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Synopsis

The cache-coherent many-core server processors are traditionally designed with a per-core

private cache hierarchy and a large shared multi-banked last-level cache (LLC). The private

cache contents are kept coherent with the help of a scalable cache coherence protocol.

An important storage structure employed by the cache coherence protocol is the sparse

directory, which keeps track of the location(s) of the cache blocks in the private caches.

The height or the number of entries in the sparse directory puts an upper bound on the

number of cache blocks that can be tracked simultaneously at any point in time. The

width of the sparse directory puts an upper bound on the number of simultaneous sharers

of a cache block depending on the encoding format of the sharers. Even after decades of

research, design of a space-efficient sparse directory that can scale seamlessly and offer high

performance without curtailing the degree of sharing remains one of the most important

problems in cache-coherent many-core server processors. In this thesis, we present novel

solutions for optimizing the width and height of the sparse directory. In addition to the

space overhead of coherence tracking, a many-core processor suffers from large round-trip

latency overhead and traffic overhead in the interconnect between the per-core private

cache hierarchy and the shared LLC banks. The cache coherence protocol, the sparse

directory organization, and the efficiency of the private cache hierarchy together determine

the latency and traffic overhead. While our sparse directory proposals exhibit significant

savings in the interconnect traffic, we propose a more direct solution to this important

problem by taking a fresh look at the private cache hierarchy architecture in the context

of popular server workloads. In this thesis, we propose a novel space-efficient private cache

hierarchy architecture that outperforms the traditional private cache hierarchy designs in
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terms of interconnect traffic and execution time.

Our width-optimized sparse directory proposal exploits the observation that multi-

threaded applications typically require two types of directory entries, namely, limited

pointer entries tracking a few sharers of a block and bitvector entries tracking larger

number of sharers for widely shared blocks. While this is a well-known behavior, the

difficulty in employing this observation to practice in a space-efficient manner arises from

the fact that the exact proportion of these two types of entries varies across applications

and across phases even within the same application. Recent proposals aiming to optimize

the average number of bits per directory entry have organized the sparse directory as either

a static mix of these two types of entries with a pre-defined proportion or a collection

of relatively short bitvector entries that can encode either a limited number of sharer

pointers or a larger number of sharers hierarchically. In either case, sparse directory space

is wasted depending on the run-time characteristics of the application. We present a

directory organization that facilitates allocation of the two different types of directory

entries dynamically. Our design maintains a pool of limited pointer entries, where each

entry can also double as a segment directory entry encoding the sharers in a cluster

of cores. Each tag in the primary sparse directory array has a pointer that can either

represent a sharer or point to an entry in the pool. When multiple segment directory

entries are needed to encode all the sharers of a block, our pool management protocol

guarantees that all these entries are allocated contiguously so that maintaining a pointer

to the head entry is enough. Detailed simulation results show that our Pool Directory

proposal incorporated in a 128-core system running multi-threaded applications drawn

from scientific, general-purpose, and commercial computing domains can offer, on average,

5% improvement in performance and 20% savings in interconnect traffic compared to the

state-of-the-art scalable coherence directory (SCD) proposal when using a 1
16× sparse

directory.

Recent notable research efforts for optimizing the sparse directory height have largely

followed two directions. First, the observation that private coarse-grain regions can be

tracked in a single directory entry has motivated researchers to explore support for multi-
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grain coherence. Second, pages or blocks have been identified dynamically as private

respectively by the operating system (OS) or the hardware. The blocks thus marked

private are not tracked by the directory saving directory entries. However, when such a

block is shared at a later point, a costly non-scalable broadcast-based recovery mechanism

is needed. In this thesis, we design a robust minimally-sized sparse directory that can offer

adequate performance while enjoying the simplicity, scalability, and OS-independence of

traditional broadcast-free block-grain coherence. We begin our exploration with a näıve

design that does not have a sparse directory and the location/sharers of a block are tracked

by borrowing a portion of the block’s LLC data way. Such a design, however, lengthens

the critical path from two transactions to three transactions (two hops to three hops) for

the blocks that experience frequent shared read accesses. This is because the LLC data

way cannot provide the block in such cases as part of the LLC block is corrupted with

tracking information. We address this problem by architecting a tiny sparse directory

that dynamically identifies and tracks a selected subset of the blocks that experience a

large volume of shared accesses. However, it is difficult to appropriately size this tiny

directory, since the actual footprint of the shared blocks varies across applications and

across phases even within the same application. Therefore, to make the design robust, we

further augment the tiny directory proposal with an option of selectively spilling directory

entries into the LLC space for tracking the coherence of the critical shared blocks that the

tiny directory fails to accommodate. Our Tiny Directory proposal operating with 1
32× to

1
256× sparse directories offers performance within a percentage of a traditional 2× sparse

directory in a 128-core system. The Tiny Directory design outperforms the state-of-the-art

by very large margins when operating with the same number of directory entries.

Traditionally, the private cache hierarchy in the many-core server processors treats

the private and the shared blocks equally. Our private cache hierarchy design proposal is

motivated by the observation that in a single-level private cache hierarchy with per-core

private L1 cache, elimination of all non-compulsory non-coherence L1 cache misses to a

small subset of read-shared code and data blocks can save a large fraction of the LLC

accesses indicating large potential for reducing the interconnect traffic in such architec-
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tures. These read-shared code and data blocks should be protected from eviction for a

longer period of time in the private cache hierarchy. We architect a specialized exclusive

per-core private L2 cache which serves as a victim cache for the per-core private L1 cache.

The proposed victim cache selectively accommodates a subset of the L1 cache victims and

manages the victim cache contents with specialized replacement policies so that the target

subset of the read-shared blocks enjoys longer residence in the private cache hierarchy.

The selective victim caching and the replacement policy proposals are driven by an online

partitioning of the L1 cache victims based on two distinct features, namely, an estimate of

sharing degree and an indirect simple estimate of reuse distance. Our proposal learns the

collective reuse probability of the blocks in each partition on-the-fly and decides the victim

caching candidates based on these probability estimates. The proposed victim cache at 64

KB capacity, on average, saves 70% LLC accesses and 12.2% execution cycles compared to

a baseline 128-core system that has no private L2 cache. In contrast, a traditional 128 KB

non-inclusive LRU L2 cache saves only 42% LLC accesses compared to the same baseline

while performing slightly worse than the proposed 64 KB victim cache. In summary, our

proposal outperforms the traditional design while halving the space investment for the

per-core private L2 cache.
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Chapter 1

Introduction

The workloads that typically run on general-purpose processors can be largely divided

into two categories, namely client workloads and server workloads. The server workloads

are multi-threaded or multi-process in nature where the threads or the processes carry out

different types of work such as thread/process pool management, allocation of software

resources (memory, buffer, etc.), compute, input/output (I/O), book-keeping/statistics

collection, etc.. As a result, the server workloads demand high levels of concurrency

and some guarantee on response time bound. To cater to this demand, during the past

decade, high-end server-grade single-chip multiprocessors (CMPs) have sported an increas-

ing number of high-performance independent processor cores along with a deep on-chip

cache hierarchy. While the cache hierarchy and the highly-optimized core microarchitec-

ture help achieve good single-thread performance, the large number of on-chip cores allow

many threads to run concurrently achieving high levels of throughput. Such CMPs with

large core counts are often referred to as many-core processors.

Figure 1.1 shows the high-level components of a typical single-chip multiprocessor.

The chip has six cores numbered C0 to C5. Each core has an instruction processing

pipeline optimized for single-thread performance. The pipeline interfaces with the per-core

private L1 instruction (iL1) and L1 data (dL1) caches for fetching code and data. The L1

cache misses are forwarded to the per-core unified L2 cache. The L2 cache of each core

connects to an interconnection network switch. The L3 cache is the last-level cache (LLC),

1
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shared by all cores, and is architected as a collection of banks. Each core has a local L3

cache bank connected to its switch, while accessing the other remote L3 cache banks

requires a traversal through the interconnection network. The interconnection network

may have a few switches dedicated for connecting the memory controllers. While the L2

cache misses are forwarded to the appropriate L3 cache bank derived from the physical

address, the L3 cache misses are forwarded to the appropriate memory controller based

on the physical address. Each memory controller may have single or multiple channels

connecting usually to DDRx DRAM modules. All the switches are connected according

to some topology to form an interconnection network [43]. The typical topologies include

ring, mesh, and torus. The connection between two adjacent switches can be unidirectional

or bidirectional. Unidirectional connections put restriction on the possible routes between

two switches leading to lower overall bandwidth. Each switch contains virtual channels or

queues to improve routing throughput and avoid routing deadlocks. The virtual channels

can be multiplexed on a smaller number of physical networks.

CORE

PIPELINE

dL1iL1

L2 CACHE

SHARED

L3 BANK
DIR.SHARED

L3 BANK

SHARED

L3 BANK

CORE

PIPELINE

iL1 dL1

L2 CACHE

PIPELINE

iL1 dL1

L2 CACHE

CORE

PIPELINE

iL1 dL1

L2 CACHE

CORE

SHARED

L3 BANK

DIR. DIR.

SHARED

L3 BANK

PIPELINE

CORE

iL1 dL1

L2 CACHE SHARED

L3 BANK

PIPELINE

CORE

iL1 dL1

L2 CACHE

DIR. DIR. DIR.

SW SW SW

SW SW SW

SW SWCNTRL.

MEM. MEM.

CNTRL.INTERCONNECTION NETWORK

C0 C1 C2

C3 C4 C5

Figure 1.1: High-level architecture of a typical single-chip multiprocessor. “SW” are
interconnect switches. “DIR.” is the directory storage for tracking coherence information.
The network interface required for communicating with the neighboring chips is not shown.

The shared memory programming model is very popular in the multi-threaded server
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workloads. Its popularity primarily stems from the ease of programming enabled by the

communication abstraction provided by the load/store interface. A thread can produce a

new value to a shared variable through a traditional store instruction and another thread

can eventually see this value by simply loading the shared variable. For this programming

model to work correctly, certain ordering constraints may have to be imposed on a set

of operations involving the shared variables. This is usually achieved through explicit

synchronization operations in the application software. For the shared memory abstraction

along with the synchronization operations to work correctly, the underlying hardware

must ensure that the stores to a particular address eventually become visible to all cores

in the system (known as write propagation) and that all cores in the system see the

stores to a particular address in exactly the same order (known as write serialization).

Write propagation and write serialization together form what is popularly known as cache

coherence [25, 36, 75]. Simply put, the cache coherence hardware keeps the contents of

the private caches across the cores coherent. For the cache coherence hardware to scale

efficiently to a large number of cores, it is necessary to systematically avoid broadcast of

any information to all cores. This requirement necessitates maintaining additional storage

structures for keeping track of the location of copies of cache blocks in the entire chip.

This coherence tracking information can enable the hardware to quickly locate the copies

of a cache block whenever needed. For example, when a core does a store to a cache block,

it may be necessary to invalidate all copies of the cache block residing in the other cores’

private caches to maintain coherence. This coherence tracking storage is usually referred to

as the coherence directory [14]. Further, since the directory maintains information about

only a subset of the memory blocks in the system, it is referred to as the sparse directory

keeping track of a sparse sampling of all the memory blocks [35, 66, 81]. The sparse

directory is architected by decomposing it into slices and associating a slice with each L3

cache bank, as shown in Figure 1.1. The directory slice attached to an L3 cache bank is

responsible for keeping track of the copies of all blocks mapped to that L3 cache bank.

This directory slice or the associated L3 cache bank is referred to as the home directory

slice or the home L3 cache bank of all these blocks. Each entry of the directory slice
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maintains information about one cache block. Two types of directory entry encoding have

been widely used. In one type, a directory entry is represented as a vector of bits where

each bit encodes either a sharer or a cluster of sharers. The width of such a bitvector entry

is necessarily equal to either the maximum number of cores or the maximum number of

core clusters. In the other type of encoding, a directory entry is represented as a collection

of pointers where each pointer encodes the identity of a sharer. The width of such a limited

pointer entry is equal to p(dlog2Ce+ 1) where p is the number of pointers in the directory

entry and C is the number of cores in the CMP. Each pointer needs a valid bit and space

to encode the identity of a sharer. In addition to the sharer encoding, each directory entry

maintains the coherence states of a block.

Two important problems arise as the number of cores of a cache-coherent CMP is scaled

from a few tens of cores to 100+ cores. The first problem relates to the efficient support for

shared memory programming model. The legacy shared memory workloads must continue

to run efficiently and hence, the entire hardware substrate for cache coherence must scale

gracefully [62]. However, since the coherence directory is responsible for keeping track of

the copies of the blocks in the private caches, the number of directory entries must be

scaled up accordingly to take into account the increasing aggregate private cache capacity

with core count. An under-provisioned directory curtails the number of blocks that can

be cached simultaneously in the private cache hierarchy hampering performance. Also,

the average number of directory storage bits devoted to keep track of the copies of a block

must be scaled up with core count because with a larger number of cores, the number of

possible copies of a block inside the chip increases. This aspect usually impacts the width

of a directory entry. A less than adequately sized directory entry would restrict the degree

of sharing and may hamper performance. In this thesis, we study novel optimizations that

target the directory width as well as the directory height for 100+ core CMPs.

The second problem relates to managing the communication traffic in the on-chip

interconnection network of a large many-core processor. Given the large working sets of

the server workloads, the communication traffic in the interconnect between the private

cache hierarchy and the shared L3 cache banks is usually large. Additionally, as the
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scale of the chip increases, the average round-trip latency through the interconnect also

grows. Therefore, it is important to optimize the design to reduce this traffic. The

coherence directory organization and the efficiency of the private cache hierarchy together

dictate the shape and volume of this traffic. While our directory optimization proposals

show significant savings in the interconnect traffic, we also study the design of an efficient

private cache hierarchy in the context of the server workloads. Our private cache hierarchy

proposal takes into account the nature of code and data sharing between the cores and

designs a space-efficient architecture that decides which blocks to keep longer in the private

cache hierarchy.

In the following two sections, we outline the contributions of this thesis (Section 1.1)

and its organization (Section 1.2).

1.1 Contributions

This thesis makes three specific contributions addressing the two scalability problems

discussed above. The first contribution is a width-optimized novel two-level directory

organization. The proposed organization attempts to optimize the average number of bits

devoted to a directory entry. Our proposal exploits the well-known observation that a

shared block exhibits a bi-modal pattern in the number of sharers i.e., a block is either

shared by a few threads or widely shared [25, 81]. As a result, multi-threaded applications

typically require two types of directory entries, namely, limited pointer entries tracking a

few sharers of a block and bitvector entries tracking larger number of sharers for widely

shared blocks. The primary challenge in designing a directory that has these two kinds of

entries is that the exact proportion of these two types of entries varies across applications

and across phases even within the same application. Recent proposals aiming to optimize

the average number of bits per directory entry have organized the directory as either

a static mix of these two types of entries with a pre-defined proportion or a collection

of relatively short bitvector entries that can encode either a limited number of sharer

pointers or a larger number of sharers hierarchically [27, 69, 85]. In either case, directory
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space is wasted depending on the run-time characteristics of the application. We present

a directory organization that enables on-demand allocation of the two different types of

directory entries dynamically. Our design maintains a pool of limited pointer entries,

where each entry can also double as a segment directory entry encoding the sharers in

a cluster of cores. Each entry in the primary directory array has a pointer that can

either represent a sharer or point to an entry in the pool. As a result, one entry of

the primary directory array is enough for tracking a private block. A moderately shared

block would require a pool entry. When multiple segment directory entries are needed

to encode all the sharers of a block, our pool management protocol guarantees that all

these pool entries are allocated contiguously so that maintaining a pointer to the head

entry is enough. We study the performance of this proposal using detailed simulation of a

128-core CMP running multi-threaded applications drawn from scientific, general-purpose,

and commercial computing domains. Our Pool Directory proposal offers, on average, 5%

improvement in performance and 20% savings in interconnect traffic compared to the state-

of-the-art scalable coherence directory (SCD) proposal using an equally sized directory.

The details of the Pool Directory design, its evaluation, and comparison with related

literature are presented in Chapter 3.

The second contribution is a height-optimized directory organization. The proposed

organization seeks to design a directory that has a minimal number of entries. Recent

notable research efforts for optimizing the directory height have largely followed two di-

rections. First, it has been observed that large coarse-grain contiguous memory regions

are often private in server workloads [13]. Each private coarse-grain region can be tracked

using a single directory entry. This optimization, however, requires support for multi-grain

coherence so that fine-grain shared blocks can also be tracked by the directory [5, 10, 86].

Second, pages or blocks that are temporarily private can be identified dynamically respec-

tively by the operating system (OS) or the hardware. The blocks thus marked private are

not tracked by the directory saving directory entries. However, if and when such a block

is shared at a later point, a costly non-scalable broadcast-based recovery mechanism is

needed because no information about the locations of these blocks is available [24, 26].
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Such broadcast-based schemes are very difficult to scale to 100+ cores. In this thesis, we

design a robust minimally-sized directory that can offer adequate performance while the ac-

companying coherence protocol can enjoy the simplicity, scalability, and OS-independence

of the traditional broadcast-free block-grain coherence protocols. We begin our explo-

ration with a näıve design that does not have a directory at all and the location/sharers

of a block are tracked by borrowing a portion of the block’s L3 cache data way. Such a de-

sign, however, lengthens the critical path from two transactions to three transactions (two

hops to three hops) for the blocks that experience frequent shared read accesses. This is

because the L3 cache data way cannot provide the block in such cases (which the baseline

can); part of the L3 cache block is corrupted with tracking information. We address this

problem by architecting a tiny directory that dynamically identifies and tracks a selected

subset of the blocks that experience a large volume of shared accesses. However, it is diffi-

cult to appropriately size this tiny directory, since the actual footprint of the shared blocks

varies across applications and across phases even within the same application. Therefore,

to make the design robust, we further augment the tiny directory proposal with an op-

tion of selectively spilling directory entries into the L3 cache space. The spill selection

mechanism gives priority to the tracking information of the shared blocks that are critical

and cannot be accommodated by the tiny directory. Our Tiny Directory proposal oper-

ating with under 200 KB of storage budget offers performance within a percentage of a

traditional directory with 8 MB storage in a 128-core system. The Tiny Directory de-

sign outperforms the state-of-the-art by very large margins when operating with the same

number of directory entries. The Tiny Directory design, its evaluation, and comparison

with recent related works are discussed in Chapter 4.

The third contribution is a space-efficient private cache hierarchy design for many-core

server processors. Traditionally, the private and the shared blocks are treated equally by

the private cache hierarchy. We start our exploration with a single-level private cache

hierarchy having a per-core private L1 cache and augment it with an intelligent L2 cache.

We observe that in a single-level private cache hierarchy with per-core private L1 cache,

elimination of all non-compulsory non-coherence L1 cache misses to a small subset of read-
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shared code and data blocks can save a large fraction of the L3 cache accesses indicating

large potential for reducing the interconnect traffic in such architectures. These read-

shared code and data blocks should be protected for a longer period of time in the private

cache hierarchy. We architect a specialized exclusive per-core private L2 cache which

serves as a victim cache for the per-core private L1 cache. The goal of the proposed

victim cache is to lengthen the residency of the target subset of the read-shared blocks

in the private cache hierarchy. The proposed victim cache selectively accommodates a

subset of the L1 cache victims and manages the victim cache contents with specialized

replacement policies. The selective victim caching and the replacement policy proposals

are driven by an online partitioning of the L1 cache victims based on two distinct features,

namely an estimate of sharing degree and an indirect simple estimate of reuse distance.

Our proposal learns the collective reuse probability of the blocks in each partition on-

the-fly and decides the victim caching candidates based on these probability estimates.

The proposed victim cache at 64 KB capacity, on average, saves 70% L3 cache accesses

and 12.2% execution cycles compared to a baseline 128-core system that has no private

L2 cache. In contrast, a traditional 128 KB non-inclusive LRU L2 cache saves only 42%

L3 cache accesses compared to the same baseline while performing slightly worse than

the proposed 64 KB victim cache. In summary, our proposal outperforms the traditional

design while halving the space investment for the per-core private L2 cache. The private

cache hierarchy design and its detailed evaluation are presented in Chapter 5.

We summarize our contributions in the following.

• We propose a width-optimized two-level Pool Directory organization that dynam-

ically allocates two types of directory entries from a unified pool of short-vector

directory entries.

• We propose a height-optimized Tiny Directory organization that keeps track of a

critical subset of shared blocks in the directory and keeps the tracking information

of the rest of the blocks in the L3 cache space.

• We propose a space-efficient sharing-aware private cache hierarchy suitable for server
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workloads. The private cache hierarchy is designed to have a traditional L1 cache and

a specialized victim L2 cache that selectively caches a subset of critical read-shared

blocks.

Thesis Statement: The thesis addresses the scalability bottlenecks posed by the coher-

ence tracking overhead and the latency/bandwidth overhead of the interconnect in a server

processor with 100+ cores. The over-arching goal of the thesis is to design (i) a space-

efficient coherence tracking infrastructure that can lower the coherence directory overhead

while maintaining/improving performance and (ii) a space-efficient private caching archi-

tecture that can lower the overall number of trips to the shared last-level cache. The thesis

demonstrates its success in achieving these goals through detailed simulation results on a

128-core chip-multiprocessor.

1.2 Thesis Organization

Chapter 2 introduces the background material on cache hierarchy, cache coherence, and

directory organization relevant to our contributions. Chapters 3, 4, and 5 present the de-

tailed proposal and evaluation of Pool Directory, Tiny Directory, and space-efficient private

cache hierarchy design, respectively. Each chapter also includes a discussion of the related

literature relevant to each proposal. Chapter 6 concludes the thesis with a discussion of

possible future avenues of research relevant to the domain of our contributions.





Chapter 2

Background

We have introduced the readers to the basic many-core processor architecture and the

notion of cache coherence in Chapter 1. In this chapter, we discuss three components

of the processor microarchitecture in more detail, as these have direct relevance to the

contributions of this thesis. Section 2.1 discusses the protocols for maintaining a multi-

level cache hierarchy. Section 2.2 presents different types of cache coherence protocols and

the basics of composing such protocols. As we have mentioned in Chapter 1, the directory

storage is at the center of the scalable cache coherence hardware. We discuss some of the

details of directory organization in Section 2.3.

2.1 Multi-level Cache Hierarchy

An on-chip multi-level cache hierarchy is common in today’s processors. A cache hierarchy

is organized as a collection of levels of caches. The cache levels get bigger and slower as

they get further away from the core computing pipeline. Such a design is motivated by the

fact that the most recently used code and data subset should reside close to the computing

pipeline and be accessible with low latency. As a result, when an access to a cache level

n fails to find the requested code or data, it is fetched from the outer levels of the cache

hierarchy and usually allocated in level n, unless it can be ascertained with high confidence

that the fetched block of code or data will not be accessed from the level n cache in near-

11
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future. In this thesis, we will assume that a block fetched to a particular level of the cache

hierarchy is always allocated in that level, unless explicitly mentioned otherwise. Different

cache hierarchy designs implement different types of relationships between the contents of

the levels of the hierarchy and these relationships are of importance to us for this thesis.

In the following discussion, we will first assume a two-level cache hierarchy with the levels

denoted by L1 and L2. Next, we will extend the discussion to a three-level cache hierarchy

by introducing the L3 cache.

In a two-level cache hierarchy, depending on the cache management policies, the L1

cache contents may or may not be a subset of the L2 cache contents. If the L1 cache

contents are always a subset of the L2 cache contents, the L2 cache is said to be inclusive

of the L1 cache. To maintain the inclusion invariant, the following two aspects of the cache

management policy must be strictly observed. First, a block allocated in the L1 cache as

a result of an L1 cache miss needs to be resident in the L2 cache as well. This implies

that when a block is fetched from outer levels of the memory hierarchy, it is allocated in

both L1 and L2 caches. Second, when a block is evicted from the L2 cache, in addition

to querying the L1 cache for any up-to-date dirty copy, the L1 cache copy must also

be invalidated. These invalidation messages are usually referred to as back-invalidation

messages. If the L1 cache contents are not a subset of the L2 cache contents, the L2 cache

is said to be non-inclusive of the L1 cache. A special case of a non-inclusive L2 cache is

an exclusive L2 cache where the intersection between the L1 cache contents and the L2

cache contents is always empty. To maintain the exclusion invariant, a block allocated in

the L1 cache must not be resident in the L2 cache or a block allocated in the L2 cache

must not be resident in the L1 cache. This requirement implies the following. First, a

block fetched from the outer levels of the memory hierarchy due to a miss in the L1 and

L2 caches is allocated only in the L1 cache. Second, a block evicted from the L1 cache

may be allocated in the L2 cache. Third, a block fetched to the L1 cache from the L2

cache due to an L1 cache miss is allocated in the L1 cache and invalidated from the L2

cache. Fourth, a block evicted from the L2 cache does not have to invalidate any L1 cache

copy, thereby eliminating back-invalidations. The remaining spectrum of non-inclusive L2
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cache designs is often referred to as non-inclusive/non-exclusive (NINE) to make it clear

that it is neither inclusive nor exclusive. One popular NINE L2 cache design maintains

inclusion all the time except after a block is evicted from the L2 cache. In such a design,

a block fetched from outer levels of the memory hierarchy is allocated in both L1 and L2

caches. When a block is evicted from the L2 cache, its copy, if any, is not invalidated from

the L1 cache. If an L1 cache eviction misses in the L2 cache, it may be allocated in the

L2 cache. In this thesis, any NINE design will follow this protocol.

A two-level cache hierarchy with an exclusive L2 cache enjoys more aggregate cache

capacity than one with an inclusive or a NINE L2 cache. This is because in an exclusive

cache hierarchy, there is no replication of data across the levels of the cache hierarchy.

Further, the back-invalidations in an inclusive design can forcefully evict live L1 cache

blocks leading to loss in performance. These are usually referred to as inclusion victims.

The exclusive and NINE designs do not suffer from this problem. To keep the volume of

inclusion victims low, typically a 4:1 or 8:1 capacity ratio is recommended between the

L2 and L1 caches of an inclusive cache hierarchy. As this capacity ratio increases, the

probability that an L2 cache victim will find a copy in the L1 cache gradually drops.

