
CS 681: Computational Number Theory and Algebra Lecture 15

Two Randomized Algorithms for Primality Testing

Lecturer: Manindra Agrawal Scribe: Sudeepa Roy

August 19, 2005

1 Introduction

In the last lecture we studied the deterministic algorithm for primality testing. In this
lecture we will study two randomized polynomial time algorithms that work more efficiently
for many practical purposes.

2 Miller-Rabin Algorithm

This algorithm was proposed in 70’s. Miller and Rabin gave two versions of the same al-
gorithm to test whether a number n is prime or not. Whereas Rabin’s algorithm works
with a randomly chosen a ∈ Zn, and is therefore a randomized one, Miller’s version tests
deterministically for all a’s, where 1 ≤ a ≤ 4 log2 n. But correctness of Miller’s algorithm
depends on correctness of Extended Riemann Hypothesis. We will discuss Rabin’s version
of the algorithm here.

Algorithm

Let ψ be an automorphism in Zn.
Let n− 1 = s× 2t for odd s.

1. Test if n = mj for j > 1. If yes, output COMPOSITE.

2. Randomly choose a ∈ Zn.

3. Test if an−1 = 1(mod n). If no, output COMPOSITE.

4. Compute ui = as×2i
(mod n) for 0 ≤ i < t.

5. If there is an i such that ui = 1 and ui−1 6= ±1, output COMPOSITE.

6. output PRIME.

Correctness

1

Observation 2.1 Pr
a∈Zn

[test is correct | n is prime] = 1.

Now let us consider the case when n is composite.
Let primes p and q divides n.

Either (1) u0 = 1 = u1 = · · · = ui−1

or (2) ∃i > 0, ui = 1 and ui−1 = − 1

case (1):

u0 = as = 1(mod n) ⇒ as = 1(mod p) and as = 1(mod q)
Hence,

Pr
a∈Zn

[as = 1(mod n)]

≤ Pr
a∈Zn

[as = 1(mod p) ∧ as = 1(mod q)]

= Pr
a∈Zn

[as = 1(mod p)]× Pr
a∈Zn

[as = 1(mod p)|as = 1(mod q)]

= Pr
a∈Zp

[as = 1(mod p)]× Pr
a∈Zq

[as = 1(mod q)]

Where the last step can be argued as follows.

Let | {a0 ∈ Zp : as
0 = 1(mod p)} | = k. Then Pr

a∈Zp

[as = 1(mod p)] = k
p
. Copies

of a0 in Zn are a0, a0 + p, · · · , a0 + (n
p
− 1)p, i.e., n

p
copies.

Hence, Pr
a∈Zn

[as = 1(mod p)] = n
p
× k × 1

n
= k

p
= Pr

a∈Zp

[as = 1(mod p)] = k
p
.

Now among these copies, a0, a0 + qp, · · · fall in class [a0], a0 + p, a0 + (q+ 1)p, · · · fall
in class [a0 + p], and so on. Hence arguing as before it can be shown that
Pr

a∈Zn

[as = 1(mod p)|as = 1(mod q)] = Pr
a∈Zq

[as = 1(mod q)]

Now as = 1(mod p) and ap−1 = 1(mod p)
⇒ agcd(s,p−1) = 1(mod p)

⇒ a
p−1
2 = 1(mod p) [as s odd and p−1 even, hence the gcd is odd and divides p−1

2
]

So,
Pr

a∈Zp

[as = 1(mod p)] = Pr
a∈Zp

[as = 1(mod p)] ≤ 1
2
.

Therefore,
Pr

a∈Zn

[as = 1(mod n)] ≤ 1
4

case (2):

∃i : as.2i
= 1(mod n) and as.2i−1

= − 1(mod n)

2

Let ŝ = s.2i−1

So, aŝ = − 1(mod n) and a2ŝ = 1(mod n)
Hence as in case (1),

Pr
a∈Zn

[aŝ = − 1(mod n)]

≤ Pr
a∈Zn

[aŝ = − 1(mod p) ∧ aŝ = − 1(mod q)]

= Pr
a∈Zn

[aŝ = − 1(mod p)]× Pr
a∈Zn

[aŝ = − 1(mod p)|aŝ = − 1(mod q)]

= Pr
a∈Zp

[aŝ = − 1(mod p)]× Pr
a∈Zq

[aŝ = − 1(mod q)]

Now a2ŝ = 1(mod p) and ap−1 = 1(mod p)
⇒ agcd(2ŝ, p−1) = 1(mod p)

⇒ a
1
2

gcd(2ŝ, p−1) = ± 1(mod p)

As aŝ = − 1(mod p), so a
1
2

gcd(2ŝ, p−1) = − 1(mod p)

Now, gcd(2ŝ, p− 1) ≤ 1
2
(p− 1)

Hence, Pr
a∈Zp

[aŝ = 1(mod p)] ≤ 1
2
.

Similarly, Pr
a∈Zq

[aŝ = 1(mod q)] ≤ 1
2
.

Therefore,
Pr

a∈Zn

[aŝ = − 1(mod n)] ≤ 1
4

Combining case (1) and case (2),

Pr
a∈Zn

[test outputs PRIME | n is composite]

= Pr[case (1) happens or case (2) happens]
≤ Pr[case (1) happens] + Pr[case (2) happens]
≤ 1

4
+ 1

4

= 1
2

Hence the test is correct with probability ≥ 1
2
.

The probability of success can be boosted further by repeating the test a few times,
where output will be COMPOSITE if any of the single test output is COMPOSITE,
else PRIME.

Time Complexity

• Computing u0 : Õ(log n)×O(log s) = Õ(log2 n) [by repeated squaring O(log s)
times, s ≤ n, then multiplying and taking modulo n each time all with log n

3

bits numbers using FFT takes Õ(log n) time]

• Computing u1, u2, · · · , ut : Õ(log2 n) [t ≤ log n, squaring and taking modulo n
takes Õ(log n) time].

• Testing if n = mj holds for some j > 1 can be done in Õ(log2 n) time.

Hence the time complexity of the algorithm is Õ(log n).

2.1 Another Randomized Algorithm for Primality Testing

Algorithm

The outline of the algorithm is as follows.

1. Choose a random monic polynomial Q(x) of degree log n over Zn.

2. Test if (x+ 1)n = xn + 1(mod n, Q(x)).

3. If yes, output PRIME, else output COMPOSITE.

Correctness

Lemma 2.1 (x+ 1)n = xn + 1 if and only if n is prime.

Proof. ’If’ part is trivial.
For the ’only if’ part, consider n is composite.

(1 + x)n =
n∑

j=0

(
n
j

)
xj

If p|n and n is prime, then
(

n
p

)
6= 0(mod n)

Hence (x+ 1)n − xn − 1 6= 0(mod n)

So we need to consider the case when n is composite, and (x+1)n = xn+1(mod q(x))
It can be shown that with high probability, q(x) does not divide (x+ 1)n − xn − 1 (
mod n). For details of the proof, refer to [1].

References

[1] Manindra Agrawal and Somenath Biswas, Primality and Identity Testing via
Chinese Remaindering.,FOCS 1999: 202-209

4

