LOG DEPTH CIRCUITS FOR
DIVISION AND RELATED PROBLEMS

Paul W. Beame
Stephen A. Cook
H. James Hoover

Department of Computer Science
University of Toronto
Toronto, Ontario, Canada M5S 1A4

Abstract: We present optimal depth Boolean cir-
cuits (depth O(logn)) for integer division, power-
ing, and multiple products. We also show that these
three problems are of equivalent uniform depth
and space complexity. In addition, we describe an
algorithm for testing divisibility that is optimal for
both depth and space.

1. Introduction

It is a well known fact that addition, subtrac-
tion and multiplication on modern computers are
significantly faster operations than division. Cir-
cuit designers have been unable to match the
efficiency of the circuits for addition and multipli-
cation in division circuits. Until recently there
seemed to be some theoretical justification for this
inability since the best known circuits for the first
three problems have O(logn) depth but division ap-
peared to have only O((log n)?) depth circuits.

Reif [Re83] reduced the division depth to
O(logn (loglogm)?) using a circuit for computing
the product of n?M) n-bit integers mod 2" +1,
based on Fourier interpolation and evaluation. This
circuit had slightly more than polynomial size, but
a revised version of the result [Re84] yields polyno-
mial size and O(logn loglogn) depth circuits for
the same problem.

We present simple circuits of depth O(logn)
and polynomial size, using Chinese remaindering,
for the division of two mn-bit integers and for the
product of n n-bit integers. Since the circuits we
consider allow gates with fan-in at most two, our
division and iterated product circuits are optimal
in depth up to a constant factor.

Besides circuit depth complexity we are also
interested in the deterministic space complexity of
division. Borodin [Bo77] showed that if for all n a
problem can be solved for n input bits by a circuit
of depth O(D(n)) then it can be solved in space
0O(D(n)), provided the circuits are "log-space uni-
form" (i.e. some Turing machine, given any n on its
input tape, can generate a description of the cir-
cuit for n inputs in logm space). Since Reif's cir-

0272-5428/84/0000/0001801.00 © 1984 IEEE

cuits mentioned above are log-space uniform, it fol-
lows that integer division has space complexity
O(logn loglogn). Unfortunately our circuits for
division may not quite be log-space uniform, and it
remains an open question whether division has
space complexity log n..

Motivated by this question, we prove a
number of results. First we show that the three
problems division, powering, and iterated product
are each strongly reducible to either of the others.
Thus all three have the. same uniform depth com-
plexity and the same space complexity. Next we
give a simple sufficient condition (that some ""good
modulus sequence" {M,} be log-space generable)
for the three problems to have space complexity
logn. Finally we show that the problem of testing
whether an n-bit integer is divisible by another
does indeed have wuniform depth complexity
O(logn) and hence space complexity O(logn).

2. Circuits and Uniformity

We adopt the usual definition of fan-in 2
Boolean circuit families in which the n-th circuit
has g(n) inputs and A(n) outputs where g and A
are non-decreasing polynomially bounded func-
tions. ‘With this definition depth O(logn) implies
polynomial size. Using the notion of uniformity
(see the Introduction) we can define a basic com-
plexity class:

Definition [Ru81]: The class NC! consists of all func-
tions f computable by a log-space uniform circuit
family of depth O(logn).

Thus every function in NC?! has deterministic
space complexity O(logn) [Bo77]. Using standard
methods [Sa76] it is easy to see that multiplication
of two mn-bit integers and addition of n n-bit in-
tegers are each in NC!. It remains an open ques-
tion whether division of two m-bit integers is in
NCE,

Although log-space unifermity is desirable for
theoretical reasons, there is a weaker kind of uni-
formity which provides a natural condition on cir-

cuit families. The builder of computer hardware
may simply want to have fast circuits which are
easy to comstruct. Once a circuit has been con-
structed it will be used over and over again. We
thus propose the following definition:

Definition: A family <a,> of circuits is P-uniform
provided some deterministic Turing machine can
compute the transformation 1™ -»@, in time n 0,

Some of our circuits require internal con-
stants which are polynomial-time computable but
do not appear to be log-space computable, and thus
are only P-uniform. However, even though they
may not be log-space uniform they almost are, in
that they can be generated in space
O(logn loglogn).

