Primality and Identity Testing via Chinese Remaindering*

Manindra Agrawal
Department of Computer Science and Engineering
Indian Institute of Technology
Kanpur 208016, India
manindra@iitk.ac.in

Somenath Biswas
Department of Computer Science and Engineering
Indian Institute of Technology
Kanpur 208016, India
sb@iitk.ac.in

February 21, 2003

Abstract

We give a simple and new randomized primality testing algorithm by reducing primality
testing for number n to testing if a specific univariate identity over Z,, holds.

We also give new randomized algorithms for testing if a multivariate polynomial, over
a finite field or over rationals, is identically zero. The first of these algorithms also works
over Z, for any n. The running time of the algorithms is polynomial in the size of arith-
metic circuit representing the input polynomial and the error parameter. These algorithms
use fewer random bits and work for a larger class of polynomials than all the previously
known methods, e.g., the Schwartz-Zippel test [Sch80, Zip79], Chen-Kao and Lewin-Vadhan
tests [CK97, LV98].

1 Introduction

Primality testing is one of the fundamental problems in algorithmic number theory with im-
portant applications in cryptography and elsewhere. A number of “efficient” algorithms for the
problem have been known for a long time [Mil76, Rab80, SS77, APR83]. However, the problem
was not known to be in P until recently:! while the algorithms of [Rab80, SS77] are randomized,
the algorithm of [APR83] requires (slightly) super-polynomial time, and the algorithm of [Mil76]
is in P only under an unproved number-theoretic hypothesis. All of these algorithms are based
on various properties of prime numbers, e.g., Fermat’s Little Theorem (in [Rab80, Mil76]),
quadratic residues in prime fields (in [SS77]) etc.

In this paper, we propose a new test for primality based on the following polynomial identity
that prime numbers n (and only prime numbers) satisfy:

(14 2)" =1+ 2"(mod n).

* A preliminary version of this paper was presented in FOCS’99.

tThis research was partially supported by grant no. AICTE/CSE/96263 from AICTE.

'Very recently, the problem was finally shown to be in P by modifying the primality test we propose in this
paper [AKS02].

Our test is also a randomized polynomial-time algorithm and is arguably the simplest among
all known primality tests.

After transforming primality testing to a polynomial identity testing problem, we turn our at-
tention to identity testing. This is also a fundamental problem that has a number of applications
in different branches of algorithms and complexity: matching [Lov79, MVV87, CRS95], read-
once branching programs [BCW80], multi-set equality [BK95] etc. It also arises in the context
of interactive and probabilistically-checkable proofs [LFKN90, Sha90, BFL90, AS92, ALM*92]
and learning sparse multivariate polynomials [Zip79, GKS90, CDGK91, RB91].

The most general form of the identity testing problem is: given a polynomial P(x1,...,Zy)
and a ring R, check if the polynomial is identically zero over R (the primality testing identity
above is univariate). The problem is trivial if the input polynomial P is given explicitly as
a sum of monomials—P is zero iff the coefficient of each monomial is zero. (Notice that we
are treating the polynomial as formal polynomial. So, for example, the polynomial 22 — z is
a non-zero polynomial over Fy for us). However, in general, P is given in some implicit form,
e.g., a symbolic determinant, product of polynomials, straight-line program, arithmetic circuit
etc. Of these, arithmetic circuits is the most general model since all the other forms can be
efficiently transformed to such circuits. Henceforth, we will assume that the polynomial P is
given as an arithmetic circuits containing addition and multiplication gates with input being
the n variables z1, ..., z, (the circuit may also have constants from the given ring R, these can
be used to simulate subtraction). We will also assume that the two ring operations can be done
efficiently. The degree of a variable in such a polynomial can be exponential in the depth of the
circuit. We let d; denote the degree of the variable z;.

The identity testing problem is also not known to belong to P.? However, a number of
randomized polynomial-time algorithms are known for it when the ring R is a field, say F.
The first such algorithm was given simultaneously by Schwartz and Zippel [Sch80, Zip79] who
observed that if a random assignment for the variables of P is chosen from the set S, S C F’
(F' = F if F is infinite, otherwise it may be a small extension of F) and P is evaluated
on this assignment, then the probability that a non-zero P evaluates to zero is bounded by

~1d;i/|S|. By choosing |S| > >, d;/e we get an efficient (since the given arithmetic circuit
can be evaluated efficiently on the assignment) randomized test for the problem that errs with
probability at most €. The time taken by this test is polynomial in the size of the circuit and
log %

A few years ago, Chen and Kao [CK97] proposed a new paradigm for identity testing over
the field Q: they constructed for each z; a set of 2M108(di+ 1)1 jrrational assignments such that P is
zero iff it evaluates to zero on any of these assignments. As one cannot evaluate the polynomial
on irrational values, they replaced the irrational values by suitable rational approximations and
then showed that if a random assignment is picked for each z; from its corresponding set, a
non-zero P evaluates to zero on this assighment with probability inversely proportional to the
bit-length of the approximations. Thus, the number of random bits needed by the test are the
same (= Y ;- [log(d; + 1)]) irrespective of the error probability. This gives a novel time-error
tradeoff instead of the usual randomness-error tradeoff. The time taken by the algorithm is a
polynomial in n, d = >°;"; d;, and % as the bit-length of the approximation is required to be at
least d + % This makes the algorithm exponential time on arithmetic circuits since the degree
of the polynomial can be exponential in the size of the circuit as noted above. The interesting
feature of the algorithm, apart from the novelty of approach, is the time-error tradeoff that it
provides.

