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Abstract

Non-Linear Dimensionality Reduction (NLDR) techniques such as ISOMAP, LLE, Lapla-

cian Eigenmaps etc. attempt to estimate low-dimensional latent descriptors for data assumed

to be drawn from an m-dimensional manifold in an ambient n-dimensional space. Out-of-

Sample Extension - the problem of estimating the latent vectors for novel data - has attracted

considerable attention in the literature. In this thesis, we consider the opposite problem,

that of reconstructing new high-dimensional points, given a novel latent-vector in a previ-

ously discovered embedding. Such a procedure finds relevance in applications such as video

interpolation or robot motion planning.

Some global methods can be applied to the problem, but these are polynomials on the

total number of data points N resulting in a complexity of O(N3), where N is often in the

thousands. In contrast, we propose a Local Quadrature Reconstruction approach that looks

at only the local k-neighbourhood for which the complexity reduces to O(k3) (k may be about

10). LQR achieves low error by estimating the second order error terms based on a second

order differential geometric formulation for a small neighbourhood around the query point on

the manifold. Main features of LQR include its fast reconstruction time and lack of a training

phase, but since k increases as O(m2) it is currently limited to manifolds with low intrinsic

dimension. Performance analysis of LQR on several point and image sets is presented, and a

possible application for frame interpolation on videos is also studied.
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Chapter 1

Manifolds and Dimensionality

Reduction

1.1 Introduction

With the manufacture of exceedingly cheaper sensors in the last few decades, many real world

applications work with high-dimensional data such as high-resolution images, speech signals,

biomedical data etc. However, many of these sets have only a few underlying modes of vari-

ablity or degrees of freedom and hence lie on or near a smooth low-dimensional manifold

embedded in a high-dimensional ambient space. For example, consider a set of N images,

each of size p × q, of a disk in a plane with the disk taking an arbitrary position in each

image (fig. 3.10). Here each image lies in Rpq (since there are pq pixels), but the dataset

as a whole has only 2 degrees of freedom - the image coordinates of the center of the disk.

Hence, we say that these images are sampled (with noise) from a 2-dimensional manifold in

Rpq. Manifold Learning is the process of learning the structure of such manifolds from a

set of sampled points. Dimension Reduction is also closely related to manifold learning and

attempts to recover a low-dimensional representation of the data such that some geometrical

or topological properties (such as pairwise distances) between the points are preserved. These

low-dimensional codes are called the latent vectors of the high-dimensional data and can be

used for data visualization and feature extraction, but as a tool for efficient data storage a
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satisfactory reconstruction method is required which projects them back to the manifold in

the ambient space. In this thesis we study the problem of Out-of-Sample Reconstruction -

given a set of points sampled from an m-dimensional manifold M in Rn and their latent

vectors in Rm, find the inverse image xq on the manifold for a new out-of-sample latent

vector yq ∈ Rm. In simpler terms, we want to learn the non-linear function which takes

points from the latent space to the manifold from a few known samples. Such a method can

then be used for frame interpolation and reconstruction in the image domain, or for gener-

ating novel views of an object, or in robot motion planning for testing if a path is collision-free.

Principal Components Analysis (PCA) is the simplest dimension reduction technique

which projects the data onto an m-dimensional linear subspace in the direction of maximum

data variance. It provides a straightforward out-of-sample reconstruction method - since we

have the basis vectors off the linear subspace we have the explicit mapping which takes latent

vectors to the manifold. However, PCA fails to provide accurate embeddings/reconstruction

for manifolds which are not isometric to a plane. Non-linear techniques are able to find good

low-dimensional representations of arbitrary smooth manifolds, but dont provide a mapping

between the two spaces for reconstruction. One fast and simple approach [1] for reconstruc-

tion is to express yq as the weighted combination of its known neighbours yi ∈ Rm, and using

the same weights to construct xq from the same points xi ∈ Rn. This is equivalent to fitting

a plane over a small neighbourhood on the manifold, and linearly interpolating the new point

on it. Unless the sampling density is high or the manifold curvature low this assumption of

linearity generally does not work well. Specifically, for image manifolds linearly interpolated

reconstructed images have a high amount of blurring.

More sophesticated procedures have been suggested for general manifolds as well as image

manifolds in [2] and [3]. However, both these methods rely on learning global functions in

terms of the latent vectors using regression, and involve a computationally heavy training

step. A natural way to reduce the computation time for these algorithms is to use only a

small neighbourhood around the query point instead of the entire manifold. Specifically, the

question we want to address is - can we improve over over simple linear interpolation by
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performing higher order regression on a local patch on the manifold?

The contribution of this work is an out-of-sample reconstruction technique called Local

Quadrature Reconstruction (LQR). We apply a differential geometric model, called a

Quadrature Embedding, over a small neighbourhood on the manifold. Regressing over the

known points in the neighbourhood we can generalize the model to unseen points and use it

for reconstruction. A general second order model of the data has mn unknown parameters,

which can be prohibitively high for some situations. These parameters represent the effect of

curvature of the manifold in the neighbourhood under consideration. Instead of approximat-

ing all the curvatures along all dimensions, we find a basis set along which variance of the

data is maximum using PCA and retain only m+ d components. If the sampling density is

sufficiently high, we can assume that the first m components span the tangent space at p and

the next d are the normal to the tangent plane and describe the effect of curvature around

p. To summarize, suppose we are given a query point yq and let p be its nearest neighbour’s

image on the manifold. We first find zq the projection of the desired reconstruction along

the tangent space at p using linear interpolation. Next, we estimate the principal curvatures

κ1, κ2, ...κm along each of the d normal components by regressing with the tangent space

projections as the independent variables. We need a total of k > 2m +
(
m
2

)
+ 1 points in

the neighbourhood to solve the regression and computational complexity of the algorithm is

O(k3 + kNm+ n(m+ d)) which is comparable to simple linear interpolation.

The main feature of LQR is its computation speed, and the lack of the requirement of a

separate training procedure. Its limitation is that the minimum number of neighbourhood

points required increases as m2 due to which it does not generalize well to manifolds with high

intrinsic dimension. We show the performance of Local Quadrature Reconstruction on both

point sets (Swiss Roll, Spiral) and image sets (Teapot, Disk, Robot-Arm). Most reconstruc-

tions show an improvement over simple linear interpolation, and in each dataset the Mean

Squared Error (MSE) of LQR is lower than the MSE of linear reconstructions. At the same

time, computation time remains comparable for both, and more importantly does not scales

only linearly with number of points N , and ambient space dimension n. A natural applica-
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tion for out-of-sample reconstruction is in video compression and frame interpolation, and

we show the performance of LQR for interpolating the frames of the Foreman video sequence.

1.1.1 Notation

Vectors are denoted in bold-face alphabets x, with subscripts xi indicating indexing and

superscripts xj components. lp-norm of a vector x ∈ Rn is given by ‖x‖p= (
∑n

j=1|xj |p)1/p.

Capital alphabets X denote matrices or sets of points. Canonical vectors in Rn are written

as ei for i = 1, 2...n, where ei is 1 at the ith position and 0 elsewhere.

We useM to denote an m-dimensional manifold embedded in an n-dimensional euclidean

space Rn. Some manifolds can be endowed with a global m-dimensional coordinate system.

These coordinates lie on a submanifold S ⊂ Rm. Throughout this work we use Nk
a to denote

the k-nearest neighbours of a. Unless otherwise specified, these neighbours are found from

the set to which a implicitly belongs. Gradient of a function is written as ∇f , and the hessian

matrix as ∇2f , whose elements are given by [∇2f ]ij = ∂2f
∂xi∂xj

.

1.1.2 Organisation

The rest of this thesis is organised as follows. In the remaining part of this chapter we give

an introduction to the theory of manifolds, and a brief literature review on dimensionality

reduction and existing extension/reconstruction methods. We also introduce a differential

geometric model on the manifold we use in the development of our algorithm. In chapter 2

we motivate and describe the main algorithm for out-of-sample reconstruction, and illustrate

it on the swiss-roll manifold. Chapter 3 presents further experiments on point sets and image

sets, and an example for video frame interpolation. We conlude with a discussion in chapter 4.
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1.2 Point Set Topology, Smooth Manifolds and Tangent Spaces

We start with a brief overview of the theory of manifolds. For a more detailed study the

reader is referred to [4] or [5]. Since we draw many concepts from point set topology we first

introduce some definitions from there.

Definition 1. A Topology is a family of sets U s.t they are closed under finite intersection

and arbitrary unions.

The above definition implies that X =
⋃
U∈U U and φ (empty set) are automatically

members of U , and we call U a topology on X. Also the pair (X,U) is called a topological

space, and the members of U are called the open sets of X w.r.t to the topology U .

Definition 2. A Continuous Map between two topological spaces is a function f : (X,U)→

(Y,V) s.t. for every V ∈ V its inverse image f−1(V ) = {x ∈ X|f(x) ∈ V } is in U .

Basically, the map f is continuos if the inverse images of open sets are open. If a continu-

ous map also has a continuous inverse g : (Y,V)→ (X,U) then it is called a homeomorphism.

Finally, a subspace of (X,U) is a subset A ⊂ X whose topology is given by {A
⋂
U |U ∈ U}.

The concept of manifolds is best motivated by the real world example of the earth we

live on. Even though locally everywhere it seems to be flat, or in mathematical terms like

a 2D plane, we know that as a whole it is round, or a 3D sphere. Also, we can represent

the earth with a collection (an atlas) of several overlapping maps on paper each describ-

ing a local region, but there doesnt exist a single global 2D map which can represent it all

together. Similarly, a manifold is also a hypersurface in a high-dimensional space which is

locally homeomorphic to a lower-dimensional space.

Definition 3. An m-dimensional topological Manifold M is defined as a Hausdorff topo-

logical space with a countable basis for the topology which is locally homeomorphic to Rm.
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The last condition above implies that for any point p ∈M there is an open set U contain-

ing p which is homeomorphic to Rm. The other two conditions, that M should be Hausdorff

and have a countable basis are there to remove some special curves which are locally home-

omorphic to Rm but very wierd [4]. In this work we are concerned only with manifolds

embedded in euclidean spaces which fortunately satisfy these conditions.

A chart on a manifold is conceptually the same as a local map of the earth - it defines a

coordinate system on a local patch on the manifold. The concept of charts allow the gener-

alization of many concepts from ordinary calculus to manifolds. More precisely,

Definition 4. A Chart (U, φ) on an m-dimensional manifold M is a homeomorphism φ :

U → U ′ from an open subset U of M to an open subset U ′ in Rm.