A useful notion of reducibility for circuits is
the following definition [Co831.

Definition: f is NC! reducible to g if and only if
there exists a log-space uniform circuit family
<a,> which computes f with depth(a,)= O(logn)
where, in addition to the usual nodes, oracle nodes
for g are allowed.

An oracle node is a node which has some sequence

Y. .. .,Y, of input edges and z,, ..., 2z, of output
edges with associated function
(z1, - 2zs) =g (Y1 - Yr)

For the purpose of defining depth, the oracle node
counts as depth llog(r+s)].

An important consequence of this definition
is that if f is NC?! reducible to g and g is comput-
able by depth O(log® n) uniform circuits then f is
also computable by depth O(log*n) uniform cir-
cuits. This applies whether "uniform” means "log-
space uniform'’ or "P-uniform".

3. Powering and Division are Equivalent

Let z,y be n-bit positive integers. The DIVI-
SION problem is to compute the nm-bit representa-

tion of
lﬂ The POWERING problem is to compute
the n?-bit representation of z* for ©=0, ..., ,n. The

following result is adapted from [Ho79].

Theorem 3.1 DIVISION is NC! reducible to POWER-
ING.

Proof: For integers z,y where 0<z<2" , 2=y <2"

we wish to compute Z| We first compute an
Y

1 1

of y7° with error <27™.

1

under-approximation ¥~
Then we compute {=z ¥~ which approximates z

Yy
with error <1, and determine which one of |t] or

l£]+1 is li}
Y

Let u=1~y 277 where =2 is an integer such
that 2/ 'sy <2/, Thus |u| sé—. Consider the series
y"1:2_~7—(1—u)‘1:2_’j(1+u+u2+ S
Set g‘_l =27 (1+u+ - - +u™1). Then
yl-gTls 2T Y eottee,

izn

using scaled arithmetic

The circuit computes lg—
Yy

of n.° bits of precision as follows:_)
(1) Determine j=2 such that 27 1<y <2’ and com-

pute sy = 1—y -7

(2) Evaluate ut? ,%=0, ..., n—1 using the n-bit
powering circuit.

(3) Compute g7 = 277 (1+u+ - - - +u™"l)

(4) Compute ¢t = 7~ ! and truncate to obtain [¢].

Note that xy 1= a7~ ! = zy~'—2 "z.

(5) Compute r=z—ylt] and determine whether l%

is It} or l¢]+1.
All of these steps have depth O(logn) except possi-

bly the powering in step (2). B

Theorem 3.2 POWERING is NC! reducible to DIVI-
SION.

Proof: Let be an n-bit integer. We want to com-
pute z° .. . 2™, We use a similar identity to the
one in the previous reduction but in reverse.

22n3+2n2

1 By ~i). i
— 22n5 - 22n (n 1)x1
28 _g 1-2 %%y i§0

Note that 3 227%(n—t) gt = g=2ngn+1 §1 (g o=2n®J
i>n =0
whichis <« — 31 (27") < L.
2 =0
The circuit for computing xo, C
ment the following procedure:
(1) Set w=227"+22% 314 compute v =22 —z

,x™ will imple-

(2) Evaluate y = l%—l using the 2n3+2n?-bit division

circuit. From the above identity it follows that
y = Z 22n2(n—i)xi_

O=i=n
(3) Read off z™™* as the bits in positions Zn?i to
2n?(i+1) —1 from the right in y.

All of these steps have depth O(logn) except possi-
bly the division in step (2). ®

4. Arithmetic Operations Modulo Small Integers

The results of this section are due to McKen-
zie and Cook [McCo84..

For z and m integers we write 2 mod m for the
unique integer ¥y such that y =z modm and
0=y <m.