The discussion presented so far can be seamlessly extended to a three-level hierarchy,

which we use in this thesis. The L3 cache contents can be inclusive, exclusive, or non-

inclusive/non-exclusive with respect to the union of the L1 and L2 cache contents. If the

L2 cache is inclusive of the L1 cache, this union is same as the L2 cache contents. In this

thesis, we will use a NINE L2 cache and a NINE L3 cache design. After eviction of a block

from the L3 cache, its copy may continue to reside in the L1 cache or the L2 cache or

both. This model of inclusion, exclusion, and NINE can also be extended to a setting with

multiple cores. In this thesis, we will use a model where the L1 and L2 caches are private

to a core, while the L3 cache is shared among all the cores. In such a NINE L3 cache

design, after eviction of a block from the L3 cache, multiple copies of it may continue to

reside in the L1 cache or the L2 cache or both in multiple different cores.
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2.2 Cache Coherence Protocols

Cache coherence helps offer the single shared address space abstraction to the programmers

in a many-core system having multiple private caches. To provide programmers the view of

a coherent shared memory across all the cores, CMPs implement cache coherence protocols.

These protocols keep the multiple private caches of a CMP coherent by enforcing the

Single-Writer Multiple-Reader (SWMR) invariant [75]. The SWMR invariant requires

that for any memory location, at any given moment in time, there is either a single core

that may write to it (and may also read it) or some number of cores that may read from

it. A cache coherence protocol is a collection of actions that take the responsibility of

propagating and serializing the stores to a particular address. The actions depend on the

type of the operation e.g., a load or a read miss from a core’s private cache hierarchy, a

store or a write miss from a core’s private cache hierarchy, or an eviction coming out of a

core’s private cache hierarchy. An operation completed within the confines of the private

cache hierarchy of a core does not require any action from the cache coherence hardware.

To implement the appropriate actions, a coherence protocol maintains the state of every

cache block residing inside the private cache hierarchy. The nature of the actions also

depends on the state of the block involved in the operation.

Typical cache block states are invalid (I), shared (S), clean exclusive (E), modified (M),

and owned (O). A block is in invalid state with respect to a particular level of the cache

hierarchy of a core if it is not present in that level of the cache hierarchy. A block is

cached in shared state in a particular level of the cache hierarchy of a core if it is not

modified and the core needs coherence protocol’s “permission” to modify it. The core

has permission to read the block. Other cores can also have copies of the block in shared

state in their private caches. A block is in clean exclusive state in a particular level of

the cache hierarchy of a core if it is not modified and the core has permission to read as

well as modify the block. No other core can have a copy of the block in its private cache

hierarchy. A block is in modified state in a particular level of the cache hierarchy of a core

if parts of the block have been modified. The core has permission to read from and write
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to the block. A block is in owned state in a particular level of the cache hierarchy of a core

if the block has been modified and the core does not have permission to modify the block.

The core can read the block. No other core can have the block in E, M, or O state. Other

cores can have copies of the block in shared state in their private caches. The eviction

of an O state block from the private cache hierarchy of a core generates a writeback to

the next level of the memory hierarchy. A coherence protocol implementation may not

support all the five states. Based on the set of supported states, MESI and MOESI are

the two very popular coherence protocols.

The coherence protocol actions are triggered in response to a request coming out of

the private cache hierarchy of a core. To trigger the appropriate action, knowledge about

the current state of the requested block in the private caches of other cores is necessary.

There are two possible techniques to gather this information. In the first technique, the

request is broadcast to all cores. The private caches of each core “snoop” the request

and act depending on the state of the requested block in its private cache hierarchy.

These broadcast-based snoopy protocol implementations demand significant interconnect

bandwidth and usually considered impractical beyond a few tens of cores.

In the second technique, as mentioned in Chapter 1, a dedicated piece of storage, known

as the coherence directory, is maintained for tracking locations and state of each block

resident in the private caches of the cores. The locations encode the id’s of the cores that

have copies of the block in their private caches. Depending on the requested block address,

the request is first sent to the home L3 cache bank where it consults the home directory

slice (the concept home was introduced in Chapter 1). The directory offers the current

locations of the copies of the block and indicates the coherence state of the block. The

coherence state can be S, M, or O depending on the supported set of states. A coherence

state of S indicates that the block is in shared state and the rest of the directory entry

provides the identities of the sharers (there could be only one sharer also). A coherence

state of M indicates that the block is in modified state and the rest of the directory entry

encodes the identity of the core where the modified block can be found. A coherence state

of O indicates that the block is in O state in the private cache hierarchy of a core. In
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this case, the rest of the directory entry encodes the identity of the owner core and the

identities of the other sharers of the block. A coherence state of I is unnecessary because

a block that is not resident in the private cache hierarchy of any core is not tracked in the

directory. The directory is a tagged structure and the tags of only those blocks which are

cached in the private cache hierarchy of the cores are found in the directory. A coherence

state of E is not maintained in the directory and a block in E state in some core’s private

cache hierarchy is tracked in M state in the directory. This is because the core having

the block in E state can silently modify the block and take the block to M state without

notifying the home directory slice.

Once the locations and the state of a requested block are obtained from the directory,

point-to-point unicast messages are sent to only the cores having copies of the requested

block. Only these cores act upon the forwarded request. Since a request is always for-

warded to the home directory slice first before any coherence action is triggered, the

directory also serves as a serialization point for multiple racing requests to a block. The

directory handles these requests one at a time typically in the order of arrival (although this

order has no influence on the correctness) and resolves the races with additional transient

coherence states. Naturally, the directory-based coherence protocol implementations de-

mand much less interconnect bandwidth than their broadcast-based snoopy counterparts

and hold promise to scale to 100+ cores. In this thesis, we will consider only directory-

based coherence protocols. We discuss the basic set of actions of such protocols in more

detail in the next section.

2.2.1 Directory-based Cache Coherence Protocols

As already mentioned, the exact set of coherence protocol actions depends on the request

type and the current state of the requested block. In the following, we discuss the different

cases for a MESI cache coherence protocol, which we use in this thesis. We assume a NINE

L3 cache design. We do not assume any point-to-point message ordering between pairs of

source and destination in the interconnection network. This is because different message

types (e.g., request, response, intervention) for the same block between the same pair of
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source and destination may travel along different virtual networks inside a switch and may

not maintain any ordering along the way in the most general unrestricted design of virtual

network scheduling algorithms, which usually carry out an online maximum bipartite

matching between the input and output ports of a switch. This is true even if all virtual

networks multiplex on a single physical network. Mapping different types of messages

on different virtual networks is necessary to avoid protocol deadlocks [18]. Even within

the same virtual network, it is possible to reorder the messages for improving program

performance e.g., it may make sense to prioritize processor miss requests over writebacks

in the request network. Also, two different messages in the same virtual network between

the same source and destination pair may travel along two different paths if adaptive or

hot-potato routing is supported. Overall, the most general coherence protocols do not

assume any ordering between network messages.

Read/Load miss

Suppose core C suffers from a read miss in its private cache hierarchy for a block B. The

request is sent to the home L3 cache bank of B and the home directory slice is consulted

in parallel with reading the L3 cache tags. The following situations may arise.

B is not in L3 cache and not tracked in directory: The request is forwarded to the

appropriate memory controller which responds with the block after reading from DDRx

DRAM. The block is allocated in the home L3 cache bank and forwarded to the private

cache hierarchy of C for allocation in E state if it is a data block or in S state if it is a code

block. The home directory slice allocates an entry for tracking B, marks the coherence

state of the block as M or S depending on whether the block is data or code respectively,

and records the identity of C in the entry.

B is in L3 cache, but not tracked in directory: The block is read from the L3 cache

and sent to the private cache hierarchy of C for allocation in E state if it is a data block

or in S state if it is a code block. The home directory slice allocates an entry for tracking

B, marks the coherence state of the block as M or S depending on whether the block is

data or code respectively, and records the identity of C in the entry. This is known as
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a two-hop transaction because the critical path involves two messages. This is shown in

Figure 2.1.

C H
Read request

Read response

Figure 2.1: A two-hop read transaction. H represents the home L3 cache bank and its
associated directory slice.

B is in L3 cache and tracked in directory: The actions depend on the coherence

state of the block recorded in the directory entry. In a MESI protocol, the coherence

state can be either S or M. If the state is S, the block is read from the L3 cache and

sent to the private cache hierarchy of C for allocation in S state. The identity of core C

is added to the list of sharers in the directory entry. This is a two-hop transaction. On

the other hand, if the coherence state is M with the identity of core C ′ recorded in the

directory entry, the request is forwarded to core C ′ and the directory entry is marked busy

which is a transient coherence state. This forwarded message is usually referred to as an

intervention message. Core C ′ directly sends the requested block to core C and also sends

a message (typically known as sharing writeback [25]) to the home directory slice to change

the state of the directory entry to S and mark both C and C ′ as sharers in the directory

entry. The sharing writeback message also carries a copy of the block to update the copy

in the L3 cache bank so that subsequent requests for this block can be responded to by

the L3 cache bank itself. The critical path involves three messages and the transaction

is referred to as a three-hop transaction. This is shown in Figure 2.2. It may happen

that when the forwarded intervention message arrives at core C ′, the requested block has

already been evicted from the private cache hierarchy of core C ′. To handle such late

intervention races, each evicted block is allocated in an eviction buffer local to the private

cache hierarchy of the core evicting the block. The block stays in the eviction buffer

until the eviction is acknowledged by the home directory slice. Every eviction message

received by the home directory slice is acknowledged with one of the two acknowledgment

message types sent back to the evicting core. Two acknowledgment types are needed to
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differentiate the situation where the home directory has forwarded an intervention from

the situation where there is no such in-flight intervention message.

C C’

H

Read

Read intervention

SWB

Read response

Figure 2.2: A three-hop read transaction. H represents the home L3 cache bank and its
associated directory slice. SWB is the sharing writeback message.

B is not in L3 cache, but is tracked in directory: This situation can arise in a NINE

L3 cache design where the L3 cache has evicted the block, but some cores still have the

block in their private caches. If the coherence state of the block is M in the directory

entry, an intervention message is forwarded to the core having the block and the protocol

actions are similar to a regular intervention as discussed above. The only additional action

is to allocate the block in the L3 cache bank when the sharing writeback message arrives.

If the coherence state of the block is S in the directory entry, one of the sharers is elected

to provide the block and an intervention message is forwarded to the elected sharer. The

rest of the flow is same as a regular intervention discussed above, except that a copy of

the block is allocated in the L3 cache so that subsequent requests can be quickly served

from the L3 cache bank itself using a two-hop transaction. The late intervention races are

handled with the help of the eviction buffer and eviction acknowledgment messages.

An alternative to dynamically electing a sharer as the source of the block is to maintain

a “forwarding” core all the time in the directory entry. Such protocols are referred to as

MESIF protocols, where there is always a core having the block in F state. The primary

complication of such a protocol is that when the F state core evicts the block from its

private cache hierarchy, a new forwarding core must be elected from among the existing

sharers of the block by the home directory slice and notified. This requires complex

handling of races where the newly elected core may also evict the block while the election

is in progress in the home directory slice. We do not explore MESIF protocols in this thesis.

We find that a reasonably small eviction buffer per core is sufficient for our implementation.
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Write/Store Miss

Suppose core C suffers from a store miss in its private cache hierarchy for a block B. A

store miss can take two forms depending on the state of the block B in the private cache

hierarchy of C. If the block is not present in C, a read-exclusive miss is generated. On

the other hand, if the block is present in C is S state, an upgrade miss is generated. The

sole purpose of the upgrade miss is to seek permission from the cache coherence layer to

modify the block B. In any case, the miss request is sent to the home L3 cache bank of B

and the home directory slice is consulted in parallel with reading the L3 cache tags. The

following situations may arise.

B is not in L3 cache and not tracked in directory: In this case, the miss request

must be read-exclusive. The request is forwarded to the appropriate memory controller

which responds with the block after reading from DDRx DRAM. The block is allocated

in the home L3 cache bank and forwarded to the private cache hierarchy of C. The home

directory slice allocates an entry for tracking B, marks the coherence state of the block as

M, and records the identity of C in the entry.

B is in L3 cache, but not tracked in directory: In this case also, the miss request

must be read-exclusive. The block is read from the L3 cache and sent to the private cache

hierarchy of C. The home directory slice allocates an entry for tracking B, marks the

coherence state of the block as M, and records the identity of C in the entry.

B is in L3 cache and tracked in directory: The actions depend on the coherence state

of the block recorded in the directory entry and the request type. Let us first consider

the case of a read-exclusive request. If the coherence state in the directory entry is S, the

block is read from the L3 cache and sent to the private cache hierarchy of C along with the

number of sharers. An invalidation message is sent to each sharer. The identity of core C

is recorded in the directory entry and the state of the directory entry becomes M. A sharer,

on receiving an invalidation message, invalidates its cached copy of block B and sends an

invalidation acknowledgment to the requester core C. When the number of invalidation

acknowledgments received by C matches the sharer count, the store miss completes. The

involved messages are shown in Figure 2.3. It is possible to let the requesting core commit
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the store operation even before all invalidation acknowledgments are collected. This is

known as eager-exclusive response [3]. Use of eager-exclusive responses eliminates the

invalidations and their acknowledgments from the critical path of the request, but leads

to relaxed memory consistency models that can significantly deviate from the intuitive

sequential consistency model [3]. This thesis implements sequential consistency model

only and, as a result, cannot use eager-exclusive responses.
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Figure 2.3: A read-exclusive request requiring invalidations (Invals). The sharers are
denoted S0, S1, S2.

If the coherence state is M with the identity of core C ′ recorded in the directory

entry, the request is forwarded to core C ′ and the directory entry is marked busy which

is a transient coherence state. Core C ′ directly sends the requested block to core C,

invalidates its copy of block B, and also sends an ownership transfer message to the home

directory slice to change the state of the directory entry to M and record the identity of C

in the directory entry. This is shown in Figure 2.4. Unlike the sharing writeback message,

the ownership transfer message does not carry any data. The late intervention races are

handled with the help of the eviction buffer and eviction acknowledgments, as usual.

C C’

H

OT

Response

Intervention

Read−exclusive

Figure 2.4: A three-hop read-exclusive transaction. OT is the ownership transfer message.
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Next, let us consider the case of an upgrade request. If the coherence state in the

directory entry is S, an upgrade acknowledgment (a dataless message) is sent to the private

cache hierarchy of C along with the number of sharers minus one (the requesting core C

is also a sharer and must be excluded from this count). The invalidation messages and

collection of invalidation acknowledgments are exactly same as discussed above, except

that no invalidation is sent to the requesting core C, which is also a sharer. If the coherence

state in the directory entry is M with the identity of core C ′ recorded in the directory

entry, this means that core C ′ must have invalidated the copy of the block in the private

cache hierarchy of C. The request is changed to read-exclusive and forwarded to C ′. The

directory entry is marked busy which is a transient coherence state. The handling of

the intervention message and the ownership transfer message is exactly same as already

discussed.

B is not in L3 cache, but is tracked in directory: If the coherence state of the block

is M in the directory entry, an intervention message is forwarded to the core having the

block and the protocol actions are similar to what is already discussed regarding handling

of intervention messages. If the coherence state of the block is S in the directory entry,

the protocol actions depend on the request type. For a read-exclusive request, one of

the sharers is elected to provide the block and an intervention message is forwarded to

the elected sharer. The rest of the flow is already discussed. For an upgrade request,

an upgrade acknowledgment is sent to the private cache hierarchy of C along with the

number of sharers minus one. The invalidation messages and collection of invalidation

acknowledgments are exactly same as already discussed.

Eviction from Private Cache Hierarchy

All evictions from the private cache hierarchy are allocated in the eviction buffer of the

evicting core. Only M state evictions carry the evicted block to the home L3 cache

bank (traditional writeback messages). The E and S state evictions generate dataless

messages to the L3 cache bank. Sending S state eviction notices allows us to keep the

directory entry up-to-date and avoids future unnecessary invalidations and invalidation
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acknowledgments [62]. On receiving an eviction message with data, the home L3 cache

bank updates its copy (if it has a copy). In all cases, the home directory slice is consulted

and the directory entry is updated to reflect the eviction. The home L3 cache bank sends

an eviction acknowledgment message back to the core which sent the eviction message.

If the eviction acknowledgment message indicates that there is an in-flight forwarded

intervention message for the evicted block, the evicting core waits for the intervention

and does not de-allocate the evicted block from the eviction buffer until the intervention

is received. On the other hand, if the eviction acknowledgment message indicates that

there is no in-flight intervention, the evicting core de-allocates the evicted block from the

eviction buffer on receiving the eviction acknowledgment message.

If a read or a read-exclusive miss request from a core finds the requested block in the

local eviction buffer, the request is delayed until the eviction buffer entry is de-allocated.

This is necessary to avoid a race where the read or the read-exclusive miss request reaches

the home L3 cache bank before the eviction message and reads a stale copy of the block.

While this race is relevant to M state evictions only, the race involving the directory entry

update is relevant to all evictions. In the latter race, the read or read-exclusive message

from a core C races past the eviction message from the same core for the same block,

reaches the home L3 cache bank, and updates the directory entry to record the identity

of core C. The eviction message later removes the identity of core C from the directory

entry, which leaves the directory entry in a wrong state. Allocating all evictions in the

eviction buffer avoids these races.

Eviction of Directory Entry

A directory entry may have to be evicted due to shortage of directory storage capacity

or conflict in directory entry allocation. In such an event, if the coherence state of the

block tracked by the evicted directory entry is S, all sharers are sent invalidations; if the

coherence state is M, the core having the block is sent an intervention to retrieve and

invalidate the block from the core’s private cache hierarchy and the copy in the home

L3 cache bank is updated. In summary, early eviction of directory entries may hamper
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performance by prematurely invalidating blocks from the private cache hierarchy of the

cores. An under-provisioned directory limits the maximum number of blocks that can be

simultaneously resident in the private cache hierarchy of the cores. This brings us to the

interesting topic of organizing and sizing the directory. We discuss it in the next section.

2.3 Directory Organization

The coherence directory keeps track of the locations and the coherence state of each block

resident in the private caches of the cores. As mentioned in Chapter 1, this structure is

referred to as a sparse directory. In the following discussion, we will first introduce the

readers to the organization of a monolithic sparse directory. Next, we will decompose it

to construct the slices.

The sparse directory is organized as a set-associative cache with a tag array and a

data array. Each entry of the data array has two components, namely the coherence

state and encoding of the locations of the copies of the block being tracked by this entry.

Ideally, the sparse directory should be organized and sized in such a way that it can

track all the blocks in the private caches of the cores. For example, in a two-level private

cache hierarchy having an inclusive L2 cache, the number of sets in the sparse directory

should be equal to the number of sets in the L2 cache and the associativity of the sparse

directory should be equal to the associativity of the L2 cache multiplied by the number

of cores. Such an organization of the sparse directory guarantees that every L2 cache

block has a corresponding directory entry. Since the L2 cache is inclusive of the L1 cache,

this organization also captures all blocks resident in the L1 cache. If the L2 cache is

non-inclusive/non-exclusive or exclusive, the ideal sparse directory organization becomes

complex. Nonetheless, the ideal sparse directory organization does not scale favorably with

core count. For 100+ cores, the associativity would be impractically large. As a result, a

practically implementable sparse directory cannot guarantee a one-to-one correspondence

between the directory entries and private cache blocks. Hence, there can be conflicts in

the directory between blocks which do not conflict in the private cache hierarchy. To keep
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the conflict volume low, the sparse directory is usually over-provisioned. In this thesis,

we denote the number of entries in the sparse directory as R× when the sparse directory

has R times as many entries as the number of L2 cache blocks aggregated across all cores.

An over-provisioned directory would have R more than one, while an under-provisioned

sparse directory would have R less than one. For example, in a 128-core processor having a

per-core 128 KB L2 cache with 64-byte block size, a 2× sparse directory would have 512K

entries. For the same configuration, a 1
16× sparse directory would have 16K entries. These

entries are organized as a set-associative cache. The sets are distributed equally across

the L3 cache banks to construct the slices. For example, if a sparse directory has 512K

entries organized into eight ways, the total number of sets in the directory is 64K. If there

are 128 L3 cache banks, each directory slice would have 512 sets, each being eight-way

associative.

We have already discussed the coherence states for a MESI protocol. We discuss two

basic techniques for encoding the locations of the copies of a block in a directory entry.

The other encodings are usually a combination of these two basic techniques. In the first

technique, a bitvector is used for encoding the location of a copy. For example, if there

are n cores, a full-map bitvector would have n bits. A copy of the block present in the

private cache hierarchy of core i is indicated by setting bit i of the bitvector. If we assume

the per-core private cache capacity to be a constant, a sparse directory employing full-

map bitvector entries has a storage overhead growing as O(n2) with the core count n.

It is also possible to use a bitvector of shorter length. This is usually referred to as a

coarse-vector representation [25] and a bit represents a cluster of cores. For example, a

bit in a vector of length n/4 would represent a cluster of four cores. If any core in the

cluster has a copy of the block, the corresponding bit in the vector would be set. The

coarse-vector representation becomes an attractive option when the full-map bitvector’s

overhead becomes prohibitive.

In the second technique, the locations are encoded using a set of pointers. If there

are n cores in the system, each location pointer requires (dlog2 ne+ 1) bits to encode the

identity of a core and a valid bit. If the number of bits devoted to encoding the locations
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is N , a directory entry can encode bN/(dlog2 ne+ 1)c pointers. This is known as a limited

pointer encoding and is useful for encoding only a small number of sharers. This encoding

is very popular when N is smaller than n i.e., a full-map bitvector is not affordable. In this

situation, a limited pointer encoding is used initially until the number of sharers becomes

more than bN/(dlog2 ne + 1)c. When the sharer count exceeds this limit, the encoding

may switch to a coarse-vector representation. Since the coarse-vector representation is

an approximate one, it can lead to extra useless invalidation messages on store misses.

Therefore, the use of limited pointer representation for the blocks with a small number

of sharers eliminates this problem; only the widely shared read/write blocks suffer from

extra invalidation traffic arising from inexact coarse-vector representation.



Chapter 3

Pool Directory

The sparse directory maintains information about the blocks resident in the private cache

hierarchy of each processing core in a CMP. As the on-chip cores grow in number, the

design of the sparse directory needs to be space-efficient so that these systems can continue

to support the shared memory abstraction with acceptable directory storage budget [62].

The sparse directory organization has become popular due to its simplicity and space-

efficiency. While the sparse directory provides an attractive starting point for optimizing

the number of directory entries, the width of a sparse directory entry still needs to scale

linearly with the core count if the entry is organized as a full-map bitvector. The full-map

bitvector organization is the simplest possible sharer encoding from the viewpoint of the

hardware required to manipulate the directory information. In this chapter, we focus on

the problem of optimizing the average number of bits devoted to a sparse directory entry.

We begin with a motivating study to quantify the utilization of a full-map sparse directory

entry in a 128-core CMP.

The attempts to optimize the width of a sparse directory entry exploit the observation

that at a given point in time, not all blocks need a full-map bitvector. The degree of

sharing varies across blocks [82] and over time within the same application. This is usually

reflected in the utilization of the sparse directory. Figure 3.1 presents one such study on

our simulated model of a 128-core CMP. The left panel of Figure 3.1 shows the percentage

of the allocated directory entries that experience a maximum of k sharers where k falls in

27
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one of four disjoint sharer count bins: 2 to 4, 5 to 8, 9 to 16, and 17 to 128 (end-points

inclusive). These data are collected on a 128-core system for fourteen multi-threaded

applications spanning the PARSEC suite [12], the SPLASH-2 suite [83], SPEC JBB, SPEC

Web running on the Apache server, TPC running on the MySQL server, and the SPEC

JVM suite.1 For these measurements we use a 2× sparse directory so that premature

directory evictions do not hamper the number of blocks that can be resident simultaneously

in the private cache hierarchy and can be shared. These data show that, on average, only

10% directory entries observe any sharing, while the rest of the allocated directory entries

track only private blocks. Most of the sharing instances are limited to at most four sharers,

while only two applications (swaptions and barnes) show noticeable number of directory

entries experiencing more than sixteen sharers. These data indicate that, on average, a

large number of bits in a full-map directory entry is wasted due to lack of high volume

of sharing. This is further confirmed in the right panel of Figure 3.1 which shows the

average percentage of set bits in an allocated directory entry during its residency in the

sparse directory. Across the fourteen applications, on average, only 2.4% bits in a full-map

directory entry are ever set. These data clearly indicate the importance of optimizing the

directory entry width.

The proposals aiming to optimize the sparse directory width while preserving the pre-

ciseness of sharing information and not resorting to broadcast, overflow-induced early

invalidations, or software solutions organize the directory in one of the following three

forms: 1) a statically designed mix of different types of entries [27], 2) a hierarchical

organization of the sharing bitvector by decomposing the system into a hierarchy of clus-

ters [69], and 3) dynamic allocation of tracking information [73, 74, 85]. Based on the

observation that the private blocks are often more in number than the shared blocks, it

has been proposed that the sparse directory sets be designed to have a static mix of pointer

and bitvector ways [27]. The pointer ways track private blocks and have width that grows

logarithmically with core count. The bitvector ways track shared blocks and their width

grows linearly with core count. Due to static partitioning of each set into two types of

1 Details of our simulation environment are discussed in Section 3.3.
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Figure 3.1: Left panel: Distribution of maximum sharer count averaged over all allocated
directory entries in a 2× sparse directory. Right panel: Percentage of directory entry bits
set averaged over all allocated directory entries in a 2× full-map sparse directory.

entries (e.g., six pointer ways and two bitvector ways in an eight-way set-associative sparse

directory), such a design cannot react optimally to the changing sharing degree. We will

refer to this design as the Hybrid directory organization.