Lewin and Vadhan [LV98] generalized the Chen-Kao paradigm to work for identity testing

2Very recently, it has been shown that proving the problem in P implies lower bounds on arithmetic cir-
cuits [KI02]: if this problem is in P then the class NEXP does not have polynomial-sized arithmetic circuits.

over finite fields. Instead of choosing irrational values for variables in the polynomial, they chose
square roots of irreducible polynomials over F[z]. These square roots are infinite formal power
series and so they approximated these by truncating the power series at certain degree. They
showed that similar properties hold for these assignments as well and obtained exactly the same
bounds for the number of random bits used and the running time.

In this paper, we propose another paradigm for identity testing: via Chinese remainder-
ing over polynomials. The idea here is simple: first (deterministically) transform the given
multivariate polynomial to a (exponentially) higher degree univariate polynomial such that the
resulting polynomial is zero iff the original one is. Then test if the univariate polynomial is zero
using division by a small degree polynomial randomly chosen from a suitable set. By selecting
the sample space of small degree polynomials carefully, we are able to obtain algorithms both
for finite fields and for Q that work in time polynomial in the size of the arithmetic circuit and

o L yielding at the same time the time-error tradeoff as in Chen-Kao and Lewin-Vadhan. ThlS
1s considerably better than these two algorithms as their running time is polynomial in E and
exponential in the size of the arithmetic circuits.

We summarize the running times and random bits required by various algorithms in the
table below. In the table, s denotes the size of the input arithmetic circuit, n the number of
variables, d; the degree of i*" variable, and d = Y d;

Algorithm Over Rationals Over Finite Field F,
Tlme ‘ Random Bits Time ‘ Random Bits
‘ Schwartz-Zippel ‘ (s + log ‘ Q(n(logd+ log ‘ (s + log)0 ‘ Q(n(logd + log %)) ‘
| Chen-Kao | 200Hlog) \ >r o flogdi] | - | - |
| Lewin-Vadhan | : | - | 20<5+1°g J] » [logd] |
‘ Our Algorithms ‘ (s+)0(1) ‘ [Yi logd;] ‘ L +log q)°M ‘ [Yieq logd;] ‘

Our algorithms for finite fields also works for Z,, where n is any number not necessarily
prime. This makes our algorithms work for a larger class of polynomials than any previous
algorithm.

Remark. If the time complexity of an algorithm providing a time-error tradeoff grows as
(%)"(1) then the algorithm can be derandomized in subexponential time by choosing % to be
larger than 2" where r is the number of random bits used. This means that the time complexity
of our algorithms is optimal up to a polynomial.

The organization of the paper is as follows: section 2 defines the formal machinery used
in the paper, section 3 gives the primality testing algorithm, section 4 gives the new identity
testing algorithms, and section 5 discusses some de-randomization issues.

2 Formal Setting

Let F be a field. By F[a] we denote the field extension of F' obtained by adjoining to F' an
algebraic element o. F; denotes a finite field of size g. Q denotes the field of rationals.

We represent polynomials as arithmetic circuits. An arithmetic circuit over a ring consists
of input variables, constants, and addition and multiplication gates where the constants and
arithmetic operations are from the underlying ring. The size of the circuit is the number of
gates in it. It is easy to see that the degree of a polynomial represented by an arithmetic circuit
can be exponential in the size of the circuit. In case the underlying ring is integers or rationals,
the size of coefficients too can be exponential in the size of the circuit.

We use the notation O™ (t(n)) to denote the time complexity O(t(n) - (logt(n))°™M). We
will use the following facts about the operations over polynomial rings [vzGG99]: given three
polynomials P(z), Q(z), and R(z) over the field F, with their degrees bounded by d, the time
complexity of adding and multiplying P(z) and Q(z) modulo R(z) over Fy is O~(d - logq).

3 Primality testing

In this section, we exhibit a new primality test which is based on a polynomial identity satisfied
by prime numbers. This identity is, in fact, a well known property of finite fields that is used in
many places.
Let
Pu(z) =(1+2)"—1-2".

Lemma 3.1 P,(z) =0 (mod n) iff n is prime.

Proof. We can rewrite Pp(z) as:

n—1
Pulz) = <n> 2.
=1 \J

Suppose 7 is prime. Then, (’;) = 0 (mod n) for every j, 1 < j < n since n occurs in the
numerator but not in the denominator of (?) Therefore, Py (z) = 0(mod n).

