
Hardness vs. Randomness

Noam Nisan 1

Institute of Computer Science
Hebrew University of Jerusalem, Israel

Avi Wigderson 2

Institute of Computer Science
Hebrew University of Jerusalem, Israel

ABSTRACT

We present a simple new construction of a pseudorandom bit generator, based on the
constant depth generators of [N]. It stretches a short string of truly random bits into a
long string that looks random to any algorithm from a complexity class C (eg
P, NC, PSPACE, ...) using an arbitrary function that is hard for C.

This construction reveals an equivalence between the problem of proving lower
bounds and the problem of generating good pseudorandom sequences.

Our construction has many consequences. The most direct one is that efficient
deterministic simulation of randomized algorithms is possible under much weaker
assumptions than previously known. The efficiency of the simulations depends on the
strength of the assumptions, and may achieve P =BPP. We believe that our results are
very strong evidence that the gap between randomized and deterministic complexity is
not large.

Using the known lower bounds for constant depth circuits, our construction yields
an unconditionally proven pseudorandom generator for constant depth circuits. As an
application of this generator we characterize the power of NP with a random oracle.

1. Introduction

The fundamental idea of trading hardness for randomness is due to Shamir [Sh],
who suggested that the RSA function can be used to construct good pseudo-random
sequences. The first secure pseudo-random bit-generator was built by Blum and Micali

1 This work was done while the first author was a student in the University of California at Berkeley.

2 Supported by Israel National Academy of Science grant No. 328071, by the Alon Fellowship, and by NSF grant
CCR8612563.

- 2 -

[BlM], who used the intractability of the Discrete Logarithm function. These ideas were
generalized by Yao [Ya], who showed that any one-way permutation can be used to con-
struct generators that fool every polynomial time computation. This result gav e the first
explicit hardness-randomness trade-off: if no poly-size circuit can invert the one-way per-
mutation, then RP⊂

ε>0
∩DTIME (2n ε

). Yao’s result was recently generalized by Impagli-

azzo, Levin and Luby [ILL] who succeeded in constructing a pseudorandom generator
based on an arbitrary one-way function.

In all these papers, the generator uses the one-way function f essentially as follows:
From a random string X 0 (the seed), it computes a sequence {Xi} by Xi +1=f (Xi). The
output bits bi depend on this sequence. The heart of the argument is then showing that a
small circuit that is not fooled by the bit sequence {bi} can be used to compute f −1 , con-
tradicting its assumed hardness. A deterministic simulation of a randomized algorithm
then proceeds by trying all possible seeds X 0 .

These pseudorandom generators can all be computed by polynomial time Turing
machines, and in fact this requirement is usually considered part of the definition of pseu-
dorandom generators. While this requirement is needed for various cryptographic appli-
cations, it is not needed for "simulation of randomized algorithms" purposes, which are
the focus of interest in this paper. We thus propose to separate the requirements regard-
ing the running time of the generator form the requirements regarding the "pseudoran-
domness" (security) of its output. In this paper we will thus use the term "pseudorandom
generator" for any function whose output "looks random" (to some class of algorithms).
Of course, for our pseudorandom generators to be of any interest we will separately need
to show that they can be computed "sufficiently fast".

All of the pseudorandom generators mentioned above share the following limita-
tions:

(1) They require a strong unproven assumption. (the existence of a one-way function,
an assumption which is even stronger than P≠NP)

(2) They are sequential, and can not be applied to an arbitrary complexity class. The
only known parallel pseudorandom generator [RT] is based on a very specific func-
tion. There is no known construction of pseudorandom generators for NC that is
based on a general complexity assumption about NC.

We propose here a new construction of a generator, based on the constant depth gen-
erators of [N], which avoids both problems. This generator does not run in polynomial
time, but it can be computed sufficiently fast for our simulation purposes. The generator
can be based on the hardness of approximation of an arbitrary function in EXPTIME, and
is completely parallel and thus can be applied to other complexity classes. (To "approxi-
mate a function" means to agree with it on a large fraction of inputs -- exact definitions
appear in section 2.1). Simply, each output bit bi of the generator is computed by apply-
ing f to a subset Si of the bits in the seed X 0 . These subsets (up to exponentially many)

- 3 -

are explicitly described and have the property that every pair of them is nearly disjoint.
Here this property is the heart of ensuring the quality of the bits.

Perhaps the most important conceptual implication of this construction is that it
proves the equivalence between the problem of proving lower bounds for the size of cir-
cuits approximating functions in EXPTIME, and the problem of constructing pseudoran-
dom generators which run "sufficiently fast".

Theorem 1: For every function s, m≤s (m)≤2m the following are equivalent:

(1) For some c>0 EXPTIME cannot be approximated by circuits of size s (m c).

(2) For some c>0 there exists a Pseudo-random generator {Gm:{0, 1}m→{0, 1}s (m c)} that
runs in time exponential in m and its output looks random to any circuit of size
s (m c).

This theorem should be contrasted with the result of Impagliazzo, Levin and Luby
[ILL] showing the equivalence of proving the existence of one −way functions and con-
structing pseudorandom generators which run in polynomial time. Our construction
requires weaker assumptions but yields less efficient pseudorandom generators. This
loss, however, does not have any effect when using pseudorandom generators for the
deterministic simulation of randomized algorithms.

This construction has many implications and we describe some of them in section
three.

Hardness - Randomness tradeoff

We first show that efficient deterministic simulation of randomized algorithms is
possible under much weaker assumptions than previously known. The efficiency of the
simulation depends on the strength of the assumption; a strong enough assumption
implies P=BPP. An example of this tradeoff is:

Theorem 2: If EXPTIME cannot be approximated by polynomial size circuits then
RP⊂

ε>0
∩DTIME (2n ε

).

Comment: All our simulation results are stated for one-sided error classes, but obviously
hold for the two-sided analogs as well.

