
Memory System Optimizations for
CPU-GPU Heterogeneous

Chip-multiprocessors

A Thesis Submitted
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Siddharth Rai

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR, INDIA

July, 2018

mailto:sidrai@cse.iitk.ac.in
http://www.cse.iitk.ac.in
http://www.cse.iitk.ac.in
http://www.iitk.ac.in

Synopsis

Recent commercial chip-multiprocessors (CMPs) have integrated CPU as well as

GPU cores on the same chip [42, 43, 44, 93]. In today’s designs, these cores typically

share parts of the memory system resources between the applications executing

on the two types of cores. However, since the CPU and the GPU cores execute

very different workloads leading to very different resource requirements, designing

intelligent protocols for sharing resources between them such that both CPU and

GPU gain in performance brings forth new challenges to the design space of these

heterogeneous processors. In this dissertation, we explore solutions to dynamically

allocate last-level cache (LLC) capacity and DRAM bandwidth to the CPU and

GPU cores in a design where both the CPU and the GPU share the large on-

die LLC, DRAM controllers, DRAM channels, DRAM ranks, and DRAM device

resources (banks, rows).

CPU and GPU differ vastly in their execution models, workload characteristics,

and performance requirements. On one hand, a CPU core executes instructions

of a latency-sensitive and/or moderately bandwidth-sensitive job progressively in a

pipeline generating memory accesses (for instruction and data) only in a few pipeline

stages (instruction fetch and data memory access stages). On the other hand, GPU

can access different data streams having different semantic meanings and disparate

access patterns throughout the rendering pipeline. Such data streams include in-

put vertex, pixel depth, pixel color, texture map, shader instructions, shader data

(including shader register spills and fills), etc.. Without carefully designed shared re-

source management policies, the CPU and the GPU data streams may interfere with

each other, leading to significant loss in CPU and GPU performance accompanied

by degradation in GPU-rendered animation quality. However, in most workloads,

the latency requirements of a GPU application are not as stringent as that of a CPU

application. For example, when the GPU is used for 3D scene rendering, achieving

a minimal frame rate that can deliver adequately satisfactory visual experience to

the end user is enough. Similarly, for a GPGPU-style general-purpose application,

long memory access latencies can be tolerated due to the massively parallel nature

of the shader cores and a large number of ready-to-execute shader thread contexts.1

The different computation models in the CPU and GPU cores open up scope for

more efficient and novel management of the shared memory system resources in such

architectures.

We divide the contributions of this dissertation into three parts. In the first

part of the dissertation, we present an LLC management policy which dynamically

estimates the reuse probabilities of the GPU streams as well as the CPU data by

sampling portions of the CPU and GPU working sets and storing the sampled tags

in a small working set sample cache. Since the GPU application working sets are

typically very large, for this working set sample cache to be effective, it is custom-

designed to have large footprint coverage while requiring only few tens of kilobytes

of storage. We use the estimated reuse probabilities to design shared LLC policies

1 These contexts are referred to as warps in Nvidia GPUs and this is the terminology we will
use in this dissertation.

for handling hits and misses to reads and writes from both types of cores. We evalu-

ate our proposal through simulation studies conducted on a detailed heterogeneous

CMP simulator modeling one GPU and four CPU cores. The simulation results

show that compared to a state-of-the-art baseline with a 16 MB shared LLC, our

proposal can improve the performance (frame rate or execution cycles, as applica-

ble) of eighteen GPU workloads spanning DirectX and OpenGL game titles as well

as CUDA applications by 12% on average and up to 51%. The performance of the

co-running quad-core CPU workload mixes improves by 7% on average and up to

19%.

In the second part of the dissertation, we present a memory system management

policy driven by the quality of service (QoS) requirement of the GPU applications

co-scheduled with the CPU applications on the heterogeneous CMP. Our proposal

dynamically estimates the delivered level of QoS (e.g., frame rate in 3D scene ren-

dering) of the GPU application. If the estimated QoS level meets the minimum

acceptable QoS level, our proposal employs a light weight mechanism to dynami-

cally adjust the GPU memory access rate so that the GPU is able to just meet the

required QoS level. This frees up memory system resources which are then shifted

to the co-running CPU workloads. Detailed simulations done on a heterogeneous

CMP model with one GPU and four CPU cores running heterogeneous mixes of Di-

rectX, OpenGL, and CPU applications show that our proposal improves the CPU

performance by 18% on average.

The second contribution improves only those heterogeneous mixes where the

GPU application already meets the required QoS level. The third part of the dis-

sertation addresses the performance issues of the remaining heterogeneous workload

mixes. In this part, we present a memory access scheduling algorithm driven by

the performance feedback from the integrated GPU. We observe that the streams

sourced by different parts of the GPU pipeline do not respond equally to memory

system resource allocations. To dynamically estimate this differing performance

sensitivity of the streams, we propose a novel queuing network model which uses

a set of saturating counters per rendering pipeline stage or sub-unit to generate

criticality hints for different GPU access streams. If a GPU application is found

to perform below the required QoS level, the memory scheduler uses this criticality

information to partition DRAM bandwidth between the critical GPU accesses, non-

critical GPU accesses, and CPU accesses, such that, the GPU performance improves

without degrading the CPU performance by much. Detailed simulations done on

a heterogeneous CMP model with one GPU and four CPU cores running hetero-

geneous mixes of DirectX, OpenGL, and CPU applications show that our proposal

improves the GPU performance by 15% on average without degrading the CPU

performance much. The GPGPU applications do not have any minimum QoS re-

quirement. The goal is to improve the performance of these applications as much

as possible. We propose extensions to our core mechanisms to handle the heteroge-

neous workload mixes containing GPGPU applications. These extensions improve

the heterogeneous system performance by 7% on average for these mixes, where the

heterogeneous system performance is defined as a performance metric that assigns

equal weights to CPU and GPU performance.

In summary, the first contribution presents an effective shared LLC management

policy for heterogeneous CMPs. The second contribution deals with both shared

LLC management and DRAM access scheduling governed by a light-weight memory

access throttling policy. The third contribution presents a DRAM access schedul-

ing algorithm driven by the performance-criticality of GPU access streams. Taken

together, these three contributions present a holistic set of optimizations for the

shared memory system resources of the emerging CPU-GPU heterogeneous CMPs.

Acknowledgements

The start and the completion of this dissertation would not have been possible

without the help from my advisor, my friends, and my family.

Foremost, I am grateful to Prof. Mainak Chaudhuri for agreeing to advise me

for the PhD. and helping me both intellectually and financially during this period.

Furthermore, having graduated from IIT Guwahati, I have been greatly influ-

enced by Prof. Gautam Barua, whose inspiration has helped me move forward during

this period. I would like to thank Prof. Gautam Barua for all the inspiration.

I would like to acknowledge the help I have received both before and during the

PhD. from my colleagues at Oracle Bangalore and my friend Rohit Khanna through

countless conversations both on academics and on other matters.

Lastly, I would like to thank my lab mates and my fellow PhD. student Sudhan-

shu Shukla for helping me through this period.

Siddharth Rai

Dedicated To

My Teachers, both at School and
College

x

Contents

Abstract iii

Acknowledgement viii

1 Introduction 1

1.1 Dissertation Objective and Summary 4

2 Workload Characteristics and Motivation 9

2.1 System Configuration and Target Workloads 9

2.2 Execution Model of 3D Rendering . 16

2.2.1 Overview of the 3D Rendering Algorithm 21

2.3 Performance Impact of Resource Sharing 25

2.3.1 GPU Utilization in 3D Rendering 28

2.3.2 Stall Contribution of Different GPU Units 29

2.3.3 GPU Memory Access Characteristics 31

2.3.4 Inter-stream Reuses in 3D Rendering 34

3 Dynamic Reuse Probability-based Last-level Cache Management 37

3.1 Study on LLC Miss Savings . 38

xii CONTENTS

3.2 GPU Performance with Ideal LLC . 43

3.3 Selective LLC Bypass of GPU Read Misses 45

3.4 Dynamic Reuse Probability for LLC 47

3.4.1 Working Set Sample Cache . 48

3.4.2 Read Miss Policy . 51

3.4.3 Write Miss Policy . 52

3.4.4 Write Hit Policy . 54

3.4.5 Read Hit Policy . 56

3.4.6 Storage Overhead . 57

3.4.7 Latency Considerations . 58

3.5 Related Work . 59

3.5.1 LLC Management in CPUs 59

3.5.2 Managing LLC in Heterogeneous CMPs 61

3.5.3 LLC Management in Discrete GPUs 63

3.6 Simulation Results . 65

3.6.1 Comparison to Related Proposals 70

3.7 Conclusion . 72

4 QoS-guided Dynamic GPU Access Throttling 73

4.1 Motivation . 75

4.2 Memory Access Management . 80

4.2.1 Dynamic Frame Rate Computation 81

4.2.1.1 Learning Phase . 82

4.2.1.2 Prediction Phase . 84

4.2.2 Access Throttling Mechanism 85

CONTENTS xiii

4.2.3 DRAM Access Scheduler . 86

4.2.4 Storage Overhead . 88

4.3 Related Work . 89

4.4 Simulation Results . 92

4.5 Conclusions . 102

5 GPU Criticality-driven Memory Management 103

5.1 Motivation . 104

5.1.1 GPU Stream-wise Criticality 104

5.1.2 Stream-centric Behavior in 3D Rendering Pipeline 107

5.1.3 Stream Analysis of GPGPU Applications 108

5.2 GPU Criticality-aware Memory Management 109

5.2.1 Identifying Critical GPU Accesses 110

5.2.1.1 3D Scene Rendering Workloads 110

5.2.1.2 GPGPU Workloads 112

5.2.2 Scheduling DRAM Accesses 114

5.2.3 Additional Hardware Overhead 117

5.3 Related Work . 118

5.4 Simulation Results . 119

5.4.1 Mixes with 3D Rendering Workloads 121

5.4.2 Mixes with GPGPU Workloads 125

5.5 Conclusions . 126

6 Summary and Future Work 129

6.1 Future Work . 132

xiv CONTENTS

References 135

Appendix Study on Application Working-set 153

Appendix Publications 159

List of Tables

2.1 Simulation environment . 17

2.2 Graphics frame details . 18

2.3 CUDA application details . 18

2.4 Heterogeneous workload mixes . 19

3.1 Speedup of CUDA applications with ideal LLC 45

5.1 CUDA application details . 120

xvi LIST OF TABLES

List of Algorithms

1 Algorithm to find bottleneck units . 113

2 Module to find bottleneck units in early-Z enable mode 114

3 Module to find bottleneck units in early-Z disable mode 114

4 Module to check FE bottleneck . 115

xviii LIST OF ALGORITHMS

Chapter 1

Introduction

Microprocessor performance has seen incredible improvement over the last several

decades [81]. Increased transistor count as per Moore’s Law, and subsequent im-

provement in clock frequency and core count guided by Dennard Scaling have played

a major role in this progress. Nonetheless, this progress has slowed down due to

practical limits in transistor scaling and constraints imposed by the power budget

in the last decade [20]. To overcome these challenges, heterogeneous processing

has emerged as one of the new design paradigms for improving processor perfor-

mance in an energy efficient manner [58]. In this design paradigm, different kinds of

cores, optimized for single threaded (dynamically scheduled superscalar cores) and

multi-threaded (single instruction multiple data / field-programmable gate arrays)

performance are integrated on the same chip. In these heterogeneous processors,

parts of the memory system resources such as LLC, interconnect, memory con-

trollers, and DRAM banks are shared between the on-die cores to improve resource

utilization [42, 43, 44, 93]. However, sharing these resources in a way such that all

processing elements gain in performance brings forth new challenges in this design

2 Introduction

space.

A single-chip CPU-GPU heterogeneous processor implements one such design,

where parts of the memory system resources are shared between the latency op-

timized CPU and throughput optimized GPU cores. Moreover, when the GPU is

used for a 3D scene rendering job, various fixed function units of the GPU (i.e.,

vertex processor, texture sampler, blitter, color writer, etc.) also contend for the

memory system resources with the CPU. Today such processors can be found in

the product lines of all major microprocessor vendors including AMD, Intel, and

Nvidia [28, 42, 43, 44, 93]. These processors share a significant portion of the mem-

ory system resources between the CPU and GPU cores. For example, in AMD ac-

celerated processing unit (APU) architectures [44], the CPU and GPU cores share

everything beyond the on-die cache hierarchy including memory controllers and

DRAM banks. In Intel’s integrated GPU designs [42, 43, 93], the CPU and the

GPU cores share the large on-die last-level (L3) cache in addition to sharing in-

package L4 e-DRAM cache (available in Haswell, Broadwell, and Skylake parts),

the on-die interconnect, memory controllers, and the DRAM banks. Similar to

AMD APU designs, Nvidia’s Tegra [28] series of mobile processor integrates CPU

and GPU cores sharing an on-die memory controller.

In such a tightly integrated system, when both CPU and GPU execute jobs

at the same time, performance of both the processors degrades due to destructive

interference caused by the shared resource contention. To understand the extent

of CPU-GPU interference, we conducted a set of experiments on an Intel Core i7-

4770K processor (Haswell)-based platform. This heterogeneous processor has four

CPU cores and an integrated Intel HD 4600 GPU sharing an 8 MB LLC and dual-

channel DDR3-1600 16 GB DRAM (25.6 GB/s peak DRAM bandwidth). We pre-

3

410.bwaves

429.m
cf

437.le
slie

3d

450.so
plex

462.lib
quantum

473.asta
r

482.sp
hinx3

437, 4
50

429, 4
62

429, 4
37, 4

62, 4
73

410, 4
50, 4

62, 4
82

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 P

er
fo

rm
an

ce

0.
92

0.
73

0.
91

0.
73

0.
91

0.
81 0.

88

0.
81

0.
77

0.
72 0.

84

0.
99

0.
92 0.

96

0.
91 0.

96

0.
92 0.

99

0.
86

0.
87

0.
74 0.
77

1C1G 2C1G 4C1G

CPU GPU (Executes Parboil LBM)

Figure 1.1: Performance of heterogeneous mixes relative to standalone performance
on Core i7-4770K.

pared eleven heterogeneous mixes for these experiments. Every mix has LBM from

the Parboil OpenCL suite [97] as the GPU workload using the long input (LBM

serves as a representative for memory-intensive GPU workloads). Seven out of the

eleven mixes exercise one CPU core, two mixes exercise two CPU cores, and the

remaining two mixes exercise all four CPU cores. In all mixes, the GPU workload

co-executes with the CPU application(s) drawn from the SPEC CPU 2006 suite.

All SPEC CPU 2006 applications use the ref inputs. A mix that exercises n CPU

cores and the GPU will be referred to as an nC1G mix. Figure 1.1 shows, for each

mix (identified by the constituent CPU workload on the x-axis), the performance

of CPU and GPU workloads separately relative to the standalone performance of

these workloads. For example, for the first 4C1G mix using four CPU cores and the

GPU, the standalone CPU performance is the average turn-around time of the four

4 Introduction

CPU applications started together, while the GPU is idle. Similarly, the standalone

GPU performance is the time taken to complete the Parboil LBM application on

the integrated GPU. When workloads on both CPU and GPU run together, perfor-

mance degrades. As Figure 1.1 shows, the loss in CPU performance varies from 8%

(410.bwaves in the 1C1G group) to 28% (the first mix in 4C1G group). The GPU

performance degradation ranges from 1% (the first mix in 1C1G group) to 26% (the

first mix in 4C1G group). Moreover, the GPU workload degrades more with the

increasing number of active CPU cores. These results clearly indicate that without

a careful management of shared resources performance degradation in both CPU

and GPU workloads can be significant in such processors. When the GPU executes

3D scene rendering workloads, this performance degradation can severely impact

the quality of the end-user’s visual experience.

1.1 Dissertation Objective and Summary

In this dissertation, we explore solutions to reclaim some part of the lost per-

formance due to CPU-GPU resource contention. Our target heterogeneous chip-

multiprocessor architecture has a set of dynamically scheduled out-of-order issue

x86 cores integrated with a GPU capable of running 3D scene rendering workloads

as well as general-purpose computing applications. The CPU cores and the GPU

share the on-die interconnect, the last-level cache (LLC), the memory controllers,

and the DRAM banks. We execute memory sensitive applications on the CPU

cores, while the GPU is kept busy with either 3D scene rendering applications or

general-purpose computing applications.

The traditional CPU core pipeline needs to access the memory hierarchy for

1.1 Dissertation Objective and Summary 5

fetching instructions and data. A typical graphics processing pipeline accesses the

memory hierarchy for fetching various types of data touched by the fixed function

units as well as the programmable shader cores. These include polygon vertices,

vertex indices, depth buffer (Z buffer holding pixel depth values), hierarchical depth

buffer (HiZ buffer holding hierarchical depth values to reduce Z buffer bandwidth),

render targets or render buffers (holding pixel color data), texture maps (input

statically as well as generated dynamically), shader instructions, and shader data

(including shader register spills and fills). While a 3D scene rendering application

can generate accesses to all these different data streams, a general-purpose comput-

ing application running on the GPU (usually referred to as GPGPU application)

exercises only a portion of the rendering pipeline (primarily the shader cores) and

doesn’t need to access all these data types. All these GPU streams and the CPU

instruction and data streams contend for the shared memory system resources. If

these streams are not carefully managed, they interfere with each other leading

to significant loss in CPU and GPU performance accompanied by degradation in

GPU-rendered 3D animation quality.

To understand the characteristics of the GPU access streams, we start by ex-

ploring their memory access behavior (studies are presented in Chapter 2). We

find that these streams differ widely in terms of data reuse characteristics and in-

terdependence imposed by the GPU program semantics and idioms, which can be

used to improve LLC performance of GPU accesses. Better LLC management of

GPU streams can not only improve GPU’s performance, but also free up significant

amount of DRAM bandwidth consumed by the GPU application. The resources,

thus freed, can now be used by the CPU applications. The first contribution of

the dissertation explores novel shared LLC management policies for the CPU-GPU

6 Introduction

heterogeneous processors.