Suppose n is composite. Let p be a prime divisor of n. Consider (Z) Suppose p® is the
largest power of p that divides n. Then (Z) is divisible by p®~! but not by p® Therefore,
(;) # O(mod p?) which implies () # 0(mod n). Clearly, 1 < p < n and so Py(z) # 0(mod n).

|

Remark. The above identity is a generalization of Fermat’s Little Theorem which states that
for every prime n, and for every a € Z,,, a™ = a(mod n). This can be obtained from the above
identity by restricting z to elements of Z,: (04+1)" = 0"+1 (mod n) (base case), and inductively
assuming that i" = i (mod n) we get (1 +1)" =" +1 (mod n) (by the identity) =i+ 1 (mod n)
(by the induction hypothesis).

We cannot immediately invoke any of the identity testing algorithms to obtain a randomized
polynomial-time algorithm for primality. This is because all the tests work over a field and the
number n here may be composite. Also, the Lewin-Vadhan test would require time polynomial
in n which is exponential in the input size. However, the following simple algorithm works:

Prime(n).
1. If n equals 2, 3, 5, 7, 11, or 13, output PRIME.

2. Else if n is divisible by any of the above numbers, output
COMPOSITE.
If n is of the form a® for b > 1, output COMPOSITE.
Else, randomly choose a monic polynomial Q(z) of degree [logn]
with coefficients in Z,.

5. Output PRIME if Q(z) divides P,(z) over Z,, else output
COMPOSITE.

Algorithm for Primality Testing

Theorem 3.2 If n is prime, Prime(n) outputs PRIME with probability one, and if n is com-
posite, Prime(n) outputs COMPOSITE with probability at least % Further, Prime(n) requires
[logn]? random bits and works in time O~((logn)*).

Proof. If n is prime, the polynomial P, (z) is identically zero over Z,, and therefore the
algorithm always outputs PRIME.

If n is composite, the polynomial P, (z) is non-zero over Z,. Since the algorithm is correct
when n is a prime power or divisible by primes up to 13, we need to analyze the case when n
not a prime power, odd, and its every prime factor is at least 17.

We first observe that P, (z) is also non-zero over Z, for any prime factor p of n: if p® is the
largest power of p that divides n then (p’fl) is not divisible by p and hence the term for zP* will
survive.?

We will now argue over Z, since polynomials factorize uniquely over it. Let £ = [logn]|. In
the sample space for Q(z), any monic polynomial of degree £ over Z, occurs ezactly (%)e times.
Also, since the degree of P, (z) is n, it can have at most 7 different irreducible factors of degree
£ over Z,. Using this, we can almost immediately obtain a weak bound on probability of error as
follows: From the distribution theorem for irreducible polynomials (see, e.g., [LN86]) it follows

that I(d), the number of monic irreducible polynomials of degree d over F), is between %d —pi/2

and %d +p%2. Since n > p > 16, d = £ > 4. Therefore, I(d) > 2 * p’. Therefore, Q(z) will be
an irreducible polynomial over Z, with probability at least 2—1£ and so Q(z) will not divide P, (z)
with probability at least 2—1£ — 1%73 > @ (since n > p > 16). Since if Q(z) divides P, (z) over
Zny, it also divides it over Z,, it follows that with probability at least m, Q(z) will not divide
Pn(z) over Z,.

A more careful counting gives us a better bound on error: Let Z be the set of monic irreducible
polynomials of degree between 1 + % and /£ over F,. For P € Z, let Cp be the set of degree £
polynomials that have polynomial P as a factor. Clearly, |Cp| = p*~°&(P). Also, Cp N Cpr =)
for P # P', since their degree is more than %. So the number of monic polynomials of degree ¢
in above sets is

14
Y10l = > I(k)-pE
pPel k=1+%
¢
1 1
¢
> Y p '(E - W)
k=1+%
1
> (log,2 — —) - p® (since n > p > 16).

48

Also, |Cp| < p%_l. So at most 27" . p%_l of these polynomials can divide P, (z). Therefore, the
probability that a random monic @ of degree £ does not divide P, (z) is at least
1 1 2
log,2 — — — — > =
%6e T 18 " 8nt 3
since n > 16.

The algorithm clearly requires [logn]? random bits. It does O(logn) multiplications of
two degree O(logn) polynomials over Z,, and computes same number of remainders modulo a
third degree O(logn) polynomial. Each of these requires O~((logn)3) steps. Thus the time
complexity of the algorithm is O~ ((logn)*). [

3This is not true when n is a prime power!

Remark. In our analysis of the test, we are not considering degree [logn| polynomials with
small irreducible factors. It can be shown that even if one considers these polynomials, the error
probability does not reduce substantially. In particular, a degree n polynomial that consists
entirely of “small” (of degree less than ll—gg%) irreducible factors will pass the test with at least a
constant probability. So unless one makes use of the special structure of the polynomial P, (z),
our analysis is within a constant factor of the optimal.

Remark. In comparison to our test, the standard Miller-Rabin test requires [logn]| random
bits, takes time O~ ((log n)?) and errs with probability at most ;. Clearly, this test scores over
our test in terms of practical utility (the same is true for many other tests too). However, our
test is conceptually simpler and has an easier proof of correctness.