Since the assumptions required for our generator are so weak and natural, we
believe that this work provides overwhelming evidence that the gap between determinis-
tic and randomized complexity is not large.

In [Ya], the same consequence is obtained assuming one-way permutations exist, an
assumption which is stronger than NP∩Co −NP cannot be approximated by polynomial

size circuits.

Randomized Parallel Computation

Reif and Tygar [RT] considered simulation of probabilistic parallel algorithms under
intractability assumptions. They showed how to parallelize the Blum-Micali type

- 4 -

generator over a particular function (inverse mod p), and thus get a pseudorandom gener-
ator for NC assuming that this function (which is in P) cannot be approximated by NC
circuits. Under this assumption they obtain RNC⊂

ε>0
∩DSPACE (n ε). As our construction

is parallel, we can obtain:

Theorem 3: If PSPACE cannot be approximated by NC circuits then
RNC⊂

ε>0
∩DSPACE (n ε)

Randomized Constant Depth Circuits

Ajtai and Wigderson [AW] studied the simulation of probabilistic constant- depth
circuits, since for them lower bounds exist. They devised a complicated generator, based
on the proof methods of the parity lower bound, that gav e the first nontrivial simulation
result proven without any assumptions: RAC 0⊂

ε>0
∩DSPACE (n ε). Our construction

enables us to use directly the best parity lower bound [Ha] and obtain the stronger result:

Theorem 5: RAC 0⊂
c

∪DSPACE((logn)c)

This result is not based on any unproven assumptions. The only other complexity
class for which pseudorandom generators are unconditionally proven to exist is Logspace
[BNS].

Random Oracles

The power of random oracles is an old subject of interest [BG, BGS]. For a com-
plexity class C, define almost −C = {L:L ∈C A for almost all oracles A}.

Baker and Gill [BG] proved that almost −P = BPP, suggesting that BPP is the right
probabilistic analog of P. Babai [Ba] introduced the class AM (Arthur-Merlin games) and
proposed it as a probabilistic analog of NP. We justify this intuition, answering an open
question of Babai and Sipser (see [BM]).

Theorem 6: almost −NP = AM.

The proof relies on a description of almost −NP as a probabilistic, exponential size,
constant-depth circuit, and our generator. A similar consideration, together with Sipser’s
result that BPP⊂PH [Si1], implies the surprising fact that random oracles do not help the
polynomial time hierarchy.

Theorem 7: almost −PH = PH.

BPP and the Polynomial Time Hierarchy

In [Si1] Sipser showed that BPP is contained in the polynomial time hierarchy.
Gacs improved on this and showed that BPP is actually contained in Σ2∩Π2 . Using our

generator, we giv e a completely different, simple proof of this fact.

Time vs. Space and Randomness vs. Determinism

- 5 -

In [Si2] Sipser made the striking observation that efficient deterministic simulation
of probabilistic algorithms is intimately related to efficient simulation of time by space
(in a certain weak sense).

Assuming that it is possible to explicitly construct certain strong expanders, he
proved that either RP= P, or else some nontrivial space-efficient simulation of time-
bounded Turing machines is possible. (A space simulation which is significantly better
than the best unconditional bound of t (n) / log t (n) of Hopcroft, Paul and Valiant
[HPV]).

We use our generator to give a completely different proof of a slightly weaker rela-
tion, but using no unproven assumption.

Note: Since this manuscript was originally written [BFNW] have strengthened some of
the results appearing here.

2. The generator

In this section we state and prove our results for pseudorandom generators that look
random to small circuits, and thus also to time-bounded Turing machines. All the defini-
tions and theorems we give hav e natural analogues regarding pseudorandom generators
for other complexity classes such as depth-bounded circuits, etc. It is rather straightfor-
ward to make the required changes, and we leave it to the interested reader.

2.1. Definitions

Informally speaking, a pseudorandom generator is an "easy to compute" function
which converts a "few" random bits to "many" pseudorandom bits that "look random" to
any "small" circuit. Each one of the quoted words is really a parameter, and we may get
pseudorandom generators of different qualities according to the choice of parameter. For
example, the standard definitions are: "easy to compute" = polynomial time; "few" = nε

(for some 0<ε<1); "many" = n; "look random" = subpolynomial difference in acceptance
probability; and "small" = any polynomial. We wish to present a more general tradeoff,
and obtain slightly sharper results than these particular choices of parameters allow.
Although all these parameters can be freely traded-off by our results, it will be extremely
messy to state everything in its full generality. We will thus restrict ourselves to two
parameters that will have multiple purposes. The choice was made to be most natural
from the "simulation of randomized algorithms" point of view.

The first parameter we have is "the quality of the output", this will refer to 3 things:
the number of bits produced by the generator, the maximum size of the circuit the genera-
tor "fools", and the reciprocal of difference in accepting probability allowed. In general,
in order to simulate a certain randomized algorithm, we will require a generator with
quality of output being approximately the running time of the algorithm.

- 6 -

The second parameter is "the price" of the generator, this will refer to both the num-
ber of input bits needed, and to the logarithm of the running time of the generator. In
general, the deterministic time required for simulation will be exponential in the "price"
of the generator.

Definition: G={Gn:{0, 1}l (n)→{0, 1}n}, denoted by G:l→n, is called a pseudorandom
generator if for any circuit C of size n:


Pr 


C (y)=1

−Pr 

C (G (x))=1



 < 1/n

where y is chosen uniformly in {0, 1}n , and x in {0, 1}l .

We say G is a quick pseudorandom generator if it runs in deterministic time expo-
nential in its input size, G ∈DTIME (2O (l)).

We will also define an extender, a pseudorandom generator that only generates
one extra bit:

Definition: G={Gl:{0, 1}l→{0, 1}l +1} is called an n-extender if for any circuit C, of size
n:


Pr 


C (y)=1

−Pr 

C (G (x))=1



 ≤ 1/n

where y is chosen uniformly in {0, 1}l +1 , and x in {0, 1}l .