Lemma 4.1 For inputs z of n bits and m < n the

z
x mod m, = or

problems of
m

computing

z~Vmod m (if an inverse exists) are all in NC!.

Proof: Consider the mod computation first.
In space O(logn) for each m<n we may compute

@ =R2°modm for i=0,...,m—1 and hardwire
n-1
them into the circuit. Let z =Y x;2*. Then
i=0
n—-1
zmodm = Y z;a,, modm. The circuit computes
i=0

n—1
y = 3 T;a;, and reduces the result mod m by sub-
i=0
tracting off in parallel the multiples of m,
O, lem,...,(n—1)ym, and choosing the appropriate
difference. Since y has O(logn) bits the circuit
has O(logn) depth.

z R
In order to compute z = [——| use the above circuit
m

and apply an NC! reduction from division to mod
computation given by Alt and Blum [AIB183]. Name-
ly, for %=0,...mn bit 2z is 1 if and only if
2(z,..x;pymodm) +z;, =m.

To compute z " 'mod m first compute ¥ = z mod m
and then in parallel multiply ¥ by each residue z
modulo m and find the z for which the result is

=lmodm. ®

Theorem 4.2 Given integers z,, .. .,Z, and p‘* =7 a
prime power where O<z,, ... ,xz, <p' the product

n
I]z; mod p* can be computed in NC'.
i=1

Proof: It is a known fact of number theory (e.g.
[Hu82]) that Zp" is cyeclic except when p=2, in
which case Zp'; is generated by 5 and 2t—1. The
basic idea of the algorithm is to hardwire in a table
of discrete logarithms for each prime power <n
and then reduce the problem to one of computing
iterated addition.

In O(logn) space it is possible to factor any
number <n and so determine whether it is a prime
power. For each plsn (p#2 or I>2) in O(logn)
space one can find a generator g for Zp'g by brute
force and then compute all powers of g up to
p'=p'~! and hardwire them into the circuit. For
each 4<2‘'=n in O(logn) space one can compute
(-1)%5° mod 2¢ for a=0,1 and 0=<b<2'? and

hardwire them into the circuit.
These tables may be used in either direction as
tables of powers or of discrete logarithms.

The algorithm then proceeds as follows:
(1) Compute the largest power, j;, of p "which
divides z; fori=1, . .. 7 in parallel.
(2) Compute y; = z,/p’ fori=t, ... ,n.
n
(3) Compute j = Y j;.
i=1
(4) Test if p#2 or pt=2,4. If either condition holds

perform A else perform B.

Part A

(8) Find each y; in the table for p’ and read
off its discrete logarithm, a,;.

n

DI

i=1
(7) Compute @& = a mod pt—p'~1

L

(8) Read off [[y; = g% mod p! from the table.

i=1

(6) Compute a

Part B
(5) Find each y; in the table for 2 and read
off its representation as powers of 2! —1 and 5,
a; and b;.
n n
(6) Computea = Y a,and b = } b,.
i=1 iz
(7) Compute & =a mod 2 and
& = b mod 22
n
(8) Read off [[y; = (—1)%5° mod 2! from the
i=1
table.
n n

(9) Compute [[=; = p? [Jy; mod p*.
by 4 A

i=1 t=1

The table look-ups can be computed in O(logn)
depth, the modulo operations are computed as in
Lemma 4.1, and the other steps can be computed
using fast iterated addition circuits in O(logn)

depth. ®
McKenzie and Cook also show how the above
circuits may be used to compute iterated products

for any small modulus by Chinese remaindering. It
is interesting to note the following:

Theorem 4.3 For n-bit integers @ and &, computing
a® mod m where m=n is in NC'.

Proof: Apply the same technique as above, taking
discrete logarithms, multiplying by & and then ex-

ponentiating mod m. ®

5. Log Depth Circuits for Division and Iterated Pro-
duct

Let =y, ...
K3
ITERATED PRODUCT problem is to compute []=z;. It

i=1

is clear that POWERING is reducible to ITERATED
PRODUCT (it is little more than a special case) and
so POWERING and DIVISION will be computable in
small depth if we can find small depth circuits for
ITERATED PRODUCT. In order to solve this problem
we will make use of Chinese remaindering and the
circuits for arithmetic operations rmodulo small in-
tegers.