In the next section, we give another algorithm for testing the above identity that uses fewer
random bits (this will fall out of the general algorithm for testing identities).

New Development: Deterministic Algorithm for Primality Testing

Very recently [AKS02], a deterministic polynomial-time algorithm was given for primality test-
ing. The new approach to primality testing introduced by our algorithm was instrumental in the
design of this deterministic algorithm. In fact, the new algorithm is simply a derandomization
of our randomized algorithm. This can be seen in the following way.

Our randomized algorithm is based on testing the identity (14 2)" = 1+ 2" (mod n) modulo
a randomly chosen polynomial Q(z) of degree [logn]| and succeeds with probability at least
%. The sample space for Q(z) is clearly exponential sized (= n/°6"1). It is shown in [AKS02]
that the sample space for Q(z) can be shrunk to O(log?n) without reducing the probability
of success! They show that it is enough to consider Q(z) of the form (z + a)” — 1 for a fixed
r = O(log® n) and a varying from 1 to O(log* n). Although their algorithm appears to be testing
a number of identities of the form (z —a)"” = 2" —a (mod n) modulo z" — 1, these are equivalent
to our identity modulo different Q(z)’s of the above form, as shown by the lemma below.

Lemma 3.3 Fiz any r > 0 and any t > 0. Then,
(z+1)"=2"+1(mod n,(z+a)" —1) for1 <a <t (1)
if and only if
(z—a)"=2"—a(mod n,z" —1) for 1 <a<t. (2)

(Here notation (mod n,Q(z)) denotes that the coefficients are reduced modulo n and the poly-
nomial modulo Q(z).)

Proof. The proof is by induction on ¢t. When ¢ = 1, equation (1) gives:
(z+1)"=2"+1 (mod n, (2 +1)" —1).

Making the substitution z—1 for z everywhere and rearranging terms we get the equation (2) for
a = 1. Similarly, starting with equation (2), making the substitution z + 1 for z and rearranging
terms we get equation (1).

Now suppose the equivalence holds for every a up to ¢t — 1. Then, for a = ¢, equation (1) is:

(z+1)"=2"41 (mod n,(z+1t)" —1).

Substituting z — ¢t for z, we get:
(z—(t-1)"=(2—1t)"+1 (mod n,z" —1).

Using the induction hypothesis for ¢ = t — 1, we can replace the LHS of the last equation by
2" — (t — 1). Rearranging, we get equation (2) for a = t.
To prove the other direction, start with equation (2) for a = ¢:

(z—t)" =2" —t (mod n, 2" — 1).
Substituting z + 1 for z, we get:
(z—(t-1)"=(24+1)"—t (mod n,(z+1)" = 1).

Using the induction hypothesis for ¢ = 1, we can replace the RHS of the last equation by
z" 4+ 1 —t. Now substituting z 4+ 1 for z again, we get:

z=(t-2)"=E=+1)"—(t—1) (mod n,(z+2)" —1).

Using the induction hypothesis for a = 2, we again replace RHS of this equation by 2" — (t — 2).
Continuing this way, we eventually get equation (1) for a = 1. []

4 Identity testing

In this section, we give our identity testing algorithms. The section is divided into four sub-
sections. In the first one, we give the algorithm that works for univariate polynomials over
any finite field. In the next subsection we generalize the algorithm to work for multivariate
polynomials. In the third subsection, we modify the algorithm to work for polynomials modulo
composite numbers and in the final subsection we give the algorithm that works over rationals.

4.1 Univariate polynomials over finite fields

Let P(z) be a univariate polynomial over a finite field F;, of characteristic p. Let d be the degree
of P. In this subsection operations will always be over the field F; unless explicitly mentioned
otherwise. We can use essentially the same algorithm presented in the previous section to test
polynomial P. However, the success probability in case the polynomial is non-zero can only be
amplified by repeating the test a number of times—this does not achieve a time-error tradeoff.
We can increase this probability to 1 — € by choosing the divisor polynomial @) from a set of
polynomials such that the lem of any e fraction of these polynomials has degree at least d.
Obviously, it should be possible to sample from such a set of polynomials in polynomial time.

One possible way of doing this is to consider a ‘large’ set of mutually co-prime polynomials.
This can be achieved by choosing the set of polynomials to be

{(z—1) | i€ F,}.

However, for the required error bound, this set should contain at least ‘;i polynomials and this
is possible only when d < € - ¢q. Otherwise, we need to first extend the field F; to a larger field
Fyu such that ¢" > % and then for the above set of polynomials over Fqu.4 But this requires
construction of a degree u irreducible polynomial over F;, which in turn, requires additional

“This scheme, in effect, is precisely the Schwartz-Zippel test for univariate identities!

random bits. This scheme, therefore, cannot achieve the time-error tradeoff and also is restricted
to work for fields.