We say G is a quick extender if it runs in deterministic time exponential in its input
size, G ∈DTIME (2O (l)).

The major difference between our definition, and the "normal" definition is the
requirement regarding the running time of the algorithm: normally the pseudorandom
generator is required to run in polynomial time, we allow it to run in time exponential in
its input size. This relaxation allows us to construct pseudorandom generators under
much weaker conditions than the ones required for polynomial time pseudorandom gen-
erators, but our pseudorandom generators are as good for the purpose of simulating ran-
domized algorithms as polynomial time ones. The following lemma is the natural gener-
alization of Yao’s [Ya] lemma showing how to use pseudorandom generators to simulate
randomized algorithms:

Lemma 2.1: If there exists a quick pseudorandom generator G:l (n)→n
then for any time constructible bound t=t (n): RTIME (t)⊂DTIME (2O (l (t 2))).

Proof: The simulation can be partitioned into two stages. First, the original randomized
algorithm which uses O (t) random bits is simulated by a randomized algorithm which
uses l (t 2) random bits but runs in time 2O (l (t 2)) . This is done simply by feeding the orig-
inal algorithm pseudorandom sequences obtained by the generator instead of truly ran-
dom bits. Since the output of the pseudorandom generator looks random to any circuit of
size t 2 , and since any algorithm running in time t can be simulated by a circuit of size t 2 ,
the output of the generator will look random to the original algorithm. Thus the probabil-
ity of acceptance of this randomized algorithm will be almost the same as of the original

- 7 -

one.

In the second stage we simulate this randomized algorithm deterministically, by try-
ing all the possible random seeds and taking a majority vote. The number of different
seeds is 2l (t 2) , and for each one a computation of complexity 2O (l (t 2)) is done.

2.2. Hardness

The assumption under which we construct a generator is the existence of a "hard"
function. By "hard" we need not only that the function can not be computed by small cir-
cuits but also that it can not be approximated by small circuits. There are basically two
parameters to consider: the size of the circuit and the closeness of approximation.

Definition: Let f:{0, 1}n→{0, 1} be a boolean function. We say that f is (ε,S)-hard if for
any circuit C of size S,


Pr 


C (x)=f (x)

−1/2
 < ε/2,

where x is chosen uniformly at random in {0, 1}n .

Yao [Ya] shows how the closeness of approximation can be amplified by xor-ing
multiple copies of f. A full proof of this lemma may be found in [BH].

Lemma 2.2 (Yao) : Let f 1 , . . . , fk all be (ε,S)-hard. Then for any δ>0, the function
f (x 1

. . . xk) defined by

f (x 1
. . . xk)=

i =1
Σ
k

fi(xi) (mod 2)

is (εk+δ,δ2(1−ε)2S)-hard.

The kind of hardness we will require in our assumption is the following:

Definition: Let f={0, 1}*→{0, 1} be a boolean function. We say that f cannot be approxi-
mated by circuits of size s (n) if for some constant k, all large enough n, and all circuits
Cn of size s (n):

Pr 
Cn(x)≠f (x)

>n −k

where x is chosen uniformly in {0, 1}n .

This is a rather weak requirement, as it only requires that small circuits attempting
to compute f have a non-negligible fraction of error. Yao’s xor-lemma allows amplifica-
tion of such hardness to the sort of hardness which we will use in our construction. We
will want that that no small circuit can get any non-negligible advantage in computing f.

Definition: Let f:{0, 1}*→{0, 1} be a boolean function, and let fm be the restriction of f
to strings of length m. The Hardness of f at m, Hf(m) is defined to be the maximum inte-
ger hm such that fm is (1/hm ,hm)-hard.

The following lemma is an immediate application of Yao’s lemma.

- 8 -

Corollary 2.3: Let s (m) be any function such that m≤s (m)≤2m; if there exists a function
f in EXPTIME that cannot be approximated by circuits of size s (m), then for some c >0
there exists a function f ′ in EXPTIME that has hardness Hf ′(m)≥s (m c).

2.3. The Main Lemma

Given a "hard" function, it is intuitively easy to generate one pseudorandom bit from
it since the value of the function must look random to any small circuit. The problem is
to generate more than one pseudorandom bit. In order to do this we will compute the
function on many different, nearly disjoint subsets of bits.

Definition: A collection of sets {S 1 , . . . ,Sn}, where Si⊂{1, . . . ,l} is called a
(k,m)-design if:

(1) For all i:


Si

=m

(2) For all i≠j:


Si∩Sj

≤k

A n×l 0-1 matrix is called a (k,m)-design if the collection of its n rows, interpreted as
subsets of {1..l }, is a (k,m)-design.

Definition: Let A be a n×l 0-1 matrix, let f be a boolean function, and let x=(x 1
. . . xl) be

a boolean string. Denote by fA(x) the n bit vector of bits computed by applying the func-
tion f to the subsets of the x’s denoted by the n different rows of A.

Our generator expands the seed x to the pseudorandom string fA(x). The quality of
the bits is assured by the following lemma.

Lemma 2.4: Let m,n,l be integers; let f a boolean function, f:{0, 1}m→{0, 1}, such that
Hf(m)≥n 2; and let A be a boolean n×l matrix which is a (logn,m) design. Then G:l→n
given by G (x)=fA(x) is a pseudorandom generator.

Proof: We will assume that G is not a pseudorandom generator and derive a contradic-
tion to the hardness assumption. If G is not a pseudorandom generator then, wlog, for
some circuit C, of size n,

Pr 

C (y)=1

−Pr 

C (G (x))=1

 > 1/n,

where x is chosen uniformly in {0, 1}l , and y is chosen uniformly in {0, 1}n . We first
show, as in [GM] and in [Ya], that this implies that one of the bits of fA(x) can be pre-
dicted from the previous ones.

