
CS 681: Computational Number Theory and Algebra Lecture 4: Chinese
Remainder Theorem
Lecturer: Manindra Agrawal Notes by: Rohit Garg

January 1, 2004.

1 Chinese Remainder Theorem

In today’s lecture we will be talking about a new tool: Chinese Remaindering which is
extremely useful in designing new algorithms and speeding up existing algorithms. Although
Chinese Remainder Theorem is more known in reference with the integers, but the general
statement of the theorem is as follows:

Let R be either a ring of integers(denoted by Z) or field of polynomials over field F
(denoted by F[x]). Let m εR and m1 , m2 , . . . , mk ε R be such that (mi , mj) = 1 for
i 6= j and m =

∏k
i=1 mi.

Theorem 1.1 R/(m) ∼= R/(m1) ⊕R/(m2) ⊕ ⊕R/(mk). In words, this can be stated
as the quotient ring of R mod principal ideal (m) is isomorphic to direct sum of quotient
rings of R/(m1) , R/(m2) , , R/(mk).

Proof: Let fi : R/(m) −→ R/(mi) be a mapping from the quotient ring of R mod ideal
(m) to the quotient ring R mod ideal (mi) as fi(a + (m)) = ai + (mi) where a = ai .
We can easily show that fi to be a ring homomorphism.
We now define a mapping from the quotient ring of R mod ideal (m) to the direct sum of
the quotient rings of R mod (m1), . . , R mod (mk) as follows
f : R/(m) −→ R/(m1)⊕R/(m2)⊕ ⊕R/(mk)
f(a + (m)) = (f1(a + (m)) , f2(a + (m)) , . . , , fk(a + (m)))

We claim that f is a ring isomorphism.
Since all the f ′

is are homomorphisms, therefore we have that f is also a homomorphism. We
just need to show that f is 1-1 and onto.
Suppose f(a + (m)) = f(b + (m)).
Then f(a - b + (m)) = 0 which would further imply fi((a − b) + (m)) = 0 for all i.
=⇒ (a − b) ε (m).
=⇒ f is 1− 1.
Now to show onto, given any element (a1 , a2 , . . , ak) εR/(m1)⊕R/(m2)⊕ ⊕R/(mk),
we will construct an element of R that would map to the above element.
Since g.c.d(mi , mj) = 1 for all j 6= i and m =

∏k
i=1 mi, g.c.d(m

mi
, mi) = 1. This implies

that there exists an inverse of m
mi

in R/(mi).
Let the inverse be ni such that ni ∗ m

mi
= 1 in R/(mi).

1

We now define the pre-image of (a1 , a2 , . . , ak) to be a =
∑k

i=1 ai ∗ ni ∗ m
mi

It can be easily seen that f(a) = (a1 , a2 , . . , ak) as fi(a + (m)) = r
where , r = amod (mi)
or , r = (

∑k
i=1 ai ∗ ni ∗ m

mi
) mod (mi)

or , r =
∑k

i=1(ai ∗ ni ∗ m
mi

mod (mi))
or , r = ai ∗ ni ∗ m

mi
mod (mi)

or , r = ai mod (mi) (ni ∗ m
mi
≡ 1 mod mi)

Chinese Remainder Theorem has many uses:
1. It is used to divide big rings to many smaller rings which helps us to argue certain things
in a much better manner as smaller rings can be handled well than larger rings.
2. It is also used to design new algorithms and many a times speed up existing algorithms.

To illustrate the use of Chinese Remainder Theorem, let us consider the problem of Matrix
Multiplication.

Consider 2 matrices A and B with order n × n each.
Using a naive approach for multiplying 2 matrices would yield us an algorithm with a com-
plexity of O(n3) operations. Moreover, assuming the entries of the matrices to be large(b
bits long), the time complexity of the simple algorithm would then become O(n3b2) .

But, the Chinese Remainder Theorem helps us to reduce the complexity by quite a good
deal.
The basic idea of the algorithm would be to do all the computations modulo some small
numbers and then combine the computed numbers using the Chinese Remainder Theorem
to get the final result. So at the beginning we would need the number that would factorize
and yield the corresponding relatively prime ”small numbers”.
Let m be required number. ”m” should be atleast as large as the largest number possible
arising out of the matrix multiplication.
Since the largest number possible after matrix multiplication is n×22b, therefore we choose
m to be such that m > 2n ∗ 22b. Therefore for simplicity purposes we choose m to be the
product of first k prime numbers p1 , p2 , . . . , pk such that m =

∏k
i=1 pi > 2n ∗ 22b.

Algorithm:

1. Find p1 , p2 , p3 , . . , pk such that
∏k

i=1 > 2n ∗ 22b

2. Compute A ∗ B (mod pi) for each i = 1 to k.
3. Reconstruct A ∗ B using Chinese Remainder Theorem.

2

Time Complexity Analysis:
Step 1. From the prime number theorem (which states that the product of the primes
less than a number t is asymtotically et), we can say that we would need to examine the
primes only upto log(2n ∗ 22b). Using sieve of eratosthenes method this can be done in
O((b + log(n))2) time.

Step 2. In this step, we would first reduce the matrices and then multiply them.
Time for reducing each entry(b bits) in matrix by a prime (log b + log log n bits) =
b(log b + log log n) time.
Since there are n2 entries and k primes, therefore time for reducing the matrices = O(kn2b(log b +
log log n)).

The resulting entries would now be of (log b + log log n) bits.
Now, time to get a single entry of the resulting matrix afer multiplication is (log b + log log n)2.
Since there are k primes and n2 entries, the total time to obtain the matrix A ∗ B(modpi)
for all i’s is O(kn3(log b + log log n)2).

So, the total time for step 2 would be O(kb(log b + log log n)n2) + O(kn3(log b + log log n)2).

Step 3. In this step, we would need to compute m (which is the product of the primes),
compute the inverses ni of all m

mi
and then apply the formula above mentioned(in the proof

of the theorem) to get the pre-image.
Computing m would be same as multiplying a b bit number with a log b bit number and
hence the time to get m would be O(b log b).
Computing each ni would be of the order of (log b)2 and hence time to compute all the n′

is
would be k(log b)2

Now, there are n2 entries and applying the formula to each entry would take O(kb) ignor-
ing the log factors. Therefore, the total time to get the resulting matrix would be O(kbn2)
which would be O(n2b2).

So, total time complexity of the entire algorithm = O(n2b2 + n3b) which is far better than
the complexity of the simple algorithm of multiplication having the complexity O(n3b2).

The above example indicates that this trick of doing all the computations modulo small
nos and then combining them using the Chinese Remainder Theorem helps us in reducing
the time complexity in any computation involving large numbers. Further, this method
yields a natural parallelization of the multiplication process.

3