We, therefore, take a different approach. Instead of extending the field and using the above
family of polynomials, we construct a different family of polynomials of higher degree that satisfy
the required property. Our family may not have all mutually co-prime polynomials, but, the
polynomials in the family share very few common factors.

For a prime number r, let

r—1
Qr(z) =) 7,
i=0

(Q, is the 7 cyclotomic polynomial). Let £ > 0. For a binary vector b € [0,1]¢ and number

t >4, let
-1 .
Apy(z) = 2"+) bli] - o,
1=0

where b[i] is the i*® component of b. Let

Tr,b,t(x) = Qr (Ab,t(w))'

Our set of polynomials will consist of T} 5 ; for all values of b and suitably fixed values of r
and t. We first prove that this set has the required property in the following three lemmas.

Lemma 4.1 Let r be any prime number, r # p, such that v does not divide any of g—1, ¢*> — 1,
..oy ¢V —1. Then the polynomial Ty pt(x) for any value of b and t has no factors of degree less
than £.

Proof. Let irreducible polynomial U(z) of degree v divide T,p(z). Let a be a root of
U(z). By adjoining a to F; we get the extension field Fgpn. In this extension field we have
Qr(Api(a)) = Ty pi(a) = 0 since U(x) divides T;.p4(x). Let 8 = Ap(a). Then, § is a root of
Qr(2z) in Fyp. Since 7 # p, # 1. Also, f7 =1 in Fy. Therefore, r must divide the order of the
multiplicative group Fy,. In other words, r | ¢" — 1. By the choice of r, we have v > /. [

Lemma 4.2 Let r be chosen as above. Then for any t and any polynomial U(x), U(x) can
divide T, p¢(x) for at most r — 1 different values of b.

Proof. Let irreducible polynomial U(z) of degree v divide T} p, (), - .., Trp, +(z). As before,
consider the extension field Fi» obtained by adjoining a root « of U(z) to F,. It follows that
Apy t(@), -, Ap, 1) are a roots of Qr(z) over Fyo. Consider Ay, 1(a) — Ap; () for i # j. This
is a polynomial of degree at most £ — 1 in «. Since the minimal polynomial of « over Fj has
degree v and v > £ (from Lemma 4.1), it follows that the above difference cannot be zero and
so Ap, t(a) # Ap; t(@). Therefore, all the above a roots of Q,(2) are distinct. As the degree of
Qr(z)isr—1, wegeta<r—1. []

Lemma 4.3 Let r be chosen as before. Then for any t the lem of any K polynomials from the
set has degree at least K - t.

Proof. Consider polynomials T} 5, +(2), Ty py.t(), - - -, Ty pg () for some K distinct values of b.
The product of these polynomials has degree K - ¢ - (r — 1). Any polynomial U(xz) can divide at
most 7 — 1 of these according to the Lemma 4.2. Therefore, the lcm of these polynomials has
degree at least K - . [

The algorithm is now obvious—it is given in Figure 1. The following theorem proves its
correctness.

Input: An arithmetic circuit of size s representing polynomial P(z) of degree d over field Fy,
number ¢, and error parameter e.

1. Let £ = [logd], and t = max{¢, 1}.

2. Find the smallest prime r such that r # p and r does not divide any of ¢ — 1, ¢*> — 1, ...,
£—1
g~ — 1.

3. Randomly choose a b € [0,1]¢ and compute the polynomial T} 4 +(z) = Q. (Ap+())-

4. Accept iff P(z) is divisible by T 4 ().

Figure 1: Algorithm A

Theorem 4.4 Let P(z) be a univariate polynomial of degree d over finite field F, presented as
an arithmetic circuit of size s. Then, Algorithm A tests if P(zx) is identically zero and errs with
probability at most € if P(x) is not identically zero. Further, it uses [logd]| random bits and
works in time O~(s® (s + 1) - (log q)?).

Proof. 1t is clear that the algorithm uses £ random bits. Its time complexity follows from
the following fact: testing if polynomial P is divisible by a degree v polynomial can be done
by computing the value of each gate of the circuit modulo the degree v polynomial. Since
the degree of polynomials T, 5 ¢(x) is bounded by r - ¢, the time complexity of the algorithm is
O~(s-r-t-logq).

Number 7 is the smallest prime that does not divide any of g—1, ..., ¢"* — 1. By the Prime
Number Theorem, r = O(#? - log q) (as the product of all primes smaller than z is about e® and
the product of g—1, ..., ¢°"' —1 is bounded by qez). Since d is bounded by 2%, and ¢ is O(£+ %),
we get the required bound on the time.

It is also clear that if P(z) is zero then the algorithm always accepts. If P(z) is non-zero
then at most % polynomials T} ; +(z) will divide P(z) by Lemma 4.3. Therefore, the probability
of acceptance is at most Qﬁd’—t <e]

Remark. Our construction of a family of nearly coprime polynomials can be used in other
places too. For example, in [AGHPY0], one of the constructions of k-wise e-biased source requires
to uniformly and efficiently sample irreducible polynomials of degree d. This is used to show that
a certain degree 2¢ polynomial is divisible by very few of these randomly generated polynomials.
One can replace the irreducible polynomials by our construction of nearly coprime polynomials
and the same property will continue to hold. This saves on random bits needed for the source.