A collection of charts (Uα, φα) on M s.t.
⋃
Uα = M is called an atlas on M. This

is analogous to the the conventional atlas which has a collection of overlapping maps of all

countries to give a representation of the entire globe.

Next we extend the notion of differentiability to manifolds. Suppose, φ1 : U1 → U ′1 and

φ2 : U2 → U ′2 be two charts on M and U12 = U1
⋂
U2 is their intersection. Then a chart

transformation φ12 : φ1(U12)→ φ2(U12) is the mapping which takes points from the range of

one chart to the range of the other chart.

Definition 5. A Smooth Atlas on a manifold M is an atlas for which all the chart trans-

formations are smooth.

Such an atlas on a manifold is also called a smooth structure, and a manifold equipped

with a smooth structure is called a smooth manifold. We use (M,A) to denote a smooth

manifoldM equipped with a smooth structure A. We have already defined continuous maps

between manifolds. Such maps are smooth as well if their composition with the charts on

the manifolds is smooth:
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Definition 6. A map f : M → N between two manifolds is called smooth at a point p on

M if the composition ϕ ◦ f ◦ φ, where ϕ and φ are charts around p and f(p), is smooth. If

f is smooth at all points on M then it is called a Smooth Map.

If the smooth map f has a smooth inverse as well, then it is called a diffeomorphism, and

two manifolds are called diffeomorphic if there exists a diffeomorphism between them.

The idea behind tangent space at a point on a manifold is intuitive enough - it is the set

of all possible directions along which one can move through that point tangentially. However,

defining it is a little tricky since we have to do it intrisically on the manifold itself. Unlike

conventional definitions in geometry, here we cannot use the ambient space around. We have

to define the tangent space in terms of the manifold itself and charts on it.

Definition 7. Consider two curves γ1 : R → M and γ2 : R → M s.t γ1(0) = γ2(0) = p

on the manifold, and let φ : U → Rm be a chart containing p. Then γ1 and γ2 are called

equivalent if the compositions φ ◦ γ1 and φ ◦ γ2 are differentiable at 0 and their derivatives

at 0 coincide. The equivalence classes defined by such an equivalence relation are called the

Tangent Vectors at p and the set of all the tangent vectors is called the Tangent Space

at p denoted by TpM.

The above definition seems to be dependent on the particular choice of the chart φ, but

it is in fact not and the tangent spaces defined by different charts at the same point coincide.

A formal definition of the tangent space in terms of function germs can be found in [4]. Fur-

thermore, TpM has a vector space structure and maps between two tangent spaces are linear.

Tangent spaces help us linearize a manifold, i.e. to each point on the manifold it as-

sociates a linear subspace. However, for a proper extension of some geometric concepts to

manifolds we still need the concept of a metric on the manifold. This is acheived by defining

Riemannian Manifolds. A riemannian manifold is a smooth manifoldM equipped with an

inner product gp over the tangent space TpM at each point p s.t. this inner product varies

smoothly from point to point. The family of inner products gp is called a Riemannian
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Metric. Submanifolds of euclidean spaces are automatically riemannian with the rieman-

nian metric here being the scalar/dot product of vectors.

1.3 Dimension Reduction

There exist several real-world datasets where the data lies in a high-dimensional space -

speech signals, image sets, fMRI data, videos. However many of these lie on or near a man-

ifold with intrinsic dimensionality much less than the dimension of the space in which they

are embedded. Dimensionality Reduction is the process of recovering a new representation

of the high-dimensional data in a euclidean space whose dimension is equal to the intrisic

dimension of the manifold. The new representation can then be used for visualization or as

features for further processing. A closely related problem is that of manifold learning which

attempts to learn the structure of the manifold explicitly (in terms of tangent spaces or other

manifold properties) [6]. Several methods have been proposed, both linear and non-linear,

and [7], [8] give a comparative review detailing their performance and applicability on several

real and artificial datasets. Here, we give a short description of some of the popular methods.

Fig. 1.1 gives an example of applyiing a Non-Linear Dimensionality Reduction (NLDR)

method called ISOMAP on an image manifold. The images show a disk-shaped robot free to

move about in a 2-d plane. The manifold has intrinsic dimension 2 and the 2-D embedding

recovered from ISOMAP is shown. It is important to note that the relationship between the

latent vectors and the images is highly non-linear. Observing the position of the disk in the

image along the two axes shows the faithfulness of the recovered embedding.

Before we begin with a description of dimensionality reduction methods we would like

to discuss the condition for which globally consistent sets of m-dimensional latent vectors of

manifolds exist. We already know that an m-dimensional manifold is locally homeomorphic

to an open subset of Rm. If in addition it is also globally homeomorphic, then we can define

a continuous mapping c : M → Rm, which gives the coordinates c(x) of any point on the
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Figure 1.1: Non-Linear Dimensionality Reduction (NLDR), Recovered 2-D ISOMAP embed-

ding of Disk dataset consisting of images of a disk-shaped robot with 2 degrees of freedom. High-

dimensional images are overlaid on top. Neighbourhood size k = 8

manifold. An example where this condition fails is that of a 3D sphere - it is a 2D manifold

embedded in R3, and any local patch on it is homeomorphic to R2. But its not globally

homeomorphic to R2, and hence no continuous global 2-dimensional coordinate system can

be assigned to points on the sphere. In this case dimensionality reduction methods which

generally preserve inter-point distances also fail. A general work-around this problem is to

cut-off a section of the manifold such that the resulting surface is homeomorphic to Rm.

Broadly, dimensionality reduction methods can be classified as either linear or non-linear.

Amongst linear methods, Principal Components Analysis (PCA) is the most popular, and if

the data is actually sampled from a plane in Rn then it can recover the plane optimally. It is

a projective method, which means it finds a linear subspace on which the data is projected to

give the low-dimensional representation. The subspace is found by an SVD on the centered

covariance matrix of the data, and amounts to finding directions along which data variance is

maximum. PCA has many desirable properties - simplicity of implementation, computation
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speed, and a mapping between both the spaces which allows for easy extension and recon-

struction. However, for many datasets no m-dimensional linear subspace exists which can

describe all the variance in the data, and PCA ends up predicting a much higher value for

the intrinsic dimensionality of the manifold than is actually the case. Other linear methods

include - Independent Components Analysis (ICA), Canonical Components Analysis (CCA),

Factor Analysis and Linear Discriminant Analysis (LDA), but all these fail for data which is

not isometric to an m-dimensional hyperplane in Rn.

Kernel-PCA (KPCA) [9] is a natural non-linear extension to PCA. It applies the ker-

nel trick to create a non-linear version of PCA, i.e the data is first projected to a high-

dimensional space where PCA is applied on it. The projection is acheived by implicitly

mapping to a high dimensional feature space F using φ : RN → F through a kernel function

K(x1,x2) = 〈φ(x1) ·φ(x2)〉. The PCA method is modified so that it only requires inner prod-

ucts and then K is used to perform PCA in F . This reduces to diagonalizing K̂ = −PKP

where P = Im− 1
m1m, normalizing the eigenvectors so that αk.αk = 1

λk
and extract principal

components of any point x by computing its projection onto the eigenvector. Using kernel

PCA, it is possible to work in the space of all possible dth order products between the data.

While PCA explicitly provides the mapping from the high-dimensional to the low-dimensional

space and vice-versa, there is no such mapping for kernel PCA. Hence, to find the embedding

of a new point on the manifold, we have to recompute all the eigenvectors, which can be com-

putationally expensive. The Nystrom method gives a way of approximating the eigenvectors

of a matrix K ∈Mn, with rank(K) = r � n, from the eigenvectors of the smaller submatrix

of K. As a result we can perform eigendecomposition of a r× r matrix rather than an n× n

matrix. For an even faster out-of-sample computation, the approximate Nystrom method

can be used in which no eigendecomposition needs to performed in the testing phase (see [7]

for details).

An important class of non-linear dimensionality reduction methods falls under the cat-

egory of spectral embedding techniques. These methods compute the low-dimensional em-
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bedding by finding eigenvectors of a specially constructed matrix. Examples include Mul-

tidimensional Scaling (MDS), ISOmetric MAPping (ISOMAP), Locally Linear Embedding

(LLE), hessian LLE, Laplacian Eigenmaps etc. Some of these are discussed in detail below.

MDS builds a low-dimensional embedding of points such that their pairwise distances

correspond to the pairwise dissimilarities in the high-dimensional data. The centering matrix

P is used to convert the dissimilarity matrix A into a matrix of inner products Â = −PAP ,

whose gram vectors are the embeddings of the high dimensional points. These gram vectors

can be found through an eigendecompostion of Â, and the results are the same as those

found through PCA on the original coordinates of the data. Similar to KPCA, MDS also

diagnolizes an inner product matrix, and hence the Nystrom method can be used to extend

it to out-of-sample points and also to speed up the process (Landmark MDS). If euclidean

distances are used as the pairwise dissimilrities between the high-dimensional points then the

procedure is called Classical MDS.

ISOMAP [10] builds on classical MDS and attempts to preserve the intrinsic geometric

structure of the data. It has been shown to give excellent performance on even highly non-

linear manifolds and proceeds in three steps. In the first step the nearest neighbours of each

point are determined, and a wieghted graph G with points as the nodes and edges between

neighbours is constructed. Second, the geodesic distances DG between all pairs of points are

computed using the shortest path metric between two points in the constructed graph. These

set of distances are converted to dot-product form by applying an operator τ which double

centres DG
2. Let λp be the pth eigenvalue (in decreasing order) of the matrix τ(DG), and vp

i

be the ith component of the pth eigenvector. Then the pth component of the embedding yi is

equal to
√
λpvp

i. If the sampling on the Manifold is dense enough, the ISOMAP algorithm

is asymptotically gauranteed to recover the true dimensionality and data structure of the

Manifold. The biggest limitation of ISOMAP is that it cannot handle out of sample data for

both the forward and reverse mappings.

LLE [1] is an unsupervised learning algorithm that computes low dimensional, neighbour-
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hood preserving embeddings of high dimensional data. Each point is expressed as a weighted

combination of its nearest neighbours, and these relationships are preserved in a gloabl low

dimensional coordinate system. The reconstruction weights can be computed in a closed

form by solving a constrained least squares problem, and the embeddings are computed by

an eigendecomposition. The weights can also be easily computed from the matrix of pairwise

distances. Like ISOMAP, LLE is also able to recover good representations of data sampled

from non-linear manifolds.

