CS 681: Computational Number Theory and Algebra Lecture 13: Primality

Testing (Continued)

Lecturer: Manindra Agrawal Notes by: Arun Iyer

September 8, 2005.

1 Last Lecture Recap

A potential primality test was proposed which generalised the basic approach of using the idea $a^n \equiv a \pmod{n}$ whenever n is prime, over a ring of polynomials. So we have a ring R,

$$R = \mathbb{Z}_n[X]/(X^r - 1)$$

where n is square-free. Also we have a map,

$$\psi(e(X)) = e^n(X), e(X) \in R$$

The following question was to be answered, "Is ψ an automorphism of R?".

2 Proceeding towards Proof

To check if ψ is a linear map :

test
$$\psi(e(X)) = e(\psi(X)), \forall e(X) \in R$$
.

Let p be a prime divisor of n. Let h(x) be an irreducible factor of $x^r - 1$ over F_p . Let $F = F_p[X]/(h(X))$. Let deg(h) = d then $|F| = p^d$. Field F occurs as one of the components in the direct sum representation of R.

Lemma 2.1 (First Size Reduction Lemma) Let $S \subseteq F$ such that,

- 1. $\psi(S) \subseteq S$
- 2. $\forall e(X) \in S, \psi(e(X)) = e(\psi(X))$
- 3. $|S| > n^{2\sqrt{r}}$

Then $n = p^j$ for some j.

Proof: Let $\phi(e(X)) = e^p(X)$, $e(X) \in F$. Let $G = \{ \phi^i \psi^j(X) | i, j \ge 0, X \in F \}$. Let t = |G|.

Choose a pair $(\alpha, \beta), (\gamma, \delta)$ such that,

1.
$$(\alpha, \beta) \neq (\gamma, \delta)$$

$$2. \ 0 \leq \alpha, \beta, \gamma, \delta \leq \sqrt{t}$$

3.
$$\phi^{\alpha}\psi^{\beta}(X) = \phi^{\gamma}\psi^{\delta}(X)$$

Such a pair always exists due to pigeonhole principle. Consider $\phi^{\alpha}\psi^{\beta}(e(X)), e(X) \in S$. Then,

$$\begin{array}{lll} \phi^{\alpha}\psi^{\beta}(e(X)) & = & \phi^{\alpha}\psi^{\beta-1}(e(\psi(X))) & \dots [\text{By definition of S}] \\ & = & \phi^{\alpha}\psi^{\beta-2}(e(\psi^2(X))) & & \vdots \\ & \vdots & & \vdots & & \vdots \\ & = & \phi^{\alpha}(e(\psi^{\beta}(X))) & & \vdots \\ & = & \phi^{\alpha-1}(e(\phi\psi^{\beta}(X))) & \dots [\text{Since } \phi \text{ is linear over } F] \\ & \vdots & & \vdots & & \vdots \\ & = & e(\phi^{\alpha}\psi^{\beta}(X)) & & \vdots \end{array}$$

Similarly, it can be shown that,

$$\phi^{\gamma}\psi^{\delta}(e(X)) \, = \, e(\phi^{\gamma}\psi^{\delta}(X))$$

Hence,

$$\phi^{\alpha}\psi^{\beta}(e(X)) = \phi^{\gamma}\psi^{\delta}(e(X)), \forall e(X) \in S$$

This implies that, $\phi^{\alpha}\psi^{\beta}(y) - \phi^{\gamma}\psi^{\delta}(y)$ has at least |S| many roots in F. Let $P(y) = \phi^{\alpha}\psi^{\beta}(y) - \phi^{\gamma}\psi^{\delta}(y) = y^{n^{\beta}p^{\alpha}} - y^{n^{\delta}p^{\gamma}}$. $deg(P) = max\left\{n^{\beta}p^{\alpha}, n^{\delta}p^{\gamma}\right\} \leq n^{2\sqrt{t}}$.

However, since $|S| > n^{2\sqrt{r}}$ and $t \le r$, it implies,

$$\begin{array}{rcl} \Longrightarrow & P & = & 0 \\ \Longrightarrow & n^{\beta}p^{\alpha} & = & n^{\delta}p^{\gamma} \\ \Longrightarrow & n^{\alpha'} & = & p^{\beta'} & \dots [\text{for some } \alpha', \beta'] \\ \Longrightarrow & n & = & p^{j} & \dots [\text{for some } j] \end{array}$$

Hence Proved.

Let $T = \{X^j + a \mid 0 \le j \le r, 0 \le 2\sqrt{rlog}n, X \in F\}$. Now $|T| \le 2r^{\frac{3}{2}}logn$, which is small if r is small. Let S be the multiplication closure of T in F.

Lemma 2.2 (Second Size Reduction Lemma) If $p > t > 4\log^2 n$ and $\psi(e(X)) = e(\psi(X)), \forall e(X) \in T$, then

1.
$$\psi(S) \subseteq S$$

2.
$$\psi(e(X)) = e(\psi(X))$$

3.
$$|S| > n^{2\sqrt{t}}$$

Proof:

1. Let $e(X) \in S$. Therefore, $e(X) = \prod_{i=1}^k e_i(X), e_i(X) \in T$.

$$\psi(e(X)) = \psi(\prod_{i=1}^k e_i(X))$$
$$= \prod_{i=1}^k e_i(\psi(X))$$

Since $e_i(\psi X) \in T$, $\psi(e(X)) \in S$.

- 2. $\psi(e(X)) = \prod_{i=1}^{k} e_i(\psi(X)) = e(\psi(X))$
- 3. Let $Q = \left\{ \prod_{i=1}^{t} (y + a_i) \mid 0 \le a_i \le 2\sqrt{rlogn} \right\}$. Let $q(y) \in Q$. Then, $q(X) \in S$.

Number of polynomials in Q =
$$\begin{pmatrix} 2\sqrt{r}logn + t \\ t \end{pmatrix}$$

$$> \begin{pmatrix} 2\sqrt{r}logn + 2\sqrt{t}logn \\ 2\sqrt{t}logn \end{pmatrix}$$

$$\geq \begin{pmatrix} 4\sqrt{t}logn \\ 2\sqrt{t}logn \end{pmatrix}$$

$$> 2^{2\sqrt{t}logn}$$

$$- n^{2\sqrt{t}}$$

Now, we make a claim,

Claim : The map $y \mapsto X$ is 1-1 on Q

Proof: Let $q_1(y), q_2(y) \in Q$, $q_1 \neq q_2$. Suppose that $q_1(X) = q_2(X)$ in F. We have $q_1(X), q_2(X) \in S$ and,

$$q_1(X) = q_2(X)$$

$$\Rightarrow \psi(q_1(X)) = \psi(q_2(X))$$

$$\Rightarrow q_1(\psi(X)) = q_2(\psi(X))$$

$$\Rightarrow q_1(\psi^j(X)) = q_2(\psi^j(X))$$

$$\Rightarrow q_1(\phi^i\psi^j(X)) = q_2(\phi^i\psi^j(X))$$

$$\Rightarrow q_1(e(X)) = q_2(e(X))$$

The above implies that every $e(X) \in G$ is a root of the polynomial $q_1(y) - q_2(y)$ in F. But $deg(q_1(y) - q_2(y)) \le t - 1$, which gives us a contradiction. Therefore the map is 1-1.

The above proof tells us that $|S| = |Q| \ge n^{2\sqrt{t}}$.

Hence Proved.