We evaluate our proposal through simulation studies conducted on a detailed

heterogeneous CMP simulator modeling one GPU and four CPU cores. The simula-

tion results show that compared to a state-of-the-art baseline with a 16 MB shared

LLC, our proposal can improve the performance (frame rate or execution cycles, as

applicable) of eighteen GPU workloads spanning DirectX and OpenGL game titles

as well as CUDA applications by 12% on average and up to 51%. The performance

of the co-running quad-core CPU workload mixes improves by 7% on average and

up to 19%.

3D scene rendering is an important application for the GPU. Since these applica-

tions have a clear quality of service (frame rate) requirement, delivering performance

above what is required for an adequate visual experience is unnecessary. Based on

this observation, we investigate mechanisms that can dynamically shift the mem-

ory system resources from GPU to CPU applications in the phases where the GPU

application is able to meet the target QoS. We find that the existing resource shift-

ing algorithms target either the LLC capacity [71] or the DRAM bandwidth [46]

alone, leading to sub-optimal solutions. In this dissertation, we show that throt-

tling GPU accesses guided by accurate QoS measurements can effectively shift both

LLC capacity and DRAM bandwidth from GPU to CPU offering much higher gains

than the previous approaches. This study constitutes the second contribution of the

dissertation. Detailed simulations done on a heterogeneous CMP model with one

GPU and four CPU cores running heterogeneous mixes of DirectX, OpenGL, and

CPU applications show that our proposal improves the CPU performance by 18%

on average.

The second contribution of the dissertation leaves out a significant fraction of

1.1 Dissertation Objective and Summary 7

the heterogeneous workload mixes where the GPU either executes a general-purpose

workload (these workloads do not have any well-defined target QoS) or is unable to

meet the target QoS of 3D scene rendering. The third part of the dissertation handles

the heterogeneous workload mixes containing these GPU applications. To improve

the system performance of the heterogeneous mixes containing these GPU appli-

cations, we develop mechanisms to dynamically identify the performance-critical

GPU access streams and offer a bigger proportion of the DRAM bandwidth to these

streams. The goal of such a DRAM bandwidth partitioning scheme is to improve

the GPU performance without degrading the CPU performance much. Our GPU

access criticality-driven proposal is motivated by the observation that the access

streams originating from different GPU units are not equally important for GPU

performance. Detailed simulations done on a heterogeneous CMP model with one

GPU and four CPU cores running heterogeneous mixes of DirectX, OpenGL, and

CPU applications show that our proposal improves the GPU performance by 15% on

average without degrading the CPU performance much. The GPGPU applications

do not have any minimum QoS requirement. The goal is to improve the perfor-

mance of these applications as much as possible. We propose extensions to our core

mechanisms to handle the heterogeneous workload mixes containing GPGPU appli-

cations. These extensions improve the heterogeneous system performance by 7% on

average for these mixes, where the heterogeneous system performance is defined as

a performance metric that assigns equal weights to CPU and GPU performance.

We summarize the contributions of this thesis in the following.

• We present a mechanism to estimate the dynamic read and write reuse prob-

abilities of LLC blocks and employ these estimates to design novel policies

for managing the contents of the LLC shared between the GPU and the CPU

8 Introduction

cores.

• We propose a model for dynamic estimation of GPU frame rate and employ

these estimates to design a GPU access throttling mechanism for the appli-

cations where the GPU already meets the target minimum QoS level. The

memory system resources thus freed due to GPU access throttling are dynam-

ically shifted to the CPU cores for improving their performance.

• We propose novel algorithms to dynamically classify the GPU access streams

based on their performance-criticality. We employ this classification to design

DRAM access scheduling mechanisms that dynamically partition the mem-

ory bandwidth between critical GPU accesses, non-critical GPU accesses, and

CPU accesses.

The dissertation is organized as follows. Chapter 2 presents a detailed archi-

tectural model of the heterogeneous CMP and characterizes the CPU and GPU

workloads used in this study. Chapter 3 presents our proposal on shared LLC man-

agement policy, which uses dynamic read and write reuse probabilities of LLC blocks

to partition the LLC capacity between the CPU and the GPU streams. A model for

the GPU frame-rate prediction and the proposal to dynamically throttle the GPU

accesses for the applications where the GPU is able to meet the target QoS are pre-

sented in Chapter 4. Chapter 5 discusses the algorithm that dynamically classifies

the GPU streams based on their criticality toward performance. We also present the

proposal for the DRAM scheduling policy to partition the memory bandwidth be-

tween the critical GPU accesses, non-critical GPU accesses, and the CPU accesses.

Chapter 6 concludes the dissertation.

Chapter 2

Workload Characteristics and

Motivation

The heterogeneous system modeled in this dissertation integrates a GPU with mul-

tiple CPU cores on the same chip. Figure 2.1 illustrates the full system architecture

of the processor. A bidirectional ring connects the CPU cores, the GPU, LLC

banks, and two single-channel memory controllers co-located on the chip. The GPU

parts modeled include the fixed-function units as well as the programmable shader

cores, which are required to execute both the general-purpose applications writ-

ten using the CUDA APIs and the 3D rendering applications written using the

DirectX/OpenGL APIs.

2.1 System Configuration and Target Workloads

The CPU part of the heterogeneous CMP models a dynamically scheduled out-of-

order issue x86 core clocked at 4 GHz frequency using the Multi2sim simulation

10 Workload Characteristics and Motivation

Figure 2.1: CPU-GPU pipeline

infrastructure [102]. Each core has private L1 and L2 caches. The L1 instruction

and data caches are 32 KB in size and eight-way set-associative. The unified L2

cache is 256 KB in size and eight-way set-associative. The L1 and L2 cache lookup

latencies are two and three cycles, respectively (determined using CACTI [27] for

22 nm node). The L1 and L2 caches have a block size of 64 bytes.

We do not use the GPU model that comes with Multi2Sim. Instead, we use

two GPU simulators, one to execute the 3D scene rendering jobs and the other to

execute the CUDA applications. The 3D scene rendering GPU is modeled with an

upgraded version of the Attila GPU simulator [73]. The simulator has enough details

to capture all the phases of the entire rendering pipeline. The simulated GPU uses a

unified shader model where the same set of shader cores is used to carry out vertex

shading as well as pixel (or fragment) shading. The GPU has 64 shader cores clocked

at 1 GHz. Each shader core has four ALUs and each ALU is equipped with a 4-way

SIMD vector unit and a scalar unit. Thus, each shader core has a peak throughput of

2.1 System Configuration and Target Workloads 11

16 single-precision floating-point operations every cycle leading to an overall single-

precision floating-point throughput of one tera-FLOPS for the GPU. The GPU has

enough register resources to maintain 4096 in-flight shader thread contexts, where

each thread, when scheduled on a shader core, can issue four 4-way SIMD operations

in a cycle.1 The shader core scheduler executes a round-robin scheduling algorithm

among the ready thread contexts. A running thread changes state to blocked when

it issues either a branch instruction or a texture load instruction. Each shader core

is attached to two texture samplers. Each texture sampler can process one 32-bit

texel every cycle giving rise to a peak texture fill rate of 128 GTexels/second. The

simulated GPU has sixteen render output pipeline (ROP) units. The ROP units

receive quad-pixel stamps after they are processed by shader cores. Each ROP has

a depth test unit, a pixel color blending unit, and a color writer unit that writes

out the final pixel color to the render target. Each of these units can process one

quad-pixel stamp every cycle leading to a peak pixel fill rate of 64 GPixel/second.

The GPU has a three-level non-inclusive texture cache hierarchy resembling the

texture cache hierarchy of Intel’s integrated GPUs (Gen7 onward). The L0 texture

cache is 2 KB fully-associative and private to each sampler. The L1 texture cache

is 64 KB 16-way set-associative and shared by all the samplers. The L2 texture

cache is 384 KB 48-way set-associative and shared by all the samplers. All texture

caches have a block size of 64 bytes. Each ROP unit is equipped with a 2 KB fully-

associative L1 depth cache and a 2 KB fully-associative L1 color cache with block

size of 256 bytes. The non-inclusive L2 depth and color caches are each 32 KB 32-

way set-associative with 64-byte blocks and shared by all ROP units. Additionally,

the simulated GPU has a fully-associative 16 KB vertex cache, a 16 KB 16-way

1 A thread context is equivalent to a 16-way warp in Nvidia terminology.

12 Workload Characteristics and Motivation

hierarchical depth (HiZ) cache, and a 32 KB 8-way shader instruction cache.

The GPU model used for executing the CUDA applications is borrowed from the

MacSim simulator [55], which makes use of the GPUOcelot [16] tool for capturing

the CUDA application instructions. Since the CUDA applications make use of the

shader core only, the GPU simulator contains a detailed model of the shader core

island of the GPU. In this configuration, the GPU has sixteen shader cores, each

clocked at 2 GHz and each having resources to maintain a maximum of eighty warp

contexts (each warp has 32 threads). The instruction scheduler of each shader core

selects two ready warps from the pool of eighty ready warps every four cycles. The

peak execution throughput of each shader core is sixteen single-precision floating

point operations per cycle leading to 512 GFLOPS for the entire GPU. Each shader

core is equipped with a 4 KB eight-way instruction cache, a 32 KB eight-way data

cache, an 8 KB texture cache, an 8 KB constant cache, and a 16 KB software-

managed shared memory.

The CPU and GPU simulators are integrated through a graphics to system

memory interface (GSMI) module. The cache subsystem of the GPU simulators is

enhanced so that it can access GSMI for shared memory accesses. Figure 2.2 depicts

a high-level view of the CPU-GPU integration. Depending on the type of the GPU

workload being executed (workload type is provided as a simulation parameter), one

of the two GPU models is instantiated and attached to the rest of the heterogeneous

CMP through the GSMI object. Since the instantiated GPU simulator has access to

the GSMI object, it can issue requests to the shared memory if required. The shared

LLC of the heterogeneous CMP receives requests that miss in the CPU cores’ L2

caches or GPU’s private caches. The LLC is 16 MB sixteen-way set-associative with

a lookup latency of ten cycles. The LLC maintains inclusion for all CPU instruction

2.1 System Configuration and Target Workloads 13

Figure 2.2: Block diagram of the heterogeneous simulator integrating Multi2Sim,
Attila, and Macsim

and data. However, the GPU data are not kept inclusive in the sense that on an

LLC eviction, a back-invalidation is not sent to the GPU’s internal caches. Such a

design decision also keeps open the option of bypassing the LLC on an LLC read miss

for GPU data. The current model does not support coherence between GPU and

CPU address spaces. As a result, all evaluations done in this thesis are limited to

heterogeneous workloads that do not exercise any application-level sharing between

the GPU and CPU data. The GPU accesses the LLC through GSMI for all private

cache misses. GSMI contains a set of request queues and a cross-bar to route requests

from different units to the ring interconnect.

Figure 2.3 shows a detailed schematic of the GSMI. The GPU connects to the

GSMI through the input and response queues. The crossbar connects input queues

to the request queue through a Graphics Translation Table (GTT). Every request

14 Workload Characteristics and Motivation

XBAR

XBAR CONTROL

GTT

R
E

S
P

O
N

S
E

RESPONSE QUEUE

INPUT QUEUE

R
E

Q
U

E
S
T

TO CONSUMERS

REQUEST QUEUE

Figure 2.3: Graphics to System Memory Interface

that is sent to the LLC from the GSMI goes through GPU to physical address

translation. A memory request is submitted to GSMI by enqueuing it to the input

queue. Every cycle for a set of requests currently in the input queue, the GTT

lookup is carried out and address translation is performed. Since the page table

entries (PTEs) are cached in the LLC, on a GTT miss, the PTE is fetched from the

LLC if it is found there. The PTE fetch follows the same request path as is followed

by all other GPU memory requests. Once the translation succeeds, the request is

enqueued in the request queue. On the return path, a response is enqueued into

a per-unit response queue. These responses are finally consumed by the respective

GPU units. Our model supports 4 GB GPU address space and one level of GTT.

The GTT is four-way ported and has 32K entries. To feed the GTT, the crossbar

has four output ports and the request queue accepts four inputs per cycle. We also

support render target and texture surface tiling. The address presented to GSMI is

already translated from tiled to linear address space.

2.1 System Configuration and Target Workloads 15

The simulated heterogeneous CMP is equipped with two on-die single-channel

memory controllers. Each memory controller connects to a 2 GB DRAM module

modeled using DRAMSim2 [89]. Each DRAM module is eight-way banked single-

rank DDR3-2133 with 14-14-14 (CL-RCD-RP) latency parameters and burst length

of eight. The memory controllers implement the FR-FCFS scheduling algorithm.

The CPU cores along with their private caches, the GPU, the LLC, and the memory

controllers are arranged on a bidirectional ring interconnect having a single-cycle

hop time. The choice of a ring interconnect is motivated by its simplicity and low

area overhead. A ring interconnect can comfortably support a moderate number of

communicating agents, which is the case for our model having four CPU cores with

the LLC banks, one GPU, and two DDR3-2133 memory controllers. Additionally, a

bidirectional ring has a reasonably low average hop count when the number of agents

on the ring is low. Recent client processor offerings with integrated GPU from Intel

have similar microarchitecture and employ a ring interconnect [42, 43, 93]. Table 2.1

summarizes the salient parameters of the hardware model.

The heterogeneous workloads are built by mixing CPU applications drawn from

the SPEC 2006 suit and 3D scene rendering jobs drawn from fourteen popular Di-

rectX and OpenGL game titles as well as six CUDA applications from publicly

available benchmark suits. The DirectX and OpenGL API traces for the selected

3D animation frames are obtained from the Attila simulation distribution [73] and

3DMark06 suit [110]. The simulated game regions (i.e., sequence of frames) are

selected at random after skipping over the initial sequence and detailed in Table 2.2.

The last column of this table lists the average frame rate of each game region in

frames per second (FPS) when the rendering job is co-scheduled with a mix of four

CPU applicarions in a 4C1G configuration. The details of selected CUDA applica-

16 Workload Characteristics and Motivation

tions are shown in Table 2.3. The graphics API traces or the CUDA application’s

shader instruction traces (as applicable) are replayed through the GPU simula-

tor, while the selected mixes of the SPEC CPU 2006 applications are simulated in

execution-driven mode on the CPU cores. Table 2.4 lists the 1C1G, 2C1G, and

4C1G workload mixes (S1-S18, D1-D18, Q1-Q18) used in this study.

The GPU workload is same in Sn, Dn, and Qn for a given n. One, two, and

four different memory-sensitive SPEC 2006 applications are drawn at random and

associated with the GPU workload to complete the mix Sn, Dn, and Qn, respec-

tively. Each CPU application in a mix commits at least 250 million representative

dynamic instructions and an early-finishing application continues to run until each

CPU application commits its representative set of dynamic instructions and the GPU

completes rendering the set of 3D frames or the portion of the CUDA application

assigned to it. The performance for the CPU mixes is measured in terms of average

instruction per cycle throughput. The GPU performance for the 3D scene rendering

jobs is measured in terms of average frame rate and for CUDA applications, the

number of execution cycles to complete the jobs is used.

2.2 Execution Model of 3D Rendering

The execution models of compute pipeline (used in the CPU cores and the GPU

shader cores) and 3D rendering pipeline differ vastly. Figures 2.4 and 2.5 show

the stages of typical compute and 3D rendering pipelines, respectively. A com-

pute pipeline executes instructions accessing memory only in two stages for in-

structions and data. On the other hand, a 3D rendering pipeline accesses various

buffers allocated in memory for storing rendering state and data throughout the

2.2 Execution Model of 3D Rendering 17

Table 2.1: Simulation environment

CPU cache hierarchy

Per-core iL1 and dL1 caches 32 KB, 8-way, 2 cycles
Per-core unified L2 cache 256 KB, 8-way, 3 cycles

GPU model for 3D scene rendering

Shader cores 64, 1 GHz, four 4-way SIMD per core
Texture samplers two per shader core, 128 GTexel/s
ROP: 16, fill rate 64 GPixels/s
Texture caches three-level hierarchy, L0: 2 KB per sampler,

shared L1, L2: 64 KB, 384 KB
Depth caches two-level hierarchy, L1: 2 KB per ROP,

shared L2: 32 KB
Color caches two-level hierarchy, L1: 2 KB per ROP,

shared L2: 32 KB
Vertex cache 16 KB, shader instruction cache: 32 KB,
Hierarchical depth cache: 16 KB

GPU model for general-purpose computing

Shader cores 16, 2 GHz, sixteen SP FLOPs/cycle
Per-core instruction, data cache 4 KB, 32 KB,
Per-core texture, constant cache: 8 KB, 8 KB,
Per-core shared memory: 16 KB

Shared LLC and interconnect

Shared LLC 16 MB, 16-way, lookup latency 10 cycles,
inclusive for CPU blocks, non-inclusive for
GPU blocks, two-bit SRRIP policy [35]

Interconnect bidirectional ring, single-cycle hop

Memory controllers and DRAM

Memory controllers two on-die single-channel, DDR3-2133,
FR-FCFS access scheduling in baseline

DRAM modules 14-14-14, 64-bit channels, BL=8,
open-page policy, one rank/channel, 8 banks/rank,
1 KB row/bank/device, x8 devices