The scalable coherence directory (SCD) is the state-of-the-art hierarchical sparse di-

rectory organization [69]. The SCD proposal represents the core count as a product of

two integers (ideally equal) and the larger integer decides the width of the directory. This

organization treats a system with pq cores as p clusters of q cores each, where q is bigger

than or equal to p. Each directory entry is q bits wide. Multiple directory entries are

used to encode the sharers in a hierarchical fashion. Each bit in the top-level or root entry

represents a cluster and in the worst case p+1 directory entries would be needed to encode

all the sharers. The non-root entries will be referred to as the leaf entries. In any case, at

least two directory entries are required and the best case arises when all the sharers are

confined to a single cluster. Additionally, each directory entry can encode a certain num-
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ber of sharer pointers (bq/(dlog2(pq)e+ 1)c) and the coherence tracking format of a block

switches to the hierarchical one only after the number of sharers of the block exceeds this

limited pointer count that each directory entry can accommodate. While this proposal is

able to achieve a square root factor reduction in the directory width, multiple directory

entries have to be invested to encode the sharers of a block. This increases the pressure

on the directory as the degree of sharing and the number of shared blocks increase. Since

each involved directory entry carries the tag of the shared block, the tracking overhead

per shared block increases significantly in the worst case. For example, in a 1024-core

system having a 32-bit wide hierarchical directory, 33 directory entries (one root and 32

leaves) would be needed in the worst case to encode the sharers of a block. If we assume

a 24-bit tag, the worst case tracking overhead per shared block is 33×(24+32) bits, which

far exceeds the tracking overhead for a full-map bitvector (1024+24 bits). The relative

wastage increases in smaller core-count systems. The observed level of inefficiency, how-

ever, depends on the actual sharing pattern of the application. An additional inefficiency

arises due to a large volume of private blocks. Each of these blocks needs just one pointer

and wastes the remaining pointers in a directory entry.

Dynamic allocation of tracking information has been proposed in two different forms.

The dynamic pointer allocation scheme assigns a new sharer pointer entry to a block as

and when a new sharer is added [73, 74]. Searching the list of sharers for a specific sharer

or walking the sharer list for sending out invalidations can be costly. A recent proposal

carries out dynamic assignment of a full-map bitevector to a sparse directory tag whenever

the block corresponding to the tag gets shared by at least two cores [85]. For tracking

private blocks, the proposal uses a single owner pointer attached to the tag. While this

proposal is able to eliminate the directory bit wastage for tracking private blocks, the

space inefficiency is still significant for tracking shared blocks. For example, a block with

k sharers would waste n−k bits of the full-map bitvector in an n-core system. This design

will be referred to as the Select directory conveying the fact that only a selected subset

of the sparse directory tags gets dynamically attached to full-map bitvectors as the need

arises.
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In this chapter, we introduce Pool directory, a novel sparse directory organization that

aims at optimizing the average number of bits per directory entry. Our proposal organizes

the entire directory as a two-level structure. The first level is the sparse directory and

the second level is a separate direct-mapped pool of short vector entries. The first level

directory will be referred to as the sparse directory and the second level will be referred

to as the pool. Each sparse directory entry contains a single pointer. Each pool entry can

store either a few sharer pointers or a sharer vector encoding the sharers in a cluster of

cores. To encode all the sharers of a block, multiple pool entries may be needed and these

are allocated dynamically as and when the need arises. Our pool management protocol

ensures that all these pool entries remain contiguous so that it is sufficient to maintain a

pointer to the head entry. The pointer in each sparse directory entry can either encode

a sharer (particularly useful for tracking private blocks) or point to a pool entry. For

example, for a block with a small number of sharers, a single pool entry would suffice to

track the block and in this case, the pointer in the sparse directory entry points to the pool

entry. On the other hand, for a widely shared block, a contiguous block of pool entries

would be needed to track the block and in this case, the pointer in the sparse directory

entry points to the first pool entry of the block of pool entries.

Our proposal enjoys four distinct advantages compared to the state-of-the-art hierar-

chical representation. First, the private blocks never contend for pool entries and can be

encoded in the sparse directory array. Second, exactly one tag in the sparse directory array

is allocated for tracking a block. Each individual pool entry does not need a separate tag.

Third, there is no need to maintain a root entry in the pool. At most p pool entries are

needed to encode p clusters of q cores each assuming q-bit wide pool entries. Fourth, the

sharers of a block can be encoded by optimally mixing the limited pointer and the sharer

vector representations in the pool entries allocated to the block, thereby offering signifi-

cant flexibility in encoding the sharers in a space-efficient manner. The directory storage

is dynamically allocated to track sharers of a block as and when needed by allocating ad-

ditional pool entries. Additionally, the decoupled two-level organization of the directory

allows us to independently size the number of entries in the sparse directory table and the
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pool table. We review the contributions related to optimization of directory entry width

in Section 3.1. We present the detailed design of the Pool directory in Section 3.2. Our

simulation results (Sections 3.3 and 3.4) on a 128-core system show that our proposal out-

performs the state-of-the-art dynamic hierarchical scalable coherence directory (SCD) [69]

by 5% while reducing the interconnect traffic by 20% when using a 1
16× sparse directory.

Additionally, our proposal performs within 2.4% of a full-map organization while requiring

only one-third of the directory storage of a full-map organization.

3.1 Related Work

A large body of research on coherence directory store optimization has followed the first

proposal that introduced a bitvector as the directory element [14]. The early proposals

focused on the distributed shared memory multiprocessor architectures. The proposals

for optimizing the width of the directory include limited pointer schemes with broadcast

on overflow (DiriB), limited pointer schemes with invalidation on overflow (DiriNB),

limited pointer schemes with software handling on overflow (LimitLESS directory), coarse-

vector schemes where each bit in a vector tracks a cluster of sharers requiring a broadcast

invalidation within a sharing cluster on a write, and use of gray codes for achieving better

compression in the bitvector [4, 15, 35, 64]. The scalable coherent interface standard

forms a doubly linked list of sharers with the help of pointers attached to each private

cache block, while the directory maintains a pointer to the head of the list [42]. Although

such a distributed linked list scheme is more scalable than a bitvector scheme in terms of

storage, the protocol operations are significantly more complex than a bitvector protocol.

Some of the proposed limited pointer schemes use a distributed linked list or a distributed

tree to track the overflown sharers with one of the pointers in the directory entry serving

as the head of the list or the root of the tree [16, 19]. A number of proposals organize

the directory in a hierarchical tree or multi-level clusters [34, 61, 65, 80]. Although the

directory organizations in these proposals achieve low overhead, the hierarchical coherence

protocol makes the overall design complex. Tree-based compression of tracking information
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and a two-level directory architecture where the second-level directory maintains imprecise

compressed information have also been proposed [1, 2]. The segment directory design

partitions the system into a few clusters and tracks the sharers in a limited number of

clusters [21]. On an overflow, one of the well-known overflow solutions is invoked.

More recent proposals have focused on sparse directory space optimization for CMPs.

One proposal mixes two types of directory entries, namely pointers and bitvectors to design

a sparse directory set [27] (will be referred to as the Hybrid directory scheme). Another

proposal designs a scalable coherence directory (SCD) by representing sharers in two-level

hierarchical bitvectors [69]. These two proposals have already been discussed. A directory

architecture that eliminates the duplicate tag overhead of the directory by maintaining

an array of Bloom filters for answering set membership queries about the sharers has

been proposed [87]. This design suffers from scalability issues, since each directory access

involves looking up C Bloom filters, C being the number of cores. Proposals that track

a small set of sharing patterns and link each active directory entry to a sharing pattern

have been proposed [89, 90]. Limited pointer representations that use one pointer for

counting the sharers on overflow have been explored [55]. This count is later used to limit

the number of acknowledgment messages needed on a broadcast invalidation. A recent

proposal has used multi-level memristors to compress the size of the directory entries [88].

In contrast to these, our proposal presents a design for dynamically allocating directory

entries while leaving the cache coherence protocol unchanged.

3.2 Pool Directory

We discuss the detailed design of the Pool directory in the following. Section 3.2.1 presents

the architecture of the Pool directory and Section 3.2.2 discusses the implementation of

the various operations supported by the Pool directory. In this discussion, we assume a

traditional MESI cache coherence protocol [56]. The most important actions of such a

protocol were discussed in Chapter 2.
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3.2.1 Directory Organization

The Pool directory architecture consists of two structures, namely, the sparse directory

and a pool of short sharer vectors, as shown in Figure 3.2. The sparse directory is a

set-associative array with each entry having a tag and tracking/state information of the

block corresponding to the tag. The major part of the tracking information is taken up

by a pointer (P ), which can either encode a sharer or point to an entry in the sharer

vector pool. If the number of cores in the system is C and the number of entries in the

sharer vector pool is N , each pointer needs to be dlog2(max(C,N))e bits wide. The single

sharer (S) bit in a sparse directory entry is set when the corresponding block has a single

sharer (i.e. private), which is directly encoded in the pointer P .

Set Index

Sparse Directory

Tag

Sets

HO

PS

Ways

Sharer Vector

Sharer Vector Pool

1 C1 Cn

0 Segment Pointer Segment Vector

Limited Pointer Format

Segment Vector Format

Figure 3.2: General structure of the Pool directory.

The sharer vector pool is a tagless direct-mapped array with each entry having a

sharer vector. The sparse directory entries for blocks having more than one sharer utilize

a collection of consecutive pool entries to encode the sharers. Each such collection of

pool entries can be logically seen as a linked list with a head pool entry and a tail pool

entry. A sparse directory entry that needs pool entries has its single sharer (S) bit reset

and the pointer (P ) points to the head entry of the collection of pool entries being used.

Each pool entry has a head (H) bit indicating if the entry is a head entry for some sparse

directory entry. Each pool entry also contains an occupied (O) bit and the set index of

the sparse directory entry it is associated with. The occupied bit is set for a pool entry in

use. We will discuss the utility of the occupied bit, the head bit, and the set index field
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in Section 3.2.2. We note that the private blocks do not need any pool entry.

Each sharer vector can encode sharers, either in limited pointer format or in segment

vector format. As shown in Figure 3.2, the first bit of each sharer vector identifies the

encoding format being used by the vector. When the first bit is set, the sharer vector

is encoded using the limited pointer format and when the first bit is reset, the sharer

vector is encoded using the segment vector format. The limited pointer format is useful

for efficiently encoding a small number of sharers. In the limited pointer format, the

sharer vector is organized as an array of pointers and their valid bits. Each pointer can

independently point to a sharer of the corresponding sparse directory entry. Each such

pointer needs dlog2(C)e + 1 bits, where C is the number of cores. The segment vector

format was introduced in [21] for efficiently encoding a cluster of sharers in a segment

directory entry. In the segment vector format, a sharer vector consists of a segment

vector and a segment pointer. The segment vector is a K-bit wide segment of a full-map

vector. The segment pointer is a dlog2(C/K)e-bit field maintaining the position of the

segment vector within the full-map vector effectively recording the id of the cluster the

segment represents. The limited pointer format and the segment vector format permit

each sharer vector to independently encode sharers. This allows a sparse directory entry

to simultaneously utilize both the encoding formats to achieve greater storage efficiency.

In the worst case, dC/Ke pool entries would be required for encoding a full-map vector

assuming K-bit wide pool entries.

64

0000

Sharer Vectors

Leaf Entry ( I + 1 )
Segment Vector Format

Head Entry ( I )
Limited Pointer Format

0
1b

1
1b

1
1b 7b

1000111
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1
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0000 0000 0000 0000 00001000 0000 10001000100010000000

80 96 112

1000 10001000
16b

1000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0 16 32 48
Full−map Vector

1010100 1100100

Figure 3.3: Pool entries with twenty-bit wide sharer vector in a 128-core system.

Figure 3.3 illustrates different sharer vector encoding formats for pool entries with

twenty-bit wide sharer vector in a 128-core system. Each sharer vector can encode a
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maximum of two sharers in the limited pointer format, as a valid bit and a seven-bit wide

pointer are required for encoding a sharer. When using the segment vector format, sixteen

sharers can be encoded in a sixteen-bit wide segment vector. A three-bit wide segment

pointer is maintained for encoding eight distinct sixteen-bit wide segments of the full-map

vector. In the worst case, eight pool entries would be required to encode a full-map vector.

In Figure 3.3, a sparse directory entry for a block is using two consecutive pool entries I

and I + 1 for encoding six sharers of the block. The head entry (I) is using the limited

pointer format for encoding two sharers from the 5th and the 6th segments of the full-map

vector. The tail entry (I + 1) is using the segment vector format for encoding all the

sharers from the 7th segment of the full-map vector.

3.2.2 Directory Operations

The coherence directory is looked up in parallel with every L3 cache access. Depending

on the outcome of this lookup, different operations may have to be invoked on the Pool

directory. In the following, we discuss four important operations.

Adding a Sharer

On a sparse directory miss, the replacement process allocates a sparse directory entry for

the requested block and encodes the new sharer directly in the pointer P . At this point,

the single sharer (S) bit in the sparse directory entry is also set. When a second sharer

needs to be added, a pool entry is allocated and the two sharers are encoded using the

limited pointer format in the allocated pool entry. The single sharer (S) bit is cleared

in the sparse directory entry and the pointer P is updated to point to the allocated pool

entry establishing the link between the sparse directory entry’s tag and the pool entry. In

a general situation, when a new sharer needs to be added to a block B which has already

been allocated a number of pool entries, the sharer addition logic explores four possible

avenues, as discussed below. Suppose the new sharer falls in segment n of the full-map

vector. Let the collection of pool entries already allocated to B be Q. Note that the pool

entries in Q are all contiguous. First, the collection Q is looked up to find out if there is
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an entry already allocated for segment n. If such a pool entry exists, the new sharer is

encoded in it. If no such entry exists, the collection Q is looked up to locate a pool entry

that is currently using the limited pointer format and has a free pointer. If such a pool

entry exists, the new sharer is encoded in the free pointer. When no such free pointer is

available, it may be possible to add the new sharer by changing the encoding format of

a pool entry. Particularly, when all the sharers encoded in a pool entry using the limited

pointer format belong to the same segment of the full-map vector, the encoding of the

pool entry is changed to the segment vector format creating new opportunities for finding

a pool entry to encode the new sharer. When all these three avenues fail, a new pool entry

must be added to the collection Q.

The collection Q can be extended by prepending or appending it with a new pool

entry. Let the entry just before the collection Q begins be Q− and the entry just after the

collection Q ends be Q+. If at least one of Q− and Q+ is free, the free entry is added to

the collection Q. When both of these entries are occupied, one of them is evicted. The

victim is chosen as follows. Suppose each pool entry is K-bit wide. Therefore, in the worst

case, a block would need dC/Ke entries to encode all its sharers, where C is the number

of cores. We divide the pool into equally-sized chunks such that each chunk has dC/Ke

consecutive entries. If Q+ and Q− belong to the same chunk (as Q), we victimize one of

them at random. If Q+ and Q− belong to two different (adjacent) chunks, we victimize

the one that belongs to the chunk which has the larger share of Q. The rationale for this

victimization policy is that we let Q grow within the chunk which already has a bigger

share of Q so that the interference in the adjacent chunk due to this growth is minimized.

When Q− is used for extending Q, the head (H) bit for the current head entry in Q is

cleared and Q− becomes the new head of the extended collection. The pointer P in the

sparse directory entry is also updated to point to Q−.

In all cases, the sharer addition logic first looks up the sparse directory. On a tag

hit, if the single sharer (S) bit in the sparse directory entry is not set, the occupied (O)

and the head (H) bits of consecutive dC/Ke pool entries are examined starting from the

pool entry pointed to by the pointer P . The O and H bit arrays are physically kept
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separately from the pool array so that they can be quickly examined in parallel using

an array of bit manipulation logic blocks. This examination reveals the number of pool

entries that must be read out. The maximum number of pool entries that a block can

use is dC/Ke. We provision the pool with two read ports so that the required number of

access rounds is bounded by dC/Ke/2. For the pool configuration modeled in this study,

we verify using CACTI [37] that this latency is comfortably hidden under the last-level

cache access latency for 22 nm nodes. This latency can be further improved by internally

banking the pool and ensuring that not all pool entries of a block are allocated in the same

bank. The accessed pool entries are examined and the new sharer is added according to

the aforementioned protocol. The longest critical path, encountered infrequently, involves

reading of the sparse directory, examining the O and H bit arrays, reading of pool entries,

examining the pool entries, extending the collection of pool entries, and updating the new

pool entry. For the workloads considered in this study, on average, 98.6% of the allocated

sparse directory entries need at most two pool entries and 99% need at most three pool

entries. In any case, addition of a new sharer is off the critical path and can be executed

after responding to the requesting core.

Removing a Sharer

The coherence protocol modeled by our system generates replacement hints to the direc-

tory when a core evicts a shared block. This is done to exclude the already evicted blocks

from tracking information so that the information is up-to-date and exact. In addition,

dirty evictions always generate writebacks to the L3 cache. Also, the E state evictions

necessarily generate a replacement hint to update the tracking information in the direc-

tory. In all these cases, the evicting core’s identity must be removed from the tracking

information. This operation requires looking up the sparse directory followed by pool en-

try accesses, if needed, and removal of the sharer leading to the possible release of a pool

entry. When the number of sharers for a sparse directory entry reduces to one, the sparse

directory entry frees its pool entries. The single sharer is encoded directly in the pointer

P of the sparse directory entry and the single sharer (S) bit is set. The port requirements
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are similar to the sharer addition operation. Removal of a sharer is also off the critical

path because it can be executed after sending the eviction acknowledgment to the evicting

core.

Allocation of the First Pool Entry

A sparse directory entry needs to allocate its first pool entry when the number of sharers of

the block that the entry is tracking becomes two. This allocation is treated differently from

growing an already allocated collection of pool entries because appropriate positioning of

the first allocated pool entry is important so that the future growth of the collection does

not lead to pathological conflicts and pool entry evictions. By examining the vector of

occupied (O) bits of the pool entries, a free pool entry can be identified. To make the

implementation efficient, the occupied bitvector is segmented and one occupied vector is

maintained for a segment of dC/Ke consecutive pool entries. Each occupied bitvector is

also accompanied by a dlog2(C/K)e-bit wide population counter which tracks the number

of bits set in the occupied bitvector. The population counter is incremented when an

entry in the segment is occupied and decremented when an entry in the segment is freed.

Finally, a free entry index is maintained for each segment of pool entries, which points

to the next free entry in the segment. By examining the occupied bitvector, the free

entry index can be updated. For our configurations, we need at most ten such occupied

bitvectors, population counters, and free indices per last-level cache (LLC) bank (same as

an L3 cache bank).

To more or less evenly distribute the density of occupied entries over the entire pool,

a round-robin policy is utilized for selecting the segment with a free pool entry. An index

of the segment from which the last pool entry was allocated is maintained to assist in the

selection of a free pool entry. When a free pool entry cannot be obtained, a tail entry is

randomly selected for eviction from the round-robin segment. The protocol for evicting a

pool entry is discussed next.
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Pool Entry Eviction

For evicting a pool entry, the sparse directory entry associated with it needs to be located.

Once the sparse directory entry has been located, the sharers encoded in the evicted pool

entry are back-invalidated. The occupied (O) and the head (H) bits of the pool entry are

cleared. When the sparse directory tag is occupying a single pool entry (the pool entry

being evicted), all but one of the sharers encoded in the pool entry are back-invalidated.2

The single sharer that is not back-invalidated is encoded directly in the pointer P of the

sparse directory entry and the single sharer (S) bit in the sparse directory entry is set.

To locate the sparse directory entry associated with the evicted pool entry, the set

index stored in the pool entry is used to read out the entire sparse directory set. Once the

sparse directory set has been read out, the pointers P stored in all the ways of the sparse

directory set are compared against the index of the pool entry. When the head (H) bit is

not set for the pool entry being evicted, the index of the head of the collection containing

the evicted pool entry is used for comparison. We organize the sparse directory’s tag and

data arrays as two separate direct-mapped arrays with one row of each array containing

the tag and data entries for a set. This allows us to efficiently read out one entire set.

Such a design is attractive for a set-associative array if the size of the entire set is small,

which is true for Pool directories.

3.3 Simulation Environment

We use a significantly modified version of the Multi2Sim simulator [78] to model a chip-

multiprocessor having 128 dynamically scheduled out-of-order issue x86 cores clocked at

2 GHz. Each core has private L1 and L2 caches with the L2 cache being non-inclusive/non-

exclusive with respect to the L1 instruction and data caches. The L1 instruction and data

caches are 32 KB in size and eight-way set-associative. The unified L2 cache is 128 KB

in size and eight-way set-associative. The L1 and L2 cache lookup latencies are one and

two cycles, respectively. The cores along with their private caches are arranged on a mesh

2 We use the term back-invalidation to denote all invalidations received by the private cache hierarchy
due to sparse directory entry or pool entry evictions.
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interconnect. The L3 cache is shared among all the cores and non-inclusive/non-exclusive

with respect to the L1 and L2 caches. Each mesh switch, in addition to having a core

along with its L1 and L2 caches, has a bank of the shared L3 cache and a slice of the

sparse directory. Each L3 cache bank is 256 KB in size, has sixteen ways, and requires

three cycles for lookup. The sparse directory slice in a switch is responsible for tracking

the blocks mapped to the L3 cache bank in that switch. The associativity of the directory

slice is same as the per-core L2 cache associativity (eight) and the total number of entries

in the directory slice is decided relative to the number of L2 cache blocks per core. The

ratio of the number of entries in one slice of a (R)× sparse directory to the number of

L2 cache blocks per core is R. All levels of the cache have 64-byte blocks and implement

a least-recently-used (LRU) replacement policy. The sparse directory implements a 1-bit

not-recently-used (NRU) replacement policy. The simulated system models eight single-

channel memory controllers evenly distributed over the mesh. Each memory controller

connects to a 2 GB DRAM module modeled using DRAMSim2 [68]. The width of each of

the eight channels is 64 bits. Each DRAM module is eight-way banked single-rank DDR3-

2133 with 12-12-12 latency parameters and burst length eight. The aggregate DRAM

bandwidth is 133.3 GB/s. We found this to be adequate for our workloads running on a

128-core system having a reasonably large shared LLC (32 MB distributed over 128 banks,

each bank being 256 KB). The memory controllers implement the FR-FCFS scheduling

algorithm.

The applications for this study are drawn from various sources and detailed in Ta-

ble 3.1 (ROI refers to the parallel region of interest). The inputs, configurations, and

simulation lengths are chosen to keep the simulation time within reasonable limits while

maintaining fidelity of the simulation results. The PARSEC and SPLASH-23 applications

are simulated in execution-driven mode, while the rest of the applications are simulated

by replaying an instruction trace collected through the PIN tool. The PIN trace is col-

lected on a 24-core machine by running the multi-threaded applications creating at most

128 threads (including client, server, application, and JVM threads). Before replaying

3 The SPLASH-2 applications are drawn from the SPLASH2X extension of the PARSEC distribution.
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Table 3.1: Simulated applications
Suite Applications Input/Configuration Simulation length

PARSEC dedup, fluidanimate, sim-medium, sim-medium, sim-small Complete ROI

swaptions

SPLASH-2 barnes 32K particles Complete ROI

fft 4M complex doubles Complete ROI

SPEC JBB SPEC JBB 82 warehouses, single JVM instance Six billion

instructions

TPC MySQL TPC-C 10 GB database, 2 GB buffer pool, 500 transactions

100 warehouses, 100 clients

MySQL TPC-E 10 GB database, 2 GB buffer pool, Five billion

100 clients instructions

MySQL TPC-H 2 GB database, 1 GB buffer pool, Five billion

100 clients, zero think time, instructions

even distribution of Q6, Q8, Q11

Q13, Q16, Q20 across client threads

SPEC Web Apache HTTP server Worker thread model, Five billion

v2.2 running Banking, 128 simultaneous sessions, instructions

Ecommerce, Support mod php module

SPEC JVM compiler.sunflow, Five operations Five billion

crypto.aes instructions in ROI

the trace through the simulated 128-core system, it is pre-processed to expose maximum

possible concurrency across the threads while preserving the global order at global syn-

chronization boundaries and between load-store pairs touching the same memory block (64

bytes). Since the tracing is done on a 24-core machine, at a time only 24 threads would

be active in the trace. To overcome this limitation and expose the maximum available

concurrency in the application, the trace is pre-processed so that the instructions from an

arbitrary number of threads can be pushed in parallel into the simulator for replaying at

any point in time obeying the instruction fetch bandwidth of each core. This replay mech-

anism needs to obey all load-store ordering to the same cache block address as observed

during tracing to maintain the schedule of replaying the synchronization events, any other

inherent races in the application, and true- as well as false-sharing events. Also, it is

important to maintain ordering with respect to certain system calls that pertain to thread

creation, thread join, etc.. For example, the threads created using a fork/clone call cannot

issue any instruction until the creator thread completes the fork/clone call. All these are

taken care of in the pre-processing step which essentially marks the ordering points and

embeds the corresponding ordering rule at each ordering point in the trace. Additionally,
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the collected trace already captures the busy-waiting in a spin-lock or flag or barrier syn-

chronization. The amounts of busy-waiting captured in these scenarios correspond to the

thread schedule observed during tracing and this is one of the many valid thread sched-

ules. This is the schedule that is replayed through our simulator. We note that some other

schedule may have more or less amounts of busy-waiting at the synchronization points.

We evaluate five directory organizations in this study. These are summarized below.

We assume a 48-bit physical address.

Scalable coherence directory (SCD) [69]: Sparse directory with 1
16× entries. Each

slice has sixteen sets and eight ways. Each directory way has a valid bit, a 31-bit tag, 1-bit

coherence state (M/E vs. shared), 1-bit NRU state, two limited-pointer fields and their

valid bits (total sixteen bits, which can also encode the sharers in a sixteen-core cluster

in a hierarchical representation), two bits to encode the type of representation (limited-

pointer, root, leaf), and three bits to encode the cluster id in a hierarchical representation.

Total size is 128 slices × 16 sets × 8 ways × 55 bits i.e., 110 KB.

Hybrid directory [27]: Sparse directory with 1
16× entries. Each slice has sixteen sets

and eight ways. Each way has a valid bit, a 31-bit tag, 1-bit coherence state (M/E vs.

shared), and 1-bit NRU state. Out of the eight ways in a set, two ways can encode full-map

sharer vectors and each is of size 128 bits. The remaining six ways can encode a single

pointer, each of size seven bits. Total size is 142.5 KB.

Select directory [85]: Sparse directory with 1
16× entries. Each slice has sixteen sets and

eight ways. Each way has a valid bit, a 31-bit tag, 1-bit coherence state (M/E vs. shared),

1-bit NRU state, a 7-bit pointer, and a pointer state bit (single sharer vs. pool pointer).

Depending on the pointer state bit, the 7-bit pointer field stores either the private owner

of a block or the entry id of a dynamically assigned full-map bitvector from a sixteen-entry

fully-associative pool of bitvectors. Each pool entry has a 128-bit sharer vector, a valid bit,

and four bits of back-pointer to the associated sparse directory set. Total size is 128 slices

× 16 sets × 8 ways × 42 bits + 128 slices × 16 pool entries × 133 bits i.e., 117.25 KB.