For any i, 0≤i≤n, we define a distribution Ei on {0, 1}n as follows: the first i bits are
chosen to be the first i bits of fA(x), where x is chosen uniformly over l bit strings, and the
other n −i bits are chosen uniformly at random. Define

- 9 -

pi=Pr 

C(z)=1



where z is chosen according to the distribution Ei . Since p 0−pn > 1/n, it is clear that for
some i, pi −1−pi > 1/n 2 . Using this fact we will build a circuit that predicts the i’th bit.

Define a circuit D, which takes as input the first i −1 bits of fA(x), y 1 , . . . ,yi −1 , and
predicts the i’th bit, yi . D is a probabilistic circuit. It first flips n −i +1 random bits,
ri , . . . ,rn . On input y=<y 1 , . . . ,yi −1>, it computes C(y 1 , . . . ,yi −1 ,ri , . . . ,rn). If this
evaluates to 1 then D will return ri as the answer, otherwise it will return the complement
of ri . As in [Ya] it can be shown that

Pr 
Dn(y 1 , . . . ,yi −1)=yi

−
2
1

>
n 2

1

where the probability is taken over all choices of x and of the random bits that D uses. At
this point an averaging argument shows that it is possible to set the private random bits
that D uses to constants and achieve a deterministic circuit D′ while preserving the bias.

By now we hav e constructed a circuit that predicts yi from the bits y 1 , . . . ,yi −1 . To
achieve a contradiction to the hardness assumption we will now transform this circuit into
a circuit that predicts yi from the bits x 1 , . . . ,xl . W.l.o.g. we can assume that yi depends
on x 1 , . . . ,xm , i.e.

yi=f (x 1
. . . xm)

Since yi does not depend on the other bits of x, we can rewrite

Pr 
Dn(y 1 , . . . ,yi −1)=yi



where x is chosen at random, as the average over all possible choices of xm +1
. . . xl of the

same expression where only x 1
. . . xm are chosen at random. It follows that for some

particular choice of values cm +1
. . . cl for xm +1

. . . xl , setting xj=cj for all m<j≤l pre-
serves the prediction probability.

At this point, however, each one of the bits y 1 , . . . ,yi −1 depends only on at most
logn of the bits x 1 , . . . ,xm . This is so since the intersection of the set of xk ′s defined by
yi and by yj is bounded from above by logn for each i≠j. Now we can compute each yi

as a CNF (or DNF) formula of a linear (in n) size over the bits it uses. This gives us a cir-
cuit D′′(x 1 , . . . xm) that predicts yi which is f (x 1 , . . . ,xm). It is easy to check that the
size of D′′ is at most n 2 , and the bias achieved is more than n −2 , which contradicts the
assumption that Hf(m)>n 2 .

2.4. Construction of Nearly Disjoint Sets

This section describes the actual construction of the designs that are used by the
pseudorandom generator. In the construction of the generator, we are given a "hard"
function f with a certain "hardness", Hf , and we wish to use it to generate a pseudoran-
dom generator G:l→n. Our aim is to minimize l, that is to get a pseudorandom generator

- 10 -

that uses the smallest number of random bits. If we look at the requirements of lemma
2.4, we see that we will require a (logn,m)-design, where m must satisfy Hf(m)≥n 2 . This
basically determines a minimum possible value for m. The following lemma shows that l
need not be much larger than m.

Lemma 2.5: For all integers n and m, such that logn≤m≤n, there exists an n×l matrix
which is a (logn,m)-design, where l=O (m 2). Moreover, the matrix can be computed by a
Turing machine running in space O (logn).

Proof: We need to construct n different subsets of {1 . . . l} of size m with small intersec-
tions. Assume, wlog, that m is a prime power, and let l=m 2 . (If m is not a prime power,
pick, e.g., the smallest power of 2 which is greater than m; this can at most double the
value of m) Consider the numbers in the range {1 . . . l} as pairs of elements in GF (m),
i.e. we construct subsets of {<a,b > 


a,b ∈GF (m)}. Giv en any polynomial q on GF(m),

we define a set Sq={<a,q (a)>

a ∈GF (m)}. The sets we take are all of this form, where

q ranges over polynomials of degree at most logn. The following facts can now be easily
verified:

(1) The size of each set is exactly m.

(2) Any two sets intersect in at most logn points.

(3) There are at least n different sets (the number of polynomials over GF (m) of degree
at most logn is m logn+1≥n).

It should be noted that all that is needed to construct these sets effectively is simple
arithmetic in GF (m), and since m has a length of O (logn) bits, everything can be easily
computed by a log-space bounded Turing machine.

It can be shown that the previous design is optimal up to a factor of logn, i.e. for
given m and n, l is within a log factor of the design with the smallest value of l. For most
values of m this small added factor is not so important, however for small values of m we
may wish to do better. One way to achieve a better design for small values of m is to con-
sider multivariate polynomials over finite fields. These multinomials may define sets in a
similar manner as in the previous design, and for small values of m, l can be reduced up
to about mlogm. We leave the details to the interested reader.

A case of special interest is m =O (logn). In this case it is possible to reduce l also to
O (logn). We do not have an explicit construction for this, however we note that such a
design can be computed in polynomial time.

Lemma 2.6: For all integers n and m, where m=Clogn, there exists a n×l matrix which
is a (logn,m)-design where l=O (C 2logn). Moreover, the matrix can be computed by a
Turing machine running in time polynomial in n.

Proof: The Turing machine will greedily choose subsets of {1, . . . ,l} of cardinality m,
which intersect each of the previously chosen sets at less than logn points. A simple
counting argument shows that it is always possible to choose such a set, whatever the pre-
vious sets that were chosen are, as long as there are at most n such sets. (A random

- 11 -

subset of size size m is expected to intersect a single given set of size m in m 2 /l points;
the probability that the intersection is more than, say, twice as large can be bounded by
1/n using Chernoff bounds.) The running time is polynomial since we are looking at
subsets of O (logn) elements.