18 Workload Characteristics and Motivation

Table 2.2: Graphics frame details

Application DirectX/ Frames Resolution FPS
OpenGL

3DMark06 GT1 DirectX 670–671 1280×1024 5.9
3DMark06 GT2 DirectX 500–501 1280×1024 14.0
3DMark06 HDR1 DirectX 600–601 1280×1024 16.7
3DMark06 HDR2 DirectX 550–551 1280×1024 21.8
Call of Duty 2 (COD2) DirectX 208–209 1920×1200 19.5
Crysis DirectX 400–401 1920×1200 6.7
DOOM3 OpenGL 300–304 1600×1200 80.7
Half Life 2 (HL2) DirectX 25–27 1600×1200 77.4
Left for Dead (L4D) DirectX 601–605 1280×1024 33.6
Need for Speed (NFS) DirectX 10–12 1280×1024 66.6
Quake4 OpenGL 300–304 1600×1200 80.5
Chronicles of Riddick (COR) OpenGL 253–257 1280×1024 103.9
Unreal Tournament 2004 (UT2004) OpenGL 200–204 1600×1200 132.5
Unreal Tournament 3 (UT3) DirectX 955–957 1280×1024 26.6

Table 2.3: CUDA application details

Application Source Thread configuration

LBM CUDA SDK 4.2 120×150 blocks, 120 threads/block
CFD Rodinia 3.0 759 blocks, 128 threads/block
BFS Rodinia 3.0 1954 blocks, 512 threads/block
FASTWALSH CUDA SDK 4.2 8192 blocks, 256 threads/block
BLACKSCHOLES CUDA SDK 4.2 480 blocks, 128 threads/block
REDUCTION CUDA SDK 4.2 64 blocks, 256 threads/block

pipeline. Moreover, a GPU exercises various fixed-function units in addition to the

programmable shader cores while rendering a 3D scene. These units are (shown

in Figure 2.1) command processor (CP), display controller (DAC), vertex streamer

(ST), rasterizer (RAS), depth and stencil test (Z), color blender and writer (CW),

texture sampler (TX), and blitter (BT). The programmable shader cores use a uni-

2.2 Execution Model of 3D Rendering 19

Table 2.4: Heterogeneous workload mixes

GPU workload CPU workload mix
1C1G 2C1G 4C1G

3DMark06 GT1 S1: wrf D1: mcf Q1: gcc.166.i, soplex.pds-50,
milc sphinx3, wrf

3DMark06 GT2 S2: omnetpp D2: bwaves Q2: gcc.166.i, mcf,
milc sphinx3, zeusmp

3DMark06 HDR1 S3: lbm D3: bzip2.source Q3: bzip2.source, lbm,
lbm leslie3d, soplex.pds-50

3DMark06 HDR2 S4: sphinx3 D4: lbm Q4: bzip2.source, lbm,
libquantum libquantum, omnetpp

COD2 S5: lbm D5: bzip2.source Q5: bzip2.source, lbm,
lbm leslie3d, soplex.pds-50

Crysis S6: mcf D6: soplex.pds-50 Q6: mcf, milc,
wrf sphinx3, zeusmp

DOOM3 S7: libquantum D7: libquantum Q7: bwaves, libquantum,
omnetpp milc, omnetpp

HL2 S8: gcc.166.i D8: bwaves Q8: bwaves, mcf,
omnetpp milc, zeusmp

L4D S9: libquantum D9: libquantum Q9: bwaves, libquantum,
omnetpp milc, omnetpp

NFS S10: leslie3D D10: gcc.166.i Q10: bwaves, mcf,
wrf milc, omnetpp

Quake4 S11: bwaves D11: mcf Q11: bzip2.source, leslie3d,
zeusmp soplex.pds-50, wrf

COR S12: zeusmp D12: bzip2.source Q12: gcc.166.i, leslie3d,
leslie3D soplex.pds-50, wrf

UT2004 S13: soplex.pds-50 D13: sphinx3 Q13: bzip2.source, lbm,
zeusmp leslie3d, libquantum

UT3 S14: zeusmp D14: bzip2.source Q14: gcc.166.i, leslie3d,
leslie3D soplex.pds-50, wrf

cfd S15: sphinx3 D15: lbm Q15: bzip2.source, lbm,
libquantum libquantum, omnetpp

blackscholes S16: gcc.166.i D16: libquantum Q16: bwaves, libquantum,
omnetpp milc, omnetpp

fastwalsh S17: mcf D17: libquantum Q17: bwaves, libquantum,
omnetpp milc, omnetpp

reduction S18: libquantum D18: gcc.166.i Q18: bwaves, mcf,
wrf milc, omnetpp

20 Workload Characteristics and Motivation

F
et

ch

D
ec

o
d
e

D
is

p
at

ch

Is
su

e

E
x
ec

u
te

R
et

ir
e

$ $

Memory interface

Front End Back End

Figure 2.4: A typical compute pipeline

fied shader execution model, where the same set of cores execute both the vertex

and fragment shader programs. All GPU units coordinate with each other through

the fragment FIFO (FF) unit, which contains a crossbar and a scheduler to steer

inputs from source to destination units.

CPU cores access the LLC on an L2 cache miss. For GPU, on the other hand,

the private cache hierarchy differs across units. Memory requests from DAC and

BT always go to the LLC, since they do not have any private caches. For all other

units, requests pass through one or more levels of private caches before accessing

the LLC. ST reads vertex attributes from a vertex buffer before sending it to the

Shader. To speedup the fetch, it caches vertex data in a private vertex cache backed

by the LLC. All instances of Z and CW units use a multi-level cache hierarchy for

the render target and depth buffer. The inner level in these units is private to each

instance, while the outer level is shared by all of them. The accesses missing in

the shared level are sent to the LLC. The shader cores fetch instructions through

a single level shared instruction cache. TX accesses the texture map data through

2.2 Execution Model of 3D Rendering 21

a multi-level cache hierarchy. The first level of this hierarchy is private to the each

sampler instance, while the next two levels are shared by all instances. RAS uses

an LLC-backed hierarchical depth (HiZ) cache for caching depth values to carry

out hierarchical depth tests. A comprehensive list of cache configuration for various

GPU units is presented in Table 2.1.

2.2.1 Overview of the 3D Rendering Algorithm

The 3D rendering algorithm, implemented in our GPU model, first assembles shaded

vertices into geometric primitives (i.e., triangle), and subsequently breaks them into

fragment quads. Each fragment contains all the information needed to generate

the pixels for a given fragment. These fragment quads go through various tests

(occlusion, alpha testing, etc.) and shading operations to decide their visibility and

the final attribute values. Ultimately, the computed color values are blended and

written back to the render target buffer.

A 3D scene to be rendered is presented to the GPU as batches of geometric

primitives by an application. To better utilize the resources, a GPU pipeline is

divided into two sub parts, namely, front- and back-end (shown in Figure 2.5). This

division enables processing of two different batches simultaneously in two sub parts.

We define a few coarse-grain states of the GPU in the following. The GPU is said to

be in the Draw (DW) state, when both front and back-end are active. It is said to

be in the EndGeometry (EG) state, when the front-end is idle, but the back-end is

active. Similarly, if the back-end is idle but the front-end is active, it is said to be in

the EndFragment (EF) state. These states reflect the pipeline utilization at a coarse

granularity. For example, in the DW state, the GPU is fully utilized because both

22 Workload Characteristics and Motivation

V
er

te
x

L
oa

d
er

V
er

te
x

S
h
ad

er

T
ri

an
gl

e
A

ss
em

b
le

r

C
li
p
p

er

R
as

te
ri

ze
r

D
ep

th
/S

te
n
ci

l
T

es
t

F
ra

gm
en

t
S
h
ad

er

C
ol

or
W

ri
te

r

B
li
tt

er

$ $ $ $ $

Memory interface

Front End Back End

Figure 2.5: Stages of a 3D rendering pipeline

the front- and back-end are active. However, in the EG or EF state, only back- or

front-end is active and hence, the pipeline is partially utilized. In addition to these

three states, the GPU can be in the Blit (BT) or the SaveRestore (SR) state. In

the BT state, only the blitter part of the GPU remains active. The blitter is used

to perform a fast copy of a dynamically generated texture surface from the render

target buffer. In the SR state, the internal states (used for compressed color/depth

buffer and fast clear operations) maintained for the render target and depth buffer

are saved and restored from the system memory. During this time, the rest of the

GPU pipeline remains inactive. The GPU controls the activity of different units

using a state machine shown in Figure 2.6. As the diagram shows, in the beginning

of a frame, when all GPU units are idle, the GPU is said to be in the Ready (RDY)

state. In this state, the GPU can accept any command or state updates from the

CPU. From the RDY state, the GPU can transition to one of three different states

2.2 Execution Model of 3D Rendering 23

namely, DW, BT, and SR. A Draw command from the CPU transitions it to the DW

state. Similarly, a Blit or SaveRestore command changes the GPU’s state to BT

or SR, respectively. As soon as the SaveRestore or the Blitting operation finishes,

the GPU again returns to the RDY state. From the DW state, the GPU moves

to the EG or EF state based on the situation in the front- and back-end units. If

the front-end has finished processing of the batch, the GPU moves to the EG state.

Similarly, if the back-end has finished, the GPU moves to EF state. If both the

front- and back-end have finished, the GPU goes back to the RDY state.

The front-end of the GPU pipeline consists of four stages, namely vertex streamer,

vertex shader, triangle assembler, and clipper. The role of the vertex streamer is to

load vertex indices from the index buffer, and if necessary, vertex attributes from

the vertex buffer. Once these attributes are available, the vertex shader stage runs

a shading program on the loaded data values. To eliminate some amount of redun-

dancy, for two primitives that share a vertex, the same shaded vertex attributes are

passed to the triangle assembler stage that connects and builds a primitive from the

individual vertices. In the final stage, the clipper carries out the view frustum clip-

ping of the assembled primitives. Apart from the vertex streamer, all other stages

of the front-end are compute intensive in nature. Memory access is needed only to

fetch the vertex indices and attributes.

Most of the memory-intensive operations take place in the back-end of the

pipeline. This part of the pipeline consists of five stages, namely rasterizer, depth

and stencil test, fragment shader, color blender and writer, and blitter. Each of

these stages needs to access memory to load attribute values for performing a test

or to calculate the new values. The rasterizer traverses the input polygons and gen-

erates tiled fragments corresponding to each pixel. Tiling of fragments improves the

24 Workload Characteristics and Motivation

RDYstart

DW

SR BT

EG EF

d
ra

w
b

eg
in

d
ra

w
en

d
save (or restore) begin

save (or restore) end blitting begin

blitting end

front-end done

front-end busy

back-end busy

back-end done

back-end done

nothing to process

Figure 2.6: GPU state machine

locality of memory accesses in the subsequent pipeline stages. The generated frag-

ments contain all the attributes required to obtain the final pixel color. Depth and

stencil test and fragment shading can happen in two different orders. If fragment

shading happens after the depth and stencil tests, it is called early-Z order. If it

happens before the depth and stencil tests, the order is called late-Z. Whether the

pipeline will operate in early-Z or late-Z order is decided by the GPU driver. For

this purpose, the driver analyzes the operations in the fragment shader program,

2.3 Performance Impact of Resource Sharing 25

and if the program modifies the depth values, the pipeline operates in the late-Z

order; otherwise it operates in the early-Z order. After shading and depth/stencil

test, the fragments that survive depth test proceed to the color blending and write

stage. In this stage, based on the current blending state, the final fragment col-

ors are computed and written to the render target. For the operations, such as,

changing resolution of a scene or generating texture map from the render target for

dynamic texturing, the ability to quickly copy the current render target to a texture

map is required. These texture maps are subsequently sampled and reconstructed

to get the desired scene. Blitter, a special purpose unit, performs such high-speed

memory to memory copy. Based on the render target and texture surface formats,

the blitter also performs compression/decompression and format translation before

writing the pixel values to the destination texture map. Once the processing of the

fragments is finished, the DAC reads the color values from the memory and sends

them to the display port.

2.3 Performance Impact of Resource Sharing

Ideally, a heterogeneous CMP should make simultaneous use of both CPU and GPU

cores to maximize the utilization of on-chip resources. As the CPU and the GPU

working sets contend for the shared LLC capacity and the shared DRAM resources,

the destructive interference arising from this contention can significantly hamper

the progress of the tasks being executed by the CPU and the GPU cores. Most

importantly, if the integrated GPU is being used to render 3D scenes, the end-user’s

visual experience can suffer from unacceptable degradation. To quantify this loss in

performance when both types of cores are active, we conduct an experiment where

26 Workload Characteristics and Motivation

we run GPU jobs standalone by keeping the CPU core(s) free. CPU jobs standalone

by keeping the GPU free, and finally, both types of jobs simultaneously in the het-

erogeneous mode of execution. Figure 2.7 shows the performance of heterogeneous

execution over standalone execution when the simulated CMP is equipped with a

shared 16 MB LLC. The CPU and GPU configurations used in this experiment

were presented in Table 2.1. The rendering and the CUDA workloads executed on

the GPU were presented in Tables 2.2 and 2.3, respectively. The heterogeneous

workloads are denoted by S1-S18, D1-D18, and Q1-Q18, respectively for one CPU

and one GPU (1C1G), two CPU and one GPU (2C1G), and four CPU and one

GPU (4C1G) configurations. The details of these mixes were given in Table 2.4. In

Figure 2.7, the top panel shows the results for the 1C1G configuration, the middle

panel shows the results for the 2C1G configuration, and the bottom panel shows the

results for the 4C1G configuration. The CPU (GPU) bar shows the performance

achieved by the CPU (GPU) job when it runs together with a GPU (CPU) job

compared to when it runs standalone.

From these results, we see that for a 1C1G CMP, compared to the case when

only the CPU is active, the CPU performance degradation is 26% (see the CPU

bar in the GMEAN group of the top panel) in the heterogeneous mode. Similarly,

the GPU job experiences an average 17% degradation compared to its standalone

execution. As the number of active CPU cores increases, the interference experienced

by the GPU workloads increases sharply. For a 2C1G CMP, in the heterogeneous

mode the dual-core CPU workload degrades by 26% on average compared to the

standalone execution, while the GPU degrades by 24% compared to the standalone

GPU execution. For a 4C1G CMP, degradation experienced by the heterogeneous

CPU and GPU jobs is 21% and 35%, respectively. As expected, with increasing

2.3 Performance Impact of Resource Sharing 27

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 GMEAN0.0
0.4
0.8
1.2
1.6

0.
63

0.
47 0.

76 0.
93

0.
78

0.
49

1.
19

0.
82 0.
94

0.
87

0.
84 0.
94

0.
8 0.
83

0.
64

0.
54

0.
99

0.
41 0.

74

0.
46

0.
46 0.

74 0.
86

0.
89 0.
93

0.
85 0.
99

0.
97

0.
93

0.
75

0.
77 0.
91

0.
92 0.
98

0.
95

0.
95

0.
94

0.
83

CPU GPU

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 GMEAN0.0

0.4

0.8 0.
53 0.

8

0.
81 0.
88

0.
8

0.
47

0.
83

0.
84

0.
64 0.
85

0.
86 0.
91

0.
94

0.
81 0.
9

0.
61

0.
99

0.
34

0.
74

0.
35 0.
43 0.

7 0.
78 0.
82 0.
89

0.
78 0.
9

0.
8 0.
89

0.
67 0.
72 0.
87

0.
85 0.
9

0.
89

0.
9

0.
93

0.
76

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q14 Q14 Q15 Q16 Q17 Q18 GMEAN0.0

0.4

0.8

Co
-e
xe
cu
tio

n
pe
rfo

rm
an
ce
 re

la
tiv
e
to
 s
ta
nd

al
on
e
pe
rfo

rm
an
ce

0.
51 0.
71 0.
86 0.
9

0.
84

0.
53

0.
92

0.
91

0.
79 0.
88

0.
87 0.
92 0.
96

0.
82 0.
9

0.
79 0.
99

0.
47 0.

79

0.
31 0.
35 0.

6 0.
66

0.
62 0.
79

0.
7 0.
8

0.
63 0.
68

0.
61

0.
6 0.
74

0.
67 0.
81

0.
83 0.
87

0.
78

0.
65

Figure 2.7: Co-execution performance relative to standalone performance with a
16 MB shared LLC

CPU core count, the GPU workloads suffer more compared to the CPU workloads

in the heterogeneous mode of execution.

Since for the CPU cores, the only possible source of a memory access is instruc-

tion or data fetch, the performance degrades due to the delayed responses to these

accesses. However, for the GPU, the memory accesses originate from various fixed

function and programmable units. Thus, to pinpoint the sources of degradation for

the GPU, we analyze the activity and memory access behavior of different parts of

the 3D rendering pipeline. Sections 2.3.1 and 2.3.2 present the utilization and stall

contribution of different parts of GPU pipeline, respectively. Section 2.3.3 presents

the memory access characteristics of the GPU access streams. These sections use

28 Workload Characteristics and Motivation

the 4C1G configuration and the corresponding heterogeneous workload mixes (Qn’s)

for collecting the analysis data. We focus on only those mixes that have 3D scene

rendering workloads as the GPU applications (Q1 to Q14; please refer to Table 2.4).

This allows us to understand the dynamics of the entire rendering pipeline, which

wouldn’t be possible if we study the GPGPU workloads because the GPGPU work-

loads exercise primarily the shader cores of the rendering pipeline.

2.3.1 GPU Utilization in 3D Rendering

Figure 2.8 shows the percent of execution cycles the GPU spends in various states

for each 3D rendering workload. Two major contributors are the Draw and End-

Geometry states with an average contribution of 23% and 66% cycles, respectively.

The average contributions of Blit and SaveRestore states are 5% and 4% cycles, re-

spectively. During the remaining 2% cycles, the GPU executes in the EndFragment

state. Since the back-end remains active in both Draw and EndGeometry states, on

average, its utilization is 89%. On the other hand, the front-end remains active for

23% of the cycles on average (the front-end and back-end simultaneously execute

during these 23% of the cycles). Although the average contribution of the Blit state

is only 5%, there are applications contributing much higher. For example, the Blit

contributions in L4D, COR, and COD2 are 29%, 24%, and 16%, respectively, which

is much higher than the average. Similarly, the SaveRestore state contributes 23%

and 17% for L4D and NFS, respectively. In conclusion, the back-end units remain

active most of the time, and the contributions from the other units (the front-end

units, the blitter, etc.) are also significant and require further investigation.

