effectively construct finite
state automata representing these languages. As a consequence, a variety of
verification problems and controller synthesis problems for our automata can be
effectively solved.

3 Proof of the Main Result

The transition guards in [12] were of the form xi = c for some constant c. This
fact was critical for the finite division of Bn resulting in a finite automata. If the
guards are more general then quantization of the continuous state space as done
in [12] is not possible. We shall address this point again in the next section.

However the extra structure provided by the finite precision of observations
comes to the rescue. As we show below, it enables us to generalize the proof idea
of [12].

Let A = (Q, Act, qin, Vin, D, ε, {ρq}q∈Q, B, F,−→) be a lazy automaton. We
assume for A, the terminology and notations defined in the previous section.

We shall generalize the proof strategy of [12]. Define ∆ to be the largest
positive rational number that integrally divides every number in the finite set
of rational numbers {g, δg, h, δh, 1}. We next define Γ to be the largest positive
rational number that integrally divides each number in the finite set of rational
numbers {ρq(i)·∆ | q ∈ Q, 1 ≤ i ≤ n}∪{Bmin, Bmax}∪{Vin(i) | 1 ≤ i ≤ n}∪{ ε

2}.
Let ZZ denote the set of integers. We now define the map

‖·‖ : IR → ZZ × {I, S,⊥} as follows.

– If v ∈ (−∞, Bmin), then ‖v‖ = (kmin − 1,⊥) where kmin · Γ = Bmin.
– If v ∈ (Bmax,∞), then ‖v‖ = (kmax,⊥) where kmax · Γ = Bmax.
– Suppose v ∈ [Bmin, Bmax] and v = kΓ + v̂ with k ∈ ZZ and v̂ ∈ [0, Γ). Then

‖v‖ = (k, S) if v̂ = 0, and ‖v‖ = (k, I) if v̂ 6= 0.

This map is extended in the obvious way to points in IRn: ‖(v1, v2, . . . , vn)‖ =
(‖v1‖ , ‖v2‖ , . . . , ‖vn‖).

The map ‖·‖ can also be extended in a natural way to configurations. De-
noting this extension also as ‖·‖, we define ‖(q, v, q′)‖ to be (q, ‖v‖ , q′). Let
DA = {‖c‖ | c ∈ CA}. Clearly DA is a finite set and we will often write D
instead of DA. Our goal is to show that the equivalence relation over the reach-
able configurations RC of A induced by the map ‖·‖ in turn induces a right
congruence of finite index over Q?.

We are now ready to tackle the main part of the proof.

Theorem 1. Let c1 and c2 be two reachable configurations such that ‖c1‖ =
‖c2‖. Suppose α ∈ Act ∪ {τ} and c1′ is a reachable configuration such that

c1
α

=⇒A c1′. Then there exists a reachable configuration c2′ such that c2
α

=⇒A c2′

and ‖c1′‖ = ‖c2′‖.

Proof. Clearly c1 is feasible and since ‖c1‖ = ‖c2‖, it follows that c2 is also
feasible.

Let c1 and c2 be configurations at time instant t. Let us split the unit time
interval in which c1 moves to c1′ into intervals of size ∆. We refer to these
smaller intervals as basic intervals. By the choice of ∆, there will be an integral
number, say m, of basic intervals in the unit time interval. Let c10 = c1, c11, . . .,
c1m be the configurations that hold at the end of each of these basic intervals
when the starting configuration is c1. Configuration c1′ is obtained by making
an instantaneous state transition from c1m. Let [t+u∆, t+(u+1)∆] be one such
basic interval. In this interval, assuming that [u∆, (u + 1)∆] lies in the range of
[g, g + δg] or [h, h + δh], one of the two types of events may occur:

Rate Change: For some J ⊆ {1, 2, . . . , n} and {tj}j∈J with tj ∈ [0, ∆], the
rate of variable xj changes at t + u∆ + tj for each j ∈ J .

Valuation: For some J ⊆ {1, 2, . . . , n} and {tj}j∈J with tj ∈ [0, ∆], the value
of the variable xj is recorded at time t + u∆ + tj for each j ∈ J .

While the first event affects the current configuration immediately (by making
the variables change at different rates), the affect of the second event is at the
end of unit interval when an instantaneous state transition is made based on the
values recorded by the event. We now prove a lemma about the behavior across
basic intervals that will be crucial in proof of the theorem.