In [11] LLE, ISOMAP, Laplacian Eigenmaps and MDS are cast into a unified framework

in which they are seen as learning the eigenfunctions of a kernel. The common algorithm for

dimensionality reduction starts with an (optionally) transformed similarity matrix M . This

similarity matrix is constructed from the data set D by Mij = KD(xi,xj) where KD is the

kernel function which depends on the method of reduction and sometimes on the data set D.

Then the embedding of each example xi is the vector yi with yij the i-th element of the j-th

principal eigenvector vj of M or, in the case MDS and ISOMAP, the embedding is ei with

eij =
√
λ′jyij . The form of the kernel function KD is also provided for each of the mentioned

techniques. Hence, all spectral embedding methods can be seen as special cases of Kernel-

PCA and Bengio et al. in [12] generalize the Nystrom method to these for an out-of-sample

extension method.

Recently, deep learning has attracted a lot of interest from the machine learning com-

munity for its potential as an unsupervised learning tool. In [13] a nonlinear dimensionality

reduction method based on multilayer encoder and decoder networks is presented. The com-

bined system is called an autoencoder and facilitates both dimension reduction and recon-

struction of the data. The required weights are adjusted by gradients obtained by backprop-

agating the errors through the two networks. However, unless the number of hidden layers

is very small, a very good initial estimate of the weights is required for the iteration to con-

verge to the global optimum. Hence, ’Restricted Boltzmann Machine (RBM)’ is introduced

which is a two-layer network whose input is the pixel data of the image, and output the first

layer of features in the autoencoder. Features hj are binary values set to 1 with probability
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σ(bj +
∑

i viwij), and pixels vi are sampled from a gaussian with unit variance and mean

bi +
∑

j hjwij . This network is trained independently of others by constructing the features

and reconstructing the pixels from those features keeping the weights fixed. The final con-

verged weights are the initial estimates for the autoencoder. Such weights are found for each

layer of the autoencoder, and then fine-tuned using error backpropagation. Experimental

results on image sets show its effectiveness for finding the embeddings as well reconstructing

the high-dimensional data.

1.4 Extension and Reconstruction

Definition 8. Given the high-dimensional data X and their corresponding latent vectors Y

Out-of-Sample Extension is defined as finding the latent vector yq for a new point xq on

the manifold without repeating the NLDR process. Similarly, Out-of-Sample Reconstruc-

tion is defined as finding the high dimensional counterpart xq for a new point yq in the latent

space.

As an example, suppose we are given the high-dimensional images and their latent vectors

in fig. 1.1. Then given a new image sampled from the manifold, out-of-sample extension finds

its 2-D latent vectors in the space shown, and given a new latent vector in the 2-D latent

space, out-of-sample reconstruction finds the corresponding image in the image space.

Most non-linear manifold learning algorithms suffer from the limitation that they only

find an embedding for the training data and not the explicit mappings between the two spaces

in consideration, and hence do not allow extension or reconstruction of new points. Linear ap-

proaches, on the other hand, fail to preserve the intrinsic non-linear nature of many datasets.

The nystrom method provides an extension for the spectral embedding techniques, but suffers

from the limitation of being computationally expensive. The approximate nystrom method

provides a step-around the computationally heavy eigendecomposition, but as a result the fi-

nal embedding is not exact. Several other methods have since been proposed in the literature.
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In [14] Trosset et al. provide an out-of-sample extension algorithm formulated as an

unconstrained nonlinear least-squares problem. This allows an iterative computation of the

exact out-of-sample embedding. Another iterative algorithm for out-of-sample extension of

multiple points is presented in [15]. It starts with initial estimates for new points found

through spline fitting, followed by computing the actual coordinates through an update rule.

The estimates are recomputed using the updated coordinates and the whole procedure re-

peated. In [16], the authors develope a manifold learning algorithm which minimises an

objective function with two terms - one for preserving the local structure of each neighbour-

hood in data as found by a simple linear PCA, and a second term for finding the global

mapping to the low-dimensional space in a manner analogous to KPCA. Their construction

also provides an explicit mapping for out-of-sample extension.

Our work shares some of its inspiration with [17], which computes tangent spaces locally

to find extensions. Generalised Out-Of-Sample Extension (GooSE) is presented which com-

putes a mapping between local neighbourhoods in the higher and lower dimensional spaces.

For a new test point x ∈M, its k-nearest neighbours Nk
x are found and PCA is performed on

Nk
x

⋃
x to find their tangent space projections Y ′. Y ′ is assumed to be a scaled and rotated

version of Y (i.e. Y = BRY ′), and B and R are be found using a least squares estimation

on the k-nearest neighbours. These can be used to project x to the target embedding. The

parameter which needs to be selected is k the neighbourhood size, and this is determined

empirically by finding the local minima as the algorithm is repeated for different values of

k. GooSE is used only for extension however, and the authors dont talk about the reverse

problem of reconstruction anywhere.

While there is an extensive literature on out-of-sample extension, very few algorithms

exist which can reconstruct high-dimensional data from low-dimensional embeddings. This

is expected since out-of-sample reconstruction is in general a hard problem if the higher

dimension n is much greater than the lower dimension m. The simplest of these is presented

in [18], which implements linear reconstruction of high-dimensional face images, by expressing

points in the lower dimension as a weighted combination of their k nearest neighbours, and
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forming the image from its neighbouring images using the same weights. Suppose, for a query

point yq its k-nearest neighbours in Y are given by Nk
yq

. Then we can find optimal weights

w∗i s.t. the following error is minimised [1]:

E(W ) = ‖yq −
∑

yi∈Nk
yq

wiyi‖2 (1.1)

The optimal weights can be found by solving a least squares problem, and regularization

is used to avoid unstable solutions. Once we have w∗i the linear reconstruction is simply,

xlinq =
k∑
i=1

w∗i xi (1.2)

For the densely sampled set, results are accurate, but as the sampling decreases the recon-

structions become more blurred. Linear reconstruction has the desirable property of being

restricted to a small neighbourhood on the manifold, which allows fast computation even

at very high dimensions. Much better reconstructions can be obtained if this property is

relaxed and all the points on the manifold are used. Linear reconstructions have two main

steps - nearest neighbour search and inversion for regression, and hence its complexity is

O(kNm+ k3).

In [3], Souvenir et al. present a method for reconstructing images from their latent vec-

tors, by learning a transformation for all points on the manifold. The Free-Form Deformation

(FFD) model expresses the transformation from one image to another in terms of a lattice

of control points and standard one-dimensional cubic splines. To facilitate compression and

reconstruction these lattice control points are expressed in terms of the manifold coordinates,

and linear interpolation is used to extend a reference image Iref to generate the image Iq

at unknown coordinates. Deformation fields are found by a global optimization, making the

method computationally expensive.

Dollar, Rabaud and Belongie present a manifold learning technique Locally Smooth Mani-

fold Learning (LSML) in [2] which learns a warping function from any point x on the manifold

to any point in a small neighbourhood around it. They make a first order approximation and
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write W(x, ε) = x + H(x)ε, where W is the warping, ε is the m-dimensional displacement

on the manifold, and the function H captures the m modes of variablity at x. This is similar

to finding the tangent vectors at x, except here they need not be orthogonal. To solve for

H, first an estimate of the tangent space at each point on the manifold is found using PCA

on k-nearest neighbours. Then linear regression is performed to combine these into a single

global function. Both these steps require global computations making LSML computationally

expensive. To ensure smoothness, radial basis features are computed over the data before

regression. An image specific version is also given since the algorithm becomes intractable

at very large n. The learned function H can be used for dimensionality reduction with

straightforward out-of-sample extension and reconstruction. Experiments on both point sets

and image sets show LSML’s ability to find accurate reconstructions in sparsely populated

regions and even beyond the support of training data.

Besides the above methods, autoencoder networks also allow out-of-sample reconstruc-

tion, since during training a decoder network is also learned which propagates the latent

vectors layer by layer to get the high-dimensional data. However, these networks have high

training as well as storage complexities. In this work our aim is to use only local data and

learn the local structure of the manifold to obtain accurate reconstructions. We build on the

linear interpolation technique and give a second order approximation, which is empirically

shown to reduce blurring.

1.5 Quadrature Embeddings of Smooth Manifolds

Let Np(ε) denote the ε-neighbourhood of a point p on a manifold. We can write any

point x in this neighbourhood in terms of the principal curvatures at p. For better elu-

cidation, first consider a simple m-dimensional manifold M embedded in Rm+1. Then a

neighbourhood Np(ε) on this manifold can be represented by a hypersurface of the form S =

{[z1 z2 ... zm h(z1, z2...zm)] : [z1 z2 ... zm] ∈ TpM} ⊂ Rm+1. Here [z1 z2 ... zm]

is the projection of x onto the tangent plane TpM, and h is in general a non-linear function
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Figure 1.2: Principal Curvatures of a surface in R3, The normal vector N , and principal

directions X1 and X2 at a point on the surface. κ1 and κ2 are the principal curvatures. Figure

obtained from http://brickisland.net/cs177/?p=144.

describing the effect of curvature around p. For a smooth manifold h is also smooth and we

can write its taylor series expansion (z = [z1 z2 ... zm]):

h(z) = h(p) +∇h(p)T (z− p) +
1

2
(z− p)T∇2h(p)(z− p) +O(‖z− p‖3) (1.3)

O(‖z − p‖3) represents cubic and higher order terms and the hessian ∇2h(p) has the

eigendecomposition,

∇2h(p) = V ΛV T , where V = [v1, ...,vm], and Λ = [κ1, κ2, ..., κm] (1.4)

Here V,Λ are the eigenvector and eigenvalue matrices, v1,v2, ...,vm are called the Prin-

cipal Directions and κ1, ...κm the Principal Curvatures of the hypersurface S at p.