The impact of the memory accesses originating from the front-end unit (vertex

2.3 Performance Impact of Resource Sharing 29

3D
MG
T1

3D
MG
T2

3D
MH
DR
1

3D
MH
DR
2
CO
D2 CO

R
CR
YS
IS

DO
OM
3
HL
2
L4
D

NF
S

QU
AK
E4UT

3
UT
4
ME
AN

0

20

40

60

80

100

Pe
rc
en

t o
f c
yc
le
s
in
 d
iff
er
en

t G
PU

 s
ta
te
s

Draw
EndGeometry

EndFragment
SaveRestore

Blit

Figure 2.8: Cycles spent in different GPU states. 3DMGT1, 3DMGT2, 3DMHDR1,
and 3DMHDR2 are short names for 3DMark06 GT1, 3DMark06 GT2, 3DMark06
HDR1, and 3DMark06 HDR2, respectively.

streamer) and the blitter is confined to that particular unit only. Therefore, the

sources of stalls resulting in performance degradation of these units are easily un-

derstood. For the back-end, the situation is different, however. Figure 2.9 shows

the stall cycles contributed by different back-end units of the GPU pipeline.

2.3.2 Stall Contribution of Different GPU Units

The impact of the memory accesses originating from the front-end unit (vertex

streamer) and the blitter is confined to that particular unit only. Therefore, the

sources of stalls resulting in performance degradation of these units are easily un-

30 Workload Characteristics and Motivation

3D
MG
T1

3D
MG
T2

3D
MH
DR
1

3D
MH
DR
2
CO
D2 CO

R
CR
YS
IS

DO
OM
3
HL
2
L4
D

NF
S

QU
AK
E4UT

3
UT
4
ME
AN

0

20

40

60

80

100

Pe
rc
en
t o

f s
ta
lls
 in
 d
iff
er
en
t b

ac
k-
en
d
st
ag
es

EarlyZ-Shading
LateZ-Shading

EarlyZ-DepthTest
LateZ-DepthTest

Blending

Figure 2.9: Stall cycle distribution in the back-end of the rendering pipeline.

derstood. For the back-end, the situation is different, however. Figure 2.9 shows the

stall cycles contributed by different back-end units of the GPU pipeline. On average,

fragment shading in the early-Z mode contributes 39% stalls, while its contribution

in late-Z mode is less than 5%. The depth test contributes 36% and 14% of stalls,

on average, in the early-Z and late-Z modes, respectively. The average contribution

of blending is 8%. Importantly, the stall distribution of the streams across the ap-

plications is not uniform. For example, the early-Z test contributes 86% stalls in

3DMGT1, while the combined (late-Z and early-Z) depth test in L4D contributes

less than 10% stalls. Similar varying impacts across applications are seen for the

2.3 Performance Impact of Resource Sharing 31

other streams as well.

2.3.3 GPU Memory Access Characteristics

We observe that the number of stall cycles do not always correlate directly with

the memory access intensity. Figure 2.10 presents the distribution of LLC accesses

across three important GPU streams, namely color (C), texture (T), depth (Z),

blitter(B), and vertex (I). On average, color, texture, and depth streams contribute

3D
MG

T1

3D
MG

T2

3D
MH

DR
1

3D
MH

DR
2
CO
D2 CO

R
CR
YS
IS

DO
OM

3
HL
2

L4
D

NF
S

QU
AK
E4UT

3
UT
4
ME
AN

0

20

40

60

80

100

Pe
rc
en

t o
f L

LC
 a
cc
es

se
s
so

ur
ce

d
by

 d
iff
er
en

t G
PU

 s
tre

am
s

C T Z B I

Figure 2.10: LLC access distribution for different units

18%, 26%, and 38% accesses, respectively. Although for the applications such as,

3DMGT1 and 3DMGT2, where the majority of the accesses arrive from one par-

ticular stream, stall cycles and access counts correlate well. Similar correlation is

32 Workload Characteristics and Motivation

not seen for the other applications, however. For example, for 3DMHDR1, the

color stream contributes 30% accesses, while contributing just 5% stalls (the Blend-

ing stalls in Figure 2.9 arise from the color stream). On the other hand, shading

contributes 60% stalls with only 23% LLC accesses in 3DMHDR1. Similarly, for

DOOM3, the depth stream contributes 40% LLC accesses, while causing only 35%

stalls (combined late-Z and early-Z stalls in Figure 2.9). Similar trends are seen

for the other applications too. These data show that the GPU streams differ in

terms of their sensitivity toward memory system performance due to either certain

inherent dataflow dependencies in the pipeline or their memory access behavior.

One possible reason for differing memory access behavior may arise from variable

sensitivity of streams toward caching. Figure 2.11 presents the variation in miss

rates of five important GPU streams (color (C), depth (Z), texture (T), blit (B),

and input (I)) for four different GPU applications (the data for all applications can

be found in Appendix 6.1) as the LLC size is increased from 8 KB to 256 MB. In

these experiments, we use LRU replacement policy for the LLC.

As Figure 2.11 shows, for most of the streams, the amount of cache required

for the entire working set is more than 32 MB. Moreover, the effect of increase

in LLC capacity on miss rate varies across streams and applications. Across all

applications, the color stream’s miss rate drops below 30% only at the capacity

equal to or above 8 MB. For the texture stream, the working set is much larger; the

miss rate remains above 30% up to 16 MB capacity. Miss rate of the depth stream

shows a gradual reduction for COR, COD2, and 3DMGT1 reaching 30% at 4 MB

capacity. However, for L4D, it is much larger and it reaches the 30% mark only

at 32 MB capacity. Similarly, for the input stream, the miss rate doesn’t go below

30% up until 16 MB capacity. Only COR, COD2, and L4D show accesses from the

2.3 Performance Impact of Resource Sharing 33

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

COR

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

COD2
8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

L4D
8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

3DMGT1

C Z T B I

Figure 2.11: Working set of different LLC access streams

blit stream. Interestingly, miss rate for the blit stream never reaches 100%. This

behavior is a result of the fact that the blitter always consumes data produced by

the color or texture stream (as described in Section 2.2, the blitter is used to copy

the blocks from a render target to a texture buffer). Moreover, the reduction in its

working set is a step function with a small region of gradual reduction in its miss

rate. Similar to C (or T) to B reuse, Z, C, and T streams also exhibit inter-stream

reuses due to the semantic requirements of the rendering algorithms. In the next

section, we present an analysis of the inter-stream reuses observed between the C,

Z, B, and T streams.

34 Workload Characteristics and Motivation

2.3.4 Inter-stream Reuses in 3D Rendering

CO
D2

CR
YS
IS

DO
OM
3

L4
D

CO
R

0

20

40

60

80

100

Pe
rc
en

t o
f b

lit
te
r a

cc
es
s
so
ur
ce
d
by

 s
tre

am
s

CB (Color to Blitter) TB (Textrue to Blitter) BB (Blitter to Blitter)

Figure 2.12: Color and texture to blitter inter-stream reuse

Figures 2.12 and 2.13 show the percentage of blitter and texture LLC accesses

sourced by the C, Z, T, and B streams. These data are collected by extending

each LLC block with a three bit stream-id. Whenever a block is touched by a

stream other than its last accessing stream, the stream-id is updated to reflect the

change. Every time such transition is detected, it is recorded in a reuse counter.

Five applications (COD2, Crysis, DOOM3, L4D, and COR) exhibit C and T to B

reuse. For COD2, Crysis, DOOM3, L4D, and COR, 22%, 29%, 19%, 23%, and 28%

B stream accesses are sourced by C and T streams, respectively. C, Z, B to T reuses

are shown by a much larger set of applications (all applications except DOOM3,

Quake4, and UT4). For many applications, majority of the T stream reuses come

2.3 Performance Impact of Resource Sharing 35

3D
MG
T1

3D
MG
T2

3D
MH
DR
1

3D
MH
DR
2
CO
D2

CR
YS
IS HL

2
L4
D

NF
S

CO
R

UT
3

0

20

40

60

80

100

Pe
rc
en

t o
f t
ex
tu
re
 a
cc
es
s
so
ur
ce
d
by
 s
tre

am
s

CT (Color to Texture)
BT (Blitter to Texture)

ZT (Depth to Texture) TT (Texture to Texture)

Figure 2.13: Color, blitter, and depth to texture inter-stream reuse

from the inter-stream sharing. For example, 61% of T stream accesses for NFS are

sourced by the C stream alone. For L4D, the C and B streams source 17% and

54% T stream accesses, respectively. Similarly, for UT3, 84% T stream accesses are

sourced by the C stream alone. For 3DMGT1 and 3DMGT2, the Z stream sources

35% and 18% T stream accesses, respectively. The color to texture reuses arise from

the use of dynamically generated texture maps. The general technique for this is

known as render-to-texture. The depth to texture reuses arise from the techniques

used to generate dynamic shadow maps where the depth buffer contents are accessed

by the texture samplers.

In summary, the results of this section indicate that in a heterogeneous environ-

ment, the performance of both CPU and GPU applications suffers from significant

36 Workload Characteristics and Motivation

degradation. Since the memory access streams sourced by the different rendering

pipeline units have large working sets and varying reuse behavior, their efficient

management is critical to both CPU and GPU applications. We also observe a

significant amount of cross-stream reuses and variable sensitivity of GPU streams

toward rendering throughput. These observations form the foundation of our con-

tributions detailed in the subsequent chapters.

Chapter 3

Dynamic Reuse Probability-based

Last-level Cache Management

This chapter presents our shared LLC management policy for the CPU-GPU hetero-

geneous processor. The central contribution of our proposal is a novel working set

sampling technique that we employ to dynamically estimate the reuse probabilities of

individual data streams coming from CPU and GPU. The estimated dynamic reuse

probabilities are used to drive algorithms to manage the shared LLC. Compared to

a state-of-the-art baseline with a 16 MB shared last-level cache, our proposal is able

to improve the performance (frame rate or execution cycles, as applicable) of eigh-

teen GPU workloads spanning DirectX and OpenGL game titles as well as CUDA

applications by 12% on average and up to 51% while improving the performance of

the co-running quad-core CPU workload mixes by 7% on average and up to 19%.

The rest of the chapter is organized as follows. Sections 3.1, 3.2, and 3.3 present

motivational studies demonstrating that the gap left between the state-of-the-art

LLC management policies and the Belady’s OPT is significant and if the LLC hit

38 Dynamic Reuse Probability-based Last-level Cache Management

rate is improved, the GPU can gain significant performance. The dynamic reuse

probability-based LLC management proposal is presented in Section 3.4. We dis-

cuss the existing related proposals for managing the LLC in Section 3.5. Section 3.6

presents experimental evaluation of our proposal. We conclude the chapter in Sec-

tion 3.7.

3.1 Study on LLC Miss Savings

In this section, we evaluate a number of existing proposals in terms of the LLC read

miss count and establish that there is a significant gap left between these proposals

and the offline optimal policy due to Belady [4, 70]. We first briefly discuss the

evaluated proposals in the following.

Baseline: The concepts of re-reference prediction value (RRPV) and re-reference

interval prediction (RRIP) are introduced in [35]. The RRPV of a block maintains

an inverse relation with the block’s victimization priority. With an n-bit RRPV,

the static re-reference interval prediction (SRRIP) algorithm statically assigns an

RRPV of 2n − 2 to a block on insertion into the LLC. On a hit, the RRPV of the

block is updated to zero. A block with RRPV 2n − 1 is selected as the victim. The

baseline LLC follows the SRRIP algorithm when serving read misses, read hits, and

LLC replacements. Additionally, the GPU can generate writes to blocks that are not

resident in the LLC. Such a situation can arise for three reasons. First, the GPU can

allocate and write to data in its internal color and depth caches without notifying

the LLC and later it evicts such data from the internal caches to the LLC. Second,

since the LLC does not maintain inclusion for GPU data, writebacks from GPU’s

internal caches may miss the LLC. Third, the shader cores bypass the private data

3.1 Study on LLC Miss Savings 39

caches (in addition to evicting the target data cache block) when storing to global

data to maintain coherence. As a result, all the evaluated policies must handle write

misses and hits. Among the GPU data streams that are written to, color, depth,

and shader data are the most important ones because these data are often reused

by future reads. In both DirectX and OpenGL applications, dynamically generated

color data can be reused as a texture for sampling [66]. Such texture data are usually

referred to as dynamic texture data [26]. There are two ways to use color data as

a texture map. First, a render target (containing color data) can be directly bound

as a sampler resource and used as a texture map in DirectX applications. Second,

the color data can be copied from the renderbuffer (of OpenGL) or render target (of

DirectX) and transformed into a separate memory region before these data can be

sampled as texture. This operation is known as blitting and the writes coming from

the blitter to the LLC are also important from the viewpoint of future read reuses.

Additionally, depth buffer contents can also be reused by the texture sampler for

rendering shadow [26].

The color, depth, blitter, and shader write misses are inserted into the LLC at

RRPV two (similar handling as the read misses). All other write misses bypass the

LLC and go directly to the memory controllers. We found that for some hetero-

geneous mixes, this particular write miss policy degrades performance because the

depth writes are not useful for all GPU applications. So, we further extend the write

miss policy with a selective depth write bypass policy. The depth write bypass policy

uses set dueling to decide if allocating depth write misses in the LLC is beneficial.

It dedicates a group of LLC sets to always bypass depth write misses and another

group of LLC sets to always allocate the depth write misses in the LLC. By compar-

ing the relative number of read misses in these two groups, the depth write bypass

40 Dynamic Reuse Probability-based Last-level Cache Management

decision is made for every depth write miss to all LLC sets except these two groups.

In our implementation, each of the groups has eight sampled sets per 1K LLC sets.

More details on sampling-based set dueling can be found elsewhere [35, 36, 83]. The

write hits do not change the RRPV of the blocks.

NRU: In the single-bit not-recently-used (NRU) replacement policy, each LLC block

is provisioned with one replacement state bit. A read access to a block sets the bit.

As a result of an access, if all bits in a set become one, the bits in all the ways except

the currently accessed way are reset. The way with the lowest id and replacement

state bit reset is the replacement candidate within a set. The write misses implement

the same bypass policy as the baseline. The write misses that are allocated in the

LLC are treated similarly as read misses. The write hits do not update replacement

state.

DRRIP, TADRRIP: DRRIP [35] and TADRRIP [35] policies use the concept

of re-reference prediction value (RRPV) to decide the insertion and victimization

ages of a cache block. For an n bit RRPV, the DRRIP policy dynamically chooses

between two insertion RRPVs, namely, 2n − 1 and 2n − 2 using a set-sample-based

duel. On a read hit, the accessed block is always promoted to RRPV 0. A block with

minimum way-id at RRPV 2n−1 is chosen as the victim candidate. The TADRRIP

policy treats the CPU cores and the GPU as different independent threads and lets

each thread choose the best insertion RRPV (among 2n − 1 and 2n − 2) for read

misses. The write miss and write hit policies are same as the baseline.

SHiP-mem: The SHiP [106] policy, instead of using set-sample-based duel, uses

program counter (SHiP-PC), memory address (SHiP-Mem), or code path (SHiP-

Iseq) signatures of load/store instructions to decide the insertion RRPV of the cache

blocks. Since for the GPU, it is not always possible to associate a PC with an ac-

3.1 Study on LLC Miss Savings 41

cess (e.g., accesses from the fixed function units), we evaluate the SHiP-mem variant.

As proposed originally, we divide the physical address space into contiguous 16 KB

regions. For each region, we learn the count of reuses by hashing a fourteen-bit

region identifier (address bits [27:14]) into a 16K-entry table T of three-bit satu-

rating counters. On an LLC hit to a block belonging to a particular region, the

corresponding region counter is incremented by one. If a block gets evicted from

the LLC without experiencing any reuse, the corresponding region counter is decre-

mented by one. A block suffering a read miss is filled with an RRPV of three, if the

corresponding region counter is zero; otherwise the block is inserted with an RRPV

of two. The RRPV has an inverse relationship with the chance of future reuse and

victimization priority. The write miss and write hit policies are same as the baseline.

SHiP-hybrid: We design a new variant of SHiP named SHiP-hybrid suitable for

heterogeneous CMPs. This policy makes a small change in the SHiP-mem policy.

For all CPU read misses, it executes the SHiP-PC policy [106] for deciding the

insertion RRPV of a block. In other words, instead of using the fourteen-bit memory

region identifier to index the 16K-entry saturating counter table T , it uses the lower

fourteen bits of the program counter (hashed with the CPU core id) of the CPU

load/store instructions. The GPU reads that miss in the LLC continue to use the

fourteen-bit memory region identifier to index into the same saturating counter table

T because it is not possible to associate program counters with a large number of

GPU accesses that come from the fixed-function hardware (texture sampler, color

blender, depth test unit, etc.).1 In summary, SHiP-hybrid uses SHiP-PC for CPU

reads and SHiP-mem for GPU reads. The write miss and write hit policies are same

1 This is also the reason why it is not possible to have an effective GPU implementation of the other
existing proposals (such as SDBP [50]) that rely on the program counters associated with the LLC accesses.

42 Dynamic Reuse Probability-based Last-level Cache Management

as the baseline.

OPT, OPT+Bypass, Baseline+Bypass: The OPT policy implements Belady’s

MIN replacement algorithm [4, 70] extended to handle both read and write misses.

We also evaluate an optimal bypass policy running in conjunction with OPT and

Baseline. In these policies, if the next-use distance of an incoming new block be-

longing to the GPU is larger than the next-use distances of all the blocks in the

target LLC set, the block is not allocated in the LLC. Note that CPU blocks can-

not bypass the LLC because that would violate inclusion of CPU data. The OPT,

OPT+Bypass, and Baseline+Bypass results cannot be generated online because

they need future information. These results are generated by collecting an LLC

access trace for each heterogeneous workload mix and functionally simulating the

policies offline on the collected traces. As a result, the outcomes of these policies

are bound to the specific ordering of the LLC accesses recorded in the traces.