2.5. Main Theorem

The main theorem we get is a necessary and sufficient condition for the existence of
quick pseudorandom generators.

Theorem 1: For every function s, l≤s (l)≤2l the following are equivalent:

(1) For some c >0 some function in EXPTIME cannot be approximated by circuits of
size s (l c).

(2) For some c >0 there exists a function in EXPTIME with hardness s (l c).

(3) For some c >0 there exists a quick s (l c)-extender G:l→l +1.

(4) For some c >0 there exists a quick pseudorandom generator G:l→s (l c).

Note: We assume here that (s (l))c≤s (l c) (as is true for most functions of interest as size
bounds), otherwise the expression s (l c) should be changed everywhere to s (l c)c .

Proof:

(1) -> (2) is corollary 2.3.

(4) -> (3) is trivial.

(3) -> (1) 1 Let G={Gl} be an extender as in (3). Consider the problem of "Is y in
the range of G?". It can be easily seen that this can be computed in exponential time;
however, no circuit of size s (l c) can compute it since that circuit would distinguish
between the output of G and between truly random strings. If G happens to be 1-1 then it
is also clear that no circuit of size s (l c) can even approximate this language. However, if
G is not 1-1 then in order to obtain a function which cannot even be approximated we
will require the following fact which developed from the work on random-self-
reducability: If every function in EXPTIME can be approximated to within 1/n 2 by cir-
cuits of size s (n) then every function in EXPTIME can be computed exactly by circuits
of size s (n)poly (n). The proof of this fact proceeds by taking the multi-linear extension
of the function, and using the radnom-self-reducability of the extension to correct errors.
See [BFNW] for details and references.

The main part of the proof is, of course, (2) -> (4). Let f be a function in EXPTIME
with hardness s (l c). We build a quick pseudorandom generator G:l→n, for n=s(m c/4):
For every n let An be the matrix guaranteed by lemma 2.5 for m=l 1/2 . Notice that this is

1 Our original paper contained an error in the proof of this implication (which is the converse
of the main result.) The error was pointed to us by Oded Goldreich. The correction appearing
here uses an idea from [BFNW].

- 12 -

an n×l matrix which is a (logn,m)-design. Notice also that, by our choice of parameters,
Hf(m)>n 2 . Thus, by lemma 2.4, the function Gn(x)=fAn

(x) is a pseudorandom generator.

G={Gn} is a quick pseudorandom generator simply since f is in EXPTIME.

This theorem should be contrasted with the known results regarding the conditions
under which polynomial time computable pseudorandom generators exist. Impagliazzo,
Levin and Luby [ILL] prove the following theorem:

Theorem ([ILL]): The following are equivalent (for any 1>ε>0):

(1) There exists a 1-way function.

(2) There exists a polynomial time computable pseudorandom generator G:n ε→n.

The existence of polynomial time computable pseudorandom generators seems to be
a stronger statement, and requires apparently stronger assumptions than the existence of
"quick" pseudorandom generators.

3. Main Corollaries

3.1. Sequential Computation

The major application of the generator is to allow better deterministic simulation of
randomized algorithms. We now state the results we get regarding the deterministic sim-
ulation of BPP algorithms.

Theorem 2: If there exists a function computable in DTIME (2O (n)),

(1) that cannot be approximated by polynomial size circuits. Or,

(2) that cannot be approximated by circuits of size 2n ε
for some ε>0. Or,

(3) with hardness 2εn for some ε>0.

Then

(1) BPP⊂
ε>0
∩DTIME (2n ε

).

(2) BPP⊂DTIME (2(logn)c

) for some constant c.

(3) BPP=P.

respectively.

Note: Here we mean that for i =1, 2, 3, assumption i implies conclusion i.

Proof: using theorem 1, (1) implies the existence of a quick pseudorandom generator
G:n ε→n for every ε>0, and (2) implies the existence of a quick pseudorandom generator
G:(logn)c→n for some c >0. (3) implies the existence of a quick pseudorandom genera-
tor G:Clogn→n for some C>0. This can be seen by modifying the proof of theorem 1 as
to use the design specified in lemma 2.6 instead of the "generic" design (lemma 2.5). The
simulation results follow by lemma 2.1.

- 13 -

3.2. Parallel Computation

The construction of the generator was very general, it only depended on the exis-
tence of a function that was hard for the class the generator is intended for. Thus we can
get similar simulation results for other complexity classes under analogous assumptions.
We will now state the major simulation results we get for parallel computation.

Theorem 3: If there exists a function in PSPACE that

(1) cannot be approximated by NC circuits. Or

(2) cannot be approximated by circuits of depth n ε (for some constant ε>0).

Then

(1) RNC⊂
ε>0
∩DSPACE (n ε).

(2) RNC⊂DSPACE (polylog).

Respectively.

Note: Here we mean that for i =1, 2, assumption i implies conclusion i.

Proof: The proof is the straightforward adaptation of our pseudorandom generator to the
parallel case. The important point is that the generator itself is parallel, and indeed in the
proof of the main lemma, the depth of the circuit C increases only slightly.

3.3. Constant Depth Circuits

A special case of interest is the class of constant depth circuits. Since for this class
lower bounds are known, we can use our construction to obtain pseudorandom generators
for constant depth circuits that do not require any unproven assumption. These results
appear also in a previous paper of ours [N] with more complete proofs and some exten-
sions.

Our generator is based on the known lower bounds for constant depth circuits com-
puting the parity function. We will use directly the strongest bounds known due to Has-
tad [Ha].