, &, be n bit positive integers. The

The Chinese remainder theorem yields a pro-
cess for determining, given the values of an integer
modulo a sequence of relatively prime numbers,
the result of taking that integer modulo their pro-
duct. More formally the CHINESE REMAINDERING
problem for pairwise relatively prime integers
€y, ...,0, iz given inputs ¢y, ...,c,, and
,x mod c,, compute x mod ﬁ%*

i=1

r modcy, ... no

Lemma 5.1 CHINESE REMAINDERING for pairwise re-

latively prime ¢,, .. .,c, where 1<c,;< - - <c, =n?

is NC' reducible to the problem of computing
3

c = []e,.
=1

Proof:
The circuit performs:

ki3
(1) Call the oracle to obtairi ¢ = []e;.
i=1

() Compute v; = [c; by dividing ¢ by c; (by Lem-
j

ma 4.1) fori=1, . J ,n in parallel.

(3) Solve vwy;=1 (mod c;) for wy, ...

lel.

(4) Compute the interpolation constants, w; = v;w;

fori=1,...,n.

, wy, in paral-

n
(5) Compute ¥ = 3, (x mod ¢;)u; by multiplying in
i=1
parallel and then computing a series sum.
(8) For each t,0<t<nc, compute ¢, = y— tc.
(7) Set z mmod ¢ to be the unique y; such that
O=y;<c.

Since each c¢; is small, representable in O(logn)
bits, step (2) may be computed in depth O(logn),
similarly step (3) can be computed by brute force.
Steps (4) and (5) can be computed by multiplying in
parallel and then using multiple addition. Steps (6)
and (7) involve simple multiplication and then
comparisons in parallel. Each of these steps is of

depth O(logn). ®

n
If we can compute [[x; mod c; for a set of
=1 s 3
,c¢ such that [Je; > []x,,
=1 i=1
then the result of the interpolation process of

relatively prime cq, ...

kO
Chinese remaindering will give the value of [[x;

i=1
exactly. This fact and the above lemma motivate
the following definition.

Definition: A sequence M M3, - - is a good
modulus sequence if and only if there are polyno-
mials g (n) and 7 (n) such that for all n.:

() 2* < M, < 2¢()

(ii) For any prime p, p'|#M, implies that

pt=rn).

Theorem 5.2 ITERATED PRODUCT is NC! reducible to
the problem of computing any good modulus se-
quence {M, 3.

Proof: From the definition of good modulus se-

P i3
quernce it is clear that M, 2= 27> [z,
i=1

We obtain the following algorithm.
(1) Call the good modulus sequence oracle to obtain

Mo
(R) Factor M, . to obtain prime power factors ¢; = pf"
fori=1,...,s.

(3) Compute in parallel b =z; modc; for
©=1,...,nandj=1,...,s.

ki
(4) Compute b; = jlbij mod c; for j=1,.. . ,s.

i=

o
Note that b; = []=; mod c;.
i=1

n
(5) Compute []z; mod M,. using the Chinese
i=1

remaindering circuit for 24, ...,0; to obtain the
iterated product exactly.

Step (R) is brute force because the prime power fac-
tors are small and step (3) follows from Lemma 4.1.
Using Theorem 4.2 for step (4) the entire circuit

has depth O(logn). ®

The computational problem is now reduced to
finding a good modulus sequence efficiently. The
next theorem shows how this can be done.

Theorem 5.3 ITERATED PRODUCT is computable by
P-uniform Boolean circuits of depth O(logn).

Proof: In polynomial time we can find the first n
primes, p,, . . . ,p, and compute their product,

By the prime number theorem, p, = O(n logn), so
ﬁpi — 20(n]ogn)v

1=1

kO
Also trivially 2" <] p;.
i=1

n
Thus []p; for n=1,2, - - - forms a gocd modulus se-
i=1

quence.