Figure 3.1 shows the normalized number of LLC read misses for the LLC policies

averaged over the 1C1G, 2C1G, and 4C1G heterogeneous workloads. The simulation

environment and the workloads were discussed in the previous chapter. The shared

LLC capacity is 16 MB. Each bar within a heterogeneous configuration shows the

normalized LLC read miss counts for a policy. Each bar further shows the contri-

butions coming from the LLC read misses suffered by the CPU cores and the GPU.

All bars in each group are normalized to the baseline policy (the leftmost bar in

each group). In general, the fraction of LLC misses coming from the GPU decreases

with increasing CPU core count because the proportion of CPU misses increases.

We make three important observations from these results. First, SHiP-hybrid is the

best among the online policies we consider. On average, it saves 7%, 8%, and 11%

LLC read misses compared to the baseline for the 1C1G, 2C1G, and 4C1G config-

3.2 GPU Performance with Ideal LLC 43

1C1G 2C1G 4C1G
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

li
z
e

d
 L

L
C

 m
is

s
 c

o
u

n
t

B
a

s
e

li
n

e
N

R
U

D
R

R
IP

T
A

D
R

R
IP

S
H

iP
−

m
e

m
S

H
iP

−
h

y
b

ri
d

O
P

T
O

P
T

+
B

y
p

a
s

s
B

a
s

e
li

n
e

+
B

y
p

a
s

s

GPU

CPU

Figure 3.1: Normalized average read miss count.

urations, respectively. Second, there is a large gap between OPT and SHiP-hybrid

indicating that there are significant opportunities for improvement. On average, the

OPT policy saves 38%, 34%, and 30% LLC read misses compared to the baseline

for the 1C1G, 2C1G, and 4C1G configurations, respectively. Among the CPU and

the GPU read misses, the latter offers more opportunity for saving LLC read misses.

Third, the bypass policies fail to reduce the LLC read miss count much indicating

that for the heterogeneous workload mixes we consider in this study, an optimal

bypass policy for GPU data from the viewpoint of minimizing the LLC read miss

count is not particularly helpful. OPT+Bypass does not offer any additional benefit

over OPT. The Baseline+Bypass policy fails to beat the SHiP-hybrid policy. We

explore more aggressive GPU read miss bypassing in the later part of this chapter.

3.2 GPU Performance with Ideal LLC

The GPU architecture is known to have an inherent capability of hiding memory

access latency due to the presence of a large number of ready thread contexts.

Therefore, it is important to understand how important it is to save GPU LLC

44 Dynamic Reuse Probability-based Last-level Cache Management

misses. To quantify how sensitive the GPU performance is to the LLC miss count, we

gradually make the LLC ideal for the GPU. We simulate the 1C1G configuration and

gradually convert the GPU LLC misses to hits (except the compulsory misses). We

conduct the following five sets of experiments for the heterogeneous mixes involving

the 3D scene rendering workloads. First, we convert all non-compulsory color misses

to LLC hits. Second, we treat all non-compulsory color and texture misses as LLC

hits. Third, we treat all color, texture, and depth accesses to the LLC as hits (except

the compulsory misses). Fourth, all color, texture, depth, and blitter accesses to the

LLC are treated as hits provided they wouldn’t lead to compulsory misses. Finally,

all non-compulsory LLC misses from the GPU are converted to LLC hits. In all

cases, all other accesses, including the accesses from the CPU core, are treated

according to the baseline policy.

Figure 3.2 shows the progressive speedup (in terms of frame rate) observed by

the 3D rendering applications as color (C), texture (C+T), depth (C+T+Z), blit-

ter (C+T+Z+B), and all GPU non-compulsory misses in the LLC are converted to

hits (stacked improvement from bottom to top in each bar). The overall speedup

ranges from 15% (S4) to 145% (S10), averaging at 63%. Most of the benefits come

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 GM
1

1.25

1.5

1.75

2

2.25

2.5

G
P

U
 s

p
e

e
d

u
p

 o
v
e

r
b

a
s
e

lin
e

C C+T C+T+Z C+T+Z+B All Overall GeoMean

Figure 3.2: Potential improvement in frame rate. The baseline policy was introduced
in Section 3.1.

3.3 Selective LLC Bypass of GPU Read Misses 45

from making texture and depth accesses ideal. Making color accesses ideal improves

performance by more than 5% in S4, S5, S6, S12, S13, and S14, while only S5, S6,

and S9 show more than 5% performance-sensitivity to the blitter access latency.

Only S1, S2, and S8 enjoy more than 5% performance improvement when the LLC

is made to behave ideally for the GPU streams other than C, T, Z, B. This addi-

tional improvement results primarily from elimination of the vertex misses. Overall,

these results indicate that the GPU performance has widely varying sensitivity to

the access latency of different data streams, particularly color, texture, depth, and

blitter. Saving the LLC misses to these data streams can significantly improve the

GPU performance for several workloads.

For the 1C1G heterogeneous mixes involving the CUDA applications, we study

the impact on the performance of these applications when all non-compulsory LLC

misses from the GPU are treated as LLC hits. Table 3.1 lists the observed speedup (over

the baseline) in these applications. These results confirm that saving LLC misses

can significantly improve the performance of these applications.

Table 3.1: Speedup of CUDA applications with ideal LLC

S15 S16 S17 S18

1.22 1.12 1.26 2.82

3.3 Selective LLC Bypass of GPU Read Misses

We have already shown that an optimal GPU read miss bypass policy with the goal

of minimizing the overall LLC read miss counts is not particularly helpful (see Fig-

ure 3.1). In the following, instead of minimizing the overall LLC read miss count,

46 Dynamic Reuse Probability-based Last-level Cache Management

we study the performance impact of very aggressive GPU read miss bypass. This

study is motivated by the fact that the GPU architecture can effectively hide the

impact of a large volume of LLC misses resulting from aggressive read miss bypass.

We conduct four experiments where we progressively increase the GPU read miss

bypass percentage from 25% to 100%. Figure 3.3 shows the average speedup relative

to the baseline for the CPU and the GPU workloads observed in these experiments.

The CPU performance does not show any improvement until the GPU read miss

bypass rate reaches 100%. At this point, the CPU performance improves, on av-

erage, by 5% in the 1C1G configuration and by only 1% in the 2C1G and 4C1G

configurations. The CPU performance improvement drops drastically in the 2C1G

and 4C1G configurations due to heavy congestion in the memory controllers caused

by the aggressive GPU read miss bypass. The GPU performance, as expected, pro-

gressively suffers as the bypass rate increases. At 100% bypass rate (which is the

only bypass rate useful for improving the CPU performance), the average loss in the

GPU performance is 7%, 7%, and 9% in the 1C1G, 2C1G, and 4C1G configurations,

respectively. In the 4C1G configuration, due to severe shortage of memory band-

width resulting from aggressive bypass, the performance loss is more compared to

the other two configurations. Overall, these results do not show much promise for an

LLC management policy that relies on aggressive GPU read miss bypass. We note

that this inference is different from what has been shown in a prior study involving

GPGPU applications only [71]. We attribute this difference to a wider variety of

GPU applications considered in our study.

3.4 Dynamic Reuse Probability for LLC 47

CPU GPU CPU GPU CPU GPU
0.9

0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08
1.1

S
p

e
e

d
u

p
 o

v
e

r
b

a
s
e

lin
e

1C1G 2C1G 4C1G

25% bypass 50% bypass 75% bypass 100% bypass

Figure 3.3: Speedup with random GPU read miss bypass for a 16 MB LLC. The
baseline policy was introduced in Section 3.1.

3.4 Dynamic Reuse Probability for LLC

The design of an LLC management policy can be decomposed into four distinct

sub-policies, namely, read miss policy, write miss policy, write hit policy, and read

hit policy. We discuss the design of each of these sub-policies in the following.

The write miss, write hit, and read hit policies form the crux of our dynamic reuse

probability-based LLC policy proposal. These sub-policies make use of a working

set sample (WSS) cache, the central contribution of our proposal. This WSS cache

plays a key role in estimating the dynamic reuse probability of different data streams.

We begin our discussion by introducing the architecture of the WSS cache. We

note that the estimated dynamic reuse probabilities can be used in many different

ways to implement an effective LLC management proposal. Our design assumes

the existence of two replacement state bits per LLC block. These two bits can be

thought of as age bits and we will refer to them as the RRPV bits, as in the baseline

policy. The sub-policies modulate the RRPV bits. The victim selection algorithm is

same as SRRIP. Although the discussion of our proposal revolves around the most

general commercially available CMP architectures involving both CPU and GPU

48 Dynamic Reuse Probability-based Last-level Cache Management

cores, the general idea of the WSS cache can be employed to implement various

types of optimizations in the LLC of discrete GPU parts as well as multi-core parts

involving CPUs only.

3.4.1 Working Set Sample Cache

Our proposal employs a working set sampling technique to estimate the read reuse

probability of all accesses that come to the LLC from CPU as well as GPU. For this

purpose, we architect a small working set sample (WSS) cache shown in Figure 3.4.

The WSS cache is a traditional set-associative cache.

Block 0

...

Block 1

P
ro

ce
ss

w
or

k
in

g-
se

t

Sampled block

Page frame

Working-set sampler

WSS cache

Counter array

Stream occupancy

MAX REUSE

WSS CONTROLLER

V TAG V0 W0 SID0 . . . V3 W3 SID3

...

V TAG V0 W0 SID0 . . . V3 W3 SID3

To LLC Controller

Figure 3.4: Organization of the WSS cache and the associated controller and external
states such as the counter and occupancy arrays

Each entry of the cache tracks a few selected blocks in a sampled page. As a

result, each WSS cache entry contains a page tag. To simplify the tracking of the

sampled blocks in the sampled page, our design tracks every kth block of the page

where k is a design parameter. For each tracked block, we maintain the stream

it belongs to and we consider the following stream categories: CPU, color, depth,

3.4 Dynamic Reuse Probability for LLC 49

static texture (or simply texture), dynamic texture, blitter, shader, and the rest

clubbed into one category. The CPU stream is further partitioned based on the

originating CPU core. An LLC access is said to belong to a certain stream if the

access originates due to a miss in an inner-level cache dedicated to that stream. For

example, the shader stream arises from the misses in the shader cores’ private caches.

Additionally, for each tracked block, there is a valid bit (V) and a write bit (W).

The W bit specifies if the block has been written to, but yet to be consumed by a

subsequent read. A subsequent read reuse to such a block resets the W bit. Thus,

each tracked block needs just six bits of state: four bits to encode the stream id (for

a 4C1G CMP, we need to encode eleven different streams) and two bits for the V

and W states. Therefore, if a physical page contains N blocks, each WSS cache

entry needs a page tag, an entry valid bit, and 6(N/k) bits to track the sampled

blocks. Figure 3.5 shows a typical WSS cache entry.

V TAG V0 W0 SID0 V3 W3 SID3

Figure 3.5: A WSS cache entry for N = 64 and k = 16. V is the entry valid bit,
while V0-V3 are the valid bits for the four tracked blocks in the page. W0-W3 are
the write bits of the tracked blocks and SID0-SID3 are the stream ids of the tracked
blocks. TAG is the page tag of the entry.

On every LLC access, the WSS cache is looked up in parallel. On a WSS cache

miss, an invalid WSS cache entry is allocated. If there is no invalid WSS cache

entry in the target WSS cache set, the access bypasses the WSS cache. Since the

purpose of the WSS cache is to estimate reuse probabilities, it is important to retain

a sampled entry for a significantly large time-window so that the far-flung reuses can

be captured. As a result, WSS cache replacements are usually disabled. Only if the

accessing stream is found to have low representation in the WSS cache, a random

50 Dynamic Reuse Probability-based Last-level Cache Management

replacement policy is invoked. For this study, we allow WSS cache replacement if the

accessing stream has less than 32 WSS cache entries. An entry is assumed to belong

to the stream of the first valid tracked block in the entry. On a WSS cache hit, two

situations may arise. If the accessing block turns out to be a tracked block (i.e., one

of the kth blocks in the page) and its entry is invalid, the entry is now marked valid

and the appropriate state bits are updated. If the accessing block entry is valid and

the access is a read, a reuse has been identified by the WSS cache. In this case, we

increment a reuse counter to record this event.

Our design maintains two different arrays of reuse counters. The first array

tracks, for each stream type, the count of write-to-read reuses captured by the WSS

cache. We will refer to this array as the WR reuse counter array. The second

array, referred to as the RR reuse counter array, is used to track read-to-read reuse

counts for the streams. Our design also keeps track of the maximum among all reuse

counters indicating the maximum reuse enjoyed by any stream during a phase of

execution. We will refer to this as MAX REUSE. In addition to the reuse counter

arrays, our design also maintains a write access (WA) counter for each stream. This

counter tracks, for each stream, the number of LLC writes captured by the WSS

cache and is used to calculate the write-to-read reuse probability of a stream (which

is the ratio of the WR counter of a stream to the WA counter of the stream). The

static and dynamic texture streams do not need the WA counters because these are

read-only streams (texture samplers only read texture data and never modify them).

Figure 3.6 shows the flow for looking up the WSS cache on an access from stream

S for a block which is the mth tracked block in a page with tag P .

We define a WSS cache epoch to be a time-window over which the LLC receives

512K read accesses. At the end of each epoch, the WSS cache is invalidated and

3.4 Dynamic Reuse Probability for LLC 51

E.Vm 1
E.SIDm S

WRITE
ACCESS?

E.Wm 1
WA[S]++

Y

N

E.Vm==1?
ENTRY E

Y

N

WRITE
ACCESS?

Y E.Wm 1
WA[S]++
E.SIDm S

Y

E.Wm==1?

N
RR[E.SIDm]++
E.SIDm S

NY

AND ((E.SIDm==Color)
((S==TEXTURE)

OR (E.SIDm==Blitter)
OR (E.SIDm==Depth)))?

E.SIDm DYNAMIC TEXTUREY

SE.SIDm
N

E.TAG P
E.V 1
E.Vm 1
E.SIDm SENTRY EAVAILABLE?

INVALID WAY Y
ACCESS?
WRITE E.Wm 1

WA[S]++
Y

N

S HAS LESS THAN
32 ENTRIES IN WSS CACHE?

N

N

REPLACE
RANDOM WAY E

Y

WSS CACHE
TAG HIT?

N

DO NOT ALLOCATE IN WSS CACHE

E.Wm 0

WR[E.SIDm]++
E.Wm 0

E.Wm 0

START

Figure 3.6: Access/Update protocol flow for the WSS cache and the accompanying
reuse and access counters. Vm, Wm, and SIDm correspond respectively to the V,
W, and stream id of the mth tracked block. The MAX REUSE register is not
shown.

all the reuse and access counters are halved so that we can capture phase changes.

Next, we present the proposed sub-policies.

3.4.2 Read Miss Policy

The responsibility of the read miss policy is to decide the RRPV of the block being

filled in the LLC. We synthesize our read miss policy by borrowing from the vast

body of existing research that deals with LLC insertion policies on read misses

discussed in Section 3.5 and evaluated in Section 3.1. While SHiP-hybrid is an

52 Dynamic Reuse Probability-based Last-level Cache Management

attractive design option, we observe that the large memory footprints of the GPU

applications cause interference in the saturating counter table T while executing

SHiP-mem for GPU read misses. As a result, our read miss policy does not use the

SHiP-mem component of the SHiP-hybrid policy. For CPU read misses, we continue

to use the SHiP-PC policy for deciding the insertion RRPV. For GPU read misses,

we use the simpler DRRIP policy [35], which employs a set-sampling-based duel to

decide among insertion RRPV of two and three. It is important to note that we

adopt only the insertion policy component of DRRIP and invoke it on GPU read

misses. Our read hit policy proposal is discussed in the later part of this section.

Since the saturating counter table T is not required by the GPU read misses, it is

exclusively used by the SHiP-PC policy exercised by the CPU read misses. This

read miss policy is seen to outperform SHiP-hybrid for the workloads where the GPU

application has large memory footprint. Figure 3.7 presents a high-level depiction

of the proposed read miss policy.

READ MISS STREAMS?
INVOKE SHIP−PC
INSERTION POLICY

INVOKE DRRIP
INSERTION POLICY

Y

N

FROM CPU

Figure 3.7: Read miss policy.

3.4.3 Write Miss Policy

The write miss policy is important only for the GPU because all CPU writes hit in

the LLC due to inclusion of CPU data in the cache hierarchy. Recall that the baseline

policy bypasses all GPU write misses except from color, depth, blitter, and shader

streams and employs a selective bypass mechanism for depth write misses. The

write miss policy must decide the insertion RRPV for the blocks that are allocated

3.4 Dynamic Reuse Probability for LLC 53

in the LLC on write misses. We employ the write-to-read reuse probability of each

stream for this purpose.

The write-to-read reuse probability of a stream can be calculated as the ratio

between the corresponding WR reuse counter and the WA counter. On a write miss,

if the decision is to allocate the block in the LLC, our design assigns an RRPV of

zero if the block belongs to a high WR reuse stream. A high WR reuse stream is

defined to be one that enjoys at least MAX REUSE/3 reuses or has a write-to-

read reuse probability of at least 1/8. Additionally, if the WR reuse count enjoyed

by the stream exceeds MAX REUSE/2 or has a write-to-read reuse probability of

at least 1/8, the write miss policy identifies the block to be an important one and

recommends that the block be pinned in the LLC. However, whether such a block

will be finally pinned or not is decided by a per-stream set dueling because pinning

write insertions does not always help and can hurt performance under heavy cache

contention. The set dueling mechanism ear-marks two disjoint groups of sample sets

for each stream (except static and dynamic texture because these streams are read-

only). One group always follows the pinning recommendation, while the other group

always ignores the pinning recommendation. Both the groups follow the remaining

components of the policy unchanged. Based on the relative volume of read misses

experienced by the two groups for a stream, the winning policy is decided for that

stream and the rest of the sets follow the winning policy. In our implementation,

each group for each stream has eight sampled sets per 1K LLC sets. We need four

such disjoint group pairs representing the color, blitter, depth, and shader streams.