4.2 Multivariate polynomials over finite fields

In this subsection, we generalize the algorithm A to work over multivariate polynomials. The
idea is to simply transform the given multivariate polynomial to a univariate one which is zero
iff the former is and then apply algorithm A.

Let P(z1,z2,...,%,) be the input polynomial over field F,. Let d; be the degree of z; in P.

Input: An arithmetic circuit of size s representing polynomial P(z1,...,z,) of degree d; in z;
over field Fi;, number g, and error parameter e.

1. Let D; = H;;ll(dj +1)for1 <i<n.
2. Let P'(y) = P(y",y"2,...,y"").

3. Run Algorithm A on P’ and e.

Figure 2: Algorithm B

Let D; = ;;ll(dj + 1) for 1 <4 < n. We define a sequence of polynomials P; for 0 <i <n
as follows:

Py(y,z1,%2,...,2n) = P(z1,...,Zn),
Bﬂ(yaxi-f-la P ,.Tn) = -Pifl(yayDia'T’H-la P ,.Tn)
= PP yP2, P i, ... @) for i > 0.

The following lemma, lists crucial properties of these polynomials:

Lemma 4.5 For 1 <14 < n, polynomial P; is zero iff P;_1 is. Further, variable y has degree at
most D;41 — 1 in B;.

Proof. ~'We prove this by induction on i. For i = 1 the above properties are trivially true.
Suppose they are true for ¢ = j — 1. P; is obtained by substituting yPi for the variable z; in
P;_;. Clearly, if P;_; is zero then so is P;. Suppose P;_; is not zero. Polynomial P;_; can be
written as a degree d; polynomial in variable z; whose coefficients are themselves polynomials
over the remaining variables. Let Pj_1(y,zj,...,2pn) = E;jio Ci(y, Tjs1,---,2n) - wé and let Cp,
be the highest non-zero coefficient of P; ;. By the induction hypothesis, the degree of y in each
of the coefficient polynomials Cj is at most D; — 1. Consider P;. The term C,, - y™Di is a
non-zero polynomial that has degree at least m - D; in y. Any other non-zero term of P; is a
polynomial that has degree at most (m —1)-D; +Dj —1 = m-Dj; — 1 in y. Therefore, P;
cannot be zero. The degree of y in P; is at most dj - D; + D;j —1 = D1 — 1. [|

The algorithm is now obvious: it is given in Figure 2.

Theorem 4.6 Let P(x1,...,%,) be a multivariate polynomial of degree d; in x; over finite field
F, presented as an arithmetic circuit of size s. Then, Algorithm B tests if P is identically zero
and errs with probability at most € if P is not identically zero. Further, it uses [y i, logd;]
random bits and works in time O~ (s3n3 - (sn+ 1) - (log q)?).

Proof. Polynomial P’ is a univariate polynomial of degree []j_;(dj +1) — 1 and is zero iff P is.
Moreover, the arithmetic circuit representing P’ has size O(s + n - (3j; logd;)) = O(sn). The
theorem follows from Theorem 4.4. [

10

Input: An arithmetic circuit of size s representing polynomial P(z1,...,z,) of degree d; in z;
over Z,,, number m, and error parameter e.

1. Let D; = H;;ll(dj +1)for 1 <i<n.

2. Let P'(y) = P(yP,yP2,... yP").

3. Let £ = [log D] and ¢t = max{[1],¢}.

4. Randomly choose a b € [0,1]¢.

5. For every prime r < £2 - log'm do the following:

(a) Compute the polynomial T; 4 () = Qr(Ap¢(x)).
(b) Check if P'(z) is divisible by T} 3 ¢ () over Z,.

6. Accept iff P'(z) is divisible by T () for every value of r.

Figure 3: Algorithm C

4.3 Polynomials over 7,

In this subsection, we modify our test to work for polynomials over Z,,, where m is not necessarily
a prime. This is useful in applications such as primality testing as shown in the previous section,
and also in testing identities over rationals as we will show in the next section.

We will make use of the following lemma, in our test:

Lemma 4.7 For any univariate polynomial P(x) the following holds:

e For any number m, if P(z) # 0(mod m) then there is a prime p and exponent a such that
pt! divides m, and I%P(:C) # 0(mod p).

e For any prime p and univariate monic polynomial Q(x), if P(z) is not divisible by Q(z)
over Z, then for every number m and a such that p*t divides m, p®- P(z) is not divisible
by Q(x) over Z,.

Proof. If P(x) # 0(mod m) then there is a prime p and exponent b such that p® divides m but
not every coefficient of P(z). Let a be the largest power of p that divides every coefficient of
P(z). Then p®*! divides m and #P(m) # 0(mod p).