The bitvector pool exercises FIFO replacement.

Pool directory: Sparse directory with 1
16× entries. Each slice has sixteen sets and eight
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ways. Each way has a valid bit, a 31-bit tag, 1-bit coherence state (M/E vs. shared),

1-bit NRU state, a 7-bit pointer, and a pointer state bit (single sharer vs. pool pointer).

The pool has 40 entries per slice. Each pool entry has four limited-pointer fields and their

valid bits (total 32 bits, which can also encode the sharers in a 32-core cluster), one bit to

encode the type of representation (limited-pointer, sharer cluster), one occupied bit, one

head bit, two bits to encode the cluster id in a sharer cluster representation, and four bits

of back-pointer to the sparse directory set. Total size is 128 slices × 16 sets × 8 ways ×

42 bits + 128 slices × 40 pool entries × 41 bits i.e., 109.625 KB. Note that the SCD,

Select, and Pool directories are sized to have similar storage overhead.

Full-map directory: Sparse directory with 1
16× entries. Each slice has sixteen sets and

eight ways. Each way has a valid bit, a 31-bit tag, 1-bit coherence state (M/E vs. shared),

1-bit NRU state, and a 128-bit vector. Total size is 324 KB.

3.4 Simulation Results

In this section, we quantitatively compare the SCD, Hybrid directory, Select directory,

Pool directory, and full-map directory in terms of interconnect traffic, volume of private

cache misses, the number of sparse directory fills, and overall application performance.

Figure 3.4 shows a comparison of interconnect message count. Each group of bars

corresponds to an application and the rightmost group in the bottom panel shows the

average. The bars in a group correspond to SCD, Hybrid, Select, Pool, and full-map

organizations from left to right. Each bar is divided into three segments representing

three different types of messages. The forwarded requests, their responses, invalidations

due to writes, and their acknowledgments constitute the coherence messages. The private

cache misses, their responses, writebacks, and writeback acknowledgments constitute the

processor requests and responses. Back-invalidations induced by sharer evictions from

the directory and their acknowledgments constitute the third category of messages. We

exclude the messages between the L3 cache banks and the memory controllers from these

results because, as expected, the volume of these messages is not affected by changes in

the directory organization. For each application, the message counts are normalized with
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Figure 3.4: Interconnect message count normalized to SCD.

respect to SCD.

Across the board, we observe that the Pool directory organization is able to save a

significant volume of interconnect messages. While the coherence message count remains

largely constant across the different directory organizations, the primary savings achieved

by the Pool directory arise from reduction in private cache misses and back-invalidations.

Since the Pool directory manages the directory space more efficiently, the pressure on

the directory goes down significantly leading to a less number of back-invalidations. The

harmful subset of the back-invalidations causes an increase in the volume of the private

cache misses. The savings achieved by the Pool directory are particularly impressive

for fluidanimate (11% reduction), barnes (18% reduction), SPEC JBB (13% reduction),

SPECWeb (35% to 43% reduction), TPC-E (12% reduction), TPC-H (20% reduction), and

the SPEC JVM applications (25% to 36% reduction). In these applications, SCD suffers

from high directory pressure because it requires multiple directory entries to encode more

than two sharers. This leads to premature invalidation of directory entries tracking active

blocks causing an increased volume of private cache misses. On average, the Pool directory
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organization achieves a 19% reduction in interconnect message count and is able to bridge

a big portion of the wide gap between SCD and full-map organizations (see the Average

group of bars).

The Hybrid and Select organizations suffer from respectively 9% and 10% average

increase in interconnect message count compared to SCD. The Hybrid organization’s static

partitioning of the directory space among the two types of directory entries fails to match

the dynamic demand of directory entries over time and across applications. The Select

organization, on the other hand, fails to track all the active shared blocks with the few

wide sharer vectors. Figure 3.5 further shows the interconnect traffic (total message size)

normalized to SCD. The trends are similar to those shown in Figure 3.4. On average,

compared to SCD, the Hybrid and Select organizations experience respectively 6% and

7% more interconnect traffic and the Pool directory organization enjoys a 20% reduction

in interconnect traffic.
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Figure 3.5: Interconnect traffic normalized to SCD.

To further understand the directory pressure in SCD, Figure 3.6 quantifies the number

of sparse directory entry allocations (not to be confused with pool entry allocations in

the Pool and Select directory organizations) normalized to SCD. Across the board, we see

that the SCD organization experiences a high volume of directory allocations indicating

a significant amount of directory conflicts. The rest of the organizations all have almost

equal number of sparse directory entry allocations, as expected. Only SCD requires mul-

tiple directory entries for encoding the sharers of a single block in a hierarchical manner.



47

On average, SCD suffers from almost double the number of directory entry allocations

compared to the other four organizations. The applications that enjoy significant savings

in message count and traffic with Pool directory are also the ones that experience rela-

tively higher volume of sparse directory allocations in SCD (e.g., fluidanimate, barnes,

SPEC JBB, SPECWeb, TPC-E, TPC-H, and the SPEC JVM applications). Even though

the Hybrid, Select, Pool, and full-map organizations have nearly the same number of tag

allocations in the sparse directory, their differences in the message traffic arise due to the

eviction of sharer tracking information from the tags and not due to eviction of tags from

the sparse directory (e.g., eviction of a pool entry in the Pool and Select directories or a

swap between bitvector and pointer ways in the Hybrid directory).
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Figure 3.6: Sparse directory fill count normalized to SCD.

Figure 3.7 presents the volume of private cache misses normalized to SCD. We also show

the breakdown of private cache misses into code and data misses. These results closely

correlate with the processor request and response message count data shown in Figure 3.4.

The Pool directory organization, on average, enjoys 19% less private cache misses compared

to SCD, while the Hybrid and Select organizations suffer from respectively 9% and 10%

increase in the volume of private cache misses. The Pool directory is able to save both

code and data misses, while the Hybrid and Select organizations suffer primarily due to

increased volumes of code misses compared to SCD. Since the code blocks experience

good amount of sharing, these results indicate that the Hybrid and Select organizations

are unable to track all the actively shared code blocks with their resources for tracking
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Figure 3.7: Private cache miss count normalized to SCD.

shared blocks.

Figure 3.8 summarizes the performance speedup achieved by the Hybrid, Select, Pool,

and full-map directory organizations over SCD. The performance improvement achieved

by the Pool directory organization is 5%, on average; significant gainers are fluidani-

mate (8%), barnes (16%), SPECWeb (5% to 7%), TPC-H (5%), and SPEC JVM com-

piler.sunflow (20%). Most importantly, while using only one-third of the directory space of

a full-map organization, the average performance of the Pool directory organization comes

within 2.4% of the full-map directory organization. The Hybrid and Select directory orga-

nizations, on average, perform respectively 2% and 4% worse than the SCD organization.

For a budget-constrained sparse directory such as 1
16×, the directory organization and

the directory replacement policy may play an important role in determining the end-

performance. In the following, we evaluate a sparse directory design that uses a four-way

skew-associative organization with the timestamp-based three-level least-recently-used Z-

cache replacement protocol (52 replacement candidates) [69]. Table 3.2 summarizes the in-
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Figure 3.8: Speedup over SCD.

terconnect traffic, speedup, and dynamic energy expended by the directory structures (us-

ing 22 nm nodes) for the Pool directory design. The results are averaged over all the

applications and normalized to SCD. The results are shown for two different organizations

of the 1
16× sparse directory, namely, eight-way set-associative exercising NRU replace-

ment (this is the design we have been discussing so far) and four-way Z-cache. While the

Z-cache organization slightly reduces the performance gap between SCD and Pool direc-

tory, the latter continues to save 16% interconnect traffic, on average. The Pool directory

saves 85% dynamic energy in the coherence directory reads and writes compared to SCD

in the set-associative organization. There are two primary reasons for this large saving.

First, the Pool directory-based design enjoys 19% less private cache misses leading to a

significantly reduced volume of directory accesses. Second, due to the hierarchical encod-

ing, the SCD design may require multiple set-associative lookups into the sparse directory

array to complete one private cache miss request. Although the Pool directory may also

need multiple lookups into the pool, the expended energy is significantly less due to the

tagless direct-mapped design of the pool. For the Z-cache organization, the Pool directory

continues to save 82% energy compared to SCD, on average.

3.4.1 Sensitivity to Directory Storage Budget

In this section, we examine the impact of increasing the sparse directory size from 1
16× to

1
8×. Since the Hybrid and Select directory organizations perform close to each other, we
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Table 3.2: Pool directory results relative to SCD for 1
16× directory

Organization Traffic Speedup Dynamic energy

Set-assoc., NRU 0.80 1.05 0.15

Z-cache 0.84 1.04 0.18

consider only one of them, namely the Hybrid organization, for the following studies. We

quantitatively compare our Pool directory proposal with the SCD, Hybrid, and full-map

organizations. The storage investment for each organization is summarized below. We

assume a 48-bit physical address.

Scalable coherence directory (SCD) [69]: Sparse directory with 1
8× entries. Each

slice has 32 sets and eight ways. Each directory way has a valid bit, a 30-bit tag, 1-bit

coherence state (M/E vs. shared), 1-bit NRU state, two limited-pointer fields and their

valid bits (total sixteen bits, which can also encode the sharers in a sixteen-core cluster

in a hierarchical representation), two bits to encode the type of representation (limited-

pointer, root, leaf), and three bits to encode the cluster id in a hierarchical representation.

Total size is 128 slices × 32 sets × 8 ways × 54 bits i.e., 216 KB.

Hybrid directory [27]: Sparse directory with 1
8× entries. Each slice has 32 sets and

eight ways. Each way has a valid bit, a 30-bit tag, 1-bit coherence state (M/E vs. shared),

and 1-bit NRU state. Out of the eight ways in a set, two ways can encode full-map sharer

vectors and each is of size 128 bits. The remaining six ways can encode a single pointer,

each of size seven bits. Total size is 281 KB.

Pool directory: Sparse directory with 1
8× entries. Each slice has 32 sets and eight ways.

Each way has a valid bit, a 30-bit tag, 1-bit coherence state (M/E vs. shared), 1-bit NRU

state, a 7-bit pointer, and a pointer state bit (single sharer vs. pool pointer). The pool

has 76 entries per slice. Each pool entry has four limited-pointer fields and their valid

bits (total 32 bits, which can also encode the sharers in a 32-core cluster), one bit to

encode the type of representation (limited-pointer, sharer cluster), one occupied bit, one

head bit, two bits to encode the cluster id in a sharer cluster representation, and five bits

of back-pointer to the sparse directory set. Total size is 128 slices × 32 sets × 8 ways ×
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41 bits + 128 slices × 76 pool entries × 42 bits i.e., 213.875 KB. Note that the SCD and

Pool directories are sized to have similar storage overhead.

Full-map directory: Sparse directory with 1
8× entries. Each slice has 32 sets and eight

ways. Each way has a valid bit, a 30-bit tag, 1-bit coherence state (M/E vs. shared), 1-bit

NRU state, and a 128-bit vector. Total size is 644 KB.

Figure 3.9 shows a comparison of interconnect message count. For each application, the

message counts are normalized with respect to SCD. Across the board, the Pool directory

organization continues to save a significant volume of interconnect messages. On average,

the Pool directory organization achieves a 15% reduction in interconnect message count.

For reference, this saving was 19% for a 1
16× directory. The Hybrid organization suffers

from 10% average increase in interconnect message count compared to SCD. Figure 3.10

further shows the interconnect traffic (total message size) normalized to SCD. The trends

are similar to those shown in Figure 3.9. On average, compared to SCD, the Hybrid

organization experiences 8% more interconnect traffic and the Pool directory organization

enjoys a 16% reduction in interconnect traffic. This saving was 20% for 1
16× directory.
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Figure 3.9: Interconnect message count normalized to SCD for 1
8× directory.

Figure 3.11 quantifies the number of sparse directory entry allocations normalized to

SCD. Even with increased storage budget, the SCD organization continues to experience a

high volume of directory allocations indicating a significant amount of directory conflicts.
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Figure 3.10: Interconnect traffic normalized to SCD for 1
8× directory.

The rest of the organizations all have almost equal number of sparse directory entry

allocations, as expected.
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Figure 3.11: Sparse directory fill count normalized to SCD for 1
8× directory.

Figure 3.12 presents the volume of private cache misses normalized to SCD. We also

show the breakdown of private cache misses into code and data misses. These results

closely correlate with the processor request and response message count data shown in

Figure 3.9. The Pool directory organization, on average, enjoys 14% less private cache

misses compared to SCD (this saving was 20% for a 1
16× directory), while the Hybrid

organization suffers from a 12% increase in the volume of private cache misses.

Figure 3.13 summarizes the performance speedup achieved by the Hybrid, Pool, and

full-map directory organizations over SCD. The performance improvement achieved by the

Pool directory organization is 3%, on average (this speedup was 5% for a 1
16× directory);

significant gainers are SPECWeb (4% to 5%) and SPEC JVM compiler.sunflow (13%).

Most importantly, while using about one-third of the directory space of a full-map orga-

nization, the average performance of the Pool directory organization comes within 2.1%

of the full-map directory organization. The Hybrid directory organization, on average,

performs 1% worse than the SCD organization.
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Figure 3.12: Private cache miss count normalized to SCD for 1
8× directory.
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Figure 3.13: Speedup over SCD for 1
8× directory.

3.5 Summary

We have presented a novel coherence directory organization that has a set-associative

sparse directory and a direct-mapped pool, each entry of which can act as a limited-pointer

entry as well as a short sharer vector entry encoding the sharers in a cluster of cores. A

dynamically allocated collection of such pool entries can efficiently track all the sharers of

a block. Each sparse directory entry has a pointer, which can either encode a sharer (useful

for tracking private blocks) or point to a pool entry. The pool entries allocated to a shared

block are contiguously placed in the pool so that maintaining a pointer to the head entry

is enough. Simulation results on a 128-core chip-multiprocessor show that our proposal

performs 5% better than the state-of-the-art dynamic hierarchical directory organization

while reducing the interconnect traffic by 20%. Our proposal delivers performance within
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2.4% of a full-map organization while consuming only one-third of the directory space of

a full-map organization.



Chapter 4

Tiny Directory

The number of sparse directory entries is an important determinant of end-performance.

An undersized sparse directory may experience premature eviction of tracking entries

leading to back-invalidation of the blocks corresponding to the evicted tracking entries.

At the same time, the large number of entries in an over-provisioned sparse directory

can present a significant hurdle to scalability. In this chapter, we explore the problem

of optimizing the number of sparse directory entries while maintaining performance. We

begin our discussion with a motivating study that quantifies the importance of the number

of entries in the sparse directory of a 128-core system. This study clearly brings out the

challenge involved in bringing down the number of sparse directory entries.

Figure 4.1 shows the execution time of seventeen multi-threaded applications as the

number of entries in the sparse directory is varied in a 128-core system. The results

are normalized to the execution time with a 2× sparse directory. All sparse directories

are eight-way set-associative. 1 We would like to remind the readers that an (R)× sparse

directory has R times as many entries as the aggregate number of L2 cache blocks across all

cores. In these experiments also, we use a three level cache hierarchy with L1 and L2 caches

being private to the cores and L3 cache being shared by all cores. The L2 cache is non-

inclusive/non-exclusive of the L1 cache and the L3 cache is non-inclusive/non-exclusive of

both L1 and L2 caches. On average, the execution time with 1
4×, 1

8×, and 1
16× sparse

1 Section 4.2 discusses our simulation environment.

55
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directories increases by 3%, 11% and 28%, respectively, compared to the 2× directory.

Ocean cp is an outlier and improves in performance with decreasing directory size because

a smaller directory converts a subset of performance-critical three-hop accesses to two-hop

accesses. Overall, reducing the coherence tracking overhead without losing performance

is challenging, yet important.
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Figure 4.1: Performance with 1
4×, 1

8×, and 1
16× sparse directories normalized to a 2×

directory.

A block allocated in the LLC (same as the L3 cache) either remains private throughout

its residency in the LLC or gets actively shared. To understand the proportion of these

two types of blocks, Figure 4.2 shows the percentage of the allocated LLC blocks that

experience a maximum of k distinct sharers during the residency in the LLC where k

falls in four possible sharer count bins: 2 to 4, 5 to 8, 9 to 16, and 17 to 128 (end-points

inclusive). These data are collected on a 128-core system. The LLC is sized so that

the number of blocks is same as the number of entries that a 2× sparse directory would

have. These data show that, on average, 21% of the allocated blocks observe sharing,

while the rest remain private during their residency in the LLC.2 We note that a block

that is privately cached by core X and later privately cached by core X ′ is recorded as a

2 The left panel of Figure 3.1 in Chapter 3 showed a completely different piece of data and the readers
should not attempt to draw any correspondence between that and Figure 4.2. The left panel of Figure 3.1
showed the distribution of the allocated sparse directory entries based on sharer count. For example, it
showed that the shared blocks of swaptions and barnes respectively occupy 37% and 25% of all allocated
entries of a 2× sparse directory. On the other hand, Figure 4.2 shows that these two applications have
36% and 89% of shared blocks among all blocks allocated in the LLC. It is impossible to compare these
two pieces of data and draw any useful conclusion because an LLC block can undergo multiple episodes of
sharing while in the LLC. Each such episode would allocate a sparse directory entry at different points in
time. Therefore, the total number of sparse directory allocations is at least as large as the total number
of LLC allocations. As a result, for an application, the percentage shown in the left panel of Figure 3.1 in
Chapter 3 can be more or less compared to the percentage shown in Figure 4.2.
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Figure 4.2: Distribution of maximum sharer count per allocated LLC block.

private block in the data shown in Figure 4.2. In the literature, such blocks are referred

to as temporally private [5, 86]. Such blocks require tracking of just one core at a time in

the sparse directory entry. While these data do not show the absolute shared footprint,

the SPECWeb and TPC benchmark applications have much larger shared footprints than

most of the applications and they also carry out a larger number of LLC fills.

The primary observation from Figure 4.2 is that a vast majority of the blocks allocated

in the LLC remain either private or temporally private during their residency in the LLC.

Motivated by this observation, recent proposals have explored several ways to reduce the

number of sparse directory entries that track private blocks [5, 24, 26, 27, 86]. Some of these

techniques include the following: tracking coherence of private regions at a coarse grain and

switching to multi-grain tracking when a block in such a region gets shared [5, 10, 27, 86];

not tracking coherence of private pages identified by the operating system and falling

back to block-grain tracking through an expensive recovery mechanism when the first

sharer of such a page is detected [24]; speculating that the private entries evicted from the

sparse directory will remain private and not tracking them until they get shared when an

expensive broadcast-based recovery mechanism reconstructs the sharer information [26].

The data in Figure 4.2 also indicate that if a sparse directory is dedicated to track

only shared blocks, it can be small. We conduct an experiment to find out how small such

a sparse directory can be. In this experiment, a block’s tracking entry is allocated in the

sparse directory only when the block enters the shared state with two distinct sharers.
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The tracking entry stays in the sparse directory until it is evicted from the directory or

the block reaches a state where it has no sharer or owner.3 As long as a block remains

private/temporally private or is exclusively owned by a core, it is tracked in a special

structure of unbounded capacity. It is important to note that if a block exhibits a sharing

pattern where it moves from one core to another while staying in an exclusively owned

state (E or M in our baseline MESI protocol), it is tracked in the special unbounded

structure and does not get allocated in the sparse directory until and unless it enters the

S state with two sharers.

Figure 4.3 quantifies the performance of such a design with varying size of the sparse

directory dedicated to track only shared blocks. These results completely ignore the

overhead of the unbounded special structure that tracks the other blocks. As the size of

the sparse directory dedicated to track only shared blocks is set to 1
16×, 1

32×, 1
64×, and

1
128×, the average losses in performance compared to a traditional 2× sparse directory

are 1%, 4%, 13%, and 28%, respectively. The 1
16×, 1

32×, and 1
64× sparse directories are

eight-way set-associative, while the 1
128× sparse directory having just sixteen entries per

LLC bank is organized such that each slice is a fully-associative sixteen-entry cache. We

have also conducted this experiment with a four-way skew-associative sparse directory

that employs an H3 hash-based Z-cache organization [70] for the 1
16×, 1

32×, and 1
64× sizes.

The 1
16× sparse directory uses 52 replacement candidates, while 1

32× and 1
64× sparse

directories use 16 replacement candidates. We use global LRU replacement policy for

these skew-associative directories. With skew-associative organization, the performance

losses are 0.5%, 3%, and 12% respectively for 1
16×, 1

32×, and 1
64× sizes of the sparse

directory. These results indicate that even if the entire tracking overhead of non-shared

blocks is lifted from the sparse directory, it is not possible to reduce the directory size

to 1
32× or less using traditional techniques without suffering from noticeable performance

losses. In particular, achieving a sparse directory overhead in the range of 1
32× to 1

256×,

which is the target of this work, appears quite challenging. In the following, we summarize

our approach to this problem.

3 In our implementation, all evictions from the private cache hierarchy are notified to the directory [62].
The eviction notices for the blocks in E or S state do not carry any data, as already discussed in Chapter 2.
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Figure 4.3: Performance with 1
16×, 1

32×, 1
64×, and 1

128× sparse directories for tracking
shared blocks only. Tracking non-shared blocks has no overhead. Results are normalized
to a 2× sparse directory.

In this chapter, we present a novel ground-up approach for designing a robust sparse

directory having a minimal number of entries. We retain the simplicity and scalability of a

traditional broadcast-free OS-independent block-grain coherence protocol. We begin our

exploration with an architecture that does not have a sparse directory and consider the

possibility of borrowing a few bits of the LLC data way of the block for tracking coherence

information (Section 4.3). For private blocks, this in-LLC coherence tracking works quite

well and successfully rids the sparse directory of the overhead of tracking private blocks.

In this design, a significant performance problem arises when a block gets shared. Each

sharing access received by the LLC must be forwarded to an elected sharer, which can

supply the data block to the requester; the LLC cannot supply the correct data block

because portion of the LLC data block is corrupted and used to track the sharers. Due

to this problem, the critical path of a large volume of shared accesses can get extended to

three transactions (traditionally referred to as three hops) from two transactions (or two

hops). We address this performance shortcoming by architecting a tiny directory, which is

a novel sparse directory design for dynamically identifying and tracking a critical subset

of the blocks that experience most shared accesses (Section 4.4). We also propose a few

different policies for managing the contents of the tiny directory. Since the optimal size

of the tiny directory depends on the dynamic working set size of the shared blocks in an

application, it is not possible for a designer to know this size beforehand. To make the

tiny directory proposal address this problem in a robust fashion, we introduce the option
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of selectively spilling a subset of the shared tracking entries into the LLC space when

the tiny directory is too small to track the critical shared working subset. This option,

however, introduces the new challenge of dynamically deciding the appropriate volume of

spills so that the volume of LLC misses does not get affected. We address this challenge

by carefully deciding the subset of the tracking entries that is eligible for spilling into

the LLC so that the critical path of core requests does not get lengthened. Simulation

results show that our proposal implemented in a 128-core system operating with a tiny

directory of size ranging from 1
32× to 1

256× performs within a percentage of a system with

a traditional 2× sparse directory (Section 4.5).

4.1 Related Work

The early proposals focused on optimizing the coherence directory store in the distributed

shared memory multiprocessor architectures. The first proposal on coherence directory

design introduced a bitvector as the directory element [14]. Since then several designs

have been proposed to optimize the coherence directory storage in the distributed shared

memory multiprocessors [1, 2, 4, 15, 16, 19, 21, 34, 35, 42, 61, 64, 65, 80].

More recent proposals have focused on directory space optimization for CMPs. Sev-

eral proposals have attempted to optimize the number of entries in the sparse directory.

Smart hash functions and skew-associative organizations for the sparse directory have been

proposed [29, 69]. Designs that store the evicted directory entries in a memory-resident

hash table and delay invalidations have also been explored [49]. Page-grain classification

between private and shared data has been used to exclude private blocks from coher-

ence tracking, thereby effectively increasing the number of available directory entries for

tracking shared data [24]. A recently proposed design does not invalidate private blocks

on directory eviction, but resorts to broadcast when such a block gets shared after the

tracking entry of the block is evicted from the sparse directory [26]. Recent proposals

employing coarse-grain coherence tracking for privately cached regions can further reduce

the required number of directory entries [5, 10, 27, 86]. Proposals that track a small set
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of sharing patterns and link each active directory entry to a sharing pattern have been

explored [89, 90]. The recently proposed in-cache coherence tracking design uses the entire

LLC data block of an LLC tag for tracking coherence information for that tag [31]. As we

show in Section 4.3, a design similar to this proposal suffers from a large volume of three-

hop transactions for shared accesses. Compiler-generated hints about private data have

been used to optimize directory allocation [57]. Data-race-free software, disciplined parallel

programming models, and self-invalidation of shared data at synchronization boundaries

have been used to significantly reduce the coherence directory size or completely eliminate

the coherence directory [20, 67, 76].

In this study, we assume each sparse directory entry to be a full-map bitvector and

focus squarely on optimizing the number of entries in the sparse directory. However,

there have been several proposals that optimize the average number of bits per directory

entry including our Pool Directory proposal [27, 55, 69, 71, 85, 87, 88]. Any standard

technique for limiting the width of the directory entry can be seamlessly applied on top

of our proposal to further reduce the area of the sparse directory.

4.2 Simulation Framework

We use an in-house modified version of the Multi2Sim simulator [78] to model a chip-

multiprocessor having 128 dynamically scheduled out-of-order issue x86 cores clocked at

2 GHz. The details are presented in Table 4.1. We explore an array of sparse directory

slice configurations. We consider eight-way associative sparse directory slices for all con-

figurations except when a slice contains only eight and sixteen directory entries ( 1
256×

and 1
128×, respectively). In these two cases, we configure each sparse directory slice to be

fully-associative. The interconnect switch microarchitecture assumes a four-stage routing

pipeline with one cycle per stage at 2 GHz clock. The stages are routing computation,

virtual channel allocation, output port allocation, and traversal through switch crossbar.