A pinned block gets inserted into the LLC with RRPV zero. The RRPV of a pinned

block is updated just like a normal block. When the RRPV of a pinned block reaches

three, it is unpinned and its RRPV is reset to zero. Also, a pinned LLC block gets

54 Dynamic Reuse Probability-based Last-level Cache Management

unpinned when it receives a read reuse. In summary, pinned blocks get to spend

more time in the LLC compared to a normal block.

Finally, if the stream that is having a write miss fails to qualify as a high WR

reuse stream and has a write-to-read reuse count of zero with write access count of

at least 128K, the block is inserted at RRPV three. All other write miss insertions

happen at RRPV two. Figure 3.8 summarizes our write miss policy proposal.

DO NOT ALLOCATE IN LLC

WRITE MISS BYPASS? OR (WR[S]>=WA[S]/8))?
((WR[S]>=MAX_REUSE/3)

PINNING FAVORABLE
FOR STREAM S?

B.PIN 1

B.PIN 0

AND (WA[S]>=128K))?((WR[S]==0)B.RRPV 3
B.PIN 0

B.RRPV 2
B.PIN 0

Y
N

N

N

Y

Y

N

N
Y OR (WR[S]>=WA[S]/8))?

((WR[S]>MAX_REUSE/2)

B.RRPV 0Y

Figure 3.8: Write miss policy for a block B coming from stream S.

3.4.4 Write Hit Policy

The write hit policy is similar to the write miss policy in the sense that it attempts

to give extra protection to the block receiving the hit if the block belongs to a high

WR reuse stream. Also, all such high WR reuse stream blocks are recommended

for pinning on a write hit. The goal of such a recommendation is to save write

bandwidth at the memory controllers. For this purpose, we define a high WR reuse

stream to be one which has received at least MAX REUSE/2 reuses or its write-

to-read reuse probability is at least 1/16. A write hit to a block belonging to such a

stream promotes the block to RRPV zero and pins the block; otherwise the block’s

RRPV is left unchanged and the pin state of the block is cleared. Again, we note

3.4 Dynamic Reuse Probability for LLC 55

that pinning is only a recommendation from the write hit policy and the final pinning

decision comes from a set duel already discussed. Since write hits can be experienced

by the CPU streams as well, we need additional four pairs of set sample groups for

deciding the favorability of pinning for the CPU cores in a 4C1G configuration. This

write hit policy, which is congestion-oblivious, hurts performance if the set receiving

the write hit is congested.

We find that for a congested set, a block belonging to a high WR reuse stream

fails to enjoy most of the far-flung write-to-read reuses inferred by the WSS cache.

As a result, to guarantee that such a block can enjoy at least the near-term write-

to-read reuses without increasing the set congestion, it is enough to give the block

extra protection only if its current RRPV is three (i.e., currently a candidate for

victimization). Our congestion-aware write hit policy sets the RRPV of a block

receiving a write hit to two if the block’s current RRPV is three and it belongs to

a high WR reuse stream. The RRPV of any other block is left unchanged.

On a write hit, the congestion-oblivious or the congestion-aware write hit policy

is executed based on a set duel. This set duel employs two groups of sampled sets

shared by all streams, each group having eight sets per 1K LLC sets. One group

always executes the congestion-oblivious write hit policy, while the other group

always executes the congestion-aware write hit policy. Based on the relative volume

of the read misses experienced by the groups, the winning policy is decided and the

rest of the sets follow the winning policy. While the write miss policy can improve

the performance of the GPU applications only, the write hit policy can be beneficial

to both CPU and GPU applications. Figure 3.9 shows the congestion-oblivious and

congestion-aware write hit policies.

56 Dynamic Reuse Probability-based Last-level Cache Management

NO CHANGE TO RRPV
B.PIN 0

FOR STREAM S?
PINNING FAVORABLE

OR (WR[S]>=WA[S]/16))?
((WR[S]>=MAX_REUSE/2)WRITE HIT B.RRPV 0

B.PIN 0

B.PIN 1

N
Y

Y

N

(((WR[S]>=MAX_REUSE/2)
 OR (WR[S]>=WA[S]/16))
AND (B.RRPV==3))?

NO CHANGE TO RRPV

B.RRPV
B.PINWRITE HIT

0B.PIN

2
0

(a) CONGESTION−OBLIVIOUS WRITE HIT POLICY

Y

N

(b) CONGESTION−AWARE WRITE HIT POLICY

Figure 3.9: Write hit policies for a block B coming from stream S.

3.4.5 Read Hit Policy

Our read hit policy promotes the block receiving the hit to RRPV zero with one

exception. We have observed that a large fraction of the dynamic texture blocks

receive only one read access (the first texture sampler access to a block written to by

color/blit/depth stream). Keeping such blocks longer in the LLC wastes space. We

keep two counters to estimate the probability of the event that a dynamic texture

block sampled by the WSS cache receives any reuse beyond the first access. If this

probability is below 1/64, the dynamic texture block is demoted to RRPV three on

its first read hit. If this probability is between 1/64 and half, the RRPV is set to two.

In all other cases, the block is promoted to RRPV zero. To be able to implement

this policy, the WSS cache entry needs to be extended by one bit for each sampled

block to track the number of read reuses (only need to distinguish between zero or

more reuses). Therefore, we need seven state bits per tracked block in a WSS cache

entry. Figure 3.10 summarizes our read hit policy proposal.

3.4 Dynamic Reuse Probability for LLC 57

((S==TEXTURE) AND
B.PIN 0

READ HIT
0B.RRPV

N 3B.RRPV

Y

N

P[MORE READ REUSE] IN [1/64, 1/2)?

0B.RRPV
N

Y2B.RRPV

FIRST ACCESS TO A DIRTY BLOCK
WRITTEN TO BY COLOR/BLIT/DEPTH)?

P[MORE READ REUSE]<1/64?Y

Figure 3.10: Read hit policy for a block B coming from stream S. P[E] denotes the
probability of event E.

3.4.6 Storage Overhead

The primary storage overheads in our policy arise from the WSS cache, the extra

state bits needed with each LLC block, and the saturating counter table T used

in SHiP-PC. Our simulated system uses a page size of 4 KB and 48-bit physical

addresses. Our design uses a 2K-entry WSS cache organized to have 128 sets and 16

ways. Therefore, the page tag of each WSS cache entry is 29 bits wide. We sample

every eighth block in a sampled page. Therefore, each WSS cache entry tracks

eight blocks leading to a total entry size of 86 bits (one valid bit, 29-bit tag, eight

blocks×seven state bits/block). Thus, the WSS cache overhead is about 22 KB.

Each LLC block, in addition to the RRPV bits, needs a pin bit. Two more bits per

LLC block track the following four states: color/blit/depth write state (necessary

to identify the dynamic texture blocks which consume data written to by the color,

blitter, or depth stream), dynamic texture blocks with zero reuse count, dynamic

texture blocks with at least one reuse count, and none of these. Thus, three extra

bits are needed per LLC block leading to a total overhead of 96 KB (on top of

the existing RRPV bits) for a 16 MB LLC. The saturating counter table T has

16K entries with each entry being a three-bit counter. Thus, T is of size 6 KB. In

addition to these, the reuse and access counters and the fill PC signature (needed

58 Dynamic Reuse Probability-based Last-level Cache Management

by SHiP-PC) stored with the LLC blocks in a few sampled sets (32 per 1K LLC

sets) add negligible overhead. Overall, our policy requires 124 KB of extra storage

which is less than a percentage of the bits in the data array of the 16 MB LLC.

3.4.7 Latency Considerations

The hit/miss policies decide the RRPV and the PIN bit of the block being accessed.

The general decision procedure involves a set of short comparisons, all of which can

be done in parallel. For example, the write miss policy involves the following in-

dependent comparisons: (WR[S] ≥ MAX REUSE/3), (WR[S] ≥ WA[S]/8), (WR[S]

== 0), (WA[S] ≥ 128K), and (WR[S] > MAX REUSE/2). Note that whether

pinning is favorable or not can be evaluated by another independent comparison

between the read miss counters of the two set dueling groups. The comparison out-

comes can then be combined using a couple of independent short multiplexers to

assign the final values to RRPV and PIN. These comparators and multiplexers add

negligible area overhead to the LLC controller logic. In the case of a hit (read or

write), the critical path through this computation can be comfortably overlapped

with the latency of data read-out from the LLC data array, which has a latency

of three cycles (out of the total ten-cycle LLC lookup latency). In the case of a

miss (read or write), the critical path is overlapped with the data write (i.e., fill)

latency into the LLC data array. We assume the data write latency to be same as

data read latency. Although the RRPV and PIN updates are overlapped with data

array access, this implementation holds up the LLC tag array for the entire duration

of ten cycles. As a result, our simulations pessimistically model a ten-cycle delay

for all LLC tag lookups, part of which is overlapped with data access making the

3.5 Related Work 59

overall critical path through the LLC ten cycles. The WSS array is looked up in

parallel with the LLC tag array. Due to the small size of the WSS array, its lookup

finishes much earlier than the LLC tag lookup.

3.5 Related Work

In this section, we discuss the contributions related to the management of LLCs in

general-purpose CPUs, heterogeneous CMPs, and discrete GPUs.

3.5.1 LLC Management in CPUs

Dynamic insertion policy (DIP) adaptively inserts a block into the LLC at the LRU

or the MRU position depending on the outcome of a set-sampling-based duel between

LRU insertion and MRU insertion policies [83]. On a cache hit, a block is always

upgraded to the MRU position. The replacement policy always victimizes the block

at the LRU position. This algorithm tries to eliminate the single-use blocks from

the LLC as early as possible without disturbing the rest of the contents of the LLC.

A subsequent proposal has shown how to employ this policy in a shared LLC of a

multi-core processor so that each thread can choose the best insertion policy [36].

A decision-tree based insertion age inference algorithm has also been proposed [49].

The concepts of re-reference prediction value (RRPV) and re-reference interval

prediction (RRIP) are introduced in [35]. The RRPV of a block maintains an inverse

relation with the block’s victimization priority. With an n-bit RRPV, the static re-

reference interval prediction (SRRIP) algorithm statically assigns an RRPV of 2n−2

to a block on insertion into the LLC. On a hit, the RRPV of the block is updated to

zero. A block with RRPV 2n−1 is selected as the victim. The dynamic re-reference

60 Dynamic Reuse Probability-based Last-level Cache Management

interval prediction (DRRIP) algorithm dynamically chooses between two insertion

RRPVs, namely, 2n−2 and 2n−1 based on the outcome of a set-sampling-based duel.

Thread-aware DRRIP (TADRRIP) applies the technique proposed in [36] to allow

multiple independent threads to execute DRRIP in a multi-core shared LLC. Recent

proposals exploit signature-based hit prediction (SHiP) to improve the RRIP policies

by using the program counters (SHiP-PC), memory addresses (SHiP-mem), or code

path signatures (SHiP-Iseq) of the load/store instructions [106]. These variants of

RRIP differ only in the way they assign a victimization priority to a block at the

time of insertion into the LLC, but they handle hits and replacements in the same

way. Explicit prediction of reuse distance [47], estimation of approximate next-

use distance [69], and estimation of protection distance [17] have also been used to

improve LLC performance.

Algorithms to partition the LLC among the referenced and non-referenced blocks

and grow/shrink these partitions based on the dynamic demand have been ex-

plored [51]. Also, there have been LLC management proposals designed based on

the observation that the LLC read misses originating from loads are more critical

than those originating from stores [48]. Use of a small Bloom filter to capture a

subset of the recently evicted blocks and algorithms to offer higher protection to a

subset of such blocks which are accessed soon have been explored [91].

Another class of LLC management policies attempt to predict the dead blocks in

the cache and victimize them early. The dead block prediction algorithms correlate

the program counters of the load/store instructions with the death of the cache

blocks that these instructions touch [29, 50, 52, 53, 59, 65]. Probabilistic escape

LIFO is a light-weight dead block prediction technique that does not require the

program counter signature and relies only on the fill order of the cache blocks within

3.5 Related Work 61

a cache set [8]. Reuse pattern-based simple hints from the inner levels of the cache

hierarchy in conjunction with a clever partitioning of the address space have also

been used to effectively identify the dead and live LLC blocks [7, 22].

Algorithms have been proposed to explicitly partition the shared LLC among

the competing threads of a multi-core processor. The utility-based cache partition-

ing (UCP) algorithm carries out a coarse-grain partitioning of the LLC by dynam-

ically assigning a number of ways to each thread [84]. The promotion/insertion

pseudo-partitioning (PIPP) policy improves UCP by designing smart insertion and

promotion policies for cache blocks within each partition [107]. Subsequent pro-

posals such as Vantage [90] and PriSM [68] eliminate the limitations of way-grain

partitioning and allow each thread to have an arbitrary fine-grained partition. A

recent proposal designs dynamic partitioning policies for the LLC using a model

that can predict the application slowdown caused by the destructive interference in

the LLC shared by multiple CPU cores [100]. Since the existing cache partitioning

techniques treat the streams or threads as independent, these techniques cannot be

applied directly to the 3D graphics streams, which have significant inter-stream data

sharing (e.g., between render target and texture sampler access streams [21]). Our

policy, instead of carrying out an explicit partitioning, induces implicit fine-grain

partitions among the streams by estimating per-stream dynamic reuse probability

and allocating more space to the streams that are likely to enjoy more reuses.

3.5.2 Managing LLC in Heterogeneous CMPs

The TLP-aware policies (TAP) for managing the LLC in a heterogeneous CMP

extend RRIP and UCP policies to take into account GPU accesses to the shared

62 Dynamic Reuse Probability-based Last-level Cache Management

LLC [62]. Since these policies only target GPGPU-style scientific computing work-

loads running on the GPU, it is enough to understand how the shader cores react

to changing LLC allocations ignoring the performance of the rest of the graphics

pipeline. As a result, these policies (TAP-RRIP and TAP-UCP) sample two shader

cores and allow the accesses coming from these two cores to follow LRU and MRU

insertion policies in the LLC. Based on the performance difference of these two sam-

pled cores, the proposal decides if the executing GPU application is LLC-sensitive.

Accordingly, the proposal makes modifications to the RRIP and UCP policies. To

apply this proposal to 3D scene rendering applications, it is necessary to sample two

rendering pipelines consisting of two distinct slices of several fixed function units as

well as two shader cores. To observe any difference in performance between the two

sampled rendering pipelines, enough work must be done by the pipelines; the differ-

ence in performance impact due to LRU and MRU insertions takes time to manifest,

particularly in the presence of large reuse distances so that even the MRU-inserted

blocks may get replaced before getting reused. We observe that this time window is

typically equivalent to processing of a few batches of polygons. However, to satisfy

ordering requirements between two consecutive batches, the processing of a fresh

batch cannot begin until the processing of the last batch is completed. Due to this

implicit global synchronization between the parallel rendering pipelines inside the

GPU, the performance difference between the sampled pipelines cannot be accumu-

lated across batches. As a result, sampling different pipelines and observing how

they react to different LLC policies, as TAP does, is not helpful for 3D scene ren-

dering workloads. In contrast, our proposal improves the performance of the entire

graphics pipeline by basing the LLC policy decisions on estimated dynamic reuse

probabilities.

3.5 Related Work 63

Another proposal (HeLM) considers not allocating a fraction of the GPU data (com-

ing from GPGPU-style scientific computing workloads running on the GPU) in the

shared LLC if it is estimated that the CPU workload is LLC-sensitive and the GPU

workload can tolerate LLC miss latency [71]. The degree of latency tolerance of a

GPU workload is determined by taking into account the number of shader thread

contexts ready to be scheduled at any point in time. A larger number of ready

contexts usually offers bigger latency tolerance. The exact relationship between the

degree of latency tolerance and the volume of ready thread contexts is estimated

by sampling two shader cores and letting them bypass their misses at two different

rates (one low and one high). Since the performance difference between two widely

different bypass rates becomes visible much faster than LRU/MRU insertions (as

is done in TAP), we find that the HeLM proposal can be adopted to the rendering

pipelines more effectively even in the presence of the implicit synchronization be-

tween consecutive polygon batches. However, since HeLM relies on the number of

ready shader thread contexts for determining the degree of latency tolerance, such

a technique is expected to work only for those GPU workloads that exercise only

the shader cores of the GPU and no other parts of the rendering pipeline.

To the best of our knowledge, ours is the first proposal that considers optimiza-

tions to the shared LLC of a heterogeneous CMP executing 3D graphics as well as

GPGPU workloads in the presence of co-running CPU workloads.

3.5.3 LLC Management in Discrete GPUs

The graphics stream-aware probabilistic caching proposal discusses algorithms for

improving the LLC performance in discrete GPUs [21]. These algorithms exploit

64 Dynamic Reuse Probability-based Last-level Cache Management

semantic information regarding 3D graphics streams and modulate the RRPV of

a block based on the reuse behavior of the stream it belongs to. Since the reuse

behavior is estimated by observing a few sampled LLC sets, the estimation is not

accurate and changes depending on the accuracy of the replacement policies of the

sampled LLC sets. In this paper, we estimate reuse probabilities by working set

sampling, which is not affected by the implementation of the LLC.

Large number of proposals have explored policies to improve the efficiency of the

internal caches in the discrete GPUs. These include shader cores’ L1 cache bypass

policies for GPGPU-style scientific computing workloads [11], shader cores’ L1 cache

allocation policies based on a certain priority assignment to the shader threads exe-

cuting GPGPU-style scientific computing workloads [64], and various optimization

on the texture cache architecture [12, 13, 25, 31, 32, 104]. Additionally, there have

been proposals exploring shader thread scheduling mechanisms that are shader cores’

L1 cache performance-aware [38, 40, 45, 61, 63] or memory divergence-aware [88].

