CS 681: Computational Number Theory and Algebra Lecture 17 Lecturer: Manindra Agrawal Notes by: Ashwini Aroskar

September 15, 2005.

1 Hensel Lifting

Let R be a unique factorization domain. e.g. R = Z, the ring of integers; or R = F[x], F is a field.

Let $f(y) \in R[y]$. Let $m \in R$.

Suppose we know $f = gh \pmod{m}$ and s and t are such that $sg + th = 1 \pmod{m}$. Then, Hensel Lifting efficiently computes $f = g'h' \pmod{m^2}$ and s', t', such that, $s'g' + t'h' = 1 \pmod{m^2}$, and $g' = g \pmod{m}$ & $h' = h \pmod{m}$.

Let $e = f - gh \pmod{m^2}$.

Assume $e \neq 0$. [If e = 0, then we need not use Hensel Lifting.]

$$g'h'(modm^2) = (g+te)(h+se)(mod m^2)$$

= $gh + (sg+th)e + ste^2(mod m^2)$
= $gh + (1+m\mu)e(mod m^2)$ as $e|m$
= $gh + e(mod m^2)$
= $f(mod m^2)$

Let
$$d = sg' + th' - 1 \pmod{m^2}$$

Note that $d = 0 \pmod{m}$ as $g' = g \pmod{m}$ & $h' = h \pmod{m}$
Let $s' = s(1 - d) \pmod{m^2}$
and $t' = t(1 - d) \pmod{m^2}$

1

$$s'g' + t'h' = s(1-d)g' + t(1-d)h' \pmod{m^2}$$

= $(sg' + th')(1-d)(\mod m^2)$
= $(1+d)(1-d)(\mod m^2)$
= $1-d^2(\mod m^2)$
= $1(\mod m^2)$

Remark : As described above, $\deg g'$ or $\deg h'$ can exceed $\deg f$, while $f = g'h' \pmod{m^2}$. So the degrees of factors can keep increasing at every iteration, which is undesirable. This problem can be resolved, as we shall see later.

2 Polynomial Division

Given f, g of degree n and m respectively, compute q and r such that f = qg + r with $\deg r < m$.

Obvious Time Complexity = $\bigcirc(nm)$ (using long division)

Let $\hat{f} = x^n f(\frac{1}{x})$. So, $x^n f(\frac{1}{x}) = x^n [q(\frac{1}{x})g(\frac{1}{x}) + r(\frac{1}{x})]$ $\hat{f}(x) = \hat{q}(x)\hat{g}(x) + x^{n-\deg r}\hat{r}(x)$ and $n - \deg r \ge n - m + 1$ $\hat{f}(x) = \hat{q}(x)\hat{g}(x) \pmod{x^{n-m+1}}$

Now the constant term of $\hat{g}(x)$ is the leading coefficient of g(x) and hence non-zero. So, $\hat{g}(x)$ has an inverse modulo x^{n-m+1} . So, $\hat{q}(x) = \hat{f}(x)\hat{g}^{-1}(x) \pmod{x^{n-m+1}}$

<u>Problem</u>: To compute $\hat{g}^{-1}(x)$ from $g(x) \pmod{x^{n-m+1}}$

Let $\hat{g}h = 1 \pmod{x}$. So, h = a constant, the inverse of the leading coefficient of g. Let s = h and t = 0. So, $s\hat{g} + th = 1 \pmod{x}$.

Note that, $\hat{g}' = g$ and t' = 0 as t = 0. Hence, \hat{g} and t remain unchanged for every application of Hensel lifting. Eventually we get $\hat{g}\tilde{h} = 1 \pmod{x^{2^k}}$ with $2^k \ge n - m + 1$ Once we obtain $\hat{g}^{-1}(x) = \tilde{h}(x)$, we can get $\hat{q}(x)$ & q(x) and then compute r(x).

At the i^{th} step, we carry out a constant number of additions and multiplications (using *FFT*) of polynomials of deg $< 2^i$ and also quotient polynomials (mod x^{2^i})

Time complexity = $\bigcirc (\sum_{i=1}^{\log n} 2^i i) + \bigcirc (n \log n) = \bigcirc (n \log n)$

Note that we started with m = x for Hensel lifting in this case, but $x \notin R$. But this lifting is valid because of our choice of t = 0.

3