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1 Last Lecture Recap

Let ¢(x,y) = ( % : yzgg ) be an endomorphism on E(F}).
Definition 1.1 Degree of the endomorphism 1, deg(y), is defined as maz(deg(p),deg(q)).
Definition 1.2 Endomorphism 1) is said to be separable if p'q — pq’ is not identically zero.

The following theorem was then proved in the last lecture,

Theorem 1.1 Let ¢(z,y) = ( % yzgg) ) be any separable endomorphism. Then,

|ker ()| = deg(¥)

Let E[n] C E(F,) be the set of points P in E(F,) such that nP = 0. Then, it was shown
that,
En|=Z2,®Zn, pJfn

2 The Weil Pairing

Let 7 be a primitive n'* root of unity (n € F},), there is a function
en: Eln] x E[n] — {1,n,..., 7" 1}

called the Weil Pairing such that,

1. e, is bilinear. This means that

en(P+ S, Q) = en(Pa Q)en(S, Q)

and
€n(P,S + Q) = eTL(P? S)en(P7 Q)
VP,Q,S € Eln]

2. If e,(P,Q) = 1 for all @, then P = (). Similarly, if e,(P,Q) = 1 for all P, then
Q=0



3. en(P,P)=1,YP € E[n]

4. en(P7Q) = egl(va)

5. For any automorphism ¢ of F), if ¢(4) = A and ¢(B) = B, then ¢(e,(P,Q)) =
en(0(P), 9(Q))

6. For any endomorphism ¢ of E(F,), e,(¢(P),¥(Q)) = en (P, Q)deg(w)

3 Hasse’s Theorem

Theorem 3.1 Let E be an elliptic curve over the finite field F,. Then the order of E(F})
satisfies,

p+1—#E(F) <2Vp

Proof.  Consider the action of endomorphism ¢ on E[n] (p fn and E[n] = Z, & Z,,). There
exists two points 77, Ty € E[n] such that,

En]: (Zn)T) + (Z,)T5

Let oTh + (15 € E[n].

Y(aTy + BTy) = ap(Th) + B (Tz)
Let (T1) = aTy + b1y and (1) = Ty + dTs

If we view o171 + 313 as vector @ , then

p
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o[5]-1% 8] [5]rern
Let
=2

We have from the Weil Pairing Property 6,

(Th), ¢ (12))
= eplady —|—bT2,CT1+bT2)

€n (T17 T2)d€g(1/1) = en(
(

en(aTy, cTh)en(aTh, dTg)en(ng, ch)en(ng, dTy) [Property (1)]
(
(

en(T1,T1) e (11, T2)® 6n(T2,T1) en(Tg,Tz)bd [Property (1)]
n (T, Tp) 40 [Property (3)
and (4)]

|
o

Therefore,
deg(y) = (ad — be) = | My|(mod n) (1)

Letting ¢ = ¢, — 1, we get,



\Mﬁﬂ = p(mod n)
|M}| = 1(mod n)

Now, Mp2"™ = Mi® — M3 = r M2 — I for (r,s) = 1
Claim 3.1 Given M and N are two 2 X 2 matrices, then

@M + BN| = o®|M|+ F*|N| + af(|M + N| — |M| —|N|)
Using claim 3.1,

rMp” — s = r’p+s°—rs n —1|—p—
M;? — sI ’p+ s My? —1 1
= rp+st—rs(|B(Fy)| —p—1)

Therefore, |7‘M;f” —sI| =r?p+s® —rsa.
From equation 1,

deg(rop, — s) = [rM2» — sI| = r?p + s* — rsa(mod n)

However,
deg(r¢p, — ) > 0
= 7‘2p + 52 —rsa > 0
= ap—ar+1 > 0 where x = T iexr € Q
= zp—ar+1 > 0 for all x reals, since Q is dense in R
= a’—4p < 0
= a < 2p
= |p+1-#E(F,)| < 2p

Hence proved.