DRAM scheduling techniques to minimize the main memory access latency varia-

tion across the shader threads within a scheduling group (called a warp in Nvidia

GPUs) have also been proposed [6]. Some of these memory hierarchy-aware schedul-

ing techniques may help address shader thread-induced contention in large LLCs in

applications that make heavy use of the shader cores to process large amounts of

global data with irregular access patterns. However, in the 3D scene rendering ap-

plications, large volumes of data originate from fixed-function hardware and the

shader threads typically operate on contiguously allocated pixel fragments (during

pixel shading) and vertex attributes (during vertex shading) ruling out the possibil-

ity of conflict-induced loss of locality in shader data.

3.6 Simulation Results 65

3.6 Simulation Results

In this section, we evaluate our dynamic reuse probability (DRP)-aware policy pro-

posal in terms of performance improvement and LLC miss savings for a 16 MB

LLC. We begin the discussion by presenting the average (geometric mean) speedup

achieved by our proposal and the SHiP-hybrid policy, which we have designed to

represent a version of the SHiP proposal suitable for a CPU-GPU heterogeneous

environment. This comparison is shown in Figure 3.11. The speedup averages are

shown separately for the CPU and the GPU workloads, the average being computed

over all eighteen heterogeneous mixes. For the 1C1G configuration, our DRP-aware

policy improves average GPU performance by 8%, while SHiP-hybrid achieves an

average improvement of only 3%. None of the policies, however, is able to improve

the CPU performance much (less than 2% improvement). For the 2C1G config-

uration, the DRP-aware policy improves average GPU performance by 9%, while

SHiP-hybrid exhibits an average speedup of 5%. The improvement in the average

CPU performance is 3% and 4%, respectively for the SHiP-hybrid policy and the

DRP-aware policy. For the 4C1G configuration, the DRP-aware policy improves

average GPU performance by 12% and SHiP-hybrid is able to improve the GPU

performance by 7%, on average. For this configuration, our proposal lags a couple

of percentages behind the SHiP-hybrid policy for the CPU performance (7% im-

provement in our proposal compared to 9% in SHiP-hybrid); our proposal sacrifices

some CPU hits to improve GPU performance significantly for the 4C1G configu-

ration. In general, as the CPU core count increases, both the policies offer better

improvements compared to the baseline with our DRP-aware proposal staying rea-

sonably ahead of the SHiP-hybrid policy for GPU performance.

66 Dynamic Reuse Probability-based Last-level Cache Management

1C1G 2C1G 4C1G
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

S
p

e
e

d
u

p
 o

v
e

r
b

a
s
e

lin
e

SHiP−hybrid−GPU

DRP−GPU

SHiP−hybrid−CPU

DRP−CPU

Figure 3.11: Average speedup comparison. The baseline policy was introduced in
Section 3.1.

S1 S2 S3 S4 S5 S6 S7 S8 S10 S12 S14 S16 S18
0.9

1

1.1

1.2

1.3

1.4

CPU

GPU

D1 D2 D3 D4 D5 D6 D7 D8 D10 D12 D14 D16 D18
0.9

1

1.1

1.2

1.3

1.4

CPU

GPU

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q12 Q14 Q16 Q18
0.9

1

1.1

1.2

1.3

1.4S
p

e
e

d
u

p
 o

v
e

r
b

a
s
e

lin
e

 1.
51

CPU

GPU

Figure 3.12: Speedup achieved by the DRP-aware proposal for the mixes. The
baseline policy was introduced in Section 3.1.

Figure 3.12 presents the performance speedup achieved by our DRP-aware pol-

icy for each of the heterogeneous mixes. For each mix, we show the GPU and CPU

speedup separately. The top, middle, and bottom panels show the results for the

1C1G, 2C1G, and 4C1G configurations, respectively. Across the board, the GPU

performance improves significantly. Several workloads enjoy at least 10% improve-

3.6 Simulation Results 67

ment in GPU performance, the maximum gain being 51% experienced by Q9. The

improvement in CPU performance is much less, particularly for the 1C1G and 2C1G

configurations. However, for the 4C1G configuration, several mixes enjoy more than

5% CPU performance improvement, the maximum gain being 19% experienced by

Q9. In the 1C1G configuration, the CPU performance suffers a slowdown in some

mixes because of back-invalidations induced by premature LLC replacement of CPU

blocks.

To understand the source of the performance improvements, Figure 3.13 shows

the normalized LLC read miss count for the baseline and our DRP-aware proposal.

The results are normalized to the baseline policy. The top, middle, and bottom

S1 S2 S3 S4 S5 S6 S7 S8 S10 S12 S14 S16 S18
0

0.2
0.4
0.6
0.8

1
1.2

Baseline DRPCPU GPU

D1 D2 D3 D4 D5 D6 D7 D8 D10 D12 D14 D16 D18
0

0.2
0.4
0.6
0.8

1
1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q12 Q14 Q16 Q18
0

0.2
0.4
0.6
0.8

1
1.2

N
o
rm

a
li
z
e
d
 L

L
C

 r
e
a
d
 m

is
s
 c

o
u
n
t

Figure 3.13: Normalized read miss count of the mixes. The baseline policy was
introduced in Section 3.1.

panels show the results for the 1C1G, 2C1G, and 4C1G configurations, respectively.

68 Dynamic Reuse Probability-based Last-level Cache Management

Across the board, we see impressive LLC read miss savings achieved by the DRP

policy. For the 1C1G and 2C1G configurations, the volume of CPU misses remains

mostly unaffected, except for a few cases, most notably D17, which enjoys a signif-

icant reduction in the volume of CPU misses. Additionally, D4 and D9 show some

reduction in the volume of CPU misses. Among the workloads that show more than

5% improvement in the CPU performance with DRP in the 1C1G and 2C1G config-

urations, S9, S15, S16, S18, and D16, do not show any noticeable reduction in the

CPU read miss volume. The CPU workloads of these mixes benefit from an overall

reduction in the LLC read miss count leading to lowered congestion and queuing

delays in the memory controllers resulting in an improvement in the LLC miss la-

tency. Each of these workloads enjoys at least 20% reduction in the total LLC read

miss count. For the 4C1G configuration, the CPU read miss counts reduce signifi-

cantly across the board (exceptions are Q3, Q5, Q16, and Q18). However, Q16 and

Q18 experience significant improvement in the CPU workload performance due to

reduced queuing delays in the memory controllers. Each of these two mixes enjoys

at least 20% reduction in the total LLC read miss count. Turning to the GPU read

misses, we observe that the DRP proposal is able to reduce the volume of these

misses across the board. Overall, in all the configurations, a significant number of

workloads enjoy at least 10% saving in the total LLC read miss count.

The DRP proposal exercises four sub-policies, namely, the read miss policy, the

read hit policy, the write miss policy, and the write hit policy. In the following,

we quantify the contribution of these sub-policies toward saving LLC read misses.

Figure 3.14 summarizes the average savings in LLC read misses (averaged over eigh-

teen mixes) for the 1C1G, 2C1G, and 4C1G configurations. In each configuration,

the two leftmost bars correspond to the baseline and the SHiP-hybrid policies. The

3.6 Simulation Results 69

1C1G 2C1G 4C1G
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
z
e

d
 L

L
C

 r
e

a
d

 m
is

s
 c

o
u

n
t

B

a
s

e
li

n
e

S
H

iP
−

h
y

b
ri

d

R
e

a
d

 m
is

s

R
e

a
d

 m
is

s
+

R
e

a
d

 h
it

A
ll

 s
u

b
−

p
o

li
c

ie
s

CPU GPU

Figure 3.14: Normalized average read miss count.

next three bars quantify the gradual savings in the LLC read misses as we enable

different sub-policies of our DRP proposal. The “Read miss” bar shows the effect of

enabling the read miss sub-policy. The “Read miss+Read hit” bar shows the effect

of enabling both read miss and read hit sub-policies. The last bar in each group

shows the effect of enabling all the sub-policies i.e., this bar quantifies the average

normalized LLC read miss count of our DRP proposal. Since the write miss and the

write hit sub-policies are similar in nature, we do not show their benefits separately.

The combined benefit offered by these two sub-policies can be seen in the differ-

ence between the rightmost bar and the “Read miss+Read hit” bar in each of the

configurations. In the 1C1G and 2C1G configurations, on average, the volume of

CPU misses remains almost unaffected. However, in the 4C1G configuration, there

is a significant reduction in the volume of CPU misses compared to the baseline.

Our DRP proposal, on average, saves 13%, 12%, and 13% LLC read misses in the

1C1G, 2C1G, and 4C1G configurations, respectively. It achieves significant savings

in the GPU misses across the board. All the sub-policies exhibit important contri-

butions to the overall LLC miss savings. We note that the Read miss sub-policy is

slightly better than the SHiP-hybrid policy in the 1C1G and 2C1G configurations.

70 Dynamic Reuse Probability-based Last-level Cache Management

The SHiP-hybrid policy, on average, enjoys 7%, 8%, and 11% LLC miss savings in

the 1C1G, 2C1G, and 4C1G configurations, respectively. For the 4C1G configu-

ration, our DRP proposal saves 7% LLC read misses on average compared to the

SHiP-hybrid policy if we consider only the GPU misses. These savings offer a sig-

nificant advantage in GPU performance to the DRP-aware policy compared to the

SHiP-hybrid policy for the 4C1G configuration, as already shown in Figure 3.11.

3.6.1 Comparison to Related Proposals

There have been two proposals, namely, TAP [62] and HeLM [71], for managing

the shared LLC in heterogeneous CMPs. These proposals were briefly introduced in

Section 3.5. We also pointed out that due to an implicit synchronization between the

processing of consecutive batches of polygons in the 3D scene rendering applications,

the TAP proposal loses its effectiveness in these applications. On the other hand,

HeLM relies on aggressive bypassing of GPU read misses if the GPU application

shows latency-tolerance through the presence of a good number of ready shader

thread contexts.

Figure 3.15 shows the average speedup (over the baseline) of our DRP-aware

proposal and HeLM. For each configuration, we show the average speedup achieved

by the CPU and the GPU workloads separately. The left half of the results shows the

average over all eighteen mixes, while the right half shows the average over only the

mixes having CUDA applications. The left half shows that HeLM is not particularly

effective for this set of applications (as already pointed out in Section 3.3). Only

for the 4C1G configuration, it is able to improve the CPU performance by 6% while

sacrificing slightly over 2% GPU performance. The average speedup for the CUDA

3.6 Simulation Results 71

1C1G 2C1G 4C1G 1C1G 2C1G 4C1G
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

S
p
e
e
d
u
p
 o

v
e
r

b
a
s
e
lin

e

Average of CUDA MixesAverage of All Mixes

HeLM−GPU

DRP−GPU

HeLM−CPU

DRP−CPU

Figure 3.15: Speedup of HeLM and DRP. The baseline policy was introduced in
Section 3.1.

mixes, however, confirms that HeLM can be effective for the GPU applications

that make use of only the shader cores. This was the original scenario for which the

HeLM policies were designed. HeLM identifies a GPU application as latency-tolerant

by looking at the number of ready shader thread contexts. Such a mechanism is

expected to work only for those GPU applications that exercise primarily the shader

cores. On the other hand, the 3D scene rendering workloads exercise several fixed

function units in addition to the shader cores. As a result, determining latency-

tolerance of such applications requires more involved techniques. Nonetheless, our

DRP-aware proposal still outperforms HeLM in all cases even for the CUDA mixes

except for the GPU performance in the 1C1G configuration, where HeLM enjoys a

nearly 9% speedup as compared to nearly 7% speedup achieved by DRP. With the

increasing CPU core count, the bypass-induced congestion in the memory controllers

begins to affect the benefits of HeLM for the CUDA mixes.

72 Dynamic Reuse Probability-based Last-level Cache Management

3.7 Conclusion

We have presented a novel LLC management policy for the emerging heterogeneous

CMPs. Our proposal estimates the reuse probabilities of different access streams

seen by the LLC and exploits these estimates to manage the blocks in the LLC. At

the heart of our dynamic reuse probability estimation technique is a small working

set sample cache, which retains a few blocks in a few sampled pages to learn the near-

term and far-flung reuse probabilities. Our proposal saves 13% LLC read misses on

average, improves the GPU workload performance by 12% on average, and improves

the CPU workload performance by 7% on average in a CMP with four CPU cores

and one GPU.

Chapter 4

QoS-guided Dynamic GPU Access

Throttling

The focus of this chapter is the scenario where the GPU of a heterogeneous processor

is used to execute 3D animation utilizing the entire rendering pipeline and at the

same time the CPU cores are used to carry out general-purpose computing. Such

a scenario arises in various real-world situations. For example, when the GPU is

rendering a 3D animation frame, the CPU cores are typically engaged in preparing

the geometry of the next frame requiring AI and physics computation. Also, in a

high-performance computing facility, while the CPU cores do the heavy-lifting of

scientific simulation of a certain time step, the GPU can be engaged in rendering

the output of the last few time steps for visualization purpose [72, 96]. In this chap-

ter, we present memory system management driven by the quality of service (QoS)

requirement of the 3D scene rendering applications executing on the GPU along

with applications on the CPU cores in such heterogeneous platforms. Our proposal

dynamically estimates the level of QoS (e.g., frame rate in 3D scene rendering) of

74 QoS-guided Dynamic GPU Access Throttling

the GPU application. Unlike the prior proposals, our algorithm does not require

any profile information and does not assume tile-based deferred rendering. If the

estimated quality of service meets the minimum acceptable QoS level, our proposal

employs a light-weight mechanism to dynamically adjust the GPU memory access

rate so that the GPU is able to just meet the required QoS level. The memory sys-

tem resources, thus freed, is shifted to the co-running CPU applications. Detailed

simulations done on a heterogeneous chip-multiprocessor with one GPU and four

CPU cores running heterogeneous mixes of DirectX, OpenGL, and CPU applica-

tions show that our proposal is able to improve the CPU performance by 18% on

average. This chapter’s proposal does not impact the performance of the following

two heterogeneous computing scenarios.

• The GPU executes 3D scene rendering applications that fail to meet the tar-

get QoS (frame rate) necessary for satisfactory for visual experience in certain

phases. In these phases, out proposal does not find any opportunity of shifting

memory system resources from the GPU to the CPU and leaves the perfor-

mance of the applications unchanged.

• The GPGPU applications do not have any well-defined QoS target. The perfor-

mance of the heterogeneous workload mixes containing GPGPU applications

is not influenced by our proposal.

We address the performance issues of the heterogeneous workload mixes encapsu-

lating these two scenarios in the next chapter. This chapter’s focus is on the hetero-

geneous workload mixes containing 3D scene rendering applications that meet the

target frame rate requirement.

4.1 Motivation 75

The rest of the chapter is organized as follows. Section 4.1 presents a study

demonstrating that despite degradation in the heterogeneous mode of execution,

certain GPU applications perform above the required QoS limit for adequate visual

experience and that the existing resource shifting algorithms are sub-optimal. Sec-

tion 4.2 presents our QoS-guided memory management proposal. Sections 4.3, 4.4,

and 4.5 present related work, simulation results, and conclusions, respectively.

4.1 Motivation

In this section, we first motivate the necessity to study memory system resource

management techniques in CPU-GPU heterogeneous processors by showing that

the co-running CPU and GPU applications in such systems suffer from significant

performance degradation compared to when they are run standalone. These results

were discussed in detail in Chapter 2 (see Figure 2.7). We reproduce a portion of

these results here for reader’s convenience. We observe that, even after suffering from

a significant degradation in performance in the heterogeneous mode of execution,

several GPU applications still continue to deliver a level of performance that is

higher than necessary. When GPUs are used for rendering 3D scenes, it is sufficient

for them to achieve a minimum acceptable frame rate. This relaxation is guided by

the fact that due to the persistence of vision, human eyes cannot perceive a frame

rate that is above a limit. This observation motivates us to explore mechanisms to

dynamically shift memory system resources from the GPU to the CPU cores so that

the GPU can just meet the minimum frame rate requirement. Prior studies have

explored LLC bypassing as a technique to dynamically shift cache capacity from

the GPU to the CPU cores in heterogeneous processors [71]. These studies rely

76 QoS-guided Dynamic GPU Access Throttling

on the inherent latency hiding capability of the GPUs and assume that bypassing

LLC won’t degrade GPU performance. These studies, however, seem to overlook

the impact of increased demand of the DRAM bandwidth due to a large number of

GPU fills bypassing the LLC causing an increase in the volume GPU LLC misses.

The last chapter has highlighted this fact demonstrating that aggressive LLC bypass

by the GPU can degrade both CPU and GPU performance due to increased DRAM

congestion. In this chapter, we further argue that compared to LLC bypassing,

throttling the GPU access rate to the memory system is a more effective technique

for shifting memory system resources to the co-running CPU applications.

To understand the implication of heterogeneous execution on the performance of

the CPU and the GPU applications when they execute together and contend for the

memory system resources, we conduct a set of experiments. In these experiments,

the heterogeneous CMP has one CPU core and a GPU clocked at 4 GHz and 1 GHz,

respectively (1C1G configuration). The shared LLC is of 16 MB capacity and there

are two on-die single-channel DDR3-2133 memory controllers.1 In the first of these

experiments, we run a CPU job (SPEC CPU 2006 application) on the CPU core and

keep the GPU free (standalone CPU workload execution). In the second experiment,

we run a 3D animation job (drawn from DirectX and OpenGL games) on the GPU

and keep the CPU free (standalone GPU workload execution). Finally, we run both

jobs together to simulate a heterogeneous execution scenario.

