1 Real life application of FFT: Image compression in JPEG format

JPEG performs DFT in order to compress the input file. In order to perform DFT we need an \(n \)th root of unity. The \(n \)th root of unity we will use here is \(e^{2\pi i/n} \). But the problem with this is that using this root the values obtained after performing DFT are complex, storing which is not space efficient. Hence, we use a trick to make sure all values of DFT are real meaning complex part of DFT is zero. Let \(f: \{0, \ldots, n-1\} \rightarrow F \). Assume \(n \) is even.

Let \(\tilde{f}: \{0, \ldots, 4n-1\} \rightarrow F \) be defined as:

1. \(\tilde{f}(2l) = 0 \) for \(0 \leq l \leq 2n \)
2. \(\tilde{f}(2l + 1) = f(l) = \tilde{f}(4n - (2l + 1)) \) for \(0 \leq l < n \)

To make the definition more clear \(\tilde{f}(l) \) is zero at all even values of \(l \) and for all the \(2n \) add values of \(l \) we have: \(\tilde{f}(1) = \tilde{f}(4n - 1) = f(0) \), \(\tilde{f}(3) = \tilde{f}(4n - 3) = f(1) \) and so on.

Now let \(\tilde{g}(j) = \text{DFT}(\tilde{f}) \). Therefore,

\[
\tilde{g}(j) = \sum_{l=0}^{4n-1} \tilde{f}(l) e^{2\pi i j l / 4n}
\]

The mapping \(f \rightarrow \tilde{g} \) is called discrete cosine transform. Note that:

1. \(\tilde{g}(4n - j) = \tilde{g}(j) \) for \(0 \leq j < n \)
2. \(\tilde{g}(2n + j) = \tilde{g}(2n - j) = \tilde{g}(j) \) for \(0 \leq j < n \)

This shows that it is enough to store the first \(n \) values of the discrete cosine transform. The inverse of \(\tilde{g} \) can then be computed as:

\[
\tilde{f}(j) = \sum_{l=0}^{4n-1} \tilde{g}(l) e^{2\pi i j l / 4n}
\]
1.1 Compression using discrete cosine transform:

Let \(I_0, \ldots, n-1x0, \ldots, n-1 \rightarrow N \) be an image.

1.1.1 First Algorithm:

1. For each row of \(I \) do the following.
2. Apply DCT on the row to obtain \(n \) values \(c_0, c_1, \ldots, c_{n-1} \). These values can be understood to be coefficients of frequencies contributing to the image. If \(c_j \) is very small then associated frequency contributes very little and we can simply make \(c_j \) equal to 0.
3. Let \(d_j = \lfloor \frac{c_i}{100} \rfloor \)
4. Perform runlength encoding or huffman encoding or both on \(d_0, d_1, \ldots, d_{n-1} \) and store the result.

1.1.2 Second Algorithm:

1. Break the image into block of (say) 8x8 pixels.
2. Take each two-dimensional block and apply DCT using

\[
g(l, t) = \sum_j \sum_k f(j, k) \omega^{lj} \omega^{tk}
\]

JPEG normally gives a 20:1 ratio compression.