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1 The integer multiplication problem

Suppose we are given two n bit integers, a and b, where

a =
n−1∑
i=0

ai2i, b =
n−1∑
i=0

bi2i

We wish to find the product of the two integers as efficiently as possible. Using the straight-
forward multiplication algorithm, the two numbers can be multiplied in O(n2) time. Us-
ing fast fourier transform, however, the product can be evaluated in sub-quadratic time.
In particular, in this lecture, we will discuss how to perform integer multiplication in
O(n log2 n log log n) time.

2 Using FFT for integer multiplication

We break the n-bit integers into t blocks of l bits each. That is, t = n/l. We assume that
n is a perfect power of 2, and so are t and l. The exact values of t and l will be computed
later. Thus, we can represent a and b as

a =
t−1∑
i=0

âi2il, b =
t−1∑
i=0

b̂i2il

Consider the polynomials a(x) and b(x), given by

a(x) =
t−1∑
i=0

âix
i, b(x) =

t−1∑
i=0

b̂ix
i

If we can efficiently calculate the product a(x) × b(x) efficiently, then we can calculate
the integer product by evaluating the polynomial at 2l. The latter operation can be done
efficiently, since evaluation at 2l can be done using only bit-shifts and addition, which can
be done in linear time.

Intuitively, one can compute a(x)× b(x) using fast fourier transform, and then compute the
integer product. However, there is a catch at this point : When we are calculating the FFT
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of the resulting polynomial, we have to multiply the respective coefficients of the transforms
of the two input polynomials, which itself involves integer multiplication. We can overcome
this problem using the chinese remaindering theorem.

First of all, we note that the jth coefficient in the product a(x) × b(x) is
∑j

i=0 âib̂j−i.
Therefore, the maximum absolute value of the jth coefficient is bounded above by (j+1)22l,
and hence the value of any coefficient in the resultant polynomial cannot exceed t(22l + 1).
Therefore, if we can compute a(x)× b(x) (mod t(22l + 1)) then the product of the original
two polynomials can be recovered.

We separately compute a(x) × b(x) modulo t and modulo 22l + 1. Since t and 22l + 1
are co-primes (as t is a perfect power of 2, and the other number is an odd number), there-
fore we can use the chinese remaindering theorem to compute the modulo we desire.

We compute a(x)×b(x) (mod t) using the normal multiplication algorithm. a(x)×b(x) (mod 22l+
1) is evaluated using FFT, whereby the 2t integer products are recursively computed using
the given algorithm. Note that 2 is a 4l root of unity modulo 22l + 1. Therefore we need to
have 2t ≤ 4l, which implies that t ≤ 2l. The smallest value of l satisfying this constraint is
2b

k
2
c, where n = 2k. Therefore, we choose l = 2b

k
2
c and t = 2d

k
2
e.

The complete algorithm is presented in the next section, and its time complexity is an-
alyzed in the section after that.

3 Efficient integer multiplication algorithm

Input : Two n bit integers, a and b where n = 2k

Output : The (n + 1) bit product of a and b mod 2n+1.

Algorithm

1. If n is small enough, then compute a× b(mod 2n+1) using the normal multiplication
algorithm, and return the result.

2. Otherwise, let l← 2b
k
2
c, t← 2d

k
2
e.

3. Let a =
∑t−1

i=0 âi2il, b =
∑t−1

i=0 b̂i2il. Let the polynomials a(x) and b(x) be given by
a(x) =

∑t−1
i=0 âix

i, b(x) =
∑t−1

i=0 b̂ix
i.

4. Compute a(x) × b(x)(mod t) using FFT and straightforward integer multiplication
algorithm.

5. Compute a(x) × b(x)(mod 22l + 1) using FFT of a(x) and b(x) and then computing
the product of the 2t coefficients using this algorithm recursively.
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6. Combine the results obtained in steps 4 and 5 using chinese remaindering theorem to
obtain f(x) = a(x)× b(x)(mod t(22l + 1)).

7. Compute f(2l), and return this value as the answer.

Note that this algorithm computes the product of a and b modulo 2n+1 only. If the
product exceeds 2n+1, then before multiplying, we will have to pad a and b with extra zeros
to make them numbers with 2n bits. This does not have any effect on the complexity of
the algorithm, as it increases the running time only by a constant factor.

4 Complexity of the above algorithm

Let TM (n) be the complexity of multiplying two n bit numbers.

• Step 4 takes O(t log t log2 t), i.e. O(t log3 t) time. Since t is nearly n1/2, therefore
this step takes O(n1/2 log3 n) time. This is sub-linear time, and can be neglected,
because we expect at least O(n) time complexity.

• Step 5 : The FFT takes O(t log t l) time, which is in O(n log n). Multiplying
2t coefficients of the Fourier transforms takes 2tTM (2l) time. Hence this step takes
O(n log t) + 2tTM (2l) time.

• Step 6 takes O(n) time, which again can be neglected.

Thus, we get the following the following recurrence relation

TM (n) = O(n log t) + 2tTM (2l) (1)

Theorem 4.1 TM (n) = O(n log2 n log log n)

Proof: Let T̂ = 1
nTM (n). Dividing both sides of 1 by n, we get

T̂ (n) = O(log t) + 4T̂ (2l) (2)

Claim 4.1 T̂ (n) = O(log2 n log log n).

Substituting the above expression in 2, we get

T̂ (n) ≤ c1 log t + 4c2 log2 2l log log 2l

i.e. T̂ (n) ≤ c1 log n + 4c2 log2 2
√

n log log 2
√

n

i.e. T̂ (n) ≤ c1 log n + c2 log2 n log log n

For sufficiently large n, the second term is dominated by the second term. This proves
our claim that T̂ (n) = O(log2 n log log n), and hence we get TM (n) = O(n log2 n log log n).
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5 Improving the upper bound

The bound obtained in 4.1 is not a tight upper bound. We can reduce the complexity by
a factor of log n. Note that we need a factor of log2 n in the complexity of T̂ (n), because
of the factor of 4 in the second term of right hand side in equation 2. This factor can be
reduced to 2, by using negative wrapped convolution. In that case, the upper bound for
integer multiplication will come out to be O(n log n log log n). Details of this algorithm
can be found in [1].
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