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NOTE: In the classes below, uniformity conditions are not specified. You may assume
whatever suits the context.

We have concentrated on boolean circuits in this course. That is, circuits having
gates whose input/output lines carry only 0-1 values. An interesting variation of this
is arithmetic circuits. This is, circuits having addition, subtraction, multiplication and
division gates where these arithmetic operations are over a specified ring or field (division
gates make sense only when the operations are over a field). Notice that subtraction can be
achieved by multiplication and addition gates provided we have the constant −1 available.
Also, division can be achieved by addition and multiplication gates if the operations are
over a finite field (a division gate is always of fanin-2).

The question naturally arises as to what is the power of arithmetic circuits as compared
to their boolean counterparts. Since arithmetic circuits in general compute functions, we
shall compare them with functions computed by their boolean counterparts.

You have already shown in the midsem that polynomial-size, constant-depth, un-
bounded fanin arithmetic circuits where the operations are over a fixed finite field capture
precisely the class ACC. Boolean counterparts of such circuits are AC0 circuits. There-
fore, the arithmetic circuits in constant-depth, unbounded fanin settings are strictly more
powerful than their boolean counterparts.

If, instead of choosing the underlying field to be a fixed finite field, we choose the field
of rationals, then we get another class of circuits. What is the power of this class?

Show that this class of circuits precisely captures the class of functions in TC0. (10
marks)

Now, let us turn our attention to the counterpart of the class NC1. Define the class
#NC1 to be the class of functions computed by families of polynomial-size, logarithmic
depth, fanin-2 arithmetic circuits. Let us investigate the power of this class. For the
sake of simplicity, we shall assume that the circuits in #NC1 contain only addition and



multiplication gates over integers. We simulate subtraction by supplying constant −1 to
the circuits.

First, show that all functions in NC1 are also in #NC1. (5 marks)

Somewhat surprisingly, the class #NC1 almost equals the class NC1. Almost, because
it can only be shown that any function in the class #NC1 can be computed by a family
of polynomial-size, fanin-2 boolean circuits of depth O((log n) ∗ (log∗ n)). (Here, log∗ n is
the number of times one needs to take logarithm of n to reach 1. For example, log∗ 2 = 1
since one application of logarithm on 2 yields 1. log∗ 4 = 2 since log log 4 = 1. log∗ 16 = 3,
log∗ 65536 = 4, and log∗(265536) = 5. Notice that 265536 is larger than the number of atoms
in the universe, and therefore, for all practical purposes, log∗ n ≤ 5!!).

The proof of this is in two parts. We only show the first part of this: given any #NC1

circuit, one can construct a sequence of polynomially many 3× 3 matrices such that

• the entries of each matrix is either constants available to the circuit (i.e., 0, 1, or
−1) or an input variable,

• letting P be the product of all these matrices,

P =

 1 X 0
0 1 0
0 0 1

 ,
where X is equal to the output of the #NC1 circuit.

Prove the above statement (the proof of this has the same overall structure as the
Barrington’s proof—only now you need to work with 3× 3 matrices instead of 5-cycles).
(15 marks)

As an aside, show that the problem of computing product of 3 × 3 matrices over
integers is AC0-complete for #NC1. (5 marks)

We now turn our attention to investigating the structure of AC0-complete sets for
NC1. The same proof will carry over to other classes. Let A be an AC0-complete set for
NC1 and B ∈ NC1. We aim to show that there exists an NC0 reduction of B to A. Define
set B̂ as accepted by the following algorithm:

On input x, let x = 1d01k0y. Reject if k does not divide |y|. Otherwise, let
y = u1u2 · · ·uq with |ui| = k for every i. Let vi = 1 if the number of ones in ui

equals zero modulo d, otherwise vi = 0. Let v = v1v2 · · · vq. Accept iff v ∈ B.

Show that B̂ ∈ NC1. (5 marks)

Let the AC0-circuit family {Cn}n≥1 compute the reduction f of B̂ to A. Define a

reduction h of B to B̂ so that f ◦ h can be computed by an NC0-circuit family. (20
marks)
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Hint: see http://www.cse.iitk.ac.in/users/manindra/isomorphism/non-uniform-ac0-iso.pdf
for ideas on how to prove it. The definition of B̂ above is different from the one in the
paper. This is deliberate! You must use this definition.
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