There is an additional 1 ns link latency to copy a flit from one switch to the next. The

overall hop latency is 3 ns. The applications for this study are drawn from various sources
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and detailed in Table 4.2 (ROI refers to the parallel region of interest). The inputs, config-

urations, and simulation lengths are chosen to keep the simulation time within reasonable

limits while maintaining fidelity of the simulation results. The PARSEC, SPLASH-2, and

OMP applications are simulated in execution-driven mode, while the rest of the appli-

cations are simulated by replaying an instruction trace collected through the PIN tool

capturing all activities taking place in the application address space. The PIN trace is col-

lected on a 24-core machine by running each multi-threaded application creating at most

128 threads (including server, application, and JVM threads). Before replaying the trace

through the simulated 128-core system, it is pre-processed to expose maximum possible

concurrency across the threads while preserving the global order at global synchronization

boundaries and between load-store pairs touching the same memory block (64 bytes).

Table 4.1: Simulation environment
On-die cache hierarchy, interconnect, and coherence directory

Per-core iL1 and dL1 caches: 32 KB, 8-way, 2 cycles

Per-core unified L2 cache: 128 KB, 8-way, 3 cycles,
non-inclusive/non-exclusive, fill on miss, no back-inval. on eviction

Shared L3 cache: 32 MB, 16-way, 128 banks,
bank lookup latency 4 cycles for tag + 2 cycles for data,
non-inclusive/non-exclusive, fill on miss, no back-inval. on eviction

Cache block size, replacement policy at all levels: 64 bytes, LRU

Interconnect: 2D mesh clocked at 2 GHz, two-cycle link latency (1 ns),
four-cycle pipelined routing per switch (2 ns latency);
Each hop: a core, its L1 and L2 caches, one L3 cache bank,
one sparse directory slice tracking home blocks.

Sparse directory slice: 1-bit NRU replacement, 8-way
(fully-associative for 1

128× and 1
256× sizes)

Coherence protocol: write-invalidate MESI

Main memory

Memory controllers: eight single-channel DDR3-2133 controllers,
evenly distributed over the mesh, FR-FCFS scheduler

DRAM modules: modeled using DRAMSim2 [68], 12-12-12, BL=8,
64-bit channels, one rank/channel, 8 banks/rank, 1 KB row/bank/device,
x8 devices, open-page policy
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Table 4.2: Simulated applications
Suite Applications Input/Configuration Simulation length

PARSEC bodytrack sim-medium Complete ROI

swaptions sim-small

SPLASH-24 barnes 32K particles Complete ROI

ocean cp 514 × 514 grid

SPEC 314.mgrid ref input One charge,

OMPM2001 one iteration

316.applu train input Six pseudo-time-steps

324.apsi train input One time-step

330.art train 2 inputs Complete parallel

section

SPEC JBB SPEC JBB 82 warehouses, single JVM instance Six billion

instructions

TPC MySQL TPC-C 10 GB database, 2 GB buffer pool, 500 transactions

100 warehouses, 100 clients

MySQL TPC-E 10 GB database, 2 GB buffer pool, Five billion

100 clients instructions

MySQL TPC-H 2 GB database, 1 GB buffer pool, Five billion

100 clients, zero think time, instructions

even distribution of Q6, Q8, Q11

Q13, Q16, Q20 across client threads

SPEC Web Apache HTTP server Worker thread model, Five billion

v2.2 running Banking, 128 simultaneous sessions, instructions

Ecommerce, Support mod php module

SPEC JVM compiler.sunflow, Five operations Five billion

compress instructions in ROI
4 The SPLASH-2 applications are drawn from the SPLASH2X extension of the PARSEC distribution.

4.3 In-LLC Coherence Tracking

This section discusses the design of an in-LLC coherence tracking technique which does

not have a sparse directory and borrows few bits of the LLC block for tracking coherence

information. The design extends a traditional MESI coherence protocol [56]. Section 4.3.1

discusses the organization of the coherence states in the LLC. We carefully construct the

state encoding so that no new LLC or private cache state bits are required to be introduced.

Even a single bit per LLC block or private cache block can lead to a very large storage

overhead in the large-scale systems we are dealing with. Section 4.3.2 introduces the small

extensions needed on top of the traditional MESI coherence protocol. We evaluate the in-

LLC coherence tracking technique in Section 4.3.3 and understand the major shortcomings

of this design. This evaluation sets the stage for the tiny directory design, which is the



64

central contribution of this chapter.

4.3.1 Organization of Coherence States

A valid LLC block can be in one of three stable coherence states: unowned/non-shared,

exclusively owned by a core (in E or M state), and shared by one or more cores. Addition-

ally, a pending/busy state is needed to handle transience. As in the baseline, we assume

two state bits per LLC block: valid (V) and dirty (D). These two bits are used to encode

four states of an LLC block as depicted in Table 4.3. The state encoding shown in the

last row is introduced for the purpose of in-LLC coherence tracking. In this state, the first

four bits (denoted b0, b1, b2, b3) of the data block encode the extended state of the block

as shown in Table 4.4. The number of cores is assumed to be C. In summary, when the

LLC block state is (V=0, D=1), either 4 + dlog2(C)e bits or 4 + C bits of the data block

are corrupted for tracking the extended coherence states.

Table 4.3: LLC block states

V D State

0 0 Invalid

1 0 Valid, not modified, unowned, not shared

1 1 Valid, modified, unowned, not shared

0 1 Valid, either owned by a core or shared,
part of data block used for extended state encoding

Table 4.4: LLC block extended states

Bit State

b0 Dirty

b1 Pending/Busy

b2 Exclusively owned (b2 = 1) or shared (b2 = 0)

b3 Sharer encoding format:
If b3 = 1 then bits b4, . . . , b3+dlog2(C)e encode a sharer/owner.

If b3 = 0 then bits b4, . . . , b3+C encode a C-bit sharer bitvector.



65

4.3.2 Coherence Protocol Extensions

The in-LLC coherence tracking mechanism minimally extends a traditional baseline write-

invalidate MESI coherence protocol. In the baseline protocol, an instruction read access

to the LLC is always responded to in S state even if the requester is the only core accessing

the block. This helps accelerate code sharing.5 The baseline protocol assumes that all

evictions from the private cache hierarchy are notified to the LLC [62]; the eviction notices

for clean blocks do not carry any data. A request that is forwarded to an owner core is

responded directly to the requester core with a notification to the home LLC bank for

clearing the busy/pending state of the involved cache block. As in the AlphaServer GS320

protocol, a late intervention in the baseline protocol is resolved by the owner core by

keeping the evicted block in a buffer until the eviction notice is acknowledged by the home

LLC bank [33]. These protocol actions have been discussed in detail in Chapter 2.

In the in-LLC coherence tracking mechanism, an invalid (V=0, D=0) or unowned (V=1)

LLC block enters a corrupted state (V=0, D=1) when it is requested by a core. If the access

is an instruction read access, the block transitions to the corrupted shared state (b2 = 0);

otherwise it transitions to the corrupted exclusive state (b2 = 1). The core id of the

requester is recorded using the pointer format (b3 = 1).

A read access to a block in the corrupted exclusive state further changes the state of

the block to the corrupted shared state, and the requester obtains the data block from the

exclusive owner. A read access to a block in the corrupted shared state leaves the block in

the same state, and one of the sharers is elected on-the-fly to supply the data block to the

requester. In this case, the critical path of the access increases to three hops (requester

to home LLC bank, home LLC bank to the elected sharer, and elected sharer to the

requester), instead of two hops in the baseline protocol (LLC would have supplied the

data block in the baseline). The sharers are recorded using the bitvector format (b3 = 0).

A read-exclusive access to a block in the corrupted exclusive or corrupted shared state

is handled similarly. In the latter case, in addition to electing a sharer to supply the

5 Existing code blocks may get written to during JIT compilation, dynamic linking, and self-modification
of code. These accesses come to the LLC as data writes and are handled as usual like normal data writes.
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data block, all sharers are invalidated and the LLC block is switched to the corrupted

exclusive state. The invalidation acknowledgements are collected at the requester. In this

case, the critical path does not increase because even in the baseline, the invalidation

acknowledgements from the sharers must be collected at the requester before the request

can complete.6 In the in-LLC protocol, one of these invalidation acknowledgements is

of a special type and carries the required data block. An upgrade access to a block in

the corrupted shared state invalidates the sharers and the LLC block transitions to the

corrupted exclusive state.

An E state eviction (common case for clean private blocks) notification from the private

cache hierarchy carries the first 4 + dlog2(C)e bits of the evicted data block to the LLC so

that the LLC can reconstruct the block. An M state eviction notification from the private

cache hierarchy carries the full data block to the LLC, as usual. An S state eviction

notification from the private cache hierarchy does not carry any data with it, as in the

baseline. In all cases, the evicting core holds the block in a buffer until it receives an

acknowledgement from the LLC. This is required to resolve late intervention races. On

receiving an eviction notice from the last sharer of a block in S state, the LLC sends a

special eviction acknowledgement to the sharer requesting it to send the portion of the

block necessary for reconstruction. The sharer supplies the requested portion from the

buffer where the block is held and then de-allocates the buffer entry unless the eviction

acknowledgement message has indicated that there is an in-flight forwarded request for

the block that must be responded to from the buffer (please refer to Chapter 2 for details).

On eviction of a corrupted dirty block from LLC, the corrupted part of the block is

reconstructed by querying either the owner or an elected sharer depending on the extended

state of the block. If the block is found dirty in the private cache of the owner, the entire

block is sent to the LLC, as usual. If the extended coherence state of the block is shared,

one of the sharers is elected on-the-fly to supply the corrupted part of block, and other

sharers are back-invalidated. The back-invalidation request to the elected sharer indicates

which part (either the first 4 + dlog2(C)e bits or the first 4 +C bits) of the block is needed

6 Our simulated system implements sequential consistency and does not support eager-exclusive re-
sponses [3, 33].
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for reconstruction. The elected sharer invalidates its copy of the block after supplying the

requested corrupted part of the block with the back-invalidation acknowledgment.

In summary, the in-LLC coherence tracking mechanism can significantly delay the

completion of reads to shared blocks. Additionally, this mechanism generates a slightly

higher volume of interconnect traffic compared to a baseline system that is provisioned

with a sufficiently large sparse directory. We quantify these two performance aspects of

this mechanism in the next section.

The LLC needs to execute additional writes to the data array for updating the coher-

ence state. These writes are, however, off the critical path and the LLC has ample free

write bandwidth to handle these. Also, the coherence action (if any) for a block in the

corrupted state (V=0, D=1) can be initiated only after the data block is read out and the

first few bits are examined. However, this few cycles of additional delay in initiating the

coherence actions for a subset of the shared accesses constitutes a very small percentage

of the overall round-trip latency of a private cache miss for the scale of the systems we

are dealing with. As a result, this additional delay has negligible impact on the overall

performance.

4.3.3 Performance Analysis

The in-LLC coherence tracking technique suffers from two shortcomings. First, the read

accesses to blocks in corrupted shared state require three transactions in the critical path

compared to two transactions in the baseline sparse directory. This can be a major perfor-

mance concern. Second, the reconstruction of the LLC blocks introduces small additional

network traffic in the form of the first few bits (4 + dlog2(C)e or 4 +C) of a subset of the

blocks evicted from the private cache hierarchy.

Figure 4.4 quantifies the execution time of the in-LLC coherence tracking mechanism

normalized to a 2× sparse directory. For each application, we evaluate two implementa-

tions. The left bar corresponds to a storage-heavy implementation where each LLC block’s

tag is extended to track coherence. The right bar corresponds to the in-LLC tracking mech-

anism that we introduced in Sections 4.3.1 and 4.3.2. According to Table 4.1, the number
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Figure 4.4: Performance of in-LLC coherence tracking normalized to a 2× sparse directory.
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Figure 4.5: Interconnect traffic for in-LLC coherence tracking normalized to a 2× sparse
directory.

of blocks in the LLC is same as the number of entries in a 2× sparse directory. As a result,

the storage-heavy implementation delivers similar average performance as the baseline 2×

sparse directory. On the other hand, the in-LLC tracking mechanism introduced in this

chapter suffers from an 11% increase in execution cycles, on average. Several applications

suffer from more than 10% increase in execution time. For each application, the difference

in performance between the two bars arises from the lengthened critical path (three-hop)

of the read requests to blocks in the shared corrupted state in the in-LLC tracking mecha-

nism that borrows data bits to maintain coherence information. In the following, we study

the performance of this in-LLC coherence tracking mechanism in more detail.

Figure 4.5 quantifies the interconnect traffic (in bytes) of the in-LLC tracking mech-

anism normalized to the 2× sparse directory baseline. For each application, the left bar

corresponds to the 2× sparse directory baseline and the right bar corresponds to the in-
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LLC tracking mechanism that borrows data bits to maintain coherence information. Each

bar is divided into three segments representing three different types of messages. The

private cache misses and their responses constitute the processor messages. The eviction

notices from the cores and their acknowledgements constitute the writeback messages.

The forwarded requests from the home LLC bank and the corresponding busy-clear mes-

sages (if any) coming back to the home LLC bank constitute the coherence messages. On

average, the processor and writeback traffic increases by about a percentage each in the

in-LLC tracking mechanism. The processor traffic increases due to an increased volume of

negative acknowledgements and retries arising from a larger number of LLC blocks being

in the busy state waiting to complete forwarded shared read requests. The writeback

traffic increases due to inclusion of the first few bits of the evicted block required for LLC

block reconstruction in some cases. The coherence traffic increases by more than 5%, on

average. This increase is primarily due to the extra forwarded requests arising from the

reads to the shared corrupted blocks.
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Figure 4.6: Percentage of LLC accesses which suffer an increase in critical path.

Figure 4.6 shows, for each application, the percentage of the LLC accesses that require

a three-hop transaction in the in-LLC protocol, while the baseline 2× sparse directory

could have served these through two-hop transactions. These are essentially read accesses

to blocks in the shared corrupted state. On average, 30% of LLC accesses suffer from

an increase in the critical path. For some of the commercial applications, among the

lengthened accesses, the code accesses are more in population than the data accesses (see

SPEC Web, TPC-C, and TPC-E). For bodytrack, barnes, and SPEC Web, more than
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Figure 4.7: Percentage of allocated LLC blocks which experience lengthened accesses.

50% of the LLC accesses suffer from an increased critical path. For scientific and general

purpose applications more data accesses suffer increase in critical path than code accesses.

Figure 4.7 further shows, for each application, the percentage of the allocated LLC blocks

which experience these lengthened accesses. These blocks are a subset of those shown in

Figure 4.2. On average, only 8% of the allocated LLC blocks are enough to cover all the

offending accesses. Barnes is a clear outlier with 78% of the blocks experiencing lengthened

accesses. Among the rest, only bodytrack, swaptions, 316.applu, and TPC-H have more

than 5% LLC fill population experiencing accesses with lengthened critical path. This

result clearly points to a viable sparse directory design that can track this small fraction

of LLC blocks and eliminate the performance drawback of the in-LLC protocol. This

observation forms the foundation of our tiny directory proposal.

To further understand the extent of sharing experienced by the blocks considered in

Figure 4.7, we introduce the Shared Three-hop Read Access (STRA) ratio. The STRA

ratio for an allocated LLC block is the fraction of read accesses to the block which need

to be forwarded to a sharer because the state of the block is shared corrupted. All blocks

considered in Figure 4.7 have non-zero STRA ratios and all other blocks have zero STRA

ratio. We classify the blocks with non-zero STRA ratios into seven categories C1, . . . , C7.

The category Ci for i ∈ [1, 6] includes all LLC blocks with STRA ratio ∈ (1− 1
2i−1 , 1− 1

2i
].

The category C7 includes all the LLC blocks with STRA ratio ∈ (1 − 1
64 , 1]. Figure 4.8

shows the distribution of the allocated LLC blocks with non-zero STRA ratios. Figure 4.9

shows the distribution of the LLC read accesses to shared corrupted blocks based on the
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category of the involved block. On average, we see that categories C6 and C7 account for

54% of these LLC accesses (please refer to the Average bar in Figure 4.9), while these two

categories cover only 12% of the LLC blocks that source the offending accesses (please refer

to the Average bar in Figure 4.8). Combining Figures 4.7, 4.8, and 4.9, we conclude that

by tracking only 12% of 8% i.e., about 1% of all allocated LLC blocks in a small sparse

directory, we can bring down the critical path of about 54% offending LLC accesses; to

achieve this, the sparse directory hardware needs to focus on the blocks of C6 and C7

categories only. This observation further substantiates the possibility of a tiny directory,

which can track the coherence information of a small fraction of blocks.

bo
dy

tr
ac

k

sw
ap

ti
on

s

ba
rn

es

oc
ea

n
cp

31
4.
m

gr
id

31
6.
ap

pl
u

32
4.
ap

si

33
0.
ar

t

SP
E
C

JB
B

SP
E
C
W

eb
-B

SP
E
C
W

eb
-E

SP
E
C
W

eb
-S

T
P
C
-C

T
P
C
-E

T
P
C
-H

su
nfl

ow

co
m

pr
es

s

A
ve

ra
ge

0

20

40

60

80

100

P
er

ce
n
ta

g
e

o
f

a
ll

o
ca

te
d

L
L

C
b

lo
ck

s
w

it
h

n
o
n

-z
er

o
S

T
R

A
ra

ti
o

C1 C2 C3 C4 C5 C6 C7

Figure 4.8: Distribution of the allocated LLC blocks based on the STRA ratio.
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Figure 4.9: Distribution of offending LLC accesses based on the accessed block category.



72

4.4 Tiny Directory Proposal

The tiny sparse directory augments the in-LLC coherence tracking mechanism. The goal

of the tiny directory design is to track the coherence information pertaining to a sub-

set of blocks with high STRA ratio. Once tracked in the directory, this subset of LLC

blocks will no longer be in the corrupted state and therefore, the read requests to this

subset can be responded to through two-hop transactions as in the baseline sparse 2×

directory. However, the small size of the tiny directory makes the selection of the blocks

that are tracked in the directory very important. If too many blocks are admitted into

the tiny directory, the directory entries will be prematurely evicted without offering any

improvement in performance. There are two situations in which a block can be considered

for being tracked in the tiny directory: (i) when a read request comes for a block which

is in the corrupted state, and (ii) when an instruction read request comes for a block

in unowned/non-shared/invalid state. As already noted, instruction reads are always re-

sponded to in the shared state to accelerate code sharing. In both these situations, if the

block is tracked in the tiny directory, the subsequent shared read requests to such a block

can be concluded using two-hop transactions.

The tiny directory design consults an allocation policy in these two situations to decide

if the requested block’s coherence information should be tracked in the tiny directory. If

the decision is not to allocate a tiny directory entry for the block, the in-LLC coherence

tracking extensions, discussed in Section 4.3.2, are used to track coherence information

for the block. On the other hand, if the decision is to allocate a tiny directory entry for

tracking the requested block, the LLC block is reconstructed (in case it is in a corrupted

state) by forwarding the request to an elected sharer or the owner and asking the elected

sharer or the owner to not only forward the block to the requester but also send the

corrupted bits of the block to the LLC. The LLC block is switched to a non-corrupted

valid state. The coherence state and sharer information of the block are transferred to the

allocated tiny directory entry for further tracking.

On eviction of a tiny directory entry, instead of back-invalidating the sharers, the
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evicted entry’s coherence state and tracking information are transferred to the correspond-

ing LLC data block and the LLC block transitions to an appropriate corrupted state. If

the evicted entry’s data block is not present in the LLC (such cases are rare), the sharers

are back-invalidated. For the best outcome, it is important to carry out judicious alloca-

tions in the tiny directory and minimize the number of pre-mature evictions. We explore

two allocation/eviction policies next.

4.4.1 Selective Allocation Policies

The selective allocation policies make use of the STRA ratio that the LLC blocks would

have experienced in the in-LLC coherence tracking mechanism. In addition to the seven

categories (C1, . . . , C7) of non-zero STRA ratio, we use C0 to denote the category of

blocks with zero STRA ratio. For estimating the STRA ratio of an LLC block, two six-bit

saturating counters, namely STRA Counter (STRAC) and Other Access Counter (OAC),

are maintained for the block. The STRAC is incremented on LLC read accesses which

find the block being requested in the shared state (such an access would have resulted in

a three-hop critical path in in-LLC coherence tracking). The OAC is incremented on all

other LLC accesses (except writeback) to the block. Both the counters of the block are

halved when any of the counters has saturated. The STRA ratio estimate for the block is

given by the fraction STRAC
STRAC+OAC . For the blocks being tracked in the tiny directory, the

directory entry is extended by twelve bits to accommodate the two counters. For the LLC

blocks in corrupted state, twelve bits are borrowed from the LLC data block to maintain

the two counters (this lengthens the corrupted portion by twelve more bits). When the

coherence information is transferred between a tiny directory entry and the corresponding

LLC data block, both the access counters are also transferred. Once a block returns to

the unowned/non-shared state, the counters are reset and the STRA ratio for the block

is deemed zero. In the following, we discuss two allocation/eviction policies for the tiny

directory. Note that given the STRA ratio of a block, the hardware can easily determine

the STRA category of the block.
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Dynamic STRA Policy

The Dynamic STRA (DSTRA) policy first looks for an invalid way in the tiny directory

target set. If such a way is present in the target set, it decides to utilize the invalid way

to track coherence information for the requested block. If there is no such way, it locates

the way w with the lowest STRA category (say, Ci) in the target set. If there are multiple

ways with the lowest STRA category, the one with the lowest physical way id is selected.

Let the STRA category of the block B for which the tiny directory allocation policy is

invoked be Cj . The DSTRA policy victimizes the entry w (which is currently tracking a

block belonging to STRA category Ci) to track block B only if i < j. On the other hand,

if i ≥ j, the DSTRA policy denies tracking the block B in the tiny directory. In summary,

this policy tries to track a subset of blocks with maximum STRA ratio in the tiny directory.

However, one major shortcoming of this policy is that a block belonging to the C7 STRA

category, once tracked in the tiny directory, will occupy a tiny directory entry for a long

time until its STRA ratio comes down. This becomes particularly problematic if the block

is not accessed for a long time. This may unnecessarily lower the overall utilization of the

tiny directory entries. Our next policy proposal remedies this problem.

DSTRA with Generational NRU Policy

The DSTRA with generational not-recently-used policy (DSTRA+gNRU) divides the en-

tire execution into intervals or generations. Each tiny directory entry is extended with

two state bits, namely, a reuse (R) bit and an eviction priority (EP) bit. When a tiny

directory entry is filled or accessed, the R bit of the entry is set and the EP bit is reset,

recording the fact that the entry has been recently accessed and must not be prioritized

for eviction in the current interval. At the end of each interval, the tiny directory entries

are examined and if an entry’s R bit is reset, its EP bit is turned on signifying that the

entry can be considered for eviction in the next interval. The R bits of all entries are

gang-cleared at the beginning of each interval signifying the start of a new generation of

reuses.

The DSTRA+gNRU policy proceeds similarly to the DSTRA policy and selects a way
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w with the lowest STRA category (Ci) in the target set. If there are multiple ways with the

lowest STRA category, the ones with their EP bits set are selected and then among them

the one with the lowest physical way id is selected. Let the STRA category of the block B

for which the tiny directory allocation policy is invoked be Cj . The DSTRA+gNRU policy

victimizes the entry w (which is currently tracking a block belonging to STRA category

Ci) to track block B only if one of the two following conditions is met: (i) i < j, (ii)

i == j and the EP bit of w is set. The second condition effectively creates an avenue for

replacing useless entries of a certain STRA category. If none of the conditions are met,

the DSTRA policy denies tracking the block B in the tiny directory.

The length of a generation needs to be chosen carefully. If a generation is too short, it

may fail to capture important reuses. We set the generation length to the interval length

between two consecutive reuses to a tiny directory entry, averaged across all entries. We

dynamically estimate this interval length as follows. The interval length is measured in

multiples of 4K cycles and the maximum interval length that our hardware can measure is

4M cycles. Each tiny directory slice attached to an LLC bank maintains a ten-bit counter T

which is incremented by one every 4K cycles (measured using a twelve-bit counter). Each

tiny directory entry is extended by ten bits to record the value of the counter T whenever

the entry is accessed. On an access to a tiny directory entry, the last recorded value of

counter T in the tiny directory entry (call it Tlast) is compared with the current value of

counter T in the slice (call it Tcurrent). If Tlast < Tcurrent, the difference between Tcurrent

and Tlast is added to a counter A. The counter A is maintained per tiny directory slice

and records the accumulated time between two consecutive accesses to a tiny directory

entry. Another counter B maintained per tiny directory slice records the number of values

added to counter A. At any point in time, the generation length used by a tiny directory

slice is estimated as A
B . At the beginning of an interval, this value is copied to a generation

length counter, which is decremented by one every 4K cycles. A generation ends when

this counter becomes zero. Both the counters A and B are halved when either of them

has saturated. When counter T saturates, it is reset to zero.
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4.4.2 Introducing Robustness: Spilling into LLC

The tiny directory is only capable of identifying and tracking the coherence state of a subset

of blocks that are most likely to suffer in terms of lengthened critical path of shared read

accesses in the in-LLC coherence tracking mechanism. Since the size of this performance-

critical shared working set of an application is not known beforehand and may even vary

during execution, it is impossible to design an optimally-sized tiny directory that can offer

robust and reliable performance for a wide range of applications. To address this problem,

we augment the tiny directory design with the option of selectively spilling a subset of

coherence tracking entries into the LLC. This option is particularly helpful when the tiny

directory is too small to track the critical shared working set. A spilled coherence tracking

entry occupies a tag and the corresponding data block in the LLC. It is different from the

data block for which coherence is being tracked. As a result, a fundamental challenge in

enabling a coherence tracking entry spill policy is to ensure that the volume of LLC misses

does not increase due to the pressure of the spilled tracking entries. We first discuss the

organization and maintenance of a spilled coherence tracking entry. Next, we describe the

selective spill policy, which identifies the coherence tracking entries eligible for spilling.