Lemma 1. Let c1u and c2u be two configurations with ‖c1u‖ = ‖c2u‖ at the
beginning of basic interval [t + u∆, t + (u + 1)∆]. For every i ∈ {1, 2, . . . , n} and
for every time instant t1i ∈ [0, ∆], there exists another time instant t2i ∈ [0, ∆]
such that the following holds:

– Suppose, starting from c1u, a rate change is affected for xi at time t+u∆+t1i

and the valuation of xi at the end of interval is V 1u+1(i). Suppose, starting
from c2u, a rate change is affected for xi at time t+u∆+t2i and the valuation
of xi at the end of the interval is V 2u+1(i). Then ‖V 1u+1(i)‖ = ‖V 2u+1(i)‖.

– Suppose, starting from c1u, valuation V 1(i) is made for variable xi at time
t+u∆+t1i and its valuation at the end of the interval is V 1u+1(i). Suppose,
starting from c2u, valuation V 2(i) is made for variable xi at time t+u∆+t2i,
and its valuation at the end of the interval is V 2u+1(i). Then, ‖V 1u+1(i)‖ =
‖V 2u+1(i)‖ and ‖V 1(i)‖ = ‖V 2(i)‖.

Proof. Let c1u = (qt, V 1u, q′t) and c2u = (qt, V 2u, q′t) with ‖V 1u‖ = ‖V 2u‖. Let
V 1u(i) = kΓ + α1 with k ∈ ZZ and 0 ≤ α1 < Γ .

We first handle a simple case: If ‖V 1u(i)‖ = (k, S) then V 1u(i) = V 2u(i) =
kΓ . So setting t2i = t1i will do the trick.

Suppose that ‖V 1u(i)‖ = ‖V 2u(i)‖ = (k, I). We first handle the case when
rate changes. Let (the initial rate of xi) ρqt

(i) = `
∆

Γ with ` ∈ ZZ and the changed

rate be `′

∆
Γ with `′ ∈ ZZ. We get the following value of xi at the end of basic

interval when starting from configuration c1u:

V 1u+1(i) = V 1u(i) +
`

∆
Γ · t1i +

`′

∆
Γ · (∆ − t1i)

= kΓ + α1 + `′Γ +
(` − `′)

∆
Γ · t1i.

Thus, ‖V 1u+1(i)‖ lies in the range [k + `, k + `′]. Suppose we change the rate of
xi, when starting from configuration c2u after time ti. Then,

V 2u+1(i) = kΓ + α2 + `′Γ +
(` − `′)

∆
Γ · ti

where α2 ∈ [0, Γ) since ‖V 1u(i)‖ = ‖V 2u(i)‖. Therefore, ‖V 2u+1(i)‖ also lies
in the range [k + `, k + `′]. Also, by appropriately choosing the value of ti, we
can make ‖V 2u+1(i)‖ take any value in its range. It therefore follows that there
always exists a ti such that ‖V 2u+1(i)‖ = ‖V 1u+1(i)‖.

Now suppose that a valuation is made instead of rate change. It is clear that
‖V 2u+1(i)‖ = ‖V 1u+1(i)‖ as this situation is same as rate changing to itself
above. Moreover, as configuration c1u moves to c1u+1, the norm of the value of
xi varies smoothly between ‖V 1u(i)‖ and ‖V 1u+1(i)‖. The same holds as c2u

moves to c2u+1. Since ‖V 1u(i)‖ = ‖V 2u(i)‖ and ‖V 1u+1(i)‖ = ‖V 2u+1(i)‖, it
follows that there will always be a time period in the basic interval during which
the norm of the value of xi, when started on configuration c2u will be equal to
‖V 1(i)‖. Fix any such time for valuation V 2(i) and we get ‖V 2(i)‖ = ‖V 1(i)‖.

ut

The proof of the theorem now proceeds as follows: We have that starting from
c10 = c1, the configuration sequence at the end of basic intervals is c11, c12, . . .,
c1m and there is an instantaneous transition from c1m to c1′. The above lemma
shows that, starting from c20 = c2 with ‖c2‖ = ‖c1‖, there exist configurations
c11, c22, . . ., c2m at the end of basic intervals such that ‖c1j‖ = ‖c2j‖ for each j.
Further, if a rate change is made during the transition from c1 to c1′, the same
change is also made during the transition from c2 to c2′ (for different variables
the rate may change in different basic intervals). Also, if a valuation V 1 is made
during transition from c1 to c1′ then a valuation V 2 is made during transition
from c2 to c2′ such that ‖V 1‖ = ‖V 2‖. Finally, note that there is complete
freedom to choose a time instant to make a rate change or valuation for each
variable within the specified range and that time instants of different variables
can be chosen independently. Hence it is acceptable that for different variables
the rate change or valuation may occur in different basic intervals.

