1 Discrete Log Problem

Definition 1.1 Given a finite group G, and $g, e \in G$, find m (if it exists) such that $g^m = e$.
This problem is known as the Discrete Log Problem.

Examples:

1. Given $G = \mathbb{Z}_n$ under $+$, find an m such that $mg = e \pmod{n}$.
2. Given $G = \mathbb{Z}_n^*$ under \ast, find an m such that $g^m = e \pmod{n}$.
3. Given $G = P_n$ under composition and g and e be two permutations, find an m such that $g^m = e$.
4. Given $G = F_p^r$ under $+$, find an m such that $mg(x) = e(x)$.
5. Given $G = F_p^r$ under $+$, find an m such that $g^m(x) = e(x) \pmod{p, h(x)}$.

2 Application: El Gamal Public Key Encryption

Given a group G and $g \in G$ of large order, randomly choose an $m \in \mathbb{Z}$ and let $e = g^m$.
Then,
Public Key : (g, e)
Private Key : m

2.1 Encryption Method

Input : message s ($s \in G$)

1. Randomly choose $k \in \mathbb{Z}$
2. Compute $r = g^k$
3. Output se^k, r
2.2 Decryption Method

Input: se^k, r

1. Compute r^m
2. Compute inverse of r^m i.e $(r^m)^{-1}$
3. Output $se^k(r^m)^{-1}$

3 Slight Improvement in Special Case

Normally for encryption purposes we use the group $G = F_p^*$ under *. However, this encryption can fall weak if $p - 1$ turns out to be smooth. To avoid this circumstance, a large prime p is chosen such that $p - 1 = 2q$ where q is a large prime as well.

4 Solving Discrete Log using Index Calculus

Basic Idea: Find r and s such that $g^re^s = 1$ and $(s, \text{order}(g)) = 1$. (Note that: If m is the message, then $g^re^s = g^rg^{ms} = g^{r+ms}$. This implies $m = -rs^{-1}(mod \text{order}(g))$)

1. Randomly choose r and s and compute $g^re^s = u$
2. Check if u is k-smooth
3. If yes, collect the triple (r,s,u)
4. Repeat until k tuples are collected, let $(r_i,s_i,u_i), 1 \leq i \leq k$ be these triples
5. Let $u_i = \prod_{j=1}^{k} p_j^{\alpha_{i,j}}, [p_j’s$ are primes$]$
6. Find vector β such that

$$\sum_{j=1}^{k} \beta_i \alpha_{i,j} = 0(mod\ p - 1) \forall i$$

7. Compute $r = \sum_{i=1}^{k} \beta_i r_i$ and $s = \sum_{i=1}^{k} \beta_i s_i$
8. Compute $m = -rs^{-1}(mod\ p - 1)$