Organization of Spilled Entries

The reason for enabling spilling of coherence tracking entries into the LLC is to avoid

lengthening the critical path of shared read accesses when the tiny directory is unable to

track all such shared blocks. As a result, a coherence tracking entry EB of a block B can

be spilled into the LLC only if B is currently in the shared state. A spilled coherence

tracking entry EB is allocated in a way in the same set as block B. Since B and EB have

the same tag, this allocation decision guarantees that in an LLC set, there can be at most

two tag matches on a lookup. On a lookup, when there is no tag match, it is an LLC

miss; when there is exactly one tag match, the tag match is guaranteed to be for a block

and not for a spilled directory entry. When there are two tag matches, it is necessary

to distinguish between the actual block from its spilled directory entry. To distinguish

between the block B and the block EB holding its spilled directory entry, we use the state
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(V=0, D=1) for the spilled tracking entries. B cannot be in a corrupted state when it has

a directory entry (spilled or otherwise) and hence, it will have V=1. The LLC replacement

policy always victimizes a spilled coherence tracking entry EB before the corresponding

block B because victimizing B from the LLC can be far more expensive for a future access

than victimizing EB. This is ensured by the LRU position update policy of the LLC.

Whenever B is accessed, EB is also accessed for updating the tracking information of

B. Whenever these two blocks are accessed, we move EB to the MRU position first and

then move B to the MRU position of the LLC set. When EB is chosen as a victim, the

coherence information is transferred to B and B switches to the corrupted shared state.

If an LLC lookup indicates two tag matches, we know that the one with state V=1

corresponds to the data block and the other one is the spilled coherence tracking entry

for the block. On the other hand, if the lookup returns a single tag match, the state of

the matched tag decides if the block is in a corrupted state (V=0, D=1) or not (V=1).

As usual, the tiny directory is always looked up in parallel with the LLC and a tiny

directory hit indicates that the coherence information of the block is being tracked in the

tiny directory.

On an access to a data block B, if the coherence tracking entry EB is also in the same

set, the two blocks have to be read out sequentially. To avoid lengthening the critical path,

on a read request, we read out the data block B first and respond to the requester (recall

that spilling is allowed only for blocks in the shared state). Next, we read out EB and

update the coherence tracking information. Finally, we move EB to the MRU position

and then move B to the MRU position within the LLC set. On a read-exclusive request,

we read out EB first and send out the invalidations and also ask an elected sharer to

forward the data block to the requester. On an upgrade request, we read out EB first

and send out the invalidations. For both read-exclusive and upgrade requests, the block

EB is invalidated and the coherence information is transferred to B, which now switches

to the corrupted exclusive state. This is because maintaining a spilled directory entry is

beneficial only for blocks in the shared state.
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Selective Spill Policy

The selective spill policy for coherence tracking entries determines if the coherence infor-

mation of a block can be tracked by spilling it in the LLC. This policy is invoked in two

situations: (i) when the tiny directory’s allocation policy declines to track the coherence

information of a requested block in the tiny directory, and (ii) eviction of a tiny directory

entry corresponding to a block in the shared state. If the policy decision is not to spill

in the LLC, the in-LLC coherence tracking extensions are used to track the coherence

information of the involved block. If the policy decision is to spill in the LLC, a way is

allocated in the same LLC set as the involved block to track the coherence information

of the block. In this case, if the involved block is found in a corrupted state in the LLC,

it is reconstructed following the reconstruction procedure discussed already and the block

transitions to a non-corrupted valid state (V=1).

Whenever the spill policy is invoked, its goal is to allow spilling of coherence tracking

entries for blocks with high STRA ratio. At the same time, the spill policy must keep

a check on the LLC miss rate for data blocks. Let Cj be the STRA category of the

block which is trying to spill its coherence tracking entry in the LLC under one of the two

aforementioned situations when the spill policy is invoked. We formulate the selective spill

policy design problem as follows. The selective spill policy should dynamically determine

the highest STRA category Ci such that the coherence tracking entries for the blocks

with STRA category Cj with j ≥ i can be spilled in the LLC whenever needed while

guaranteeing that the LLC miss rate for data blocks increases by no more than a pre-

defined value of δ. The value δ represents the tolerance limit for LLC miss rate. Each

LLC bank independently implements this policy and determines a suitable Ci for the bank.

The index i of this computed Ci for an LLC bank will be referred to as the STRA spill

threshold category index of the bank and this selective spill policy will be referred to as

the Dynamic Spill policy. We discuss its implementation in the following.

In each LLC bank, sixteen sets are kept aside that do not admit any spilled coher-

ence tracking entries. These sets are used to estimate the LLC bank’s miss rate without

spilling (MRno−spill). The remaining sets exercise spilling for STRA categories Cj such
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that j ≥ i, given a dynamically computed STRA spill threshold category index i for the

LLC bank. From these sets, the LLC bank’s miss rate with spilling (MRspill) can be deter-

mined. We define a window of observation for an LLC bank as 8K accesses (except write-

backs) to the bank. At the end of each observation window, if MRspill ≤ MRno−spill + δ

is satisfied (meaning that due to spilling, the LLC bank’s miss rate increases by no more

than δ), the STRA spill threshold category index i is decreased by one in that bank so

that a bigger volume of spills can be admitted in the next observation window. On the

other hand, if MRspill ≤MRno−spill + δ is not satisfied, i for the bank is increased by one

so that the spill volume can be reduced. We note that the value of i saturates at zero and

seven on the two sides of the admissible range.

The aforementioned policy for dynamically determining the STRA spill threshold cate-

gory index may lead to oscillations in the index value around the convergence point unless

the index i saturates to zero or seven. Such oscillations are easy to detect and the STRA

spill threshold category index can be fixed to one of the two oscillation values such that

MRspill ≤MRno−spill + δ is satisfied. However, fixing the index value to avoid oscillation

may cause the state of the algorithm to get stuck at that index value leading to lost op-

portunity of spilling more in certain phases of execution. Coming out of such a state will

require complex mechanisms to detect phase changes when a new lower index value can

be tried. This is complicated by the fact that MRspill for a certain STRA spill threshold

category index cannot be determined by sampling a few LLC sets (like the way we deter-

mine MRno−spill) because the spill volume distribution is non-uniform and highly skewed

toward the LLC sets that accommodate shared blocks. We, however, note two important

aspects about this oscillation. First, if an oscillation at all happens, it is restricted to

the few phases of execution that experience high to moderate volumes of spilling because

small amount of spilling cannot change the LLC miss rate much. Second, since the length

of the observation window is quite large (8K accesses per bank × 128 banks or 1M LLC

accesses on average), the oscillation in the index value happens at a reasonably slow rate.

At the end, to keep the design simple, we decide to use our Dynamic Spill policy without

any change to arrest oscillation. Our evaluation of this policy shows that even with the
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possibility of such oscillations in certain phases, the increase in the LLC miss rate due to

spilling never exceeds the guarantee offered by the value of δ.

Selection of an appropriate δ is important for the success of the proposed spill policy.

We define the overall STRA ratio of an application as the number of LLC reads to blocks

in the shared state over the total number of LLC accesses (except writebacks). In general,

if an application has a very low LLC miss rate, it may not be able to tolerate a large

increase in LLC miss rate because such applications are typically very latency-sensitive.

On the other hand, if an application is undergoing a phase of overall high STRA ratio, it

may be possible to convert a larger proportion of LLC hits to misses and gain in terms

of shared read hit latency by spilling more. Within each LLC bank, we measure the miss

rate and the overall STRA ratio. At the end of each window of observation, each LLC

bank independently classifies the running application into four possible categories: (A)

LLC bank’s miss rate is at least 10% and STRA ratio is at least 0.4, (B) LLC bank’s

miss rate is at least 10% and STRA ratio is below 0.4, (C) LLC bank’s miss rate is below

10% and STRA ratio is at least 0.4, and (D) LLC bank’s miss rate is below 10% and

STRA ratio is below 0.4. At the beginning of each observation window, each LLC bank

independently decides the value of δ to be used in that bank depending on the category

of the application observed during the last window: δA = 1
4 , δB = 1

32 , δC = 1
16 , δD = 1

32 .

The categories with higher STRA ratio are assigned higher δ values (higher tolerance for

LLC miss rate increase) while keeping the miss rate profile in mind. These values may

require tuning depending on the system configuration.

4.4.3 Coherence Processing Latency at LLC

Among the coherence processing paths traversed by the tiny directory proposal at the LLC

bank controller, there are two situations where the critical path gets slightly lengthened

compared to the baseline. Both the cases arise from accessing a block in the corrupted

state. If the accessed block is in the corrupted shared state, the LLC tag and data must

be accessed serially followed by decoding of the coherence state from the data block before

responding to the requester. In the baseline, the critical path through the LLC bank
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controller for accessing such a block would involve only the serial access of the LLC tag

and data (overlapped with sparse directory access). In this case, we charge one extra

cycle of LLC latency for the tiny directory implementation accounting for the coherence

state decoding overhead. If the accessed block is in the corrupted exclusive state, the

tiny directory proposal must access the LLC tag and data serially and then decode the

coherence state before forwarding the request to the owner. In the baseline, the critical

path through the LLC bank controller for accessing such a block would involve only the

LLC tag access latency overlapped with the sparse directory lookup latency. In this

case, the tiny directory proposal suffers from two additional cycles of LLC data access

latency (see Table 4.1) followed by one cycle of coherence state decoder latency. We

model all these additional latencies in our evaluation.

4.4.4 Coherence Protocol Complexity

The tiny directory protocol is extended from the baseline MESI protocol and introduces

two new coherence states, namely corrupted shared and corrupted exclusive. The cor-

rupted exclusive state combines corrupted M and corrupted E states. The new protocol

state machine includes the transitions into and out of these two new states. Since only

two new states have been added, we believe that the additional complexity is small and

the additional verification effort is within the reasonable margins.

4.5 Simulation Results

We evaluate our proposal in this section for four different tiny directory sizes: 1
32×, 1

64×,

1
128×, and 1

256×. The 1
32× and 1

64× sizes have respectively 64 and 32 entries per tiny

directory slice attached to an LLC bank. Both these sizes exercise eight-way set-associative

directory slices. The 1
128× and 1

256× sizes have respectively 16 and 8 entries per tiny

directory slice and exercise fully-associative configuration for each slice. Each directory

entry has a size of 155 bits (128-bit sharer vector, 12 bits for STRAC and OAC, 10 bits

for the timestamp counter used to estimate the generation length in the gNRU policy, two
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bits for R and EP states used by the gNRU policy, one bit for pending/busy transient

state, and two coherence state bits for tracking invalid, exclusively owned and shared

states). Additionally, each directory entry has a tag of the following lengths (we assume

48-bit physical address): 32 bits for 1
32×, 33 bits for 1

64×, 35 bits for 1
128× and 1

256×. As a

result, the total storage investment for coherence tracking across all 128 slices is as follows:

187 KB for 1
32×, 94 KB for 1

64×, 47.5 KB for 1
128×, and 23.75 KB for 1

256×.

Figures 4.10 and 4.11 evaluate our proposal for 1
32× and 1

64× sizes, respectively.

These figures quantify the percentage increase in execution cycles compared to a 2× di-

rectory. For each tiny directory size, we show the results with the DSTRA allocation

policy, DSTRA+gNRU allocation policy, and DSTRA+gNRU augmented with dynamic

spilling (DynSpill) of coherence tracking entries. For the 1
32× size (Figure 4.10), both

DSTRA and DSTRA+gNRU policies are, on average, within 1% of the performance of

2× directory; when dynamic spilling is enabled, the gap reduces to 0.5%. Referring back

to Figure 4.4, we note that the in-LLC coherence tracking mechanism is 11% worse than

the 2× directory. Introduction of a tiny directory bridges this gap.
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Figure 4.10: Performance of 1
32× tiny directory normalized to a sparse 2× directory.

For the 1
64× size (Figure 4.11), the gNRU-assisted allocation policy begins to gain

in importance in some of the applications (ocean cp and SPECWeb). On average, the

DSTRA policy has 3% higher execution cycles compared to the 2× directory, while the

DSTRA+gNRU policy is only 2% away from the 2× directory. Dynamic spilling fur-

ther brings this gap down to 1%. Dynamic spilling is particularly helpful for 324.apsi,

SPECWeb, and TPC. Dynamic spilling, however, hurts performance by a couple of per-



83

bo
dy

tr
ac

k

sw
ap

ti
on

s

ba
rn

es

oc
ea

n
cp

31
4.
m

gr
id

31
6.
ap

pl
u

32
4.
ap

si

33
0.
ar

t

SP
E
C

JB
B

SP
E
C

W
eb

-B

SP
E
C

W
eb

-E

SP
E
C

W
eb

-S

T
P
C
-C

T
P
C
-E

T
P
C
-H

su
nfl

ow

co
m

pr
es

s

A
ve

ra
ge

0.96

1.00

1.04

1.08

1.12

N
o
rm

a
li

ze
d

ex
ec

u
ti

o
n

ti
m

e
DSTRA DSTRA+gNRU DSTRA+gNRU+DynSpill

Figure 4.11: Performance of 1
64× tiny directory normalized to a sparse 2× directory.

centages in swaptions and 330.art due to LLC contention.

Referring back to the discussion related to Figure 4.3, we note that a skew-associative

directory that tracks only shared blocks suffers from a 12% slowdown for the 1
64× size com-

pared to a 2× directory, on average. Our set-associative tiny directory without dynamic

spilling at this size performs far better underscoring the success of the DSTRA and the

DSTRA+gNRU policies which capture a critical subset of the shared blocks. Referring

back to Figure 4.7, we note that this critical subset accounts for 78% of all allocated LLC

blocks for barnes. Even for this application, our tiny directory proposal is able to capture

the instantaneous working set of these critical blocks and deliver performance close to a

2× directory.

Figures 4.12 and 4.13 evaluate our proposal for 1
128× and 1

256× sizes, respectively. At

these two sizes, the gNRU policy gains further in importance in several applications. On

average, for the 1
128× size, the DSTRA and the DSTRA+gNRU policies have 6% and 5%

higher execution cycles compared to the 2× directory. The dynamic spill policy assumes

significant importance at these small directory sizes and brings down the gap between our

proposal and the 2× directory to 1%. Referring back to Figure 4.3, we note that a sparse

directory that tracks only shared blocks suffers from a 28% slowdown for the 1
128× size

compared to a 2× directory, on average. Our tiny directory proposal successfully wipes

away this performance loss.

For the 1
256× size (Figure 4.13), the DSTRA and the DSTRA+gNRU policies have

8% and 6% higher execution cycles compared to the 2× directory, on average. Dynamic
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spilling reduces this gap to 1%. In summary, our tiny directory proposal offers robust

performance staying within a percentage of a sparse 2× directory as the tiny directory

size is varied between 1
32× and 1

256× (187 KB to 23.75 KB).
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Figure 4.12: Performance of 1
128× tiny directory normalized to a sparse 2× directory.
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Figure 4.13: Performance of 1
256× tiny directory normalized to a sparse 2× directory.

4.5.1 Analysis of Performance

The main purpose of the tiny directory proposal is to eliminate most of the additional

three-hop transactions that the in-LLC coherence mechanism introduced. When these

three-hop transactions get replaced by the two-hop transactions as in the sparse 2× di-

rectory, the performance is expected to be similar to the 2× directory. Referring back

to Figure 4.6, we note that the percentage of LLC accesses that suffer from an increased

critical path because they get extended to three-hop transactions in the in-LLC coherence

tracking mechanism is 30% on average. To confirm that our proposal is able to address this

problem successfully, Figures 4.14 and 4.15 show the percentage of the LLC accesses that
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suffer from an increase in the critical path for a 1
32× tiny directory system and a 1

256× tiny

directory system, the two extreme points of our size spectrum. For a 1
32× tiny directory,

the DSTRA and the DSTRA+gNRU policies have only 3% and 2% such LLC accesses

on average. The dynamic spill policy brings this average to under 1%. For a 1
256× tiny

directory, this percentage increases significantly for the DSTRA and the DSTRA+gNRU

policies. These policies experience 23% and 20% such LLC accesses respectively (still lower

than in-LLC mechanism), while the dynamic spill policy successfully brings this average

down to only 4%. These small residual extra three-hop transactions cause a percent loss

in performance.
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Figure 4.14: Percentage of LLC accesses which suffer from an increase in critical path in
a 1

32× tiny directory.
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Figure 4.15: Percentage of LLC accesses which suffer from an increase in critical path in
a 1

256× tiny directory.

The success of the tiny directory in reducing the number of extra three-hop trans-

actions depends on the number of hits that a tiny directory entry enjoys. Figure 4.16

shows the number of tiny directory hits for the DSTRA+gNRU policy normalized to the
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DSTRA policy for all the four directory sizes. As the directory size decreases from 1
32×

to 1
256×, the gNRU policy gains in importance. On average, for 1

32×, 1
64×, 1

128×, and

1
256× directories, the DSTRA+gNRU policy offers, respectively, 3%, 12%, 23%, and 39%

more directory entry hits compared to the DSTRA policy. The biggest beneficiaries of the

gNRU policy are bodytrack, swaptions, barnes, ocean cp, 330.art, and SPECWeb. The

primary advantage of the gNRU policy is that it quickly removes the useless directory en-

tries, which the DSTRA policy would have retained for a long time. This creates room for

more useful directory entries to be tracked. Figure 4.17 validates this behavior by quanti-

fying the number of allocations in the tiny directory experienced by the DSTRA+gNRU

policy normalized to the DSTRA policy for all the four directory sizes. As the directory

size decreases from 1
32× to 1

256×, the gNRU policy allows a much larger number of direc-

tory fills to take place, thereby significantly increasing the effective coverage of the tiny

directory. On average, for 1
32×, 1

64×, 1
128×, and 1

256× directories, the DSTRA+gNRU

policy observes, respectively, 2×, 7×, 50×, and 74× more directory fills compared to the

DSTRA policy. Figure 4.18 quantifies the average number of hits enjoyed by a directory

entry before getting replaced for the DSTRA+gNRU policy. On average, for 1
32×, 1

64×,

1
128×, and 1

256× directories, this number is 59.5, 46.1, 16.6, and 17.5, respectively. This

result confirms that the directory entries tracked by the DSTRA+gNRU policy are indeed

important. They enjoy a significant number of hits before getting replaced even for the

smallest size.
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Figure 4.16: Hits in tiny directory with the DSTRA+gNRU policy normalized to the
DSTRA policy.
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Figure 4.17: Allocations in tiny directory with the DSTRA+gNRU policy normalized to
the DSTRA policy.
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Figure 4.18: Hits per allocation in tiny directory with the DSTRA+gNRU policy.

Next, we analyze our dynamic spill policy which we have shown to be highly robust

across the board. There are two aspects of the dynamic spill policy that we analyze.

Figure 4.19 shows the percentage of the LLC accesses which are able to avoid increase in

critical path because of spilled directory entries when using the DSTRA+gNRU+DynSpill

policy. These are essentially read accesses to the blocks, the coherence tracking entries

of which are spilled in the LLC. Without these spilled entries, these accesses would get

extended to three-hop transactions because the data block would have been in the cor-

rupted shared state. The percentage of such LLC accesses increases significantly as the

tiny directory size drops. On average, for 1
32×, 1

64×, 1
128×, and 1

256× directories, 2%, 5%,

11%, and 16% LLC accesses benefit from spilling. The biggest beneficiaries are bodytrack,

barnes, SPECWeb, and TPC.

The second aspect of the spill policy is its influence on the LLC miss rate. We are
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Figure 4.19: Percentage of LLC accesses which are able to avoid increase in critical path
because of spilled directory entries in the LLC when using the DSTRA+gNRU+DynSpill
policy.

particularly interested in the behavior of the applications that already have high LLC miss

rates in the baseline. For example, the applications with more than 10% LLC miss rate

include ocean cp (35% LLC miss rate), 314.mgrid (78%), 324.apsi (12%), 330.art (63%),

SPECWeb-B (14%), SPECWeb-E (19%), and SPECWeb-S (18%). Our Dynamic Spill

policy guarantees an upper bound on the LLC miss rate increase through the δ values.

Figure 4.20 shows the increase in LLC miss rate when using the DSTRA+gNRU+DynSpill

policy relative to the sparse 2× directory. As the tiny directory size decreases, the LLC

miss rate increases very slowly. Only 316.applu and 330.art show more than 1% increase in

the LLC miss rate compared to the 2× directory. Across the board, the maximum increase

in the LLC miss rate due to spilling is 2.1% experienced by 316.applu when operating with

a 1
256× tiny directory. We note that this is within the smallest δ (the guaranteed upper

bound on LLC miss rate increase) that we use (Section 4.4.2). The average increase in

the LLC miss rate is under 0.5% for all directory sizes.

To further confirm that our proposal continues to offer robust performance for smaller

LLC capacities where the pressure created by the spilled directory entries can be more

problematic, we evaluate our proposal in a configuration where the entire cache hierarchy

is halved in terms of the number of sets (the capacity ratio between different levels is

maintained) i.e., the shared LLC capacity is 16 MB in both the baseline and our pro-

posal. In this configuration, compared to a sparse 2× directory, the DSTRA+gNRU and

DSTRA+gNRU+DynSpill policies experience an average increase of 7% and 1% execution
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Figure 4.20: Increase in LLC miss rate due to spilling when using
DSTRA+gNRU+DynSpill policy compared to a 2× sparse directory.

cycles for a 1
128× tiny directory (eight entries fully-associative per slice) where spilling is

quite prevalent.

4.5.2 Energy Comparison

We use CACTI [37] (distributed with McPAT [38]) to compute the dynamic and leakage

energy consumed by the LLC and the sparse directory for 22 nm nodes. Figure 4.21

shows the dynamic, leakage, and total energy of the LLC and the sparse directory for the

baseline configurations (from 2× to 1
16×) normalized to the 1

256× tiny directory exercising

the DSTRA+gNRU+DynSpill policy. Specifically, the dynamic energy of the baseline

configurations is normalized to the dynamic energy of the 1
256× tiny directory; the leakage

energy of the baseline configurations is normalized to the leakage energy of the 1
256× tiny

directory; the total energy of the baseline configurations is normalized to the total energy

of the 1
256× tiny directory. We have also shown the 1

128× tiny directory in the figure.

Additionally, the figure includes the trends in the execution cycles as well. As the baseline

sparse directory size decreases, the execution cycles monotonically increase, as expected.

The dynamic, leakage, and total energy expense first decreases as the baseline directory size

shrinks. However, beyond 1
4× size of the baseline directory, the energy expense increases

quickly due to increasing execution cycles. Compared to the 1
256× tiny directory, the

baseline dynamic energy is much lower. The extra dynamic energy consumption in the

tiny directory arises primarily from the additional LLC writes that need to be done to
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update the coherence information in the corrupted and the spilled entries. On the other

hand, the leakage and total energy expense is much lower in the tiny directory due to

the drastically reduced size of the directory. The data array of a 2× directory is 8 MB

in capacity compared to 47.5 KB and 23.75 KB total sizes of the 1
128× and 1

256× tiny

directories. Overall, compared to the baseline sparse 2× directory, our proposal saves 17%

and 16% of total LLC and directory energy for the 1
128× and 1

256× tiny directory sizes,

respectively. The baseline 1
4× sparse directory configuration comes closest to the 1

256×

tiny directory in terms of total energy expense (4% more than the 1
256× tiny directory),

but requires 1 MB space for its directory data array and performs 2.5% worse than the

1
256× tiny directory.

2× 1× 1
2
× 1

4
× 1

8
× 1

16
× Tiny 1

128
×

Baseline sparse directory size

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
li

ze
d

ex
ec

u
ti

o
n

cy
cl

es
a
n

d
en

er
g
y

LLC+Dir. Dynamic Energy

LLC+Dir. Leakage Energy

LLC+Dir. Total Energy

Execution Cycles

Figure 4.21: Execution cycles and energy normalized to the 1
256× tiny directory exercising

the DSTRA+gNRU+DynSpill policy.

4.5.3 Comparison to Related Proposals

Recent proposals have tried to reduce the number of sparse directory entries by address-

ing the overhead of tracking the private blocks. These contributions were reviewed in

Section 4.1. By comparing Figure 4.3 with Figures 4.10, 4.11, and 4.12, we have already

shown that our proposal performs much better than a sparse directory that tracks only

shared blocks. None of the recent proposals that try to reduce the overhead of tracking

the private blocks can perform better than the ideal sparse directory that tracks only
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shared blocks. Nonetheless, for completeness, we evaluate the state-of-the-art multi-grain

directory (MgD) [86] and the Stash directory [26]. The MgD invests just one directory

entry for a private region of size 1 KB, thereby saving significantly on the overhead of

tracking the private blocks. The Stash directory does not track private blocks after the

corresponding directory entries are evicted. As a result, on evicting a Stash directory

entry that was tracking a private block, it does not generate any back-invalidation. Such

a block is identified by a single bit attached to each LLC block. Later if such an LLC

block receives a request from a core, the proposal resorts to broadcast to reconstruct the

directory entry. Figure 4.22 evaluates a skew-associative MgD for four sizes (18×, 1
16×,

1
32×, and 1

64×) and an eight-way set-associative Stash directory for 1
32× size. Compared to

a 2× sparse directory, the MgD proposal suffers from a 0.1%, 8%, 29%, and 63% increase

in average execution cycles for 1
8×, 1

16×, 1
32×, and 1

64× sizes, respectively. The Stash

directory at 1
32× size performs 41% worse than the 2× directory on average. We find that

the Stash directory is able to save a significant volume of private cache misses because

it does not back-invalidate the private blocks on sparse directory eviction. However, the

broadcast traffic becomes a major bottleneck in this proposal, particularly for the scale

of the systems we are considering. In comparison, our proposal exercising directory sizes

between 1
256× and 1

32× performs within 1% of a 2× sparse directory.

4.6 Summary

We have presented a novel design to track coherence information within a CMP. The design

allows us to significantly scale down the traditional sparse directory size. Our proposal

has three major components. First, it tracks the private block owner by borrowing a few

bits of the last-level cache data block. Second, it employs a tiny directory that tracks the

coherence information of a critical subset of the blocks belonging to the shared working set.

Third, if the tiny directory is too small to track all the critical shared blocks, the proposal

employs dynamic selective spilling of the coherence tracking entries into the LLC. Any

remaining block is tracked by borrowing a few bits of the LLC data block. The simulation
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Figure 4.22: Performance of 1
8×, 1

16×, 1
32×, 1

64× multi-grain directory (MgD) and 1
32×

Stash directory normalized to a sparse 2× directory.

results on a 128-core system for a wide range applications show that our proposal operating

with tiny directories of size ranging between 1
32× and 1

256× performs within 1% of a system

with a 2× sparse directory.