We can compute this good modulus sequence in po-
lynomial time, hardwire the values into the circuit
and then apply Theorem 5.2 to get the desired

result. ®
Using the previous reductions we have:

Corollary 5.4 DIVISION and POWERING are comput-
able by P-uniform Boolean circuits of depth

O(logn). ™
6. Iterated Product and Powering are Equivalent

As was previously stated POWERING is easily
NC?! reducible to ITERATED PRODUCT but the redu-
cibility in reverse is far from obvious.

Theorem 6.1 ITERATED PRODUCT is NC! reducible to
POWERING.

Proof We use the reduction of ITERATED PRODUCT
to compuling a good modulus sequence.

The algorithm proceeds as follows

(1) Set z = 2% 41,

(2) Use the powering circuit to compute y = ™,

2n (2)
Note thaty = Y] ?}22'“.
i=ol ?

(3) Read off as bits in positions 2n? to

2n?+2n ~1 from the right in y.

Note that 227 > [2”

= 2",
n

By elementary arithmetic the exponent of the larg-

est power of prime p dividing n!is 3} —T—Ll—- Thus

i>0|P
s ¥ [CANPSEN)
i>0(| P r
Now each of these terms is < 1 and the terms van-
ish when p* > 2n so that the largest power p' divid-

-2

the largest power dividing [Zn

ing

Zn]
nJ satisfies p’ < 2n. From this we see that

forms a good modulus sequence

2n

forn=1,2, -
n
and so the reduction is correct. ®

Corollary 6.2 DIVISION, POWERING, and ITERATED
PRODUCT are all NC! equivalent.

7. Divisibility

Although the DIVISION problem has P-uniform
O(logn) depth circuits, it is still unclear whether
or not it has log-space uniform O(logn) depth cir-
cuits. Despite the fact that we are unable to
answer this question it is possible to find such cir-
cuits for a closely related problem, DIVISIBILITY .

Let z,y¥ be n-bit integers.
The output of the DIVISIBILITY problem is
1 ifyjz
0 otherwise.

Theorem 7.1 DIVISIBILITY is in NC!, and hence has
deterministic space complexity O(logn).

Proof: For each of n primes p,< - -+ <p, not divid-

ing y we can solve y 2 =x mod p; to obtain z;. If we
n

could compute ¥ = [[p; then, as in Lemma 5.1, we
i=1

could find the unique z such that O<z<# and

z =z, modp, for each i. Such a z would be the

only possible candidate for a solution to yz=z.

1 mod p,
% =g mod p;,j#1

n

then z = ¥, u; z; mod M.
i=1

If, in addition, O<wu;<M then z=z® for some ¢,

n
0<t <np, where z®) = Yuy =z, —t M. It follows that
i=1
ylz if and only if 3 ¢, 0<t<np, such that yz{)=x.
It is not necessary, however, to compute z (@) expli-
citly. We merely need to test the condition modulo
sufficiently many primes. Since for any ¢,
lyz®) ~z|<np, 27 *1H, it suffices for the product of
these primes to exceed mp,2"*1HM. Note that the
equation always holds modulc each of the primes
P1,Py, so that it suffices to choose additional
primes whose product exceeds np, 2" *1.

The resulting algorithm is:

(1) Find the first 3n primes.

(%) Compute y; =ymodp;

primes.

(3) Select the first n primes from those found in (1)

such that y; #0.

Note that since y <2™ it cannot have more than n

different prime factors.

In the remainder of the algorithm we designate

these primes as p;,...,Pp and the remaining

primes among the first 3n as gy, . . . ,g2,-

(4) Compute z; = zy; ! mod p; for eachi=1,.. . ,n.
n

for each of these

(5) Compute My, = [1p; mod g for each
i=1
k=1,...,2n.
Note that M, = M mod g;..
(8) Compute vy = [[p; mod q (=M, p;' mod q)
7#t

for eachi=1,...,n andk=1,...,2n.