If p*-P(z) = Q(x)-R(x)(mod m) where p*! divides m then p®-P(z) = Q(z)-R(z)+m-R'(z)
over integers. Since p® divides m, Q(z) - R(z) is divisible by p® and since the coefficient of
largest power of Q(x) is not divisible by p, p® must divide R(z). Therefore, P(z) = Q(x) -
]%R(a:) (mod p). []

Given a univariate polynomial P and number m, if we run the Algorithm A by doing all
the calculations modulo m (instead of over a field), the algorithm would still work correctly:
if P(z) = O(mod m) it always accepts, and if P(z) # 0(mod m) then by the above lemma
I%P(x) # 0(mod p) for some prime p and number a. In this case, any polynomial Q(x) that

11

does not divide - P(x) over Z, will also not divide P(x) over Z,, (by the above lemma). Thus
the error probability does not increase.

The only problem is in computing r: the number r should be chosen such that it does not
divide p/ — 1 for 1 < j < £. However, p is not known. This is taken care of by trying out all
possible values of r up to £ - logm. It was shown earlier that the smallest “right” value of r is
bounded by #2-logp < £?-logm. Therefore for at least one of the values of r the algorithm would
decide correctly and that is sufficient. For the multivariate case, the polynomial is converted
to a univariate one in the same way as before—the argument there goes through for rings also.
The full algorithm is given in Figure 3.

The above discussion implies the following theorem:

Theorem 4.8 Let P(z1,...,x,) be a multivariate polynomial of degree d; in x; over Zy, pre-
sented as an arithmetic circuit of size s. Then, Algorithm C tests if P is identically zero and
errs with probability at most € if P is not identically zero. Further, it uses [y ;—;logd;] random
bits and works in time O~ (s5n® - (sn+ 1) - (logm)?).

4.4 Polynomials over rationals

In this subsection, we give a test for identities over rationals. Here, since the field in infinite, we
can choose degree-one polynomial family

{(z—1)|i€cQ}

irrespective of the degree of P (of course, first we convert the polynomial to a univariate one).
The only problem we need to take care of is the size of coefficients—in the arithmetic circuit
model the size of coefficients can be exponential in the size of the input. We solve this problem
using a standard trick also based on Chinese remaindering: choose a collection of small num-
bers such that a non-zero polynomial remains non-zero modulo most of these numbers. These
numbers can simply be the set of all numbers up to the size of the circuit. The probability of
success may be low here and needs to be increased by repetition.

The above method, however, does not yield a time-error tradeoff as was the case with earlier
algorithms. To achieve this tradeoff, we again adopt a different route. First we define a collection
of numbers: let S = {N,N +1,...,N + Ny — 1} for suitable values of N and Ny to be fixed
later. The following lemma, captures the property we require of this collection:

Lemma 4.9 For any value of N and Ny, the lem of any K numbers from the set S is at least
o log N—2-No-log No_

Proof. The product Il of any K numbers from the set is at least N¥. To compute lem
we need to eliminate factors occurring in more than one number. Observe that if number a
divides two numbers from the set S then a < Ny since a would also divide their difference. Any
prime power p* with p* < Ny divides at most [%] of the numbers in the set S. On the other

hand, p* divides at least I_%J > 1 [%] numbers among the first Ny numbers. Therefore, the

contribution of all numbers less than Ny to the product I is at most (Np!)? < 22:Noslog No - The
lower bound on the lem follows. [

We now reduce the identity over integers to an identity over Z,, by going modulo one of the
numbers in the family, and then invoke the test for Z,,. Figure 4 contains the algorithm for
integers. The following theorem proves its correctness.

12

Input: An arithmetic circuit of size s representing polynomial P(z1,...,z,) of degree d; in z;
over rationals with its largest coefficient bounded by C, and error parameter e.

1. Let No = [logC, t = [2], and N = 2" - N¢".
2. Randomly choose a number j, 0 < 57 < Ny — 1.

3. Call Algorithm C with parameters P, N + j, and €/2.

Figure 4: Algorithm D

Theorem 4.10 Let P(xz1,...,z,) be a multivariate polynomial of degree d; in x; over rationals
with its largest coefficient bounded by C and presented as an arithmetic circuit of size s. Then,
Algorithm D tests if P is identically zero and errs with probability at most e if P is not identically
zero. Further, it uses [3.1 logd;] + [loglog C random bits and works in time O~ (s5n® - (sn +
1. (loalozCys)

Proof. If P is zero over integers, it remains zero modulo any number and so the algorithm
always accepts. If P is non-zero with its largest coefficient being C, it can be zero modulo at
most K numbers from the set S where K is such that the lcm of some K numbers from S is less
than C < 20 Since this lem is at least 26108 N=2-No-log No yccording to the previous lemma, we
get:

K < Ny-(1+2-logNy)/log N = Ny/t.

Therefore, with probability at most €/2, P is zero modulo N + j. And if P is non-zero modulo
N + j then Algorithm C accepts with probability at most €/2. Therefore, the overall error
probability is at most e.