Chapter 5

Sharing-aware Private Caching

The emerging many-core server processors with tens of cores are equipped with a per-core

private cache hierarchy and a large multi-banked on-die shared last-level cache (LLC). The

cores along with their private cache hierarchy and the LLC banks are distributed over a

scalable on-die interconnect. Any communication between the cores’ private caches and the

LLC banks must traverse the interconnect. Due to the traversal through the interconnect,

the core cache miss requests can experience large average round-trip latencies even if they

hit in the LLC, particularly for the scale of the machine we are considering in this thesis. As

the system grows in terms of core-count, the average round-trip LLC hit latency as well as

the volume of traffic in the interconnect typically increase making efficient private caching

an important requirement for such systems. In this chapter, we squarely focus on the

problem of architecting an efficient private cache hierarchy for many-core server processors

running multi-threaded workloads drawn from the domains of commercial computing (web

serving and data serving) and scientific computing. Traditionally, a two-level private cache

hierarchy is used per core where the private L1 and L2 caches treat the private and shared

blocks equally. We start our exploration with a baseline design that does not have a private

L2 cache allowing us to understand the properties of the L1 cache misses. Our approach

is to characterize the cores’ L1 cache misses that hit in the LLC and exploit this run-time

characterization to eliminate a subset of these misses by architecting a specialized, yet

space-efficient, private L2 cache.

93



94

To quantify the potential performance improvement achievable by optimizing the core

caches, we conduct an experiment on a simulated 128-core server processor with each

core having private instruction and data L1 caches (32 KB 8-way each) and a shared

32 MB 16-way LLC partitioned into 128 set-interleaved banks. A 256 KB 16-way LLC

bank is attached to a core tile and the 128 tiles are arranged in a 16×8 mesh interconnect

exercising dimension-order-routing and having a four-stage routing pipeline at each switch

clocked at 2 GHz.1 In this experiment, the non-compulsory non-coherence L1 cache misses

which hit in the LLC are assumed to hit in the L1 cache i.e., they are charged only the

L1 cache lookup latency and do not generate any interconnect traffic. We note that the

compulsory and coherence misses cannot be reduced in number by optimizing the private

cache hierarchy (assuming a fixed block size).

Figure 5.1 shows the percentage core cache misses saved in this experiment partitioned

into code and data misses. On average, 78% core cache misses can be saved. For the web

and data serving workloads (TPC, SPEC Web, and SPEC JBB), both code and data

contribute significantly to the saved misses, while for the remaining applications, the

savings primarily arise from data accesses. Figure 5.2 shows the percentage reduction

in execution time when this optimization is applied to only code misses and additional

reduction when it is applied to both code and data misses. On average, 30% execution time

can be optimized away by eliminating the non-compulsory non-coherence code and data L1

cache misses that hit in the LLC. The savings in the execution time range from 14% (SPEC

JBB) to 40% (barnes and TPC-C). When only the non-compulsory non-coherence code

misses which hit in the LLC are eliminated, the average saving in execution time is 12%.

The savings in execution time correlate well with the volume of saved misses shown in

Figure 5.1. Any proposal for optimizing these misses must target both code and data

because on average, both contribute significantly to the potential improvement.

Motivated by this large potential improvement in performance, we thoroughly charac-

terize the core cache misses that hit in the LLC (Section 5.1). Our characterization study

reveals that a small subset of shared code and data blocks contributes to a large fraction of

1 The simulation environment is similar to the one used for studying Pool and Tiny directories. Further
details of the simulation environment used in this chapter can be found in Section 5.3.
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Figure 5.1: Non-compulsory non-coherence core cache misses that hit in LLC.
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Figure 5.2: Execution time saved when non-compulsory non-coherence core cache misses
that hit in the LLC are treated as core cache hits.

the core cache misses that hit in the LLC.2 This observation leads us to explore the design

of a per-core private L2 cache that can serve as an efficient victim cache for the private L1

cache (Section 5.2). The goal of our victim cache designs is to capture the critical subset

of the shared blocks. Our best proposal classifies the L1 cache victims into distinct parti-

tions based on two features, namely, an estimate of sharing degree and a simple indirect

measure of reuse distance. The collective reuse probability of each partition is learned

on-the-fly and used to decide if the L1 cache victims belonging to a partition should be

inserted in the victim cache. To the best of our knowledge, this is the first sharing-aware

private cache hierarchy design proposal for many-core server processors. Simulation re-

sults obtained from a detailed model of a 128-core server processor (Section 5.3) show

that our best victim cache design with 64 KB capacity saves 44.1% core cache misses sent

to the LLC and 10.6% execution cycles, on average slightly outperforming a traditional

2 This is in line with what we observed in the last chapter while studying the Tiny directory. There
the key finding was that a small fraction of all blocks allocated in the LLC account for a large portion of
the LLC accesses to shared blocks. In this chapter, we further generalize it all core cache misses that hit
in the LLC.
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non-inclusive/non-exclusive per-core 128 KB L2 cache exercising LRU replacement pol-

icy (Section 5.4). Further, the savings in core cache misses achieved by our best victim

cache proposal are observed to be only 8% less than an optimal victim cache design at

32 KB and 64 KB capacity points.

5.1 Characterization of Core Cache Misses

In this section, we analyze the non-compulsory non-coherence L1 cache misses that hit

in the LLC. Since both code and data have important contributions to these misses, this

analysis must characterize these misses using features other than code and data. We begin

by partitioning these misses based on the sharing types of the LLC blocks being accessed.

The LLC block types are discussed below. As the readers will notice, this partitioning is

greatly influenced by the way the Tiny directory study partitioned the LLC accesses to

shared blocks. An LLC block is said to be temporally private if it never experiences any

kind of sharing between more than one core at the same time. A core X accesses such a

block from the LLC and caches it privately. It is evicted from the private cache hierarchy

of core X before the next LLC access (from the same core X or from a different core Y )

to the block. All other LLC blocks are said to be shared. We partition the shared blocks

into two groups based on the degree of sharing. We attach a Shared Read Access (SRA)

counter with each block to measure its degree of sharing. The SRA counter of a block is

initialized to zero when it is filled into the LLC from the main memory. This counter is

incremented for a block when an LLC read access (due to a core cache data load or code

read miss) to the block hits in the LLC and finds the block in the shared state (S state

in MESI coherence protocol). All temporally private blocks have zero SRA. We put all

shared blocks with SRA=0 in one group (low degree of sharing) and the remaining shared

blocks in another group. A read access to a shared LLC block with zero SRA necessarily

finds the block in coherence state M (recall that E and M states are tracked through a

single coherence state M in the directory) with the owner being different from the core

requesting the read access.
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Figure 5.3: Distribution of non-compulsory non-coherence core cache misses that hit in
LLC based on the sharing types of the LLC blocks being accessed.

Figure 5.3 shows the distribution of non-compulsory non-coherence L1 cache misses

that hit in the LLC. “TempPrivate” represents the temporally private category. On aver-

age, 76% of these misses access shared blocks with positive SRA. For all the applications,

except TPC-E, more than half of these misses fall in this category. Figure 5.4 shows the

percentage reduction in execution time when these misses are treated as L1 cache hits. The

bottom segment of each bar shows the percentage reduction in execution time when only

the core cache misses to the shared LLC blocks with positive SRA are treated as L1 cache

hits. The middle segment of each bar shows the additional saving in execution time when

the core cache misses to the shared LLC blocks with zero SRA are also treated as L1 cache

hits. The top segment of each bar shows the additional saving in execution time when

the core cache misses to the temporally private LLC blocks are also treated as L1 cache

hits. On average, 19% execution time can be optimized away by saving the core cache

misses which hit the shared LLC blocks with positive SRA. Saving the core cache misses

to the shared LLC blocks with zero SRA has negligible impact on performance. These

results clearly highlight that saving the core cache misses to the shared LLC blocks with

positive SRA is important for performance and interconnect traffic. Figure 5.5 quantifies

the percentage of the LLC blocks that are shared and have positive SRAs. On average,

just 12% of the LLC blocks fall in this category. Barnes is a clear outlier with 78% of the

LLC blocks in this category. Among the rest, only bodytrack and TPC-H have more than

2% of the LLC blocks that are in this category. Therefore, on average, only 12% of the
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LLC blocks contribute to 76% of the core cache misses that hit in the LLC and saving

these 76% core cache misses can reduce 19% of execution cycles, on average.
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Figure 5.4: Execution time saved when non-compulsory non-coherence core cache misses
that hit in the LLC are treated as core cache hits.
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Figure 5.5: Percentage of allocated LLC blocks that are shared with positive SRA.

We further classify the shared LLC blocks with positive SRA based on a normalized

SRA ratio. The SRA ratio for an LLC block at any point in time is defined as the ratio

of the SRA counter value to the total number of LLC accesses to the block arising from

the core cache misses. We classify the shared LLC blocks with positive SRA into three

SRA ratio categories, namely C1, C2, and C3. The C1 category includes all LLC blocks

with SRA ratio ∈ (0, 12 ]. For C2 and C3, the SRA ratio ranges are (12 ,
3
4 ], and (34 , 1],

respectively. Figure 5.6 shows the distribution of the shared LLC blocks with positive

SRA. Recall that only 12% of the LLC blocks are shared with positive SRA. Among

these, on average, 49%, 10%, and 41% are in C1, C2, and C3, respectively. Figure 5.7

shows the distribution of the non-compulsory non-coherence L1 cache misses that hit in

the LLC. On average, 68% of these core cache misses access LLC blocks in C3 category.

This is an important piece of data showing that only 41% of 12% (or, overall 5%) LLC
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blocks cover 68% of non-compulsory non-coherence L1 cache misses that hit in the LLC.

Therefore, it may be possible to capture a significant subset of these L1 cache misses by

incorporating a specialized per-core victim cache. Figure 5.8 further shows the percentage

reduction in execution time when non-compulsory non-coherence L1 cache misses that hit

in the LLC are saved and treated as L1 cache hits. For each application, we show the

gradual reduction in execution time as core cache misses to C3, C3+C2+C1, C3+C2+C1+

shared with zero SRA, and all LLC blocks are saved. On average, 15.5% execution time

can be optimized away by saving the core cache misses to the C3 blocks. This observation

further highlights the fact that a small critical subset of the shared blocks is responsible

for majority of the core cache misses, and by saving core cache misses for these blocks

significant performance improvement can be achieved.
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Figure 5.6: Distribution of the shared LLC blocks into the SRA ratio categories.
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LLC based on the sharing status of the LLC block being accessed.
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Figure 5.8: Execution time saved when non-compulsory non-coherence core cache misses
that hit in the LLC are treated as core cache hits.

5.2 Victim Cache Design

In this section, we architect a private per-core unified victim cache (VC) to capture a

subset of the L1 instruction and data cache victims. We begin our discussion by reviewing

the basic VC architecture that admits all L1 cache victims (Section 5.2.1). Next, we

present two design proposals for selective victim caching (Section 5.2.2) that exploit the

findings of our characterization results. All the VC designs considered in this paper are

8-way set-associative. The L1 cache and the VC are looked up serially to avoid lengthening

the L1 cache access latency. On an L1 cache miss, the VC is looked up. On a VC hit, the

block is invalidated from the VC and copied to the L1 instruction or data cache depending

on the request type. On a VC miss, the block is fetched from the outer levels of the

memory hierarchy (LLC or main memory) and inserted into the L1 instruction or data

cache. As a result, the VC is equivalent to a private per-core L2 cache that is exclusive of

the L1 caches.

5.2.1 Victim Caching without Selection

The traditional VC architecture admits all L1 cache victims. We evaluate two replacement

policies for such a VC. The first one evicts the least-recently-filled (LRF) block in a VC

set.3 This design requires three replacement state bits per block in an 8-way cache. This

design will be referred to as LRF-VC. The second design devotes only one replacement

3 A least-recently-used replacement policy has no meaning in a VC because on a VC hit, a block is
invalidated.
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state bit per block. This bit is set to one when a block is inserted into the VC. If all blocks

in a set have this bit set to one, all the bits in that set are reset except the bit corresponding

to the most recently filled block. Within a set, the replacement policy victimizes the block

with the replacement state bit reset; a tie among multiple such eligible candidates is broken

by victimizing the block with the lowest physical way id. This replacement policy will be

referred to as not-recently-filled (NRF) and this design will be referred to as NRF-VC.

The NRF policy is motivated by the observation that the first order locality of a block

inserted in the VC is already filtered by the L1 cache and therefore, a precise fill order as

maintained by the LRF policy may not be necessary to achieve good performance.

5.2.2 Selective Victim Caching

The two selective victim caching proposals discussed in this section constitute the crux

of our contributions. Our L1 cache miss characterization study has established that the

selective victim caching proposals must primarily target the shared LLC blocks with posi-

tive SRA ratio and that the C3 blocks are particularly important. In addition to the three

categories (C1, C2, and C3) of non-zero SRA ratio, we use C0 to denote the category of

shared as well as temporally private blocks with zero SRA ratio. To identify the category

of an LLC block, the SRA ratio needs to be estimated online. For this purpose, two six-bit

saturating counters, namely SRA Counter (SRAC) and Other Access Counter (OAC), are

maintained for the block. While this requirement is similar to what we proposed for the

Tiny directory design, in the study of this chapter, we use a traditional full-map sparse

directory. The SRAC is incremented on LLC read accesses which find the block being

requested in the shared state. The OAC is incremented on all other LLC accesses (ex-

cept writeback) to the block. Both the counters of the block are halved when any of the

counters has saturated. The SRA ratio estimate for the block is given by the fraction

SRAC
SRAC+OAC . The sparse directory entry that tracks coherence of a block is extended by

twelve bits to accommodate the two counters. Once a block returns to the unowned/non-

shared state, the counters are reset and the SRA ratio for the block is deemed zero. Also,

when the sparse directory entry of a block is evicted, its SRA ratio is assumed to become
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zero. When a block is fetched from the LLC into the L1 cache, the block’s SRA ratio

category is also fetched and maintained by extending the L1 cache tag by two bits. A

block fetched from main memory (due to LLC miss) is assumed to belong to category C0.

When an L1 cache block is evicted, its SRA ratio category is used in deciding whether

the block should be admitted into the VC, as discussed in the following designs. If an L1

cache victim is allocated in the VC, its SRA ratio category is also maintained in the VC

by extending the VC tag by two bits. When a VC entry is copied into the L1 cache, its

SRA ratio category is also copied.

SRA-gNRF-VC

Our first selective VC design tries to capture a subset of the high SRA ratio blocks and

implements a generational NRF (gNRF) replacement policy. First, we discuss the gNRF

policy, which is inspired by the gNRU policy of the Tiny directory proposal. The design

divides the entire execution into intervals or generations. Each VC entry is extended with

two state bits, namely, a fill (F) bit and an eviction priority (EP) bit. When a VC block is

filled, the F bit of the block is set and the EP bit is reset, recording the fact that the block

has been recently filled and must not be prioritized for eviction in the current interval.

At the end of each interval, the EP bit of a VC entry is set to the inverse of the F bit

signifying that the entry can be considered for eviction in the next interval if and only if

the F bit is reset. The F bits of all VC entries are gang-cleared at the beginning of each

interval signifying the start of a new generation. Thus, a VC block becomes eligible for

eviction within two consecutive intervals.

Now, we discuss the victim caching protocol. On receiving an L1 cache victim block

B, the SRA-gNRF-VC design first looks for an invalid way in the target VC set. If there

is no such way, it locates the way w with the lowest SRA ratio category (say, Ci) in the

target set. If there are multiple ways with the lowest SRA ratio category, the ones with

their EP bits set are selected and then among them the one with the lowest physical way

id is selected. Let the SRA ratio category of the L1 cache victim block B currently being

considered for allocation in the VC be Cj . The SRA-gNRF-VC design victimizes the entry



103

w (currently holding a block belonging to category Ci) to allocate block B only if one of

the following two conditions is met: (i) i < j, (ii) i == j and the EP bit of w is set.

The first condition helps attract a subset of high SRA ratio blocks into the VC, while the

second condition creates an avenue for replacing useless VC entries of a certain SRA ratio

category.

We set the generation length to the interval between the fill and a hit to a VC entry,

averaged across all entries that experience hits. We dynamically estimate this interval

as follows. The interval length is measured in multiples of 4K cycles and the maximum

interval length that our hardware can measure is 4M cycles. The VC controller maintains

a ten-bit counter T which is incremented by one every 4K cycles (measured using a twelve-

bit counter P ). Each VC entry is extended by ten bits to record the value of counter T

whenever the entry is filled. On a hit to a VC entry, the value of counter T recorded at the

time of fill in the entry (Tfill) is compared with the current value of counter T (Tcurrent). If

Tfill < Tcurrent, the difference between Tcurrent and Tfill is added to a counter Amaintained

in the VC controller. The counter A records the accumulated time between a fill and a hit

to a VC entry. Another counter B maintained in the VC controller records the number of

values added to counter A. At any point in time, the generation length is estimated as A
B .

At the beginning of an interval, this value is copied to a generation length counter (GLC),

which is decremented by one every 4K cycles. A generation ends when this counter

becomes zero. Both the counters A and B are halved when either of them has saturated.

When counter T saturates, it is reset to zero.

Overall, fourteen state bits are required per VC entry for implementing the SRA-gNRF

policy (SRA ratio category: 2 bits, Tfill: 10 bits, and F and EP bits) and two additional

bits per L1 cache entry for maintaining the SRA ratio category. For a 64 KB VC and

32 KB instruction and data L1 caches with 64-byte blocks, this overhead is equivalent to

16K bits (2 KB) per core. The counters T, P, A, B, and GLC require a few tens of bits

per core.
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SRA-VCUB-RProb-VC

The SRA-gNRF-VC design discussed in the last section assumes that the high SRA ratio

blocks will enjoy hits in the VC. However, this may not be true in all phases of execution.

Additionally, this design also loses opportunity of caching some of the lower SRA ratio

blocks that may enjoy some hits in the VC. The SRA-VCUB-RProb-VC design remedies

these problems by directly considering the probability that an L1 cache victim would be

reused from the VC. It partitions the L1 cache victims into several categories, estimates

the collective reuse probability (RProb) of each category, and caches only the L1 cache

victims belonging to the categories with high enough reuse probability. Additionally, this

design substitutes the gNRF policy by a more efficient replacement policy incorporating

four possible ages of a block. This policy, like gNRF, requires only two replacement state

bits used to encode four possible ages of a block in the VC.

The L1 cache victims are partitioned online based on the SRA ratio categories and a

simple estimate of reuse distance. The reuse distance estimate is obtained as follows. The

private cache residency of a block begins when it is fetched into the L1 cache from either

LLC or main memory. Its private cache residency ends when it is evicted from the VC

or from the L1 cache and not admitted to the VC. During this private cache residency,

the block may make multiple trips between the L1 cache and the VC. If a block enjoys

at least one use in the VC, it indicates a relatively short reuse distance of the block. We

use this indication as an estimate of the reuse distance of the block. This is recorded by

maintaining a VC use bit (VCUB) per block in the L1 cache and the VC. When a block

is fetched into the L1 cache from the LLC or the main memory, its VCUB is set to zero.

The VCUB of a block becomes one when it experiences its first hit in the VC. After this,

the VCUB remains set during the rest of the block’s private cache residency. An L1 cache

victim having VCUB=0 is estimated to have a relatively larger reuse distance and smaller

reuse probability compared to an L1 cache victim with VCUB=1. The VCUB induces a

top-level partitioning of the L1 cache victims.

The L1 cache victims with VCUB=0 are further partitioned into four classes based

on the victims’ SRA ratio categories (C0, C1, C2, C3). For each category, the collective
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probability of reuse in the VC is estimated online as follows. Eight sets are sampled

from the VC and the accesses to these sampled sets for blocks with VCUB=0 are used to

estimate the reuse probabilities. The VC controller maintains two counters for each SRA

ratio category Ci. One counter (fi) maintains the number of fills to the sampled sets for

category Ci blocks with VCUB=0. The other counter (hi) maintains the number of hits

in the sampled sets experienced by the blocks with VCUB=0 and category Ci. The reuse

probability pi of category Ci given VCUB=0 is hi/fi. Periodically, all the eight counters

are halved.

Next, we discuss the victim caching protocol of the SRA-VCUB-RProb-VC design.

The following two principles guide the VC allocation policy. First, all L1 cache victims

mapping to the sampled sets are allocated in the VC because the reuse probabilities are

learned from the behavior of the blocks in the sampled sets. Second, the age assigned

to a block allocated in the VC is zero, two, or three depending on the estimated reuse

probability of the partition containing the block. A higher reuse probability is associated

with a lower age, which, in turn, signifies a lower eviction priority. The L1 cache victims

with VCUB=1 are assumed to have the maximum reuse probability. The dynamic reuse

probability of the L1 cache victims with VCUB=0 are estimated on-the-fly, as already

discussed. On receiving an L1 cache victim block B, if the VCUB of B is set, it is

allocated in the VC and assigned an age zero. If the VCUB of B is reset and B maps to a

sampled set, it is allocated in the VC and assigned an age two. If the VCUB of B is reset

and B does not map to a sampled set, its SRA ratio category Ci decides further actions.

Let the current reuse probability estimate of Ci be pi. If pi is at least 1/8 (implemented as

hi ≥ [fi shifted right by 3 bit positions]), the block B is allocated in the VC and assigned

an age two. If pi is less than 1/8, but there is an invalid way in the target VC set, the

block B is allocated in that way and assigned an age three. If pi is less than 1/8 and there

is no inavlid way, the block B is not allocated in the VC. We have experimented with four

reuse probability thresholds, namely, 1/2, 1/4, 1/8, and 1/16. Among these, 1/8 is found

to achieve the best performance. Tables 5.1 and 5.2 summarize the VC operations.

Within a set, the VC policy evicts a block with age three; a tie among multiple such
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Table 5.1: VC allocation protocol for an L1 cache victim block

Block attributes
Maps to a VC Doesn’t map to a VC

sample set sample set

VCUB=1 Allocate with age=0 Allocate with age=0

VCUB=0;
Allocate with age=2

SRA category Ci; pi ≥ 1/8 Allocate with age=2;
VCUB=0; fi++ Allocate with age=3 if an

SRA category Ci; pi < 1/8 invalid way is available

Table 5.2: VC actions on a hit
Block attributes Maps to a VC sample set Doesn’t map to a VC sample set

VCUB=1 Invalidate; copy to L1 Invalidate; copy to L1

VCUB=0; Invalidate; copy to L1; Invalidate; copy to L1;
SRA category Ci hi++; VCUB←1 VCUB←1

blocks is broken by victimizing the block at the lowest physical way. If no such block

exists in the set, the ages of all blocks in the set are incremented until a block with

age three is found. This replacement logic is similar to the static re-reference interval

prediction (SRRIP) policy [41]. Our policy for inserting a block into the VC as discussed

above is, however, entirely different from what SRRIP uses as its insertion policy (inserts

always at age two).

Overall, five state bits are required per VC entry for implementing the SRA-VCUB-

RProb policy (SRA ratio category: 2 bits, VCUB: 1 bit, age: 2 bits) and three extra bits

per L1 cache entry (SRA ratio category: 2 bits, VCUB: 1 bit). For a 64 KB VC and

32 KB instruction and data L1 caches with 64-byte blocks, this overhead is equivalent to

8K bits (1 KB) per core. The additional overhead of the hi and fi counters (nine bits

each) is 72 bits per core.

5.3 Simulation Environment

The simulation environment is similar to the one used for Tiny directory study. We use an

in-house modified version of the Multi2Sim simulator [78] to model a chip-multiprocessor

having 128 dynamically scheduled out-of-order issue x86 cores clocked at 2 GHz. The
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details of the baseline configuration are presented in Table 5.3. The interconnect switch

microarchitecture assumes a four-stage routing pipeline with one cycle per stage at 2 GHz

clock. The stages are buffer write/route computation, virtual channel allocation, output

port allocation, and traversal through switch crossbar. There is an additional 1 ns link

latency to copy a flit from one switch to the next. The overall hop latency is 3 ns.

We evaluate our VC proposals for two configurations, namely, 32 KB 8-way and 64 KB

8-way. These have lookup latencies of one and two cycles, respectively. We also explore

how our proposals fare against traditional non-inclusive/non-exclusive 8-way L2 caches of

capacity 32 KB, 64 KB, and 128 KB exercising fill-on-miss and LRU as well as state-of-the-

art replacement policies. These L2 cache configurations have lookup latencies of one, two,

and three cycles, respectively. The latencies have been fixed using CACTI [37] assuming

22 nm technology node (we use the version of CACTI distributed with McPAT [38]).

Table 5.3: Baseline simulation environment
On-die cache hierarchy, interconnect, and coherence directory

Per-core iL1 and dL1 caches: 32 KB, 8-way, LRU, latency 1 cycle

Shared LLC: 32 MB, 16-way, 128 banks, LRU,
bank lookup latency 4 cycles for tag + 2 cycles for data,
non-inclusive/non-exclusive, fill on miss, no back-inval. on eviction

Cache block size at all cache levels: 64 bytes

Interconnect: 2D mesh clocked at 2 GHz, two-cycle link latency (1 ns),
four-cycle pipelined routing per switch (2 ns latency);
Routing algorithm: dimension-order-routing;
Each switch connects to: a core, its L1 caches, one LLC bank,
one 4× (relative to per-core L1 caches) sparse directory slice [35, 66].