Theorem (Hastad): For any family {Cn} of circuits of depth d and size at most 2n d +1
1

,
and for all large enough n:


Pr 

Cn(x)=parity (x)
−1/2

 ≤ 2n d +1
1

When x is chosen uniformly over all n-bit strings.

Applying to this our construction we get:

Theorem 4: For any integer d, there exists a family of functions: {Gn:{0, 1}l→{0, 1}n},
where l =O ((logn)2d +6) such that:

(1) {Gn} can be computed by a log-space uniform family of circuits of polynomial size
and d +4 depth.

- 14 -

(2) For any family {Cn} of circuits of polynomial size and depth d, for any polynomial
p (n), and for all large enough n:


Pr 

Cn(y)=1
 − Pr 

Cn(Gn(x))=1


≤

p (n)
1

where y is chosen uniformly in {0, 1}n , and x is chosen uniformly in {0, 1}l .

Proof: Again Gn=fAn
where f is the parity function, and An is the design described in

section 2.3 for m=(logn)d +3 . Notice that: (1) the generator can be computed by polyno-
mial size circuits of depth d +4 since it is just the parity of sets of bits of cardinality
(logn)d +3 . (2) All the considerations in the proof of correctness of the generator apply
also to constant depth circuits. In particular the depth of the circuit C in the proof of
lemma 2.4 increases only by one.

We can now state the simulation results we get for randomized constant depth cir-
cuits. Denote by RAC 0 (BPAC 0) the set of languages that can be recognized by a uni-
form family of Probabilistic constant depth, polynomial size circuits, with 1-sided error
(2-sided error bounded away from 1/2 by some polynomially small fraction).

Theorem 5:

BPAC 0 , RAC 0 ⊂
c

∪DSPACE ((logn)c)

and

BPAC 0 , RAC 0 ⊂
c

∪DTIME (2(logn)c

)

Denote by #DNF the problem of counting the number of satisfying assignments to a
DNF formula, and by Approx-#DNF the problem of computing a number which is within
a factor of 2 (or even 1+n −k) from the correct value. Clearly #DNF is #P complete.
However, our results imply that:

Corollary 3.1: Approx-#DNF ∈ DTIME (2(logn)14

)

Proof: Karp and Luby [KLu] give a probabilistic algorithm for Approx-#DNF that with
high probability outputs a number which is within a factor of 2 of the the number of satis-
fying assignments. It is not difficult to see that this algorithm can be implemented by a
random-AC 0 circuit of depth 4. The output of our generator may be used by this circuit
instead of truly random bits without significantly changing the probability that the output
of the circuit is in any fixed range. (Since otherwise we could add a comparator to the
circuit and obtain a 1-bit constant depth circuit that distinguished between random and
pseudorandom strings.)

- 15 -

3.4. Random Oracles

The existence of our pseudorandom generator for constant depth circuits has impli-
cations concerning the power of random oracles for classes in the polynomial time hierar-
chy.

Let C be any complexity class (e.g. P, NP, ...). As in [BM] we define the class
almost −C to be the set of languages L such that:

Pr 

L ∈C A


=1

where A is an oracle chosen at random. The class almost −C can be thought of as a natu-
ral probabilistic analogue of the class C.

The following theorem is well known ([Ku], [BG]), and underscores the importance
of BPP as the random analogue of P:

Theorem: BPP=almost-P

Babai [Ba] introduced the class AM. An AM Turing machine is a machine that may
use both randomization and nondeterminism, but in this order only, first flip as many ran-
dom bits as necessary and then use nondeterminism. The machine is said to accept a lan-
guage L if for every string in L the probability that there exists an accepting computation
is at least 2/3, and for every string not in L the probability is at most 1/3 (the probability
is over all random coin flips, and the existence is over all nondeterministic choices). The
class AM is the set of languages accepted by some AM machine that runs in polynomial
time. The randomization stage of the computation is called the "Arthur" stage and the
second stage, the nondeterministic one is called the "Merlin" stage. For exact definitions
as well as motivation refer to [Ba], [BaM], also see [GS].

[BaM] and [GS] raised the question of whether AM=almost-NP? This would
strengthen the feeling that AM is the probabilistic analogue of NP. Our results imply that
this is indeed the case.

Theorem 6: AM=almost-NP.

Proof: We first show that AM⊂almost −NP. Giv en an AM machine we can first reduce
the probability of error such that for a given ε>0, on any input of length n, the machine
errs with probability bounded by ε4−n . An NP machine equipped with a random oracle
can use the oracle to simulate the Arthur phase of the AM machine. For any giv en input,
this machine will accept with the same probability as the AM machine. By summing the
probabilities of error over all possible inputs we get that the probability that this machine
errs on any input is at most ε. Since ε is arbitrary we get that AM⊂almost −NP.

We will now prove almost −NP⊂AM. We first prove the following fact:

Fact: If L ∈ almost-NP then there exists a specific nondeterministic oracle Turing
machine M that runs in polynomial time such that for an oracle A chosen at random:

Pr 

M A accepts L

≥2/3

- 16 -

Proof (of fact): Since there are only countably many Turing machines, some fixed
Turing machine accepts the language L on non-zero measure of oracles. By using the
Lebesgue density theorem, we see that it is possible to fix some finite prefix of the oracle
such that for oracles with this prefix the Turing machine accepts L with probability at
least 2/3. Finally, this prefix can be hard-wired into the Turing machine.

Up to this point we have only used the standard tools. The difficulty comes when
we try to simulate M (with a random oracle) by an AM machine. The difficulty lies in the
fact that the machine may access (non deterministically) an exponential number of loca-
tions of the oracle, but AM computations can only supply a polynomial number of ran-
dom bits. We will use our generator to convert a polynomial number of random bits to an
exponential number of bits that "look" random to the machine M.

