CS 681: Computational Number Theory and Algebra Lecture 35 Lecturer: Manindra Agrawal Notes by: Ashwini Aroskar

November 18, 2005.

Elliptic Curves on Finite Fields (contd)

Let $E(F_p)$ be the elliptic curve $y^2 = x^3 + Ax + B \pmod{p}$ We also use $E(F_p)$ to denote the set of points on the curve over F_p .

We will study $E(\bar{F}_p)$ where \bar{F}_p is the algebraic closure of F_p . We want to characterize points of $E(F_p)$ in $E(\bar{F}_p)$. As \bar{F}_p is a field of characteristic p, we can raise the coordinates to the p_{th} power and we derive the following test.

Define $\phi_p(x, y) = (x^p, y^p)$ *Observation:* ϕ_p is identity on (x, y) *iff* $(x, y) \in E(F_p)$ Equivalently, $\phi_p - 1$ is 0 on (x, y) *iff* $(x, y) \in E(F_p)$.

Note: When we write $\phi_p - 1$, the subtraction is the one defined on the elliptic curve.

Observation: $\phi_p - 1$ is a homomorphism from $E(\bar{F}_p)$ to $E(\bar{F}_p)$.

Proof: $\begin{aligned} \phi_p - 1[(x_1, y_1) + (x_2, y_2)] &= \phi_p[(x_1, y_1) + (x_2, y_2)] - (x_1, y_1) - (x_2, y_2) \\ \text{Denote the sum of the two points on the curve as } (x_3, y_3) \\ \text{Let } m &= \frac{y_2^p - y_1^p}{x_2^p - x_1^p} \\ \phi_p(x_3, y_3) &= (x_3^p, y_3^p) \\ &= [(m^2 - x_1 - x_2)^p, -y_1 - m(x_3 - x_1)^p] \\ &= [m^{2p} - x_1^p - x_2^p, -y_1^p - m^p(x_3^p - x_1^p)] \pmod{p} \\ &= \phi_p(x_1, y_1) + \phi_p(x_2, y_2) \end{aligned}$

Also note that each coordinate of the image of a point under this homomorphism is a rational function in x and y.

$$\begin{split} \phi_p - 1(x, y) &= (x^p, y^p) - (x, y) \\ &= (x^p, y^p) + (x, -y) \\ &= (\frac{y^p + y^2}{x^p - x} - x^p - x, \ldots) \end{split}$$

Let $\psi: E(\bar{F}_p) \longrightarrow E(\bar{F}_p)$ be a homomorphism given by $\psi(x, y) = (r_1(x, y), r_2(x, y))$, where r_1 and r_2 are rational functions in x and y. Such a ψ is called an endomorphism. Thus, $\phi_p - 1$ is called an endomorphism.

So, we can state the previous observation as follows: *Observation:* $Ker(\phi_p - 1) = E(F_p)$

Let $\psi(x, y) = \left(\frac{p(x,y)}{q(x,y)}, \frac{r(x,y)}{s(x,y)}\right) \quad p, q, r, s$ polynomials in x and y Replacing $y^2 = x^3 + Ax + B$, we get $\psi(x, y) = \left(\frac{p_1(x) + yp_2(x)}{q_1(x) + yq_2(x)}, \frac{r_1(x) + yr_2(x)}{s_1(x) + ys_2(x)}\right)$ For the first coordinate, multiply both numerator and denominator by $q_1(x) - yq_2(x)$ and replace y^2 in terms of x again. Similarly for the second coordinate. So we get $\psi(x, y) = \left(\frac{p_3(x) + yp_4(x)}{q_3(x)}, \frac{r_3(x) + yr_4(x)}{s_3(x)}\right)$

If $\psi(x, y) = (u, v)$. As $\psi(O) = O$, $\psi(x, -y) = (u, -v)$ Therefore $y \longrightarrow -y$ must leave u changed and change the sign of v. $\implies p_4(x) = 0, r_3(x) = 0$

Thus we can write ψ in the standard or normal form as $\psi(x,y)=(\frac{p(x)}{q(x)},y\frac{r(x)}{s(x)})$

Further we may also assume (p(x), q(x)) = 1 = (r(x), s(x))

Therefore we have $\frac{y^2 r^2}{s^2} = \frac{p^3}{q^3} + A \frac{p}{q} + B$ So, $s^2(p^3 + Apq^2 + Bq^3) = q^3 r^2 (x^3 + Ax + B)$

A root of q is obviously a root of s since it cannot be a root if p.

Conversely let α be a root of s.

Assume the elliptic curve is non-singular, that is, $x^3 + Ax + B$ has no repeated root. $(x - \alpha)^2$ divides the R.H.S. r cannot have α as a root. As the curve is non-singular, $(x - \alpha)^2 |q^3(x), \alpha$ is a root of q. So, q and s have the same roots.

The curve is singular is $x^3 + Ax + B$ has repeated roots, that is, $\iff (x^3 + Ax + B, 3x^2 + A) \neq 1$ $\iff (\frac{2}{3}Ax + B, 3x^2 + A) \neq 1$ $\iff (\frac{2}{3}Ax + B, \frac{27B^2}{4A^2} + A) \neq 1$

The curve is singular iff $4A^3 + 27B^2 = 0$

We define the degree of ψ as the maximum of the degree of p and q.

Endomorphism ψ is said to be *separable* if p'q - pq' is not identically zero. Obviously $\phi_p(x, y)$ is not separable as the computations are modulo p.

Theorem: Let $\psi(x,y) = (\frac{p(x)}{q(x)}, y\frac{r(x)}{s(x)})$ be any separable endomorphism. Then $|Ker\psi| = deg(\psi)$