Sparse directory slice: 16-way, LRU replacement

Coherence protocol: write-invalidate MESI

Main memory

Memory controllers: eight single-channel DDR3-2133 controllers,
evenly distributed over the mesh, FR-FCFS scheduler

DRAM modules: modeled using DRAMSim2 [68], 12-12-12, BL=8,
64-bit channels, one rank/channel, 8 banks/rank, 1 KB row/bank/device,
x8 devices, open-page policy

The applications for this study are drawn from various sources and detailed in Ta-

ble 5.4 (ROI refers to the parallel region of interest). Since many-core shared memory
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Table 5.4: Simulated applications
Suite Applications Input/Configuration Simulation length

PARSEC bodytrack sim-medium Complete ROI

SPLASH-24 barnes 32K particles Complete ROI

SPEC JBB SPEC JBB 82 warehouses, single JVM instance Six billion

instructions

TPC MySQL TPC-C 10 GB database, 2 GB buffer pool, 500 transactions

100 warehouses, 100 clients

MySQL TPC-E 10 GB database, 2 GB buffer pool, Five billion

100 clients instructions

MySQL TPC-H 2 GB database, 1 GB buffer pool, Five billion

100 clients, zero think time, instructions

even distribution of Q6, Q8, Q11

Q13, Q16, Q20 across client threads

SPEC Web Apache HTTP server Worker thread model, Five billion

v2.2 running Banking, 128 simultaneous sessions, instructions

Ecommerce, Support mod php module
4 The SPLASH-2 applications are drawn from the SPLASH2X extension of the PARSEC distribution.

server processors are prevalently used for commercial computing, we pick seven of our

nine applications used in this study from the domain of web and data serving (SPECWeb-

B, SPECWeb-E, SPECWeb-S, TPC-C, TPC-E, TPC-H, SPEC JBB). Additionally, we

pick one application (barnes) as a representative of scientific computing, which often exer-

cise large-scale shared memory servers. One application (bodytrack) is selected from the

domain of computer vision where parallel processing is quite popular. The inputs, config-

urations, and simulation lengths are chosen to keep the simulation time within reasonable

limits while maintaining fidelity of the simulation results. The PARSEC and SPLASH-2

applications are simulated in execution-driven mode, while the rest of the applications

are simulated by replaying an instruction trace collected through the PIN tool capturing

all activities taking place in the application address space. The PIN trace is collected

on a 24-core machine by running each multi-threaded application creating at most 128

threads (including server, application, and JVM threads). Before replaying the trace

through the simulated 128-core system, it is pre-processed to expose maximum possible

concurrency across the threads while preserving the global order at global synchronization

boundaries and between load-store pairs touching the same 64-byte block.
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5.4 Simulation Results

In this section, we present a detailed evaluation of our proposal. Section 5.4.1 analyzes

the performance of our proposal, while Section 5.4.2 examines the interconnect traffic of

the memory system of our proposal. Section 5.4.3 further quantifies the energy expended

in the cache hierarchy by our proposal. All results are normalized to a baseline design

with 32 KB 8-way instruction and data L1 caches per core and no L2 cache. The shared

LLC is 32 MB 16-way in all configurations.

5.4.1 Performance Evaluation

We begin the discussion on performance evaluation by comparing the four VC designs

presented in Section 5.2. Figure 5.9 quantifies the percentage reduction in core cache

misses relative to the baseline for the four VC designs, namely LRF-VC, NRF-VC, SRA-

gNRF-VC, and SRA-VCUB-RProb-VC. We have also included the results for an optimal

VC design that implements Belady’s optimal replacement algorithm [11, 63] extended with

the option of not allocating a block in the VC if its next-use distance is larger than all

blocks in the target set. The optimal design requires knowledge about the future accesses.

It is evaluated offline after collecting the access trace for each application. All VC designs

have 64 KB 8-way configuration. On average, both LRF and NRF reduce the core cache

misses by 40%, while SRA-gNRF achieves a 41.3% reduction. The SRA-VCUB-RProb

design achieves a reduction of 44.1% having a less than 8% gap to the optimal design,

which achieves a reduction of 51.9%. Compared to LRF and NRF, the top gainers of

the SRA-VCUB-RProb design include bodytrack, barnes, and TPC-C. For TPC-H, the

SRA-VCUB-RProb design achieves near-optimal core cache misses.

Figure 5.10 presents the percentage reduction in execution time for the four VC designs

with 64 KB capacity relative to the baseline. The performance of the optimal design cannot

be evaluated because the future accesses cannot be fixed online. On average, LRF and

NRF save 9% execution time, while the SRA-gNRF and SRA-VCUB-RProb designs reduce

execution time by 9.9% and 10.6%, respectively. Within each application, the savings in
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Figure 5.9: Reduction in core cache misses with 64 KB VC relative to baseline.
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Figure 5.10: Reduction in execution time with 64 KB VC relative to baseline.

execution time correspond well to the relative trend shown in Figure 5.9. Bodytrack

fails to improve much in performance because saving core cache misses is not particularly

important for its performance.
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Figure 5.11: Reduction in core cache misses with 32 KB VC relative to baseline.

Figures 5.11 and 5.12 evaluate the VC designs with 32 KB capacity. All designs

continue to be 8-way set-associative. On average, the SRA-VCUB-RProb design saves 35%

core cache misses relative to the baseline and is only 8% away from the optimal design,
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Figure 5.12: Reduction in execution time with 32 KB VC relative to baseline.

which saves 43% core cache misses. Compared to LRF and NRF, bodytrack and barnes

continue to enjoy large savings in core cache misses with the SRA-VCUB-RProb design.

The SRA-VCUB-RProb design achieves a 7.9% reduction in execution time compared

to the baseline, on average. We will consider only the best performing VC design i.e.,

SRA-VCUB-RProb in further evaluation.

Next, we compare the SRA-VCUB-RProb design with the traditional non-inclusive/non-

exclusive L2 caches exercising LRU replacement policy. Figure 5.13 shows the percentage

reduction in core cache misses relative to the baseline for 32 KB and 64 KB SRA-VCUB-

RProb-VC design and 32 KB, 64 KB, and 128 KB traditional non-inclusive/non-exclusive

L2 cache design. On average, the 32 KB traditional L2 cache design saves only 6% core

cache misses, while the 32 KB VC design saves an impressive 35% core cache misses; the

64 KB traditional L2 cache design saves 22.3% core cache misses, while the 64 KB VC

design saves 44.1% core cache misses. Most importantly, a 128 KB traditional L2 cache

design saves 42.2% core cache misses. This saving is a couple of percentages lower than

what a half-sized (64 KB) VC exercising the SRA-VCUB-RProb design achieves. Simi-

larly, a 32 KB VC saves much higher percentage of core cache misses than a traditional

64 KB L2 cache. Compared to 128 KB traditional L2 cache, our 64 KB SRA-VCUB-

RProb-VC design saves 7.78 MB of on-die SRAM storage for our 128-core configuration

assuming 48-bit physical address (our proposal’s overheads of VC and L1 cache state bits

and additional 12 bits per directory entry are accounted for).

Figure 5.14 compares the SRA-VCUB-RProb-VC design with the traditional L2 caches
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in terms of percentage saving in execution time relative to the baseline. Across the board,

the VC design outperforms the same-sized traditional L2 caches by large margins. More

importantly, a 32 KB VC outperforms a 64 KB traditional L2 cache and a 64 KB VC

outperforms a 128 KB traditional L2 cache, on average. These results strongly advocate

the replacement of traditional private L2 caches by specialized per-core VC designs that

can achieve significant space saving per core while delivering better performance at lower

interconnect traffic.
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Figure 5.13: Comparison between traditional non-inclusive L2 cache and SRA-VCUB-
RProb-VC in terms of reduction in core cache misses.
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Figure 5.14: Comparison between traditional non-inclusive L2 cache and SRA-VCUB-
RProb-VC in terms of reduction in execution time.

Figures 5.15 and 5.16 compare our SRA-VCUB-RProb-VC design with iso-capacity

baselines. A configuration with a 32 KB VC invests a total of 96 KB cache per core

when the 32 KB L1 instruction and data cache capacities are included. This configuration

should be compared against a baseline that also invests 96 KB of L1 caches per core. So,

we evaluate a configuration that has 48 KB 6-way L1 instruction and data caches per core.
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Similarly, we compare the 64 KB VC design with a configuration that has 64 KB 8-way

L1 instruction and data caches per core. The 48 KB L1 caches have a single-cycle lookup

latency, while the 64 KB L1 caches have two-cycle lookup latency. The results are shown

relative to the baseline with 32 KB L1 instruction and data caches per core. Figures 5.15

and 5.16 respectively show that the 48 KB L1 cache configuration saves 20% core cache

misses and 4.6% execution time, while the 32 KB VC saves 35% core cache misses and

7.9% execution time, on average. Both 32 KB and 64 KB VC designs save more core

cache misses and execution time than the 64 KB L1 cache configuration, on average. The

64 KB L1 cache configuration saves 32.5% core cache misses and 6.3% execution time,

while the 64 KB VC saves 44.1% core cache misses and 10.6% execution time, on average.

Overall, for all applications, the SRA-VCUB-RProb-VC design comfortably outperforms

the iso-capacity baseline configurations.
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Figure 5.15: Comparison between iso-capacity L1-only baselines and the SRA-VCUB-
RProb-VC configurations in terms of reduction in core cache misses.
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Figure 5.16: Comparison between iso-capacity L1-only baselines and the SRA-VCUB-
RProb-VC configurations in terms of reduction in execution time.
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A cost-effective alternative to designing a specialized VC is to enhance the L1 caches in

a traditional single-level private cache hierarchy and the L2 cache in a traditional two-level

private cache hierarchy with state-of-the-art replacement/insertion policies. We explore

how the configurations equipped with the SRA-VCUB-RProb-VC design fare against the

traditional single-level (L1 cache only) and two-level (L1 and L2 caches) private cache

hierarchies enhanced with the signature-based hit prediction (SHiP) policy proposal [84].

The instruction L1 and the data L1 caches of the traditional single-level private cache

hierarchy are enhanced with the SHiP-mem and SHiP-PC policies, respectively. The L2

cache in the traditional two-level private cache hierarchy is enhanced with SHiP-mem

for instruction blocks and SHiP-PC for data blocks. We compare these configurations

against the SRA-VCUB-RProb-VC design working with the traditional baseline 32 KB

L1 caches exercising the LRU replacement policy. Figures 5.17 and 5.18 show the results

normalized to the baseline with 32 KB L1 instruction and data caches per core exercising

the LRU replacement policy. The single-level private cache hierarchy configurations with

L1 caches exercising SHiP policy are shown as 32 KB L1, 48 KB L1, and 64 KB L1. The

two-level private cache hierarchy configurations with non-inclusive/non-exclusive L2 cache

exercising SHiP policy are shown as 32 KB L2, 64 KB L2, and 128 KB L2. The 32 KB and

64 KB VC configurations use the SRA-VCUB-RProb design along with 32 KB instruction

and data L1 caches exercising LRU policy.
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Figure 5.17: Comparison of core cache miss savings between the SRA-VCUB-RProb-VC
design and single-level and two-level private hierarchy configurations enhanced with the
SHiP policy.

A comparison of Figures 5.17 and 5.18 with Figures 5.15 and 5.16 shows that the SHiP
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Figure 5.18: Comparison of execution time savings between the SRA-VCUB-RProb-VC
design and single-level and two-level private hierarchy configurations enhanced with the
SHiP policy.

policy is not particularly effective for L1 caches and performs close to the LRU policy.

On the other hand, a comparison with Figures 5.13 and 5.14 shows that the SHiP policy

when implemented in the L2 cache is able to improve the performance by a reasonable

amount relative to LRU policy, on average. The SHiP policies are designed to work well

for caches that experience an access stream with filtered locality e.g., L2 and outer level

caches. Nonetheless, Figures 5.17 and 5.18 show that both 32 KB and 64 KB SRA-VCUB-

RProb-VC designs save more core cache misses and execution time than all traditional

configurations enhanced with the SHiP policies except the 128 KB L2 cache configuration,

on average. The 128 KB L2 cache working with the SHiP policies outperforms the 64 KB

VC design only marginally (11.0% vs. 10.6% execution time saving) and saves only a few

percentage extra core cache misses (47.8% vs. 44.1%), on average. Overall, the SRA-

VCUB-RProb-VC design continues to outperform the iso-capacity single-level as well as

two-level private cache hierarchies enhanced with the SHiP policies.

In summary, our detailed performance evaluation presents a compelling case for the

SRA-VCUB-RProb-VC design as the private per-core L2 cache in many-core server pro-

cessors. It comfortably outperforms the iso-capacity traditional single-level and two-level

non-inclusive/non-exclusive private cache hierarchy designs exercising LRU as well as SHiP

policies. Further, a 32 KB VC outperforms a 64 KB traditional L2 cache and a 64 KB

VC outperforms a 128 KB traditional L2 cache exercising the LRU policy presenting an

opportunity to halve the L2 cache space per core with better performance. When the
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traditional L2 cache is enhanced with the SHiP policy, the performance of our 64 KB

SRA-VCUB-RProb-VC design comes very close to a 128 KB traditional L2 cache.

5.4.2 Interconnect Traffic Comparison

Figure 5.19 compares the on-die interconnect traffic (total number of bytes transferred) for

five different private cache configurations. For each application, the leftmost two bars rep-

resent single-level private cache configurations with 32 KB and 64 KB L1 caches exercising

LRU policy and no L2 cache. The next two bars represent configurations with 64 KB and

128 KB non-inclusive/non-exclusive L2 cache exercising LRU policy. The rightmost bar

represents a configuration with 64 KB VC exercising our SRA-VCUB-RProb policy. The

last three configurations exercise 32 KB L1 caches with LRU policy. The interconnect

traffic for each configuration is divided into four categories. The private cache misses and

their responses constitute the processor traffic. The private cache evictions to the LLC

and their acknowledgements constitute the writeback traffic. The requests and replies to

and from the memory controllers constitute the DRAM traffic. Everything else consti-

tutes the coherence traffic. The results are normalized to the total interconnect traffic of

the leftmost bar in each application. Across the board, our VC proposal saves significant

portions of the interconnect traffic arising primarily from the savings in processor misses

and private cache evictions. Compared to the baseline 32 KB L1 configuration (leftmost

bar), our proposal saves 43.1% interconnect traffic. Compared to the 64 KB L1 and 64 KB

L2 configurations, our proposal saves 11.5% and 20.9% interconnect traffic, respectively.

These two configurations invest the same total cache (128 KB) to the per-core private

cache hierarchy as our proposal does using the 64 KB VC. It is encouraging to note that

compared to the 128 KB L2 cache configuration, our proposal saves 1.9% interconnect

traffic while requiring only half the L2 cache space.

5.4.3 Iso-capacity Energy Comparison

Figure 5.20 quantifies the total energy (dynamic and leakage together) expended by the

on-die cache hierarchy and the sparse directory for three different iso-capacity (128 KB per
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Figure 5.19: Interconnect traffic for private cache hierarchy configurations.

core) private cache hierarchy configurations assuming 22 nm technology nodes (determined

with CACTI). For each application, the leftmost bar (marked L1) shows the total energy

when the per-core private cache hierarchy has 64 KB 8-way L1 instruction and data caches

and no L2 cache. The middle bar (marked VC) shows the total energy when the per-core

private cache hierarchy has 32 KB 8-way L1 instruction and data caches and a 64 KB 8-way

VC exercising the SRA-VCUB-RProb design. The rightmost bar (marked L2) shows the

total energy when the per-core private cache hierarchy has 32 KB 8-way L1 instruction

and data caches and a 64 KB 8-way traditional non-inclusive/non-exclusive L2 cache

exercising LRU replacement policy. All L1 caches exercise LRU replacement policy. Each

bar shows the energy contributed by the instruction L1 cache (IL1), data L1 cache (DL1),

L2 cache (L2), LLC, and the coherence directory. All results are normalized to the total

energy of the leftmost bar for each application. On average, the VC configuration expends

1% less energy compared to the L1 configuration, while the L2 configuration expends 3%

more energy than the L1 configuration. As a result, the 64 KB VC configuration has 6%

and 10% less energy-delay product compared to the iso-capacity L1 and L2 configurations,

respectively.

5.5 Related Work

Fully-associative very small (8 to 32 entries) victim caches were introduced to handle

conflict misses in small direct-mapped caches [44]. The existing selective victim caching

proposals explore run-time strategies for identifying the L1 cache evictions resulting from
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Figure 5.20: Total energy expended by the cache hierarchy for various private cache hier-
archy configurations with a per core private cache hierarchy budget of 128 KB.

conflicts and capture these evictions in the fully-associative L1 victim cache of single-core

processors [23, 39]. In contrast, our proposal targets larger set-associative victim caches

working with L1 caches having high set-associativity where only conflict miss selection

is not enough. To the best of our knowledge, this is the first proposal on sharing-aware

per-core victim caching for server workloads.

The design of a large victim cache with selective insertion based on frequency of misses

has been explored and is shown to work well with large inclusive LLCs [9]. Another

proposal exploits the dead blocks in a large inclusive LLC to configure an “embedded”

victim cache [50]. These designs are not suitable for per-core mid-level victim caches.

Our victim cache, by design, introduces an exclusive L2 cache in the per-core private

cache hierarchy of the many-core processor. The advantages and disadvantages of exclusive

LLCs compared to their inclusive counterparts have been explored by several studies [45,

91]. Bypass and insertion policy optimizations for large exclusive LLCs have also been

studied [17, 32]. In contrast, we architect a mid-level exclusive victim cache per core in a

many-core server processor.

The use of large private caches working with an exclusive LLC has been explored for a

small-scale (16 cores) server processor [40]. Our proposal leaves the LLC unchanged and

architects a space-efficient private cache hierarchy. Also, specialized coherence protocols

that allow selective private caching of certain data based on temporal and spatial locality

estimates have been proposed [54]. Our proposal uses a traditional MESI coherence pro-

tocol obviating the need to verify a new coherence protocol and designs a small private
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victim cache per core to optimize the interconnect traffic.

Several studies have explored specialized architectures for the on-die interconnect with

the goal of optimizing the latency observed and energy expended in ferrying informa-

tion between the private cache hierarchy and the shared last-level cache in server proces-

sors [51, 58, 59, 60, 79]. The design innovations in these studies involve the following:

predicting the useful words within a requested cache block and transmitting only the flits

that contain these words [51]; architecting specialized topologies and switches to accelerate

instruction delivery to the cores’ instruction caches [58]; designing a hybrid of virtual cut-

through and circuit switched routing protocols to improve the communication latency [59];

selectively eliminating the per-hop resource allocation delay through proactive resource al-

location policies [60]; designing separate request and response networks to suit the different

demands of request and response packets [79]. In contrast, our proposal uses a traditional

interconnection network and optimizes the interconnect traffic by designing a specialized

private cache hierarchy.

A significant body of research has recognized the importance of optimizing the instruc-

tion cache performance of the cores in the context of commercial server workloads. One

set of studies observes that there is a large amount of overlap within and across trans-

actions in terms of instruction footprint and database operations in online transaction

processing (OLTP) workloads. These studies exploit this instruction locality by judicious

scheduling and migration of transaction threads and database actions [6, 7, 8, 77]. This

class of proposals includes time-multiplexed scheduling of similar threads on a core [6],

spreading the overall instruction footprint across the cores and migrating similar threads

to a core [7, 8], and scheduling similar database actions on the same core [77]. These

techniques require careful synchronization between segments of different transactions and

properly scheduling them either temporally or spatially. Another class of proposals has

designed specialized instruction prefetchers [28, 30, 46, 47, 48, 52, 53]. While prefetchers

can hide the inefficiencies of the private cache hierarchy, they cannot save interconnect

traffic. Our proposal, instead, focuses on the design of the private cache hierarchy to

improve the interconnect traffic as well as performance. The application domain of our
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proposal is not limited to just OLTP or instruction delivery for commercial workloads.

Finally, our proposal on ultra-low-overhead coherence tracking has exploited the ob-

servation that a small fraction of LLC blocks experience frequent read-sharing [72]. In this

chapter, we show that a small fraction of the shared blocks contribute to a large fraction

of core cache misses. Our victim cache design captures a subset of these critical blocks.

5.6 Summary

We have presented the designs of a victim cache working with the per-core private L1

caches of a many-core server processor. The victim cache effectively replaces the traditional

private L2 cache. Our best victim caching proposal partitions the L1 cache victim space

into different classes based on the degree of sharing and an indirect estimate of the reuse

distance. It estimates the reuse probability of each partition dynamically and uses these

estimates to decide the partitions that should be retained in the victim cache. This

selective victim caching proposal, on average, saves 44.1% core cache misses and 10.6%

execution time compared to a baseline that does not have a private L2 cache. Further, this

proposal comfortably outperforms iso-capacity traditional single-level and two-level private

cache hierarchy designs. Most importantly, 32 KB and 64 KB victim caches outperform

traditional non-inclusive/non-exclusive 64 KB and 128 KB LRU L2 caches, respectively.

This opens up the opportunity of halving the L2 cache space investment per core while

offering better performance.



Chapter 6

Conclusions and Future Directions

This thesis has contributed to the domains of sparse directory organization and private

cache hierarchy design for server processors. This chapter summarizes the three contribu-

tions of this thesis and draws conclusions (Section 6.1). Next, it presents a few extensions

and applications of the contributions (Section 6.2).

6.1 Summary and Conclusions

We present Pool Directory, a two-level sparse directory organization that optimizes the

average number of bits devoted to track a block. The central microarchitecture innovation

involves dynamic allocation from a pool of short vectors to build a tracking infrastructure

for a block. The tracking infrastructure for a particular block can vary over time as the

number of sharers of the block grows or shrinks. The tracking infrastructure may include

just a first-level directory entry that includes one pointer, or a first-level directory entry

and a second-level pool entry, or a first-level directory entry and a contiguous block of

second-level pool entries. The fine-grain separation of the tracking needs based on sharer

count allows the Pool Directory design to optimize the overall space allocated for tracking

a block. For an equal space investment, the Pool Directory design performs better than

the state-of-the-art designs while saving a significant volume of interconnection traffic.

Our Tiny Directory proposal is orthogonal to the Pool Directory design and addresses
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a much bigger concern related to the sparse directory organization. The Tiny Directory

design shows a practically implementable way of operating with sparse directories that have

a very small number of entries while offering performance that is within a percentage of a

2× directory. Three key innovations form the crux of the Tiny Directory design. First, a

private block is tracked efficiently by borrowing a small part of the L3 cache block. Second,

the critical subset of frequently shared blocks is tracked in a small sparse directory. Third,

the critical shared blocks that cannot be tracked in the sparse directory due to space

constraint are tracked in the L3 cache space, thereby offering a fall-back cushion to the

Tiny Directory design. We demonstrate that a 128-core design can gracefully operate

with Tiny Directories of size as small as 1
256× while performing within a percentage of

a 2× sparse directory. This is a significant leap in sparse directory height optimization

compared to the state-of-the-art designs.

The efficiency of the private cache hierarchy is of great importance to the overall

performance of a many-core processor. We show that a small group of read-shared data

and code blocks generates a big portion of the interconnect traffic indicating that these

blocks should be protected more carefully in the private cache hierarchy. Motivated by this

observation, we replace the traditional mid-level (L2) cache of the private cache hierarchy

by an exclusive L2 cache that serves as a victim cache of the L1 cache. The primary

innovation in this design is the management of the L2 cache contents. We classify the L1

cache victims based on certain reuse distance and sharing degree features and on-the-fly

estimate the collective reuse probability of each class. The L2 cache accommodates blocks

from only those L1 cache victim classes that have reuse probability higher than a threshold.

This technique automatically captures the important subset of the read-shared blocks that

contribute to a significant portion of the interconnect traffic. Our proposal with a 64 KB

L2 cache outperforms the baseline design having a 128 KB traditional non-inclusive/non-

exclusive L2 cache and generates a lower volume of interconnect traffic, thereby saving a

significant portion of the chip estate without losing any performance.

The three optimizations studied in this thesis are orthogonal to each other. The Tiny

Directory proposal can use the Pool Directory design to further bring down the directory
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footprint while maintaining the same level of performance. The private cache optimization

can be applied to any many-core server architecture irrespective of the directory organi-

zation. Specifically, both Tiny Directory and Pool Directory designs can be seamlessly

combined with the private cache optimizations. Therefore, the three proposals are indeed

orthogonal to each other and can seamlessly work together to realize the combined benefit

of all three. The proposals together achieve one or more of the following important goals

in a chip-multiprocessor with 100+ cores: saving in on-chip space investment, saving in

interconnection traffic, improvement in performance.

6.2 Future Directions

We discuss four possible directions to extend the contributions of this thesis. First, the

Tiny Directory proposal relies on a portion of the L3 cache block for tracking the privately

cached blocks. This is easy to satisfy in the inclusive and non-inclusive/non-exclusive L3

cache designs. However, this becomes difficult in processors where the private blocks follow

exclusion principle between the L3 cache and the private cache hierarchy e.g., in the AMD

Magny Cours processor [22]. In this processor, blocks that do not have any past sharing

history and are held privately inside the cores do not have any space allocated in the L3

cache. One way to overcome this difficulty is to track the private blocks that do not have a

copy in the L3 cache using a multi-grain protocol i.e., each coarse-grain contiguous private

region is tracked using a sparse directory entry. The rest of the blocks are tracked following

the Tiny Directory proposal. It would be interesting to explore such a hybrid design for

Magny Cours-like processors and evaluate how much the Tiny Directory footprint must

increase to accommodate the coarse-grain region tracking entries without sacrificing any

additional performance.

Second, the Tiny Directory proposal spills a carefully selected subset of the tracking

entries into the L3 cache space. Extending this Tiny Directory + selective spill design to

one extreme, one can imagine a design that does not have any sparse directory and the

L3 cache space is dynamically shared between the blocks and their tracking entries, while
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a privately held block continues to get tracked in a portion of its copy in the L3 cache.

The algorithms to manage the shared L3 cache space between program code/data and the

tracking entries can offer interesting research directions. Such designs can be particularly

attractive because no additional effort is needed to manage a separate sparse directory

structure.

Third, we have designed the Tiny Directory for maintaining coherence within a single

chip. It is not difficult to envision a similar proposal for optimizing the inter-socket

coherence tracking overhead in a multi-chip or multi-socket setting. When Tiny Directory

is applied to inter-socket coherence tracking, the logically shared main memory or shared

L4 DRAM cache takes the place of the L3 cache. A block that is held privately within

just one socket can be tracked by using a portion of the main memory or DRAM cache

block. The tracking entries that cannot be accommodated in the Tiny Directory can be

spilled into main memory or DRAM cache. If the L4 DRAM cache is non-existent or

private to each socket, the Tiny Directory operations (e.g., spilling of tracking entries and

using portion of data block for coherence tracking) will be done on the main memory,

which is logically shared among the sockets. The interesting design challenge in such a

proposal would be to make sure that the high latency of DRAM access does not lengthen

the critical paths of coherence actions.

Fourth, we have shown that our private cache hierarchy proposal is only about 8%

away from an optimal L2 cache design in terms of average L2 cache miss volume. This is

still a reasonable gap and in some applications, the gap is larger. It would be interesting

to further explore even more efficient L2 cache designs that aim at closing this gap.
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