Let the running time of M be n k . We can view the computation of M as a large OR
of size 2n k

of all the deterministic polynomial time computations occurring for the differ-
ent nondeterministic choices. Each of these computations can be converted to a CNF for-
mula of size 2n k

over the oracle entries. Altogether the computation of M can be written
as a depth 2 circuit of size at most 22n k

over the oracle queries.

Our generator can produce from 2n 10k random bits 22n k

bits that look random to any
depth 2 circuit of this size. So the simulation of M on a random oracle proceeds as fol-
lows: Arthur will flip 2n 10k random bits, and then M will be simulated by Merlin; when-
ev er M makes an oracle query, the answer will be generated from the random bits accord-
ing to the generator. Note that this is just a parity function of some subset of the bits,
which is clearly in P. Since the generator "fools" this circuit, the simulation will accept
with approximately the same probability that M accepts on a random oracle.

Exactly the same technique suffices to show that for any computation in PH, the
polynomial time hierarchy ([St], [CKS]), a random oracle can be substituted by an
"Arthur" phase. Applying to this the fact that BPP⊂Σ2∩Π2 (see next subsection) allows

simulation of the "Arthur" phase by one more alternation and thus we get:

Theorem 7: almost-PH = PH

3.5. BPP and the Polynomial Time Hierarchy

In [Si1] Sipser showed that BPP could be simulated in the polynomial time hierar-
chy. Gacs improved this result and showed simulation is possible in Σ2∩Π2 . In this

section we give a new simple proof of this fact.

Theorem 8 (Sipser, Gacs): BPP ⊂ Σ2∩Π2 .

Proof: Because BPP is closed under complement it suffices to show that BPP⊂Σ2 . The
main idea is that a pseudorandom generator that stretches O (logn) random bits to n pseu-
dorandom bits can be constructed in Σ2 . To simulate BPP then, a Σ2 machine will then
run over all of the polynomially many possibilities of the random seed.

- 17 -

To get such a pseudorandom generator, using our construction, we only need a func-
tion with exponential hardness (specifically we want a function on O (logn) bits with
hardness which is Ω(n 2)). Such a function can be found in Σ2: A simple counting argu-
ment shows that such a function exists (although non uniformly), and verifying that a
function on O (logn) bits has indeed a high hardness can easily be seen to be in Co-NP.
(The function can be described by a polynomial size table, and the verification can be
done by nondeterministically trying all circuits of size n 2).

Thus the simulation of BPP will proceed as follows: (1) Nondeterministically guess
a function on O (logn) bits with high hardness (first alternation). (2) Verify it is indeed
hard (Second alternation). (3) Use it as a basis for the pseudorandom generator, using our
construction. (4) Try all possible seeds.

Actually, this proves a slightly stronger statement, namely that BPP⊂ZPP NP .
(ZPP NP is the class of languages that have polynomial time, randomized, zero error algo-
rithms, using an NP-complete oracle).

3.6. Randomness and Time vs. Space

Our generator is based on the assumption that there exists a function in, say,
DTIME (2n), that can not be approximated by small circuits. In this section we show that
if this assumption does not hold then some nontrivial simulation of time by space is pos-
sible.

This result shows that either randomized algorithms can be simulated deterministi-
cally with subexponential penalty, or that, in some sense, an algorithm that runs in time T
can be simulated in space T 1−ε , for some ε>0. This simulation is significantly better than
the best known simulation of time T in space T /logT due to Hopcroft, Paul and Valiant
[HPV]. A result of a similar flavor, giving a tradeoff b etween simulation of of random-
ness by determinism and of time by space, was proved using different methods by Sipser
[Si2] under an unproven assumption regarding certain strong expanders.

Consider the following function F: On input <M,x,t > the output is a representation
of what Turing Machine M does on input x at time t. Where the representation includes
the state the machine is in and the location of the heads. Moreover, consider a language L
which encodes this function F, and let Ln be the restriction of L to strings of length n.

Hypothesis H 1(ε,n): There is a circuit of size 2(1−ε)n that computes Ln .

We will show that if hypothesis H1 is true then some non trivial simulation of time
by space is possible, and if it is false then we can use our construction to get a pseudo
random bit generator.

Lemma 3.2: If Hypothesis H 1(ε,n) is true for some ε>0 and all sufficiently large n then
for some constants C>1 and ε′>0, and for every function T (n)=Ω(C n),
DTIME (T (n))⊂DSPACE (T 1−ε′(n)).

- 18 -

(This result is similar to results in [KLi] "translating" non-uniform upper bounds to
uniform ones.)

Lemma 3.3: If for every ε>0, Hypothesis H 1(ε,n) is false for all sufficiently large n,
then for every ε>0 and every c>0, there exists a polynomial time generator that converts
n ε truly random bits to n bits that look random to any circuit of size n c .

Proof (of lemma 3.2): We will show that (1) if for some ε>0 Hypothesis H 1(ε,n) is true
for all n then L ∈DSPACE (2(1−ε)n) and that (2) this implies the lemma.

(1) A space-efficient algorithm for L is as follows: The machine tries all circuits of size
2(1−ε)n ; for each one it checks whether this is indeed the circuit for Ln . Once it finds
the correct circuit, it uses it to look up the answer. Note that checking whether the
circuit is the correct one is easy, since it only needs to be consistent between consec-
utive accesses to the same cell.

(2) Consider any Turing machine M running in DTIME (T (n)) where T (n)=2t (n) .
Whether the Turing machine accepts or not can be derived from the value of
F (<M,x,T (n)>) which is encoded by Lm , where m is the size of the input which in
this case is n +t (n)+K, where K (a constant) is the length of the description of M.
This can be computed in DSPACE (2(1−ε)m). For proper choices of C and ε′,
(1−ε)m≤(1−ε′)t (n), and the lemma follows.

Note: Actually a stronger statement can be made, as under the assumption H1 the simula-
tion mentioned can even be performed in Σ2−TIME (T (1−ε)(n)).