Principal curvatures represent the second order effects of manifold curvature in the neigh-

bourhood Np(ε). They can be best visualized as shown in fig. 1.2 - as the curvatures of the

intersection of a normal plane (along N in figure) with the manifold at p. The direction along

which this is maximum gives the first principal curvature, direction of maximum curvature

http://brickisland.net/cs177/?p=144
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orthogonal to it the second principal curvature, and so on. Principal directions are basically

directions normal to the normal plane along the tangent space at these locations of maximum

curvature. Suppose we assume p to be the origin of our coordinate system in Rm+1 then

the principal directions v1, ...vm are orthogonal and always span the tangent space at p. We

further assume that the tangent space is aligned with the first m canonical vectors e1, ...em,

such that each vi = ei. In this case, h(p) = ∇h(p) = 0, and 〈z,vi〉 = zi, implying:

h(z) =
1

2

m∑
i=1

κi〈z,vi〉2 +O(‖z‖3) (1.5)

=
1

2

m∑
i=1

κiz
2
i +O(‖z‖3) (1.6)

Furthermore, if the neighbourhood size ε is small enough, the effect of the higher order

terms O(‖z‖3) can be ignored to give a second order approximation for Np(ε), called its

Quadrature Embedding. Generalizing it to an arbitrary m-dimensional manifold in Rn, we

have the following tangent space parametrization for x ∈ Np(ε) [19] [20],

x = [z1 z2 ... zm h1(z1, ..., zm) h2(z1, ..., zm) ... hn−m(z1, ..., zm)] (1.7)

Again if we assume a coordinate system for each hi s.t. principal directions are along the

canonical vectors and ignore the effect of higher order terms, then:

hi(z1, ...zm) =
1

2

m∑
j=1

κijz
2
j i = 1, 2, ...(n−m) (1.8)

Here we have m principal curvatures along n−m dimensions, giving rise to m× (n−m)

parameters. We call z1, z2, ...zm the Tangent Space Components of x and h1, h2...hn−m

the Normal Space Components of x. Such a parametrization of x ∈ M which retains

only upto the second order terms is called its Quadrature Embedding.

This differential geometric model for a riemannian manifold is useful for cases where n

is not much greater than m, but in general we have too many parameters for regression.

Instead, to make the problem more tractable, we extract d principcal components which are
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linear combinations of the normal space components along directions of maximum variance

in the neighbourhood. Regressing along only these d � n −m we can obtain much better

reconstructions than simple linear interpolation.



Chapter 2

Local Quadrature Reconstruction

Next we present the main contribution of this thesis - Local Quadrature Reconstruction,

which estimates curvatures of high-dimensional data in a small neighbourhood for out-of-

sample reconstruction. Our algorithm is motivated by a tangent space parametrization given

in [19] of the points in a neighbourhood on the manifold. Smoothness of the manifold allows

us to expand this parametrization in terms of its taylor series and if we ignore higher order

terms assuming a high sampling density, we get the quadrature embedding of the manifold

characterized by principal curvatures along each of the n−m higher dimensions. We estimate

curvatures along directions of maximum data variance in the neighbourhood using quadratic

regression and project the new point to the manifold using the fitted model of the manifold.

First, we give an overview of the problem and our solution in section 2.1, followed by the al-

gorithm in detail in section 2.2, and an overview of the free parameters involved in section 2.4.

2.1 Overview

Consider a smooth m-dimensional manifoldM embedded in Rn where n ≥ m+1. Any point

x has only m degrees of freedom, and assuming the manifold is globally homeomorphic to

S ⊆ Rm it can be written as x = fM(y), where y ∈ S are called the latent variables of x

and fM is a differentiable and invertible non-linear function. The set of all possible latent

variables S is a submanifold of Rm and may not be unique (different dimensionality reduction
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M

xi ∈ X

Rn Rm

S

yi ∈ Y

Figure 2.1: m-dimensional manifold in Rn Points sampled from the manifoldM and their latent

variables in S.

algorithms may extract different latent variables). The inverse of fM is denoted by fS , and

any point y ∈ S can be written as y = fS(x) for some x ∈M. An example of such manifolds

are image sets, such as the disk dataset where M is the space of all images x in R100×100×3

and one possible latent variable space is S = [10, 90) × [10, 90). In robotics this particular

latent space is called a configuration space since it gives the image coordinates of the center

of the disk. The function fM constructs an image x given the pair of coordinates (xc, yc). We

use the term manifold coordinates interchangeably with latent variables without ambiguity.

Now suppose we are given N points X = {x1,x2, ...xN} sampled from a hypotheti-

cal manifold M and their latent vectors Y = {y1,y2, ...yN} (Fig. 2.1). Then given a

new latent vector yq ∈ S ⊆ Rm our goal is to compute its high dimensional counterpart

xq = fM(yq) ∈ M ⊆ Rn. This is called Out-of-Sample Reconstruction. Note that the im-

plicit manifold S may not be known or available (or even exist) in some situations, but it is

always possible to recover some embedding in Rm for a high-dimensional dataset using NLDR.

Recall that an m-dimensional manifold is locally homeomorphic to the euclidean space

Rm, i.e. for each p ∈ M there is an open set U containing p which is homeomorphic to

an open ball in Rm. Our analysis is also restricted to a small neighbourhood Np(ε) on M

containing xq (Fig. 2.2). The mapping itself will be non-linear in general, but instead we

fit an m-dimensional linear plane through the neighbourhood, and assume a second order

form over d normal space components over which data variance is maximum. This redueces

to finding an (m + d)-dimensional linear basis set for the elements of Np(ε) using Principal
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M
Rn

p Np(ε)

Figure 2.2: ε-neighbourhood of a point on the manifold M, Np(ε) = {x ∈M : ‖x− p‖2≤ ε}

Components Analysis (PCA), and interpolating on this basis set. The first m components

represent directions of the maximum spread in the neighbourhood and correspond to the m

tangent vectors at p. The remaining d components lie along the normal space at p represent

the effect of curvature and are non-zero due to the non-linear nature of the manifold in

Np(ε). If the manifold was isometric to a plane, then we would have only m Tangent Space

components and no Normal Space components. The reconstruction procedure can be divided

into three parts:

1. Subspace Projection: The local neighbourhoodNp(ε) is projected to anm+d-dimensional

linear subspace using Principal Components Analysis (PCA). This is equivalent to pro-

jecting the data to the tangent space TpM at p, and then applying a d-dimensional

PCA on the remaining residuals.

2. Linear Regression: Least squares linear regression is used to find a transformation

between Nk
yq

, the given latent variables of the k-nearest neighbours of the query point,

and the projections of the same points onto TpM. Then it is straightforward to apply

this transform on yq and obtain its tangent space projection zq. Note that both the

tangent space and the latent space is m-dimensional.

3. Quadratic Regression: Least squares quadratic regression is performed to find the cur-

vatures along the remaining d Normal Space principal components, with zq obtained

in step 2 as the independent variable. Once we have the curvatures we can find the

projection of the query point along these components. The reconstruction is obtained

by reprojecting the interpolated projections back to Rn.
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p

xq

ẑq

zq

Np(ε)

TpM

T̂pM

Figure 2.3: Tangent space on the manifold Neighbourhood of p on M (for visualization the

n-dimensional manifold is shown as a curve in R2, and the tangent as a line). Tangent lines spanning

the canonical tangent space TpM and the estimated tangent space T̂pM are also shown.

In our case we have access to only a sampling of Np(ε) which is denoted as Nk
p - the

k-nearest neighbours of p. As the sampling density on the manifold increases the k-nearest

neighbours of p move closer to it and we can take a smaller and smaller region around p to

sample them, implying that ε → 0. From here on we shall denote the k-nearest neighbours

of yq in S as Nk
yq

and their corresponding manifold points as fM(Nk
yq

).

2.2 The Algorithm

2.2.1 Motivation

Fig. 2.3 shows the ε-neighbourhood of a point p on the manifold. For the current analysis we

can take p as the reference point or origin of this local neighbourhood. Recall that the tangent

space at any point on an m-dimensional manifold also has dimension m. Hence, without loss

of generality a rotation can be applied to the manifold so that the first m canonical vectors

of Rn span the tangent space TpM at p:

TpM = span(e1, e2, ...em) (2.1)

Here ei is the i-th canonical vector. The span of a basis set is the set of all finite linear

combinations of elements of the set, i.e span(v1,v2) = λ1v1 + λ2v2, where λ1 + λ2 = 1. In

the latent space S, or specifically in the neighbourhood Nk
yp

, we take yp as the origin.
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We use the tangent space parametrization given in [19] for points in Np(ε). Let h(l) :

TpM→ R l = 1, 2, ...(n−m) be smooth functions defined on the tangent space at p such

that any point x ∈ Np(ε) can be written as:

x = [z h(1)(z) h(2)(z) ... h(n−m)(z)]T (2.2)

Here z is the component of x along TpM, and h(l)(z) describes the structure of the

manifold around p along dimension l+m. Such a decomposition of x, in terms of its tangent

space components is possible because TpM is spanned by the first m canonical vectors in

Rn. Denote E(m) as the matrix which projects points in Np(ε) to the tangent space at p

(E(m) = [e1 ... em]). Then the collection of all z = E(m)Tx defines an m-dimensional

coordinate system on Np(ε). Recall that x can also be written in terms of the global latent

variables as x = fM(y), where fM is a non-linear function. Most NLDR algorithms such

as ISOMAP and LLE assume a locally linear structure of fM when computing the latent

variabels. For our purposes we also use local linearity, i.e. ∀x ∈ Np(ε), there is some y ∈ S

s.t x ' xp + J(0)(y − yp). Here J is the n ×m jacobian matrix given by Jij(0) =
∂f

(i)
M (0)
∂yj

.

Projecting both sides onto E(m), we get:

E(m)Tx = E(m)Txp + E(m)TJ(0)(y− yp) (2.3)

⇒ z = A(y) (2.4)

Where A is an m×m linear transformation. It can be solved for using least squares linear

regression on the neighbourhood, and applied to the latent variables of the query point yq to

find its local tangent space coordinates zq.