Now consider the instantaneous transition from c1m to c1′. This transition
depends on the current state qt, the valuation V 1 and some constraint ϕ. By
our assumption about finite precision of the observations, the observed values of
variable xi from the valuations V 1 and V 2 are 〈V 1(i)〉 and 〈V 2(i)〉 respectively.
We now note:

Lemma 2. For any v, v′ ∈ IR, If ‖v‖ = ‖v′‖ then 〈v〉 = 〈v′〉.

Proof. Let v = kΓ + v0 and v′ = k′Γ + v′0 for v0, v
′
0 ∈ [0, Γ). Since ‖v‖ = ‖v′‖,

k′ = k. Since Γ divides ε
2 , let ε = 2`Γ and k = k1 ·2`+k0 with k0 ∈ {0, 1, . . . , 2`−

1}. So, v = k1ε+k0Γ + v0 and v′ = k1ε+k0Γ + v′0. We have: k0Γ + v0 < ε
2 = `Γ

iff k0Γ < `Γ (since v0 ∈ [0, Γ)) iff k0Γ + v′0 < `Γ (since v′
0 ∈ [0, Γ)). Therefore,

〈v〉 = 〈v′〉. ut

Since we know that ‖V 1(i)‖ = ‖V 2(i)‖, the above lemma gives that 〈V 1(i)〉 =
〈V 2(i)〉. Therefore, (〈V 1(1)〉 , . . . , 〈V 1(n)〉) satisfies ϕ iff (〈V 2(1)〉 , . . . , 〈V 2(n)〉)
does. This implies that if c2′ is the resulting configuration after making an in-
stantaneous transition from c2m, then ‖c2′‖ = ‖c1′‖. ut

We now define the finite state automaton
ZA = (D, (qin, ‖Vin‖ , qin), Act ∪ {τ},) where:

– D ⊆ Q × (ZZ × {⊥, S, I})n × Q, and

– the transition relation ⊆ D × (Act ∪ {τ}) × D is given by: (q, v̂, q1)
α

(q′, v̂′, q1′) iff there exist configurations (q, V, q1) and (q′, V ′, q1′) such that

(q, V, q1)
α

=⇒ (q′, V ′, q1′) and ‖V ‖ = v̂ and ‖V ′‖ = v̂′.

In what follows, we will often write ZA as just Z. Note that,we are setting all
the states of Z to be its final states.

We define Lst(Z) to be the subset of Q? as follows. A run of Z is a se-
quence of the form (q0, v̂0, q

′
0)α0(q1, v̂1, q

′
1)α1 . . . (qm, v̂m, q′m) where (q0, v̂0, q

′
0) =

(qin, ‖Vin‖ , qin) and (qj , v̂j , q
′
j)

αj

 (qj+1, v̂j+1, q
′
j+1) for 0 ≤ j < m. Next we de-

fine q0q1 . . . qm ∈ Lst(Z) iff there exists a run of Z of the form
(q0, v̂0, q

′
0) α0 (q1, v̂1, q

′
1) α1 . . . (qm, v̂m, q′m). Clearly Lst(Z) is a regular subset

of Q? and it does not involve any loss of generality to view ZA itself as a repre-
sentation of this regular language.

Theorem 2. Lst(A) = Lst(ZA) and Lact(A) = L(ZA) where L(ZA) is the
regular subset of (Act ∪ {τ})? accepted by ZA in the usual sense. (Note that all
the states of ZA are final states.) Further, the automaton ZA can be computed

in time O(|Q|4 · 22n · K3n · |Act|) where K = (Bmax−Bmin)
Γ

.

Proof. To see that Lst(A) = Lst(Z) we first note that Lst(A) ⊆ Lst(Z) follows
from the definition of ZA. To conclude inclusion in the other direction, we will
argue that for each run (q0, v̂0 = ‖Vin‖ , q′0)α0 (q1, v̂1, q

′
1)α1 . . . (qm, v̂m, q′m) of Z

there exist V0, V1 . . . Vm ∈ IRn such that
(q0, V0, q

′
0) α0 (q1, V1, q

′
1) α1 . . . (qm, Vm, q′m) is a run of TSA. And furthermore,

‖Vj‖ = v̂j for 0 ≤ j ≤ m. The required inclusion will then follow at once. For
m = 1, it is clear from the definitions and so suppose that
(q0, v̂0, q

′
0) α0 (q1, v̂1, q

′
1) α1 . . . (qm, v̂m, q′m) αm (qm+1, v̂m+1, q

′
m+1) is a run of Z.