It is straightforward to see that the algorithm has the claimed bounds on the number of
random bits and time complexity. [

5 De-randomizing identity testing?

Lewin and Vadhan [LV98] suggested that stronger algebraic tools may eventually lead to a com-
plete de-randomization of the identity testing problem. This problem assumes added importance
in light of the recent result [KI02] that a complete derandomization of identity testing implies
that NEXP does not have polynomial-sized arithmetic circuits. However, at the moment it is
not clear how to achieve this. In case of certain specific polynomials we may be able to do this
more easily, and one such derandomization has indeed been shown for primality testing [AKS02].

One can try a similar approach for derandomizing other specific polynomials too, e.g., the
matching polynomial. The standard polynomial for the matching problem is a multivariate one.
One can first transform it to a univariate one using the trick in Algorithm B and then try to
find a small sample space for divisor polynomials in a similar fashion.

13

Acknowledgments

We thank Devdatt Dubashi, Ramesh Hariharan, Jaikumar Radhakrishnan, Sundar, and Vinay
for useful discussions. We thank Madhu Sudan, Salil Vadhan, and two anonymous referees for
useful suggestions.

References

[AGHP90]

[AKS02]

[ALM*92]

[APRS3]

[AS92]

[BCW80]

[BFLYO]

[BK95]

[CDGK91]

[CK97]

[CRS95]

[GKS90]

[K102]

N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost
k-wise independent random variables. In Proceedings of Annual IEEE Symposium
on Foundations of Computer Science, pages 544-553, 1990.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Preprint
(http://www.cse.iitk.ac.in/users/manindra/primality.ps), August 2002.

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegendy. Proof verification and
hardness of approximation problems. In Proceedings of Annual IEEE Symposium on
Foundations of Computer Science, pages 14-23, 1992.

L. M. Adleman, C. Pomerance, and R. S. Rumely. On distinguishing prime numbers
from composite numbers. Ann. Math., 117:173-206, 1983.

S. Arora and S. Safra. Probabilistic checking of proofs. In Proceedings of Annual
IEEFE Symposium on Foundations of Computer Science, pages 213, 1992.

M. Blum, A. K. Chandra, and M. N. Wegman. Equivalence of free boolean graphs
can be tested in polynomial time. Information Processing Letters, 10:80-82, 1980.

L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-
prover interactive protocols. In Proceedings of Annual IEEE Symposium on Foun-
dations of Computer Science, pages 16-25, 1990.

M. Blum and S. Kannan. Designing programs that check their work. J. ACM,
42:269-291, 1995.

M. Clausen, A. Dress, J. Grabmeier, and M. Karpinski. On zero-testing and interpo-
lation of k-sparse multivariate polynomials over finite fields. Theoretical Computer
Science, 84(2):151-164, 1991.

Zhi-Zhong Chen and Ming-Yang Kao. Reducing randomness via irrational numbers.
In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 200—
209, 1997.

Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Randomness-optimal unique
element isolation with applications to perfect matching and related problems. STAM
Journal on Computing, 24(5):1036-1050, 1995.

D. Y. Grigoriev, M. Karpinski, and M. F. Singer. Fast parallel algorithms for sparse
multivariate polynomial interpolation over finite fields. SIAM Journal on Computing,
19(6):1059-1063, 1990.

Valentine Kabanets and Russell Impagliazzo. Derandomizing polyonmial iden-
tity test means proving circuit lower bounds. TRO02-055 (http://www.eccc.uni-
trier.de/eccc-local /Lists/TR-2002.html), 2002.

14

[LFKN90] C. Lund, L. Fortnow, H. Karloff, and N. Nissan. Algebraic methods for interac-

[LN86]

[LovT79]

[LV9g]

[Mil76]

[MVV87]

[Rab80)]

[RBY1]

[Sch80]

[Sha90]

[SS77]

[vzGG99]

[Zip79]

tive proof systems. In Proceedings of Annual IEEE Symposium on Foundations of
Computer Science, pages 2—-10, 1990.

R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cam-
bridge University Press, 1986.

L. Lovasz. On determinants, matchings, and random algorithms. In L. Budach,
editor, Fundamentals of Computing Theory. Akademia-Verlag, 1979.

Daniel Lewin and Salil Vadhan. Checking polynomial identities over any field: To-
wards a derandomization? In Proceedings of Annual ACM Symposium on the Theory
of Computing, pages 428-437, 1998.

G. L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Sys. Sci.,
13:300-317, 1976.

K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105-113, 1987.

M. O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory,
12:128-138, 1980.

R. M. Roth and G. M. Benedek. Interpolation and approximation of sparse multi-
variate polynomials over GF[2]. SIAM Journal on Computing, 20(2):291-314, 1991.

J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701-717, 1980.

A. Shamir. IP = PSPACE. In Proceedings of Annual IEEE Symposium on Founda-
tions of Computer Science, pages 11-15, 1990.

R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal
on Computing, 6:84-86, 1977.

Joachim von zur Gathen and Jiirgen Gerhard. Modern Computer Algebra. Cambridge
University Press, 1999.

R. E. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSCAM’79,
pages 216-226. Springer LNCS 72, 1979.

15