(7) Compute w; = [[p; ! mod p; for each

Fwi
t=1,...,n.
(8) Compute wy = w; mod g for each i=1,...,n
and k=1,...,2n.
(9) Compute gy = vy wy mod g, for each
1=1,...,mandk=1,...,2n.
Note that uy; = uw; mod g,.
(10) Compute zy = z; mod gq; for each i=1,...,n
and k=1, ... ,2n.

k3
(11) Compute 2z = Yy zy4 —t M, mod g, for
i Z k
i=

each k=1, ... ,2n andf=1, ..., np,.

(18) Check if there exists a £ such that for all &,
Yr z,:(t =z mod gq;. If such at exists output 1 else
output 0.

All the operations are computed modulo small
primes in O(logn) depth and the remaining compu-
tations are simple tests in parallel which alsoc have

O(logn) depth. ®
8. Summary and Open Problems

From the O(logn) depth P-uniform circuits
for the problems presented here, using the results
of Alt [Al84], a large class of natural problems can
now be shown to have O(logn) depth circuits. It is
unknown whether any of these circuits may be
made log-space uniform, which would imply that
the problems are computable in deterministic log
space.

An interesting problem related to powering is
base conversion of integers from a fixed base, e.g.
3, to binary. This can be easily seen to have P-
uniform O(logn) depth circuits even without the
machinery presented here. All that is required is
to precompute 3% ...,3""! in binary, hardwire
them into the circuit, and on input (b,_;...b4)5

n—1)
compute Y b;3. It is an open question whether
i=0
this problem, which is reducible to powering for a
fixed base, has O(logn) depth log-space uniform
circuits when the base is not a power of 2.

The class of problems which are reducible to
the decision problem, DIVISIBILITY, may be worth
investigating since our results imply that such
problems would have log-space uniform O(logn)
depth Boolean circuits.

Finally, there is a stronger and in some ways
more natural definition of uniform than log-space
uniform. This stronger form was introduced by
Ruzzo [Ru81] and called Ug- uniform (see [Co83]).
If this condition is used to define NC!, then NC! can
be characterized simply as the class of problems
computable in time O(logn) on an alternating Tur-
ing machine. Unfortunately, it is not clear whether

all the results shown here still hold with the
stronger condition. In particular, it would be in-
teresting to know whether DIVISIBILITY, iterated
product modulo small prime powers, and the reduc-
tion of iterated product to powering, have NC! cir-
cuits in this stronger sense.

References

[Al84] Alt, H. Comparison of arithmetic functions
with respect to Boolean circuit
depth. 16th ACM STOC 1984, pp. 466~
470.

[AIB183] Alt, H., Blum, N. On the Boolean circuwit
depth of division related functions
Dept. of Computer Science, Pennsyl-
vania State University, 1983.

[Bo77] Borodin, A. On Relating time and space to
size and depth. SIAM J. Comput. 6
(1977), pp. 733-744.

[CoB3] Cook, S. A. The classificalion of problems
which have fast parallel algorithms.
Lecture Notes in Computer Science,
vol. 158 Springer-Verlag 1983.

[Ho79] Hoover, H. J. Some topics in circuit com-
plexily. M.Sc. thesis and TR-139/80,
Dept. of Computler Science, Univ. of
Toronto, Dec. 1979.

[Hu82] Hua, L. K. Introduction to NMumber Theory.
Springer-Verlag, 1882.

[McCoB4] McKenzie, P., Cook, S. A The parallel
complexity of some Abelian permu-
tation group problems. Manuscript,
March 1984.

[Re83] Reif, J. Logarithmic depth circuits for alge-
braic functions. 24th IEEE FOCS
1983, pp. 138-146.

[Re84] Reif, J. Logarithmic depth circuits for alge-
braic functions. Revised version
1984.

[RuB1] Ruzzo, W. L. On uniform circuit complexity.
JCSS 22 (1981), pp. 365-383.

[Sa78] Savage, J. BE. The complezity of computing.
Wiley, 1978.