Next we consider the components of x orthogonal to TpM described by the non-linear

functions h(l). Since the manifold is differentiable we can write the taylor series expansion

of each h(l) around p. In the basis space of the principal directions of the hessian ∇2h(l), we

have (see section 1.5):
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h(l)(z) =
1

2
(κ1

(l)z21 + ...+ κm
(l)z2m) +O(‖z‖32) l = 1, 2, ...(n−m) (2.5)

Here κ
(l)
1 , κ

(l)
2 ...κ

(l)
m are the principal curvatures of the hypersurface defined by hl and are

equal to the m eigenvalues of the hessian ∇2hl(0) and O(‖z‖32) is the contribution of higher

order terms. Note that h(l)(0) = 0 and h′(l)(0) = 0 by definition. Since x ∈ Np(ε) and p = 0,

we have ‖x‖≤ ε which also implies that z is bounded as ‖z‖≤ ε. From here on, we assume

that the sampling density is high enough (or ε small enough) that the higher order terms

O(‖z‖32) contribute little to eq. 2.5, and assume a quadratic form on h(l)(z):

h(l)(z) =
1

2

m∑
j=1

κ
(l)
j z

2
j l = 1, 2, ...(n−m) (2.6)

Given k > m points in Np(ε) we can perform a least squares regression with z21 , z
2
2 ...z

2
m as

the dependent variables to find κ
(l)
1 , ...κ

(l)
m for all l = 1, 2...(n−m). This may seem ambitious

as n � m and we would have to perform far too many regressions using just a small set of

k points. One of the main insights of our work however, is that we limit our computation

d� (n−m) principal components normal to the tangent space TpM along which the effect

of curvature is maximum. Quadratic regression along these directions seems to account for

a high fraction of the residual error left after linear interpolation on the tangent space. Ex-

tracting these principal directions is also particularly simple using PCA, and can be combined

with tangent space estimation. In general we can expect with a high probability that the

principal components will lie along the directions of maximum curvature.

Summary

The above analysis suggests a natural method for out-of-sample reconstruction. Given a

query point yq we find a small neighbourhood on the manifold which contains xq. This is

done by first finding yp, the nearest neighbour of yq, and then looking for the k-nearest

neighbours of p = fM(yp) on the manifold M. The tangent space at p is estimated by

performing PCA on this set, and all the points in the neighbourhood are projected to the

m-dimensional tangent space. Assuming the linear relationship given in eq. 2.3, we perform



2.2 The Algorithm 26

an LLE like interpolation [1] and reconstruct zq linearly from its k-nearest neighbours. Dur-

ing PCA, we also extract an additional d orthogonal components along which we perform

quadratic regression of the form of eq. 2.6. The found curvatures are then used to find the

d NL components of xq from the its tangent space projection zq. These steps are discussed

in greater detail in the following sections.

For visualization, we demonstrate the reconstruction procedure on a well-studied manifold

in literature - the Swiss-Roll. It is a 2-dimensional manifold embedded in R3 (n = 3, m = 2)

which allows us to visualize the tangent spaces on the manifold. The swiss roll is diffeomor-

phic to R2, if y = [y1 y2] ∈ [3π2 ,
9π
2 ] × [0, 5] are the latent variables then the corresponding

point on the swiss roll is given by x = [y1 cos y1 y1 sin y1 y2]. Fig. 2.4a shows a swiss-roll

with 1000 points sampled from it without noise, and Fig. 2.4b shows the 2d coordinates of

the same points. Dimension of the ambient space is only 3 which makes reconstruction on

it simple, but it serves the purpose of providing a visualization of the procedure and its not

surprising to note how the quadratic assumption works fine in local neighbourhoods on the

manifold despite the fact that the actual relation between X and Y is in terms of cos and sin.

2.2.2 Tangent space estimation

We use Principal Components Analysis (PCA) to find a basis set for the tangent space TpM

at p. Suppose Nk
p is the set of the k-nearest neighbours of p in X, then the covariance matrix

Mk of this set is given by,

Mk =
1

k

∑
xi∈Nk

p

xix
T
i (2.7)

PCA performs eigendecomposition on this matrix, which has at most k-nonzero eigen-

values since rank(Mk) ≤ k. In the following we assume that the k points are indepen-

dent and hence the covariance matrix has full rank. If U = [u1 u2 ... uk] and Λ =

diag(λ1, λ2, ...λk) are the eigenvector and eigenvalue matrices of Mk respectively such that

λ1 ≥ λ2 ≥ ...λk, then the estimated tangent space at p is:
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T̂pM = span(u1,u2, ...um) (2.8)

Note that we need k > m points in the neighbourhood to estimate the tangent space. Let

U (m) = [u1 ... um], then the projection of a point x ∈ Nk
p on T̂pM is given by ẑ = U (m)Tx.

Denote Nk
zp as the set of the projections of Nk

p onto T̂pM.

In [19], Tyagi et al. show that as the sampling density on the manifold increases the angle

between the estimated tangent plane T̂pM and the true tangent plane TpM goes to zero,

or equivalently ‖E(m)E(m)T − U (m)U (m)T ‖F→ 0, where E(m) is the matrix with the first m

canonical vectors as its columns. Their main result is presented in Theorem 2 and shows that

with a sufficient number of samples the principal components found by PCA reliably span

the canonical tangent space TpM.

For image manifolds, n� m and if the sampling density is not very high, then using Nk
p

to find the tangent space is not optimal. Here removing a single point from the neighbour-

hood (in our case the test point being reconstructed) skews the tangent vectors (see section

3.2 for details). Instead we use fM(Nk
yq

), the manifold points of k-nearest neighbours of yq

in S, for finding the tangent space. This neighbourhood has uniform variability in all the

directions, and the estimated tangent vectors are more accurate.

For the swiss-roll dataset, we use (m+ d) = 3 principal components (the third one is for

quadratic regression), out of which the first two constitute the Tangent Space TpM, and the

third one the orthogonal component. An overview of the tangent space estimation procedure

is shown in Fig. 2.4. The neighbourhood size parameter for finding the tangent space around

a point was set to k1 = 18.

2.2.3 Linear Regression

Next we describe the method for finding zq given the projections Nk
zq , their latent variables

Nk
yq

and yq. Assuming the linear form given in eq. 2.3, we wish to find weights wi which
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(a) (b)

 

 

Tangent Space Principal Components
Orthogonal Principal Component

(c)

Test Point
Neighbourhood Points

(d)

Figure 2.4: Tangent Space Estimation, A visualization of tangent space estimation on the swiss

roll manifold. (a) Swiss Roll in R3, (b) latent variables in R2, (c) Estimated Tangent Spaces for

50 random neighbourhoods, (d) Close view of a point with its neighbours and tangent space. PCA

neighbourhood size k1 = 18.
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Figure 2.5: Linear Regression on the Tangent Space, Linear regression on the Tangent Space

for the test point shown in Fig. 2.4d. Neighbourhood size for interpolation k = 5. (a) Nk
yq

in S,

(b) Nk
zq

on the tangent space T̂pM with the interpolated reconstruction. Regularization parameter

λL = 10−3.

minimize the cost function E(W ) = ‖yq −
∑

iwiyi‖2. We follow the procedure given in [1]

and perform a least squares regression to find the optimal weights. Let C denote the local

covariance matrix - Cij = (yq − yi).(yq − yj), then optimal wieghts are given by:

w∗i =

∑
j C
−1
ij∑

lmC
−1
lm

(2.9)

Using these wieghts, we interpolate on the tangent plane to obtain the projection of the

reconstruction ẑq on it:

ẑq =
∑

ẑi∈Nk
zq

w∗i ẑi (2.10)

To avoid overfitted solutions we regularize the covariance matrix before computing the

weights:

Cij = Cij + λLtrace(C)Ik2 (2.11)

For the swiss-roll dataset the neighbourhood size parameter k2 was set to 5, and the

regularization λL = 10−3. Fig. 2.5 shows the coordinate space and the tangent space for the
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point shown in fig. 2.4d. The red circle shows the interpolated result on tangent space TpM.

The two spaces S and T̂pM look visually very different because the relative scaling between

the axes is different for them.

2.2.4 Quadratic Regression

We already have one reconstruction from ẑq by projecting it on the estimated tangent space

T̂pM:

x̂mq = U (m)ẑq (2.12)

Here m represents the number of principal components we have regressed on. While this

in itself is a good reconstruction, for very high-dimensional data such as image sets, a high

amount of blurring is observed (fig. 3.12a). In principle it is simply a linear interpolation on

a linear subspace:

x̂mq = U (m)ẑq (2.13)

= U (m)

[
k∑
i=1

w∗i ẑi

]
(2.14)

= U (m)U (m)T

[
k∑
i=1

w∗i xi

]
(2.15)

U (m)U (m)T is the projection matrix which retains the first m principal components of

the data, and the above sum is taken over Nk
yp

. For more accurate reconstructions we use

eq. 2.6 and perform regression on d more principal components (this is possible since PCA

decorrelates the data [7]). Let um+1,um+2, ...,um+d be the next d components normal to

T̂pM = span(e1, e2, ...em). These normal components point along directions of maximum

data variance in the normal space, and hence we can also expect the curvature to be maxi-

mum along these principal components.
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Ideally we would need d = n−m components to completely describe the data in Np(ε),

but since we have only k points in the neighbourhood we can extract at most d = k − m

components. Along these directions the variance of neighbourhood points is maximum. Then,

the projection of the any point x ∈ Np(ε) onto um+i is given by:

ẑm+i = um+i · x =
n∑
j=1

ujm+ix
j i = 1, 2, ...d (2.16)

Assuming a low error in the predicted tangent space, we ignore u1m+i, u
2
m+i, ..., u

m
m+i since

um+i is normal to T̂pM. Then the orthogonal component becomes a linear combination of

the quadratic forms in eq. 2.6:

ẑm+i =
n∑

j=m+1

ujm+ih
(j)(z) i = 1, 2, ...d (2.17)

If our coordinate system is aligned to the principal directions of h(j), then it has the simple

form h(j)(z) = 1
2

∑m
i=1 κ

(j)
i z2i . These principal directions span the tangent space and we have

one basis set on the tangent space from PCA. We can substitute the projection ẑ onto T̂pM

into the equation for h(j) by adding cross-terms of the form ẑiẑj . Until now we have also

assumed the recovered principal components perfectly span the tangent space, however this

may not always be the case. To make the regression more robust in these cases we also add

linear terms ẑ1, ẑ2...ẑm to h(j) and a constant term µ:

ẑm+i =

m∑
i=1

aiẑi +

m∑
i=1

biẑ
2
i +

m−1∑
i=1

m∑
j=i+1

Cij ẑiẑj + µ i = 1, 2...d (2.18)

The constant term µ is added to allow for the displacement of the principal components

from p, since PCA finds principal components about the mean of Nk
p which may not lie on

the manifold. The parameters ai, bi, cij , µ are found by solving an overdetermined system of

equations on the k neighbourhood points. The dependent variables are the PCA projections

ẑj , and the least squares solution is found which minimizes the following error:

E(a,b, C, µ) =
∑
z∈Nk

p

‖ẑm+i−
∑

aiẑi−
∑

biẑ
2
i−
∑

Cij ẑiẑj−µ‖2+λQ
[
a · a + b · b + c · c + µ2

]
(2.19)
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Figure 2.6: Quadratic Regression, Regression with the independent variable as the first two

principal components and the dependent variable as the third component using Nk1
p . Regularization

parameter λQ = 1.

