1 Introduction

Definition 1.1 A lattice $L \subseteq \mathbb{R}^n$ is a set of points defined as:

$$L = \{ \sum_{i=1}^{m} \alpha_i u_i \mid \alpha_i \in \mathbb{Z} \text{ and } u_i \in \mathbb{R}^n \}$$

We will assume that $m = n$ and u_i's are linearly independent. The problem of computing a shortest vector in a given lattice is NP-hard. We define the volume of a lattice L as:

$$\text{Vol}(L) = |\text{det}[u_1 \ u_2 \ \ldots \ u_n]|$$

If the u_i's are linearly dependent then $\text{Vol}(L) = 0$. The vectors u_1, u_2, \ldots, u_n are called a basis for L.

Lemma 1.1 $\text{Vol}(L)$ is independent of the choice of the basis.

Proof. Let v_1, v_2, \ldots, v_n be another basis for L. We have, $v_j = \sum_{i=1}^{n} \beta_{ij} u_i$, where $\beta_{ij} \in \mathbb{Z}$.

$$[v_1 \ v_2 \ \ldots \ v_n] = [u_1 \ u_2 \ \ldots \ u_n] \cdot [\beta_{ij}]$$
$$\Rightarrow |\text{det}[v_1 \ v_2 \ \ldots \ v_n]| = |\text{det}[u_1 \ u_2 \ \ldots \ u_n]| \cdot |\text{det}[\beta_{ij}]|$$
$$\Rightarrow |\text{det}[u_1 \ u_2 \ \ldots \ u_n]| \mid \text{divides} \ |\text{det}[v_1 \ v_2 \ \ldots \ v_n]|$$

Similarly, $|\text{det}[v_1 \ v_2 \ \ldots \ v_n]| \mid \text{divides} \ |\text{det}[u_1 \ u_2 \ \ldots \ u_n]|$.

Therefore, $|\text{det}[v_1 \ v_2 \ \ldots \ v_n]| \mid \text{divides} \ |\text{det}[u_1 \ u_2 \ \ldots \ u_n]|$.

2 Application of finding Short Vector in a Lattice

Consider the scenario where the RSA cryptosystem is used. Let p and q be two large primes and $n = pq$. Let $(n, 3)$ be the public key. Suppose we encrypt message m such that the initial part of m is a fixed header h that is known, whereas the unknown content of the message be x that is l bits long. Without loss in generality assume that $0 \leq m < n$.

Let $m = h \cdot 2^l + x$ and $c = m^3 (mod n)$. Assume that the adversary knows c, h, l and $(n, 3)$. Since,

\[c = (h \cdot 2^l + x)^3 (mod n) \]

\[\Rightarrow p(x) = x^3 + a_2 x^2 + a_1 x + (a_0 - c) = 0 (mod n) \]

The adversary computes $p(x)$ and tries to solve for x. Let a lattice $L \in \mathbb{R}^6$ be defined by the following basis vectors:

\[
\begin{pmatrix}
 a_0 - c \\
 a_1 \\
 a_2 \\
 1 \\
 0 \\
 0
\end{pmatrix},
\begin{pmatrix}
 0 \\
 a_0 - c \\
 a_1 \\
 a_2 \\
 1 \\
 0
\end{pmatrix},
\begin{pmatrix}
 0 \\
 0 \\
 a_0 - c \\
 a_1 \\
 a_2 \\
 1
\end{pmatrix},
\begin{pmatrix}
 n \\
 0 \\
 0 \\
 0 \\
 0 \\
 0
\end{pmatrix},
\begin{pmatrix}
 0 \\
 n \\
 0 \\
 0 \\
 0 \\
 0
\end{pmatrix},
\begin{pmatrix}
 0 \\
 0 \\
 0 \\
 0 \\
 n \\
 nx^2
\end{pmatrix}
\]

Therefore, $Vol(L) = n^3$.

Theorem 2.1 (Minkowski) Let $L \in \mathbb{R}^d$ be a lattice. Then, the length of the shortest vector in $L \leq d^{\frac{1}{2}} \cdot Vol(L)^{\frac{1}{2}}$.

From the above theorem we conclude that the shortest vector in our lattice L has length $\leq \sqrt{6n^2}$.

Let $v = (v_0, v_1, \ldots, v_5)$ be the shortest vector in L. Let the polynomial

\[v(x) = \sum_{i=0}^{5} v_i x^i \]

\[= \gamma_1 p(x) + \gamma_2 x p(x) + \gamma_3 x^2 p(x) + \gamma_4 n + \gamma_5 nx + \gamma_6 nx^2 \]

\[= (\gamma_1 + \gamma_2 x + \gamma_3 x^2) p(x) (mod n) \]

Suppose $x = m_0$ be the unknown message. Then

\[p(m_0) = 0 (mod n) \]

\[\Rightarrow v(m_0) = 0 (mod n) \]

\[\Rightarrow m_0 \text{ is a root of } v(x) \text{ modulo } n \]

\[| v(m_0) | = \left| \sum_{i=0}^{5} v_i m_0^i \right| \]
\[\leq 6 \max \{ |v_i| \} m_0^5 \]
\[\leq 6 \max \{ |v_i| \} 2^{5l} \]
\[\leq 6 \sqrt{6} \cdot \sqrt{n} \cdot 2^{5l} \]
\[< n \text{ if } l < \frac{1}{10} \log \frac{n}{216} \]
Therefore, $v(m_0) = 0$ over \mathbb{Z}. Thus if the actual message x is only about $\frac{1}{10}$th of the total message then the adversary can solve for x by computing a shortest vector v in L and then solving for $v(x) = 0$ over \mathbb{Z}.