By the induction hypothesis, there exists a run
(q0, V0, q

′
0)α0 (q1, V1, q

′
1)α1 . . . (qm, Vm, q′m) of TSA with the property, ‖Vj‖ = v̂j

for 0 ≤ j ≤ m.
Now (qm, v̂m, q′m)

αm
 (qm+1, v̂m+1, q

′
m+1) implies that there exist V ′

m and

V ′
m+1 such that (qm, V ′

m, q′m)
αm
 (qm+1, V

′
m+1, q

′
m+1) and ‖V ′

m‖ = v̂m and∥∥V ′
m+1

∥∥ = v̂m+1. But this implies that ‖V ′
m‖ = ‖Vm‖. Hence by Theorem 1,

there exists Vm+1 such that (qm, Vm, q′m)
αm
 (qm+1, Vm+1, q

′
m+1) and moreover∥∥V ′

m+1

∥∥ = ‖Vm+1‖. Thus Lst(A) = Lst(ZA). It now also follows easily that
Lact(A) = L(ZA).

Let us now analyze the complexity of constructing the automata ZA. We first
estimate the size of the automaton. Each state of the automata is of the form

(q, v̂, q′) with q, q′ ∈ Q and v̂ ∈ ({kmin, . . . , kmax} × {I, S} ∪ {kmin − 1, kmax} ×
{⊥})n. Therefore, The number of states is O(m2 · 2n · Kn) where m = |Q| and
K = kmax − kmin. For constructing the transitions, we need to check if there is
a transition from (q, v̂, q′) to (q1, v̂1, q) labeled with the action α. It is clear that
the most complex case is when α ∈ Act and q 6= q′ and we need to check for the
existence of at most O(m4 · 22n · K2n · |Act|) such possible transitions.

To decide if such a transition exists from (q, v̂, q′) to (q1, v̂1, q) with v̂ =

((k1, d1), (k2, d2), . . . , (kn, dn)), v̂1 = ((k11, d11), (k12, d12), . . . , (k1n, d1n)), and
a given symbolic transition in the lazy automaton of the form (q, a, ϕ, q1) we

need to check if there exists V̂ and t̂1 and t̂2 such that:

– For each i, 1 ≤ i ≤ n:

ki · Γ < V (i) < (ki + 1) · Γ,

– For each i, 1 ≤ i ≤ n:

g ≤ t̂1(i) ≤ g + δg,

– For each i, 1 ≤ i ≤ n:

k1i · Γ < V (i) + ρq′(i) · t̂1(i) + ρq(i) · (1 − t̂1(i)) < (k1i + 1) · Γ,

– For each i, 1 ≤ i ≤ n:

h ≤ t̂2(i) ≤ h + δh,

– For each i, 1 ≤ i ≤ n, letting:

ui = V (i) + ρq′(i) · t̂1(i) + ρq(i) · (t̂2(i) − t̂1(i)),

(〈u1〉 , 〈u2〉 , . . . , 〈un〉) satisfies ϕ.

The above are 10n linear inequalities in 4n variables along with one constraint
satisfaction check. The constraints themselves are linear inequalities and so one
can use linear programming to check if there exists a feasible solution. However,
the constraints require a “grid point” as a solution and to check if a grid point
lies inside a convex region is NP-hard. So we need to spend exponential time
(= O(Kn)) in checking if a grid point satisfies all the inequalities.

Therefore, the time complexity of the algorithm to construct the automata
is O(m4 · 22n · K3n · |Act|). ut

4 Limitations and Generalizations

Our construction also works for several generalizations of the problem. On the
other hand, finite precision is really required in a number of settings.

4.1 The need for finite precision

The finite division of Bn in the presence of guards defined by general hyperplanes
critically depends on the finite precision of the observation. For infinite precision,
such a division is not possible. We defer the proof to the full version of the paper.
We wish to emphasize that we do not claim that there is no finite state automaton
recognizing the set of state-sequences in the presence of infinite precision. The
only claim we make is that our way of constructing such an automaton will fail.