The last term is for regularization, which is important since its easy to overfit the data

in high-dimensions. Note that we need at least k > (2m +
(
m
2

)
+ 1) (and in practice more)

nearest neighbours to solve the equations. Fig. 2.6 shows this procedure for the swiss roll.

For comparison we also show the linearly interpolated result in red.

Once we have the parameters a,b, C, µ for each of the d extra components, we can find the

projections of the query point onto them in a straight forward manner. The final quadrature

reconstruction is given by projecting the m tangent space components linearly interpolated

and d normal space components quadratically interpolated onto the basis set u1,u2, ...um+d.

We denote the whole process of reconstruction on the tangent space by f̂ , i.e. x̂q = f̂(yq).

The entire procedure is listed in algorithmic form in Algorithm 1.

Regularization is an important step during both the steps above. For linear regression

we use λL = 10−3, and for quadratic regression we use λQ = 1. The high value of λQ also

ensures that we dont get solutions with very high errors when the test point lies outside the

support of Nk1
p .
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Data: X,Y ,yq

Parameters: k1,k2,d,λL,λQ

Result: x̂q

// Find Neighbourhood for PCA

1. yp ← nn(Y,yq, 1)

2. p = fM(yp)

3. Nk1
p ← nn(X,p, k1)

// Eigendecomposition of covariance matrix

4. Mk1 ← cov(Nk1
p )

5. ΛV = Mk1V

6. Zlin = fM(Nk2
yq

)V1...m

// Linear Regression on Tangent Space

7. Cij ← (yq − yi).(yq − yj), i, j = 1, 2...k2, yi ∈ Nk2
yq

8. C = C + λLtrace(C)Ik2

9. W ∗ ← C−11k2

10. W ∗ ←W ∗/sum(W ∗)

11. zq ←WZlin

12. x̂q ← V T
1...mzq

// Quadratic Regression on d orthogonal principal components

13. Zquad = Nk1
p V1...m

14. A← [Z2
quad Z1

quadZ
2
quad ... Zm−1quadZ

m
quad Zquad 1]

15. B = A′A+ λQI2m+(m2 )+2

16. for i = m+ 1→ m+ d do

17. par ← B−1ANk1
p Vi

18. pri = [z2q z1qz
2
q ... zm−1q zmq zq 1]par

19. x̂q ← x̂q + V T
i pri

end

20. return x̂q

Algorithm 1: Local Quadrature Reconstruction
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Original Data

(a)

Local Quadrature Reconstructions

(b) Average Error = 0.011

Linear Reconstructions

(c) Average Error = 0.103

Figure 2.7: Local Quadrature v Linear Reconstruction on the Swiss Roll, Side-view of test

point reconstructions on the swiss-roll. (a) Original Data. (b) Local Quadrature reconstructions. (c)

Linear Reconstructions. k1 = 18, k2 = 5, λL = 10−3, λQ = 1

.

To get a quantitative measure of the two reconstruction procedures (quadratic and linear),

we divide the 1000 points randomly into two sets of 500 each. Each point in the second set

was reconstructed from its neighbours in the first set. Fig. 2.7 shows a side-view of the test

points reconstructed on the Swiss Roll. Linear reconstructions may lie at high distances from

the manifold due to the effect of curvature. This effect is not seen in LQR which maintains

the shape of swiss-roll (cf Fig. 2.7b). Error is measured as the squared distance between the

original point and its reconstruction in R3. The average linear error across the 500 points

reconstructed was 0.103 and for LQR it was 0.011.

2.3 Complexity

We report the computational complexity of our algorithmin terms of k = max(k1, k2),m, n, d.

There are five main steps involved in LQR. First, we need to compute the k-nearest neigh-

bours of either p or yq or both, for which simple linear search has the complexity O(kNn)

or O(kNm), depending on which space we compute the neighbours in. Next is the eigende-

composition of Mk1 which is a k1 × k1 matrix. This step has the computation time O(k3).

The main steps during both the regressions is inversion, and hence for linear regression the
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complexity is O(k3), and for quadratic regression along each component is O(m6). Since

k ≥ 2m +
(
m
2

)
+ 2 > m2, regression along each component is O(k3). Lastly, we project

the found reconstruction onto the m + d principal components, each of which is n dimen-

sional, to find the reconstruction. The total complexity of the algorithm then becomes

O(kNn+ dk3 + n(m+ d)) where nearest neighbour search is performed on the manifold and

O(kNm+ dk3 + n(m+ d)) where nearest neighbour search is performed in the latent space.

As explained in section 2.2.2, for image manifolds where n � m we use Nk
yq

for finding the

tangent space and hence the complexity varies only linearly with n here which may be very

large.

2.4 Parameter Selection

Free parameters in the algorithm which need to be set include -

• k1 - PCA Neighbourhood Size

• k2 - Linear Interpolation Neighbourhood Size

• d - Number of Normal Space Principal Components

• λL - Regularization Parameter for linear regression

• λQ - Regularization Parameter for quadratic regression

The PCA neighbourhood size k1 denotes the number of neighbours of p to use for finding

the principal components, while k2 is the number of nearest neighbours of yq through which

a plane is fit for interpolating zq. Higher values result in the poor tangent space estimation

and lower values overfit to the neighbourhood. They can be set using standard techniques

like cross-validation on the training set. Global minima for the parameters existed for all the

datasets we tested on.

Next, d is the number of components extracted normal to the tangent space. Since these

are found by an SVD of the covariance matrix of the k1-nearest neighbours of p, which has
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rank k1, the maximum value d can take is k1−m. In practice, using the same value of d for all

test points does not give satisfactory results. Instead we use a simple rule to decide the number

of principal components to extract from a neighbourhood Np(ε). If λ1 ≥ λ2 ≥ ... ≥ λk1 are

the k1-nonzero eigenvalues of the covariance matrix of neighbours, then (m+ d) is set to the

minimum value such that,

∑m+d
i=1 λi∑k1
i=1 λi

> t (2.20)

Here t is the threshold of percentage of energy we want to consider. The LHS above is a

measure of the variance in the data accounted for by the first (m+ d) eigenvectors of PCA.

Setting high values of t may cause overfitting of the normal principal components to the data

samples, but lower values may cause loss of information. Again this can be optimized using

cross-validation.

Regularization is important during regression to avoid over-fitting to the data. Specially

during quadratic regression the number of coefficients is given by (2m+
(
m
2

)
+ 2) for m ≥ 2,

and the number of known points is k1 which may not be much greater. Another effect ob-

served without regularization is that the query point might be projected far outside the range

of training data. Regularizing penalizes such cases and leads to stable results. λL was set to

10−3 in all our experiments and λQ optimum values of λQ varied from 0.1-10.



Chapter 3

Experiments and Results

In this chapter we explore the performance of the out-of-sample reconstruction method de-

scribed in chapter 2. Consider a set of points X = {x1,x2, ...,xN}, xi ∈ Rn sampled from

a differentiable manifoldM whose intrinsic dimension is m. We assume that the manifold is

homeomorphic to Rm, meaning that it can be endowed with a global coordinate system. For

datasets where this is not true, such as the teapot dataset, we remove sections of the manifold

to make it homeomorphic to Rm (see section 1.3 for details). Let Y = {y1,y2, ...,yN} be

these global latent vectors or latent variables of X. These may be known explicitly from the

function generating the data, or may be found using NLDR techniques such as ISOMAP, LLE

etc. In all our experiments the dataset is randomly split into training and testing sets and

each point in the test set is reconstructed from its latent vector using neighbouring training

set examples. Quality of reconstruction is measured using the squared euclidean error be-

tween the true high-dimensional data and the found reconstruction, and we report the mean

squared error (MSE) over all the test points.

We have already shown reconstructions for the swiss-roll and we start with another point

set manifold in section 3.1. While point sets are good for visualization, practical applications

for the proposed algorithm include image reconstruction and interpolation which lie in much

higher dimensional spaces. Section 3.2 gives the results of LQR applied on image sets such as

the teapot dataset and the disk dataset. Many videos can be interpretred as 1-dimensional

submanifolds of some unknown image manifold and we show a preliminary analysis of using
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LQR for frame interpolation, details for which are given in section 3.3.

3.1 Point Sets

We have already discussed the performance of LQR on one point set - the swiss-roll, in chapter

2. For the swiss-roll the embedding dimension n is only 1 more than its manifold dimension

m, and hence the number of components we can regress on is also m+ d = n. In general we

would want that when n� m, the number of normal space components required d would be

small, i.e. we can get good reconstructions by only interpolating along a few normal principal

components of the data. The next dataset we use - a Spiral in R3 emphasizes this point

better. It is a 1-dimensional manifold, if y ∈ [0, 10π] is the latent vector then the manifold

point in R3 is given by x = [cos y, sin y, y]. Note that n = 3, m = 1 and we extract d = 2

principal components for reconstruction. Fig. 3.1a shows 400 points sampled from the spiral

manifold. These are randomly divided into training and testing sets of equal size (N = 200),

and the test points are reconstructed from their latent vectors.

Fig. 3.1 gives an overview of the reconstruction on this spiral. The neighbourhood sizes

were set to k1 = 8 and k2 = 4, and the regularization parameters were set to λL = 10−3

and λQ = 10−2. The tangent vectors are accurately extracted even in places with low sam-

pling density (Fig. 3.1b), which is expected due to the low value of m. Fig. 3.1d shows

the quadratic curve fit on the tangent space of Nk1
zp the neighbourhood shown in 3.1c. For

comparison the linear reconstruction (interpolated using Nk2
yq ) is also shown. Finally, we show

reconstructions of all 200 test points in Fig. 3.2. LQR is able to preserve the manifold shape

effectively throughout except at the boundaries. At the boundary the test point is extrapo-

lated instead of being interpolated which causes the increased error (see fig. 3.3 for example).

3.2 Image Sets

The point sets discussed above demostrate the effectiveness of LQR on arbitrary non-linear

differentiable manifolds, but practical applications of reconstruction on manifolds typically
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Figure 3.1: LQR on a Spiral A visualization of the reconstruction procedure on the spiral dataset.

