
CS 681: Computational Number Theory and Algebra Lecture 2: Reed
Solomon code
Lecturer: Manindra Agrawal Notes by: Anindya De

August 8, 2006.

1 Reed Solomon codes-Encoding

Let b0, b1, . . . , bn be a binary sequence which is to be coded for handling a maximum of t
errors. Fix a k < n and split b0, b1, . . . , bn into n/k blocks of k bits each. Let these be
c0, c1, . . . ck. View each ci as an element in F2k .
Define P (x) =

∑n/k−1
i=1 cix

i.
Let dj = P (ej) for e0, e1, e2, . . . , em−1 ∈ F2k .
We will output d0, d1, d2, . . . , dm−1 as the encoded message. The input size is n bits as
compared to the output size which is mk bits. Also we assume that the number of errors is
atmost t i.e. atmost t out of the m di get corrupted.
Note that though theoretically it can correct only upto t errors, the number of errors it
can correct in practice is much larger. This is because we assume that the t bits that get
corrupted are in t different di’s but usually errors occur in blocks. Hence it can correct upto
tk errors.

2 Decoding

To decode the message, we must have m ≥ n/k (without any errors). In case, the message
does not have any errors and we get the di’s, we can decode it as follows:
In order to find ci’s, we can solve the following system of linear equations.

Ec = d (1)

E =


1 e0 e2

0 . . . e
n/k−1
0

1 e1 e2
1 . . . e

n/k−1
1

...
...

...
. . .

1 en/k−1 e2
n/k−1 . . . e

n/k−1
n/k−1



c =


c0

c1
...

cn/k−1


1



d =


d0

d1
...

dn/k−1


Fact 2.1 The determinant of matrix E is

∏
i>j(ei−ej). Hence with distinct ei’s the matrix

is always invertible.

Hence, we don’t have any error in the message it can be easily decoded. Now, suppose that
there are errors (< t) in the message. Let the position of the errors be i1, i2, i3, . . . , it. (In
case, there are less than t errors, analysis would still be correct). Also let the corrupted
message be d′0, d

′
1, d

′
2, . . . , d

′
m−1

Let Q(x) be a polynomial such that Q(x) =
∏t

j=1(x− eij ).
Q(x) is called the error locator polynomial. Important property of the error locator poly-
nomial is that:
d′jQ(ej) = djQ(ej) ∀j (2.1)
=⇒ d′jQ(ej) = P (ej)Q(ej) ∀j
=⇒ d′jQ(ej) = R(ej) ∀j
Here R(x) = P (x)Q(x). deg(R)=deg(P )+deg(Q)=n/k − 1 + t. Also deg(Q)=t. If we con-
sider the coefficients of R(x) and Q(x) as variables, then we have m linear equations that
can be solved to get the values of these variables. Once we know R(x) and Q(x), we can
obtain P (x) by dividing them. i.e.
Let R(x)=

∑n/k+t−1
j=0 αjx

j

Let Q(x)=
∑t

j=0 βjx
j

∀ei d′i
∑t

j=0 βje
j
i =

∑n/k+t−1
j=0 αje

j
i

If the number of equations m is greater than the number of variables n/k + 2t + 1, then
the equations may be solved. (There may be more than one solution for Q(x) or R(x) but
P (x) will be the same for all cases). One can also show that there are atmost n/k + 2t + 1
linearly independent equations among the m equations.

3 Analysis of the scheme

Requirements for the scheme to work:

1. m ≤ 2k

2. m ≥ n/k + 2t + 1

Hence, mk ≥ n+2tk+k. We want to minimise mk and hence 2tk+k. The least value k can
have is k = [log2m] where [] is the ceiling function. i.e. min mk=n + 2t[log2m] + [log2m].
Hence, we are roughly adding 2[log2m] redundant bits for every error. If n ∼ 5GB and
t ∼ 50MB then we need to add about 4GB of redundancy. Since m ≤ n (usually), then we
have to add O(tlogn) redundant bits for t errors.

2