Proof (of lemma 3.3): First note that if H 1(ε,n) is false then every circuit of size 2n/2

errs on at least 2−εn fraction of the inputs, since otherwise there would be at most 2(1−ε)n

errors which could be corrected by a table. Next, Yao’s Xor lemma (lemma 2.2) allows
amplification of the unpredictability by Xoring disjoint copies of L: for any constant c′,
(assuming ε is small enough,) there exists a constant d so that by taking 2dεn disjoint
copies, we get a function over N =n 2dεn variables such that every circuit of size, say, 2n/4

cannot achieve bias of better than N −c′ . Thus this new fuction has hardness H (N)≥N c′ .
This hardness suffices (by theorem 1) for a constructing a pseudorandom generator as
required by the lemma.

The exact statement of the theorem we obtain is thus:

Theorem 9: One of the 2 following possibilities holds:

(1) BPP⊂
ε>0
∩DTIME (2n ε

).

(2) There exist ε>0 and C>1 such that for any function T (n)=Ω(C n), every language in
DTIME (T (n)) has an algorithm for it that for infinitely many n, runs in SPACE
(actually even Σ2−TIME) T (1−ε)(n) on all inputs of length n.

Proof: If for every ε>0 Hypothesis H 1(ε,n) holds for only finitely many n then lemma
3.3 assures the existence of pseudorandom generators stretching n ε bits to n bits, and by
lemma 2.1 (1) is true. Otherwise the algorithm in the proof of lemma 3.2 will work for

- 19 -

some ε>0 and infinitely many nwhich implies (2).

4. Acknowledgements

We would like to thank Laszlo Babai for suggesting AM=almost-NP? as an applica-
tion of our result. We thank Silvio Micali for allowing us to steal the title of his Ph.D. the-
sis. We thank Oded Goldreich for pointing out an error in a previous version of this
paper.

5. References

[AW] M. Ajtai and A. Wigderson, "Deterministic simulation of Probabilistic constant
depth circuits", 26th FOCS, pp. 11-19, 1985.

[Ba] L. Babai, "Trading group theory for randomness", 17th STOC, pp. 421-429,
1975.

[BG] C.H. Bennett and J. Gill, "Relative to a random oracle A, P A≠NP A≠Co −NP A

with probability 1", SIAM J. Comp. 10, 1981.

[BaM] L. Babai and S. Moran, "Arthur Merlin games: a randomized proof system, and a
hierarchy of complexity classes", JCSS 36(2), pp. 254-276, 1988.

[BFNW]L. Babai, L. Fortnow, N. Nisan and A. Wigderson, "BPP has weak subexponen-
tial simulations unless EXPTIME has publishable proofs", proceedings of struc-
tures in complexity theory, 1991.

[BH] R. Boppana and R. Hirschfeld, "Pseudorandom generators and complexity
classes", In "Randomness and Computation", volume 5, Editor S. Micali, of
Advances in Computing Research, JAI Press, Greenwich, 1989, 1--26.

[BM] M. Blum and S. Micali, "How to generate cryptographically strong sequences of
pseudo random bits", 23rd FOCS, pp. 112-117, 1982.

[BNS] L. Babai, N. Nisan and M. Szegedy, "Multiparty protocols and logspace hard
pseudorandom sequences", 21st STOC, pp. 1-11, 1989.

[CKS] A. Chandra, D. Kozen and L. Stockmeyer, "Alternation", J. ACM 28, 1981.

[FLS] M. Furst, R.J. Lipton and L. Stockmeyer, "Pseudo random number generation
and space complexity", Information and Control, Vol. 64, 1985.

[GM] S. Goldwasser and S. Micali, "Probabilistic Encryption", JCSS Vol. 28, No. 2,
1984.

[GS] S. Goldwasser and M. Sipser, "Private coins vs. public coins in interactive proof
systems", 18th STOC, pp. 59-68, 1986.

[Ha] J. Hastad, "Computational limitations for small depth circuits", Ph.D. thesis,
M.I.T. press, 1986.

- 20 -

[HPV] J. Hopcroft, W. Paul and L. Valiant, "On time versus space and related prob-
lems", 16th FOCS, 1975.

[ILL] R. Impagliazzo L. Levin and M. Luby, "Pseudorandom generators from any one-
way function", 21st STOC, 1989.

[KLi] R. M. Karp and R. Lipton, "Turing machines that take advice", Enseign. Math.
28, pp. 191-209, 1982.

[KLu] R.M. Karp and M. Luby, "Monte-Carlo algorithms for enumeration and reliabil-
ity problems", 24th FOCS, pp. 56-64, 1983.

[Ku] S. A. Kurtz, "A note on randomized polynomial time, SIAM J. Comp., Vol. 16,
No. 5, 1987.

[N] N. Nisan. "Pseudo random bits for constant depth circuits", Combinatorica,
11(1), pp. 63-70, 1991.

[RT] J.H. Reif and J.D. Tygar, "To wards a theory of parallel randomized computa-
tion", TR-07-84, Aiken computation lab., Harvard university, 1984.

[Si1] M. Sipser, "A complexity theoretic approach to randomness", 15th STOC,
330-335, 1983.

[Si2] M. Sipser, "Expanders, Randomness, or Time vs. Space", Structure in Complex-
ity Theory, Lecture notes in Computer Science, No. 223, Ed. G. Goos, J. Hart-
manis, pp. 325-329.

[Sh] A. Shamir, "On the generation of cryptographically strong pseudo-random
sequences", 8th ICALP, Lecture notes in Comp. Sci. 62, Springer-Verleg, pp.
544-550, 1981.

[St] L. Stockmeyer, "The polynomial time hierarchy", Theor. Comp. Sci. 3, No. 1,
1976.

[Ya] A.C. Yao, "Theory and applications of trapdoor functions", 23rd FOCS, pp.
80-91, 1982.