(a) Points sampled from the 1d spiral. (b) First two principal components computed for 20 neigh-

bourhoods (k1 = 8). (c) Close view of a test point and the principal components computed in its

neighbourhood. (d) Linear and Quadratic regression along first and second components, respectively

(λL = 10−3, λQ = 10−2). Neighbourhood size parameter k2 = 4.
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Original Data LQR

MSE = 1.67× 10−4

Linear Reconstructions

MSE = 9.56× 10−4

Figure 3.2: Local Quadrature v Linear Reconstruction on the Spiral Comparison of test point

reconstructions on the 1d Spiral manifold. (a) Original Data. (b) Local Quadrature reconstructions.

(c) Linear Reconstructions.
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Figure 3.3: Extrapolation v Interpolation on a 1-d manifold A comparison of regression for (a)

a boundary point and (b) an interior point on the 1-d spiral. At the boundary point the reconstruction

is extrapolated far beyond the support of the training data, and hence both reconstructions are

inaccurate.
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Figure 3.4: ISOMAP on teapot dataset (a) Residual variance at different ISOMAP dimension-

alities. (b) Embedding in R2. Residual variance at m = 1 is 0.57 and at m = 2 it is 0.04 since the

manifold is globally homeomorphic to a circle in R2. ISOMAP neighbourhood size parameter k = 4.

involve much larger values of n. Image sets are an important class of manifolds for which

n is the number of pixels in each image, and m depends on the variablity of the data. Lin-

ear reconstruction is particularly simple on these image manifolds, but unless the sampling

density is high it gives heavily blurred results. In this section we study whether LQR is

able to provide better solutions. Theoretically, the analysis presented in chapter 2 cannot be

extended to image manifolds since spatial aliasing prevents them from being differentiable,

unless there are an infinite number of pixels in the image or it is analog. However, practically

we find that LQR works well on image sets and quadratic regression improves reconstruction

over linear regression.

3.2.1 Rotating Teapot

Our first dataset is the Teapot set from [21] which has N = 100 images of a teapot under-

going a 360 degree rotation. Each image is 76 × 101 × 3 in size and lies in R23028, but the

intrinsic dimensionality of the manifold is only m = 1 since there is only 1 free parameter in
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Figure 3.5: 1-D Isomap embedding for teapot dataset, ISOMAP embedding of the teapot

dataset after removing a portion of the manifold. Residual variance for m = 1 is only 10−4. ISOMAP

neighbourhood size parameter k = 4.

generating the images which is θ ∈ [0, 2π] (the angle of rotation of the teapot). In this case

we only have the high-dimensional data without any knowledge of the latent vectors, hence

we use ISOMAP to learn the global latent vectors of each image.

The teapot manifold has an S1 topology and is not homeomorphic to R, but instead to

circle in R2. Due to this no global 1-d coordinate system exists for it in R. This is also

evident from the residual variance between ISOMAP embeddings at dimensions 1 and 2, and

the recovered embedding in R2 (see Fig. 3.4). Even though the intrinsic dimensionality of

the manifold is 1, no set of 1-d latent vectors can be assigned to the points on it which have

low error. For LQR we want 1-d latent vectors for the points on the teapot manifold since the

tangent space at each point is only 1-dimensional. Here we can calculate a set of 1-d polar

coordinates from the 2-d coordinates given by ISOMAP, but in general this is not possible for

arbitrary manifolds with the same problem. To overcome this, a section of the manifold is re-

moved, in this case all images with θ > 9π
5 . Once the neighbourhood connectivity is lost, and

the first point is no longer connected to the last point the remaining set becomes homeomor-

phic to R. The ISOMAP embedding of this new manifold in 1 dimension is shown in Fig. 3.5.

The new dataset for θ ∈ [0, 9π5 ] is then used for testing the LQR. The latent vectors are

set to the ISOMAP embedding shown in Fig. 3.5b. We separate 18 uniformly spaced frames
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(a) PCA on Nk
p (b) PCA on fM(Nk

yq
)

Figure 3.6: Neighbourhood selection for teapot dataset Projections of neighbourhood points

onto the tangent space found by PCA performed on Nk
p and fM(Nk

yq
). In the latter, the tangent

vectors are rotated leading to poor quadratic regression.

as test images and keep the remaining as training images. Both the neighbourhood size pa-

rameters were set to k = k1 = k2 = 4 (the low value of k1 is due to the small training set

size). In fact we use fM(Nk
yq) for both tangent space estimation and interpolation, unlike the

other datasets discussed till now where Nk
p is used to find the tangent space and fM(Nk

yq) for

interpolation. The reason for this is explained in Fig. 3.6. Basically, the sampling density

for the teapot manifold is so low that removing just one point from a neighbourhood skews

the tangent in the other direction. In this case the assumption that z2 = az21 + bz1 + c (z1, z2

are the projections along the first two principal components) fails to hold, instead we have

az21+bz22+cz1+dz2+e = 0 which is a much more difficult regression to solve, and doesnt work

well in general. In the neighbourhood around p we have already removed the test point while

forming the training and test sets, hence the found tangent vectors are rotated in the other

direction (cf Fig. 3.6a), causing a poor quadratic fit along u2. Using fM(Nk
yq) solves this

problem (Fig. 3.6b), and also transfers the nearest neighbour search step to the latent space

where it is much quicker. During reconstruction we extract a total of m + d = 2 principal

components to regress along (higher components are mostly noise and do not tell us much

about the manifold).

An example of LQR on this set is shown in fig. 3.7. The tangent vectors found by PCA

on fM(Nk
yq) are shown in fig. 3.7b and projections onto them of neighbouring points and
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Figure 3.7: LQR on Teapot dataset, An overview of the reconstruction procedure on the teapot

dataset. (a) Test Image, (b) Tangents found, (c) Regression. Neighbourhood size parameters k1 =

k2 = k = 4, and Nk
yq

used both for finding principal components and interpolation. λL = 10−3

and λQ = 0.5. Quadratic interpolation along u2 gives reconstruction with lesser blur than linear

interpolation.
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Figure 3.8: Local Quadrature v Linear Reconstruction on Teapot dataset, Example recon-

structions on the teapot dataset. Top row - Original Data, Second Row - LQR, Bottom row - Linear

reconstruction.

found reconstructions are shown in fig. 3.7c. λL = 10−3 as before but λQ = 0.5 which is

high considering the curve fit, but it is necessary since lower values project the test point

much farther out in the direction of u2 than the support of the training points used to find it,

leading to poorer results. Linear reconstruction is also included for comparison. Observing

the handles and design on the teapot, one can clearly see that the LQR produces results with

lower blur. More examples of reconstruction on the teapot set are shown in fig. 3.8, and

variation in squared error as the angle of rotation changes is shown in fig. 3.9. On all the

images tested for reconstruction, LQR outperforms the linear method in terms of the squared

error between true data and found reconstruction.

3.2.2 Disk-Shaped Planar Robot

The Disk dataset consists of images of a circular robot translating in a 2-D plane. Images

lie in R100×100×3 with two modes of variation (translation along x and y). Hence, its a 2-

dimensional manifold with one set of latent vectors given by the image coordinates of the

center of the disk. We use this latent space y = [y1y2] ∈ [10, 90] × [10, 90] which was also

used while generating the images. The neighbourhood size parameters are set to k1 = 14 and

k2 = 7 and m = 2. Here we use the method described in section 2.4 to set the number of

normal space components d, with the value of energy threshold t to 0.99. As was the case
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Figure 3.9: Squared Error v Angle of Rotation on Teapot dataset, Variation in squared error

between original image and reconstruction for both linear reconstruction and LQR. Average LQR

Error = 80.44, Average Linear Error = 99.97.

for the teapot set, we again use fM(Nk1
yq ) for finding the tangent space since otherwise the

tangent vectors found are inaccurate (see fig. 3.6).

Fig. 3.10 shows 1000 samples from the disk dataset out of which N = 800 are randomly

set as training points and the remaining as test points. Reconstruction for one of these is

shown in fig. 3.11. Regularization parameters are set to λL = 10−3 and λQ = 1. Using a PCA

eigenenergy threshold value of t = 0.99, we extract (m + d) = 10 principal components (fig.

3.11a), 2 tangent space and 8 normal space components. Linear regression on the tangent

space using k2 = 7 neighbours is shown in figs. 3.11b and 3.11c, and quadratic regression

along d = 1 is shown in fig. 3.11d. The surface found from quadratic regression fits well to the

points in the neighbourhood, with a visible improvement from the linear reconstruction. Fi-

nally, we compare the images reconstructed from LQR and linear reconstruction in fig. 3.11e.

Fig. 3.12 illustrates the effect of adding normal space components to the reconstruction.

We perform quadratic regression along the (m+ d)th component to obtain the projection of
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 Training Points
Testing Points

Figure 3.10: 2-dimensional disk dataset, Latent vectors of the images in the 2-dimensional disk

dataset, with some images overlaid on top.

the query point in it. Each added component leads to decrease in the blur in the images,

however this effect is less pronounced for higher values of d which is expected since here the

effect of noise becomes pronounced. Looking at the regression surfaces, we can see that the

second order assumption falls short at high d.

Out of the 200 test images, LQR improved upon linear reconstruction in 183. Some ex-

amples from these along with their reconstructions is shown in fig. 3.13. LQR is able to

successfully reduce the blurring in linear reconstruction in most cases, and images 2,3 and 5

show significant improvements. The 17 images where LQR failed were mostly points on the

boundary of the manifold (where the disk is at the edge of the image), fig. 3.14. Here the

tangent space is not computed accurately and the query point is also extrapolated beyond

the support of training data. This is similar to the effect observed for swiss-roll and spiral

manifolds and is expected. A visualization of how the error varies on the manifold is given

in fig. 3.15 which shows the latent vectors in R2 of both the training and test points. For

the test point, the size of the dot is proportional to the reconstruction error.
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Figure 3.11: LQR on the Disk dataset, Step-by-step LQR procedure on the disk dataset. (a)

(m + d) = 10 principal components, (b) Latent vectors Nk2
yq

, (c) Their projections onto T̂xqM, (d)

Quadratic regression along u3 (d = 1), (e) Found reconstructions (top-original image, middle - LQR,

bottom - linear reconstruction). k1 = 14, k2 = 7, λL = 10−3, λQ = 1.
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(b) m+ d = 3
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(c) m+ d = 4
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(d) m+ d = 5
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(e) m+ d = 6

Figure 3.12: Effect of Normal Space components, The change in a reconstructed image as each

higher order principal component is added (top row), and the quadratic regression along these com-

ponents (bottom row). The first image on far left is the reconstruction with just linear interpolation

on T̂pM.