4.2 Infinite precision when δg = δh = 0

There is one important case when infinite precision can be allowed: when we do
not allow any uncertainty in the time at which rate change and valuation are
made. In other words, when δg = δh = 0. (Note that g and h may be non-zero
and so these events may still occur with non-zero delays). We sketch an argument
to prove this below.

Compute ∆ and Γ as before and split the space Bn into n-cubes of side
length Γ . Call the vertices of these cubes grid points. It is now easy to see that
the starting valuation of the system is at a grid point as well as valuation after
each basic interval (of length ∆) remains at a grid point irrespective of the
transitions that may occur. Therefore, there are only finitely many valuations
possible and this immediately leads to a finite automaton. Notice that guards
can be very general here, e.g., arbitrary polynomial surfaces.

In fact, even if the initial valuation is a rectangular region instead of a point
in IRn, the construction goes through after a slight modification. Now, instead of
only grid points, we get a region around each grip point that may be a possible
valuation. All these regions are identical to the initial region. However, we cannot
always put points in a region into one equivalence class since a guard surface
might intersect the region. We handle this in the following way.

Take a region around a grid point and suppose that the guards split it into
k k disjoint pieces. Mirror this split into the copy of the region around every
grid point. This increases the number of regions, however, note that now the
guards do not intersect any region around the chosen grid point. Repeating this
for all the grid points one-by-one splits the space into many more, but still finite,
number of regions such that no region is intersected by any guard. After each
basic interval, points in a single such region will evolve to points in another region
of identical shape. So we can collect points in each region in one equivalence class
and the automaton can be now be constructed as before. In fact, this argument
will go through even for more complex regions.

4.3 Initial valuation region

We have assumed that the initial valuation is a point in Qn. A more general
case is when initial valuation can be any point in an effectively presented (say,
as a conjunction of linear constraints) convex region of IRn. This is handled

easily. Calculate the Γ as before (ignoring Vin now as there is none). The n-
cubes of size length Γ will form an equivalence class as before. The initial region
intersects some of these cubes. Let these be ‖V1‖, ‖V2‖, . . ., ‖Vm‖. Introduce a
new initial state for ZA from which make a non-deterministic transition to each
of (qin, ‖Vi‖ , qin). The rest of the automata remains as before. Actually we can
permit the initial regions to be more complicated but what we have dealt with
should do for now.

4.4 Generalizing guards

We have assumed the guards to consist of finite conjunctions of linear inequal-
ities. However, at no point in the proof we actually made use of this property
except when calculating the time taken to construct the automata ZA. In fact,
we can allow any reasonable computable function (polynomials for example) as
guards and the construction goes through without any changes. The only dif-
ference is that construction of the automata ZA may take more time since one
needs to check if a specific grid point satisfies a guard. Let T be the upper
bound on the time needed to evaluate any guard. Then the time complexity of
the construction will be O(|Q|4 · 22n · K3n · |Act| · T).

4.5 Uncertainty in rounding off

We have assumed no uncertainty in rounding off valuations. In other words, we
assumed that every number in the interval [(k− 1

2)ε, (k + 1
2)ε) is observed as kε.

A more realistic situation would be to assume some uncertainty even here. For
example, every number in ((k − 1

2)ε, (k + 1
2)ε) is observed as kε while (k + 1

2)ε
can be observed as either kε or (k + 1)ε.

This can be handled with no change in the construction. The crucial obser-
vation is that numbers of the form (k + 1

2)ε have norm (2k` + `, I) (assuming
ε = 2`Γ) since Γ integrally divides ε

2 . And as observed in the proof of Theo-
rem 1, if ‖V 1(i)‖ = (k′, I) = ‖V 2(i)‖ for any two valuations V 1 and V 2, then
V 1(i) = V 2(i). Therefore, if there is uncertainty in rounding off V 1(i), there will
be uncertainty in rounding off V 2(i) as well.

In fact, we can handle the more general case when there is a whole interval
of uncertainty. Specifically, let η with 0 < η ≤ 1

2 be such that any number in
((k − η)ε, (k + η)ε) is observed as kε while any number in [(k + η)ε, (k + 1− η)ε]
can be observed to be either kε or (k + 1)ε. For this case, we choose Γ such
that it divides both ε and ηε. Now if ‖V 1(i)‖ = ‖V 2(i)‖ then either V 1(i) =
V 2(i) = (k±η)ε (both uncertain), or V 1(i), V 2(i) ∈ ((k+η)ε, (k+1−η)ε) (both
uncertain), or V 1(i), V 2(i) ∈ ((k − η)ε, (k + η)ε) (both certain). In each of the
cases, the required equivalence holds.

