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1 Reed Solomon codes-Encoding

Let bg, b1, ...,b, be a binary sequence which is to be coded for handling a maximum of t
errors. Fix a k < n and split by, by, ..., b, into n/k blocks of k bits each. Let these be
€o,C1,-.-Cg. View each ¢; as an element in Fyx.

Define P(x) = Zn/k_l cit.
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Let d; = P(ej) for eg,e1,€2,...,em—1 € Fox.
We will output dg,di1,ds,...,dn—1 as the encoded message. The input size is n bits as

compared to the output size which is mk bits. Also we assume that the number of errors is
atmost t i.e. atmost ¢ out of the m d; get corrupted.

Note that though theoretically it can correct only upto t errors, the number of errors it
can correct in practice is much larger. This is because we assume that the ¢ bits that get
corrupted are in t different d;’s but usually errors occur in blocks. Hence it can correct upto
tk errors.

2 Decoding

To decode the message, we must have m > n/k (without any errors). In case, the message
does not have any errors and we get the d;’s, we can decode it as follows:
In order to find ¢;’s, we can solve the following system of linear equations.
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Fact 2.1 The determinant of matriz E is [[;~ ;(e; —e;). Hence with distinct e;’s the matriz
s always invertible.

Hence, we don’t have any error in the message it can be easily decoded. Now, suppose that
there are errors (< t) in the message. Let the position of the errors be iy,49,143,...,%. (In
case, there are less than ¢ errors, analysis would still be correct). Also let the corrupted
message be df), d|,db, ... d, 4

Let Q(z) be a polynomial such that Q(z) = ;-:1(1’ —ei;)

Q(x) is called the error locator polynomial. Important property of the error locator poly-
nomial is that:

2Q(e)) = dQe) Vi (2.1)

s dQ(e) = Ple;)Qe;) Vj

= d;'Q(ej) = R(ej) Vj

Here R(z) = P(x)Q(z). deg(R)=deg(P)+deg(Q)=n/k — 1+ t. Also deg(Q)=t. If we con-
sider the coefficients of R(x) and Q(x) as variables, then we have m linear equations that
can be solved to get the values of these variables. Once we know R(z) and Q(z), we can
obtain P(x) by dividing them. i.e.

Let R(w)zzyiﬁﬂ_l o’

Let Q(z)= §'=0 Bja?
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If the number of equations m is greater than the number of variables n/k + 2t + 1, then
the equations may be solved. (There may be more than one solution for Q(z) or R(z) but
P(z) will be the same for all cases). One can also show that there are atmost n/k + 2t + 1
linearly independent equations among the m equations.

3 Analysis of the scheme

Requirements for the scheme to work:

1. m<2k

2. m>n/k+2t+1

Hence, mk > n+2tk+k. We want to minimise mk and hence 2tk + k. The least value k£ can
have is k = [logam| where [] is the ceiling function. i.e. min mk=n + 2t[logam] + [logam].
Hence, we are roughly adding 2[logam| redundant bits for every error. If n ~ 5GB and
t ~ 50M B then we need to add about 4GB of redundancy. Since m < n (usually), then we
have to add O(tlogn) redundant bits for ¢ errors.