Figure 3.13: Local Quadrature v Linear Reconstruction on Disk dataset, Top row - Original

test images, Middle Row - LQR, Bottom Row - Linear Reconstructions. k1 = 14, k2 = 7, λL = 10−3,

λQ = 1.
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Figure 3.14: LQR failures on Disk dataset, (a) Example images where LQR performs worse

than linear reconstruction (mostly boundary images). (b) Quadratic regression along first orthogonal

component for image 3. Query point is extrapolated far beyond the support of training data. k1 = 14,

k2 = 7, λL = 10−3, λQ = 1.

LQR

 

 Training Points
Test Points

Average LQR Error = 18.2

Linear Reconstruction

 

 

Training Points
Test Points

Average Linear Error = 23.0

Figure 3.15: Error Variation on Disk Dataset, A visualization of the squared error between

original image and found reconstruction on the disk dataset for both the linear and quadratic methods.

Size of the marker for test data is proportional to the squared error.
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Figure 3.16: Reconstructions on Robot-Arm Dataset, Reconstruction results on the robot-arm

test images. Top - Original Data, Middle - LQR (MSE = 8.74), Bottom - Linear Reconstruction

(MSE = 9.63). k1 = 14, k2 = 7, λL = 10−3, λQ = 1.

3.2.3 Planar Articulated Robot Arm

Local planning in the Probabilistic Roadmap algorithm for robot-motion planning requires

reconstructing high-dimensional workspace data from the robot’s configuration space (C-

space). LQR can be used here, and to demonstrate the application we show its performance

on the Robot Arm dataset. This set contains 735 images of a planar articulated robot arm

with two links free to move about. It has 2 degrees of freedom - the angles made by the

links with the horozontal. Images lie in R100×100×3, and the configuration space is given by

[0, π] × [0, π]. Out of the 735 total images we randomly selected 135 for testing and recon-

structed them from their known neighbours in the remaining N = 600 images. Fig. 3.16

shows a few example reconstructions on this dataset. The neighbourhood sizes were set to

k1 = 14 and k2 = 7, and the tangent space was computed from fM(Nk1
yq

). Number of normal

space components d was set the same way as for the disk dataset before with a threshold of

t = 0.99. Mean Squared Error over all the 135 test points for LQR was 9.3% lower than the

MSE for Linear Reconstruction.
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3.3 Video Frame Reconstruction

One possible application of any reconstruction procedure in image processing is frame in-

terpolation. Many video sequences have only a few degrees of freedom and can be viewed

as a set of points near a low-dimensional manifold embedded in a high-dimensional space

[22]. Even where the sequence does not actually lie on a manifold, the video can still be

seen as a 1-dimensional trajectory in the space of all images and NLDR methods can be used

to assign latent vectors to each frame [23]. Motivated by this, we explore whether we can

use LQR for video compression and frame interpolation. For example, a typical compression

scheme would involve finding out latent vectors for the frames using NLDR and uniformly

downsampling the video by removing certain frames at the transmitter side. Then at the

receiver side, LQR can be used to find the missing frames from their latent vectors and the

remaining ’train’ frames.

The foreman sequence consists of 300 frames of a construction worker first talking into

the camera, and then pointing towards a site. Initial part of the video shows the worker

moving his head about after which there is abrupt motion and the camera view shifts to a

construction site. After this the last few frames are an almost static view of a construction

site. ISOMAP with k = 4 returns an embedding for this sequence in R with a residual error of

0.0003. Fig. 3.17 shows reconstruction on 5 uniformly selected frames from their neighbour-

ing frames. Both the neighbourhood size parameters were set to k = k1 = k2 = 4, and the

regularization parameters were set to λL = 10−3 and λQ = 1. The number of normal compo-

nents d for quadratic regression was set in the same way as for the disk dataset by choosing

a threshold energy we want to retain in the principal components (see eq. 2.20). t = 0.99

was used which in practice, for a neighbourhood size k1 = 4 always yielded (m+ d) = 3.

The initital part of the sequence has the worker moving his head about in a few directions

against a fixed background. Since such a motion has only a few degrees of freedom, this part

‘conforms’ well to a manifold and our quadratic regression works well. The first three frames

shown in fig. 3.17 exemplify this, and LQRs have much lesser blur than corresponding linear
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Figure 3.17: Frame reconstruction on Foreman Sequence, Uniformly selected frames were

reconstructed using both quadratic and linear reconstruction. First column - Original frame. Second

Column - Regression for d = 1 on estimated tangent space at that frame. Third column - Quadratic

and Linear reconstructions. Squared errors are written below the reconstructions.k = k1 = k2 = 4,

λL = 10−3, λQ = 1.
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ones. Regression along d = 1 orthogonal component is also shown in the second column along

with the linearly interpolated result. Frame 4 belongs to the part of the sequence with abrupt

motion where background also changes and both the reconstructions have a high amount of

blur and a large squared error. Due to the abrupt motion neighbourhing frames are spaced

far apart in the image space, and interpolation naturally becomes a harder problem, however

LQR is still able to significantly improve the linear reconstruction and has a lower squared

error with lower blur. The last frame shown is from the part of the video with an almost

static shot of a construction site. At this part of the video there is not much change from

one frame to the next and both reconstructions are almost identical.



Chapter 4

Conclusions and Discussion

In this work we have presented an algorithm Local Quadrature Reconstruction (LQR) for

out-of-sample reconstruction, which estimates a non-linear function fM : S →M for recon-

structing high-dimensional data from its low-dimensional latent variables. Our procedure is

based on fitting a differential geometric model to a local neighbourhood on the manifold such

that each point in the neighbourhood can be expressed in terms of its tangent space compo-

nents and a small number of normal space components. We assume a linear form over the

tangent space and a quadratic form over the normal space. Tangent and Normal vectors along

directions of maximum data variance are extracted using Principal Components Analysis on

a set of k points sampled from the neighbourhood, and parameters of the geometric model

are found using least squares regression. Reconstructions are found by linearly interpolating

between the latent space and tangent space.

Important features of LQR include its low computational complexity of O(kNm + k3 +

n(m + d)) which ensures the reconstruction time does not blow up with total number of

points on the manifold or dimension of the ambient space. We note that the time complexity

is comparable to simple linear interpolation from k-nearest neighbours [1], with better quality

of reconstructions observed on all datasets tested (with n upto 30000, but intrinsic dimen-

sion m ≤ 2). Also, there is no training time as such for LQR, since no global optimization

or learning needs to be performed. Though we restrict our attention to the latent spaces

generated by ISOMAP or known from the functions generating the data, we expect LQR
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to generalize well to other latent spaces recovered by other NLDR algorithms such as LLE,

MVU etc.

A significant limitation of the LQR procedure arises since the principal components are

not well-aligned with the principal directions (eigenvectors of the hessian matrix, along which

principal curvatures are defined). This means that the quadratic reconstruction needs to con-

sider also the off-diagonal terms, so that the number of neighbourhood points needed grows as

O(m2). This limits the effectiveness of LQR to situations with low intrinsic dimension, since

increasing neighbourhoood size k causes several problems. First, we need an exponentially

greater number of samples on the manifold to ensure all the k neighbours are on a small

patch of the manifold. Secondly, the computation time of the algorithm varies as k3 or m6

and any advantage we have of remaining in a local neighbourhood vanishes as m becomes

large. Finally, the number of parameters we need to estimate also increases as m2 along each

normal space component. At large values of m the curves are overfit due to the large number

of parameters and hence the quality of reconstructions also decreases. For these reasons we

limit our analysis to manifolds with low intrinsic dimension, which still covers a wide variety

of practical datasets.

In chapter 3 we analyse the performance of LQR on several point sets and image sets

sampled from hypothetical manifolds in high-dimensional spaces. Results on point sets such

as the 2-d swiss-roll and 1-d spiral in R3 show how the second order assumption is successful

in preserving the shape of the reconstructed manifold while linear reconstruction is not. Im-

age sets used for demonstration include a rotating teapot, 2-d translation of disk robot, and

2-d planar robotic arm all of which are synthetically generated. We refer to the problem of

blurring, where linearly reconstructed images do not have sharp boundaries, and give several

examples where LQR is able to significantly reduce the blurring over linear reconstructions.

Mean Squared Error (MSE) across all test points is also computed and LQR has lower MSE

than linear reconstruction across all datasets studied. Cases where LQR fails, or has a higher

error compared to linear reconstruction, are mostly boundary points where the query point is

extrapolated far beyond the support of neighbouring samples. However at these points even



4.1 Future Work 57

linear reconstruction has a very high error.

Potential applications of LQR lie in the image domain and include compression and in-

terpolation. Compression can be achieved by retaining only low-dimensional latent vectors

instead of high-dimensional images. Interpolation can be used for frame-rate upconversion or

reconstruction of dropped frames of videos. We demonstrate this application on the foreman

video sequence. It is interesting to note how LQR provides siginificant improvements on

portions where the video has only a few modes of variability, which is expected since these

portions satisfy the assumptions we make about the structure of the data. LQR can also

be applied for generating novel views of an object from a set of known views for analysis in

computer vision (ex: rotating teapot). In Robot motion planning, the method can be used to

generate interim points between two ”nearby” poses that are both collision free. Such points

are useful in planning a local path between these points - if collision-free, such paths can be

added to a graph of free paths called the roadmap.

4.1 Future Work

We have already discussed one limitation of LQR - inability to generalize to manifolds with

a large number of degrees of freedom or m. For these manifolds we need a large of number of

neighboring samples and regression does not work due to overfitting. However, many practi-

cal datasets such as the MNIST handwritten digits, or several Face image datasets assume

an intrinsic dimensionality as large as m = 30. It is still not clear to the authors how the

effect of curvature can be exploited for such cases.

Another aspect of LQR which requires further investigation is its applicability. The

manifolds studied in this paper are all ’clean’ manifolds in the sense we assume no noise

during sampling and that the manifolds have a uniform structure throughout and a constant

well defined intrinsic dimension. This may not be the case for high-dimensional data in

general and it remains to be seen how well LQR performs when these conditions do not hold.
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