4.6 Additional Relaxations

We can also permit the rates of evolution at a control location to range over
a rectangular region instead of associating a single rate vector with each loca-
tion. The proof of the main result will go through with minor modifications.

We have not studied carefully the effect of more complex flow constraints while
being mindful of the undecidability result presented in [13] for triangular flow
constraints. We can easily handle state invariants formulated using linear con-
straints and the delay parameters can be permitted to spill across more than one
unit time interval. Finally, our construction will extend to a network of automata
that synchronize on common actions.

5 Conclusion

We have formulated here a class of lazy linear automata. These are basically
linear hybrid automata but where each automaton is accompanied by the delay
parameters {g, δg, h, δh} and a finite precision of measurement parameter ε. Our
main result is that the discrete time behavior of these automata can be effectively
computed if the allowed ranges of values for the variables are bounded.

We have not detailed the verification problems that can be settled effectively
for these automata. It is however clear that we can model-check the discrete time
behavior of our automata against a variety of linear time and branching time
temporal logic specifications. We can also view (a subset of) the transitions of
the automaton to be controllable and solve the problem of devising a switching
strategy that can win against a given specification; again, these specifications
can be a variety of linear time and branching time specifications.

We believe that associating non-zero bounded delays with the sensors and
actuators and demanding that the values of the plant variables be observed with
only finite precision are natural requirements. We also believe that it is useful
to focus on the discrete time behavior of hybrid automata. As our results show,
the pay-off is the ability to effectively solve a host of verification and controller
synthesis problems for a rich class of hybrid automata.

Finally, based on the results reported here, there is some hope that a even
larger class of lazy hybrid automata will turn out to be tractable in terms of
their discrete time behaviors. We have in mind automata in which the dynamics
of each mode is given by a simultaneous system of linear differential equations.

A related interesting problem which is open is to determine the border be-
tween the decidable and undecidable in the context of laziness, finite precision
and discrete time semantics. Here the undecidability results reported in [5, 6]
may provide the required technical tools.

References

1. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid
systems. Proc. of the IEEE 88 (2000) 971–984

2. Henzinger, T.: The theory of hybrid automata. In: 11th LICS, IEEE Press (1996)
278–292

3. Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hier-
archy. J. of Comp. and Sys. Sci. 57 (1998) 389–398

4. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems
having piecewise-constant derivatives. Theoretical Comp. Sci. 138 (1995) 35–65

5. Blondel, V., Tsitsiklis, J.: Complexity of stability and controllability of elementary
hybrid systems. Automatica 35 (1999) 479–489

6. Blondel, V., Bournez, O., Koiran, P. Papdamitrou, C., Tsitsiklis, J.: Deciding
stability and mortality of piecewise affine dynamical systems. Theoretical Comp.
Sci. 255 (2001) 687–696

7. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? J. of Comp. and Sys. Sci. 57 (1998) 94–124

8. Henzinger, T.: Hybrid automata with finite bisimulations. In: 22nd ICALP, LNCS
944, Springer (1995) 324–335

9. Kesten, Y., Pnueli, A., Sifakis, J., Yovine, S.: Integration graphs: A class of decid-
able hybrid systems. In: Hybrid Systems, LNCS 736, Springer (1993) 179–208

10. McManis, J., Varaiya, P.: Suspension automata: A decidable class of hybrid au-
tomata. In: 6th CAV, LNCS 818, Springer (1994) 105–117

11. Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular differential
inclusions. In: 6th CAV, LNCS 818, Springer (1994) 95–104

12. Agrawal, M., Thiagarajan, P.: Lazy rectangular hybrid automat. In: 7th HSCC,
LNCS 2993, Springer (2003) 1–15

13. Henzinger, T., Kopke, P.: Discrete-time control for rectangular hybrid automata.
Theoretical Comp. Sci. 221 (1999) 369–392

14. Gupta, V., Henzinger, T., Jagadeesan, R.: Robust timed automata. In: HART ’97,
LNCS 1201, Springer (1997) 331–345

15. Henzinger, T., Raskin, J.F.: Robust undecidability of timed and hybrid systems.
In: HSCC ’00, LNCS 1790, Springer (2000) 145–159

16. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness and decidability for
timed automata. In: 25th LICS, IEEE Press (2003) 198–207

17. Alur, R., Dill, D.: A theory of timed automata. Theoretical Comp. Sci. 126 (1994)
183–235