Figure 4.1 shows the performance of the CPU job and the GPU job in the

heterogeneous mode normalized to the standalone mode for fourteen such hetero-

geneous workload mixes (S1 to S14 from Table 2.4 in Chapter 2). Each workload

mix contains one DirectX or OpenGL application and a SPEC CPU 2006 appli-

1 Chapter 2 discusses our simulation environment in more detail.

4.1 Motivation 77

cation. On average, both the CPU and the GPU lose 22% of performance when

going from the standalone mode to the heterogeneous mode (see the GMEAN group

of bars).1 This loss in performance results from the contention for LLC capacity

and DRAM bandwidth between the two types of applications running simultane-

ously. Prior studies have also observed large losses in performance due to mem-

ory system resource interference between the co-running CPU and GPU applica-

tions [3, 37, 46, 62, 71, 78, 85, 94, 95, 103].

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

G
M

E
A

N

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

CPU GPU

Figure 4.1: Performance of CPU and GPU in heterogeneous execution normalized
to standalone execution. The y-axis shows the ratio of the standalone execution
time to the heterogeneous execution time.

Even though a 3D scene rendering workload suffers from a large loss in perfor-

mance when going from the standalone mode to the heterogeneous mode of execu-

tion, this loss may not be noticed by an end-user if the frame rate continues to be

above the level required for visual satisfaction. Figure 4.2 shows the frame rates of

the individual GPU applications belonging to the fourteen heterogeneous mixes for

both standalone and heterogeneous modes of execution. We observe that even in

the heterogeneous mode several GPU applications continue to deliver a frame rate

that is comfortably above the 30 frames per second (FPS) mark, which is generally

1 The CPU application in S7 enjoys a 19% improvement in performance in the heterogeneous
mode compared to the standalone mode due to an unpredictable improvement in DRAM row-buffer
locality.

78 QoS-guided Dynamic GPU Access Throttling

considered to be the acceptable frame rate for visual satisfaction. Ideally, such ap-

plications should relinquish part of the memory system resources so that they can

be utilized by the co-scheduled CPU applications. The challenge in designing such a

dynamic memory system resource allocation scheme is two-fold. First, one needs to

estimate and accurately project the frame rate of a GPU application. Second, based

on this projection, one needs to design a memory system resource shifting algorithm

that moves an appropriate amount of memory system resources from the GPU to

the CPU cores so that the GPU continues to perform just around the target QoS

threshold. These two algorithms form the crux of our proposal. In the rest of the

study, we consider 40 FPS to be the target QoS threshold for 3D scene rendering

leaving a 10 FPS cushion for handling any momentary dip.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
0

50

100

150

200

250

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

 (
F

P
S

)

A
v
e

ra
g

e

Standalone Heterogeneous

Figure 4.2: Comparison of GPU frame rate in standalone and heterogeneous execu-
tion. The reference line shows 30 FPS mark.

Two primary memory system resources that are shared between the GPU and the

CPU cores are LLC capacity and DRAM bandwidth. Therefore, for best outcome,

an algorithm that dynamically shifts memory system resources from the GPU to

the CPU applications based on estimated performance levels would try to focus on

both LLC capacity and DRAM bandwidth. Prior studies have explored bypassing

the LLC for GPU read misses thereby targeting only the LLC capacity [71]. An

ideal LLC bypass algorithm for GPU applications would only free up portion of the

4.1 Motivation 79

LLC for CPU applications while leaving the DRAM bandwidth consumption of the

GPU unchanged. However, since designing an ideal bypass algorithm is difficult,

it is expected that the DRAM bandwidth consumption of the GPU will increase

when LLC bypassing for GPU read misses is enabled. Since the GPU is designed

to have high latency-tolerance, these additional LLC misses may not hurt the GPU

performance. However, the extra DRAM bandwidth consumed by these additional

GPU LLC misses can lead to significant drop in CPU performance.

Figure 4.3 shows the impact on CPU workload performance when all GPU read

misses are forced to bypass the LLC. On average, compared to the heterogeneous

mode of execution without LLC bypass for GPU read misses, the CPU applications

lose 2% performance. While there are CPU applications that gain as much as

10% (S4), there are also applications that lose as much as 14% (S9).1 The CPU

applications which fail to utilize the additional LLC capacity created through GPU

read miss bypass start suffering due to increased DRAM bandwidth contention. The

GPU applications enjoy a significant volume of reuses from the LLC in the baseline.

When all GPU fills bypass the LLC, the GPU applications lose these reuses and

significantly increase the DRAM traffic. This increased DRAM bandwidth pressure

hurts the performance of both CPU and GPU. We revisit this aspect in Section 4.4

when we evaluate HeLM, the state-of-the-art LLC management policy that relies on

selective LLC bypass of GPU fills [71]. In summary, any algorithm that dynamically

shifts memory system resources from the GPU to the CPU applications must be able

1 Figure 3.3 in Chapter 3 showed the performance results when 100% GPU fills are forced
to bypass the LLC. However, those results also included the heterogeneous mixes containing the
GPGPU applications. Bypassing GPU fills in GPGPU applications brings significant improvement
in the performance of the co-scheduled CPU workload mixes. As a result, averaged across all
mixes, the CPU improved in performance by 5% when all GPU fills bypass the LLC in the 1C1G
configuration. In this chapter, we focus on only the subset of the heterogeneous mixes that contain
3D scene rendering workloads.

80 QoS-guided Dynamic GPU Access Throttling

to create LLC capacity as well as DRAM bandwidth for the CPU applications. In

our proposal, we use the important insight that throttling the GPU access rate to

the LLC can achieve both the goals. A slowed down GPU access rate automatically

ages the GPU blocks faster in the LLC leading to their eviction from the LLC

and creating more LLC capacity for the CPU applications. Also, a slowed down

GPU access rate to the LLC naturally lowers the GPU’s demand on the DRAM

bandwidth; even though the volume of GPU LLC misses increases, these misses are

sent to the DRAM at a dynamically controlled rate that is just enough for the GPU

application to meet the target QoS threshold.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

C
P

U
 s

p
e

e
d

u
p

G
M

E
A

N

Figure 4.3: CPU speedup when all GPU read miss fills are forced to bypass the
LLC.

4.2 Memory Access Management

In this section, we present our proposal on memory access management for CPU-

GPU heterogeneous processors. Our proposal involves a three-step algorithm. In

the first step, we dynamically estimate the frame rate of the GPU application. In the

second step, depending on the estimated frame rate, we determine an appropriate

rate at which GPU accesses are sent to the LLC. In the third step, depending on

the estimated frame rate, the CPU access priority is altered in the DRAM access

4.2 Memory Access Management 81

scheduler. If the estimated frame rate falls below the target QoS threshold, the

second and the third steps are not invoked and the GPU application continues to run

in the baseline heterogeneous mode without any change in the LLC access rate. The

predictive model for online frame rate estimation used in the first step is discussed

in Section 4.2.1. The access throttling mechanism is discussed in Section 4.2.2. The

changes in the DRAM access scheduler are discussed in Section 4.2.3. Section 4.2.4

quantifies the storage overhead of our proposal.

4.2.1 Dynamic Frame Rate Computation

For the 3D scene rendering workloads, our proposal requires knowledge of the frame

rate ahead of the actual completion of the frame so that the GPU access rate and

the DRAM access scheduler can be adapted accordingly. Such dynamic prediction

of the frame rate requires answering the following two questions.

1. How much is the amount of work per frame?

2. Given the rendering speed and the amount of work per frame, how to predict the

frame rate?

To answer these questions, we divide the entire rendering process into two phases,

namely, learning phase and prediction phase. In the learning phase, we monitor

rendering of a frame and measure the amount of work done and the time it takes to

complete. Once this information is obtained for one complete frame, we switch to

the prediction phase. In this phase, the data collected in the learning phase is used

to predict the frame rate. To ensure that the observed data follows the collected

data, new observations are cross-verified against the learned data. If it is found that

the observed values differ from the learned values by more than a threshold amount,

82 QoS-guided Dynamic GPU Access Throttling

the learned data is discarded and we switch back to the learning phase. Figure 4.4

demonstrates a sequence of phase transitions that happen in a hypothetical rendering

job. Rendering begins in the learning phase and continues to remain in that phase

till point A, where it is determined that the data for one complete frame has been

collected. Thus, at this point we transition into the prediction phase. Now, rendering

continues in this phase up to point B, where it is found that the learned data is no

more valid and thus, we transition back to the learning phase to collect fresh data.

At point C, we again transition to the prediction phase. This cycle is repeated until

the entire rendering job completes. Since we would like to maximize the number of

frames in the prediction phase for having good prediction coverage, the success of

this scheme improves if the amount of work in each frame within a set of consecutive

frames remains more or less constant.

A B C D

Learning phase Prediction phase

P
h
as

es

Figure 4.4: Rendering phases

4.2.1.1 Learning Phase

Rendering of a frame in a rudimentary sense boils down to computing the color

values of all pixels from the input geometry and updating these values into a buffer

commonly known as the render target (RT). In general, a single pixel in the RT

can get overdrawn multiple times depending on the order in which the geometry

primitives arrive for rendering and their depth. This complicates the estimation of

4.2 Memory Access Management 83

the amount of work involved in rendering a frame. We divide the RT into equal

sized t× t render target tiles (RTT). We divide the entire rendering of a frame into

render target planes (RTP). Each RTP represents a batch of updates that cover all

tiles of the RT. Therefore, the number of RTPs is the number of updates that cover

all tiles of the RT. This arrangement is shown in Figure 4.5.

Y

X

Render-Target tile

Render-Target plane

Figure 4.5: Render-target plane and tile

We maintain a 64-entry RTP information (RTPi) table in the GPU. For a frame,

each entry of this table maintains a valid bit and four pieces of information about

a distinct RTP. These four pieces of information are: (i) total number of updates

to the RTP, (ii) the number of cycles to finish the RTP, (iii) the number of RTTs

in the RTP, and (iv) the number of shared LLC accesses (i.e., GPU render cache

misses) made by the GPU for the entire RTP. Our implementation assumes each of

the four fields to be four bytes in size. The first three fields are used in the prediction

phase. The LLC access count is passed on to the access throttling algorithm (see

Section 4.2.2) for computing the maximum throttling rate. If the number of RTPs

in a frame exceeds 64, the last entry of the table is used to accumulate the data for

all subsequent RTPs.

84 QoS-guided Dynamic GPU Access Throttling

4.2.1.2 Prediction Phase

Our frame rate prediction model uses the RTP count and cycles per RTP recorded

during the learning phase to predict the current number of cycles per frame. If the

number of RTPs in a frame i is N i
rtp and the average number of cycles per RTP is

Ci
rtp, then the number of estimated cycles Fi required to render frame i is given by

Equation 4.1.

Fi = Ci
rtp ×N i

rtp (4.1)

Although N i
rtp is obtained directly from the data collected during the learning phase,

Ci
rtp for the frame being rendered currently has to be extrapolated using the number

of cycles the frame has taken so far and the cycles recorded in the RTP table, so that

the current rendering speed of the frame can be taken into account for obtaining the

full frame cycle count. Suppose the fraction of a frame that has been rendered so

far is λ, the average number of cycles per RTP seen in the current frame is Ci
inter,

and the average number of cycles per RTP recorded during the learning phase is

Ci
avg. Therefore, Ci

rtp can be computed using Equation 4.2.

Ci
rtp = λ× Ci

inter + (1 − λ) × Ci
avg (4.2)

If we substitute Equation 4.2 into Equation 4.1, we obtain the final expression for

the predicted number of cycles per frame as shown in Equation 4.3.

Fi = (λ× Ci
inter + (1 − λ) × Ci

avg) ×N i
rtp (4.3)

We note that λ is computed as the ratio of the number of RTPs completed so far

in the frame being currently rendered to the total number of RTPs observed during

4.2 Memory Access Management 85

the learning phase.

4.2.2 Access Throttling Mechanism

In this section, we discuss our GPU access throttling mechanism. This mechanism

is invoked only if the GPU is found to be meeting a target frame rate. For the 3D

scene rendering workloads that are predicted to meet a target frame rate, the rate

with which the GPU can send access requests to the shared LLC is throttled down.

Throttling GPU accesses before the LLC has two implications. First, the GPU

blocks in the LLC are accessed less frequently causing them to age faster compared

to the CPU blocks. This replaces the GPU blocks early increasing the number of

GPU misses and increasing the average residency of the CPU blocks in the LLC.

Second, the GPU accesses that miss in the LLC are seen by the DRAM at a slower

rate automatically shifting a bigger proportion of the DRAM bandwidth to the CPU

workloads. Our access throttling proposal allows NG GPU accesses within a window

of WG GPU cycles, thereby enforcing an average GPU access rate of NG/WG. This

is implemented as follows.

Every GPU access must go through a translation from the GPU address to the

global physical address before the access can be routed to the correct LLC bank.

This translation is accomplished by looking up the graphics translation table (GTT)

resident in the GPU (please refer to Chapter 2 for detail). At the beginning of a

window, NG and WG are initialized. WG is decremented on every GPU cycle and

NG is decremented on every GPU access to the GTT. As soon as NG reaches zero,

the GTT ports are disabled until WG reaches zero. As a result, during this period

the GPU is denied access to the LLC. When the GPU requests are denied access

86 QoS-guided Dynamic GPU Access Throttling

to the LLC, they are held back inside the GPU and occupy GPU resources such

as request buffers and MSHRs attached to the caches internal to the GPU. This

resource contention is modeled in detail in our evaluation. Any negative influence

that this resource contention may have on performance automatically gets reflected

in the progress of rendering and is captured by our frame rate estimation algorithm.

The estimation, in turn, feeds back into the throttling mechanism.

Choosing Values for WG and NG. We need an algorithm that automatically

adjusts NG and WG based on the estimated and the target frame rates. Let the

number of cycles per frame at the current predicted frame rate be CP , the number of

cycles per frame at the target frame rate be CT , and the number of LLC accesses per

frame be A (this is recorded during the learning phase of the frame rate prediction

model as discussed in Section 4.2.1.1). Therefore, if CP < CT meaning that the

GPU is delivering better frame rate than the target, we would like to increase WG

by (CT − CP)/A while holding NG at one. This increment is done gradually at a

step of two in each window. On the other hand, if CP ≥ CT , access throttling is

disabled by setting WG to zero and NG to one. Small oscillation around the target

frame rate can be avoided by disabling throttling within a small guard-band around

the target frame rate. Figure 4.6 shows the flow of the throttling mechanism.

4.2.3 DRAM Access Scheduler

The goal of our DRAM scheduling policy is to shift bandwidth to the CPU if the

GPU is able to meet target QoS. This is implemented using a simple scheme. If

the GPU is currently predicted to meet the target frame rate, the CPU requests

are prioritized over the GPU requests. Within a bank, among the requests that can

4.2 Memory Access Management 87

A, CT , CP as input

CP > CT
NG = 1
WG = 0

NG = 1

WG <
(CT−CP)/A

WG += 2

WG, NG as output

yes

no

yes

no

Figure 4.6: Flow of the algorithm that throttles LLC accesses from the GPU. A,
CT , and CP are input parameters. WG and NG are outputs.

88 QoS-guided Dynamic GPU Access Throttling

REMAINING
PARTS OF THE
HETEROGE-
NEOUS CMP

M
E

M
O

R
Y

IN
T

E
R

F
A

C
E

GPU PIPELINE

RTPi TABLE

ATU FRPU

Figure 4.7: Architecture of the frame rate prediction and access throttling mecha-
nism. FRPU is the frame rate prediction unit implementing the prediction mecha-
nism discussed in Section 4.2.1. ATU is the access throttling unit implementing the
algorithm discussed in Section 4.2.2. RTPi table was introduced in Section 4.2.1.1.

enjoy row buffer hits, the scheduling policy first schedules the CPU accesses in FCFS

order and then considers the rest. When a new row needs to be activated in a bank,

the oldest CPU access is given priority over the global oldest access. The scheduler

follows the baseline FR-FCFS algorithm if the GPU fails to meet the target frame

rate. Figure 4.7 summarizes our entire proposal.

4.2.4 Storage Overhead

The storage overhead of our proposal is small. It involves the RTPi table having 64

entries, each entry being 129 bits leading to a total investment of just over 1 KB. Our

proposal also requires two short registers to maintain WG and NG. One state bit is

required to indicate whether the DRAM access scheduler should invoke the baseline

policy or the policy with enhanced CPU priority. The primary storage overhead

arises from the RTPi table and it is important to note that the accesses to this table

are not on the critical path of the GPU accesses. Updates to this table happen

4.3 Related Work 89

off the critical path and this table is read only periodically at a certain interval for

computing the projected frame rate.

4.3 Related Work

Dynamic frame rate estimation has been studied in the context of tile-based deferred

rendering (TBDR) [37], commonly found in mobile GPUs [80, 86]. Dynamic progress

estimation of GPUs has also been explored in the presence of prior profile informa-

tion such as the number of memory accesses issued by the GPU application [103].

In contrast, our proposal does not make any assumption about the implementation

of the rendering pipeline and nor does it require a profile pass.

Request throttling to reduce unfairness in the memory system of CPU-based

CMPs has been explored [18]. The mechanism and goal of our proposed GPU

access throttling are, however, entirely different. Also, in the context of GPGPU

applications, there have been studies to throttle up/down the number of active warps

and active thread blocks in the shader cores based on memory system congestion

and GPU idle cycles [45, 46]. These are primarily shader core-centric proposals and

are not effective for the 3D scene rendering workloads that generate a large volume

of memory accesses from the fixed function units such as the texture samplers, color

blenders, depth test units, etc..

To gain better understanding of this class of shader core-centric throttling mecha-

nisms, we discuss the shortcomings of the balanced concurrency management (CM-

BAL) proposal [46] in more detail. CM-BAL scales up or down the maximum

number of ready shader threads based on the average stalls observed with differ-

ent thread configurations. We observe that CM-BAL fails to adequately throttle

90 QoS-guided Dynamic GPU Access Throttling

the GPU frame rate for three reasons. First, throttling only the shader threads

primarily impacts the texture access rate to the LLC because the texture samplers

are directly attached to the shader cores and the texture accesses are triggered by

texture filtering instructions of the shader program. However, in the 3D scene ren-

dering workloads considered by us, the texture accesses, on average, constitute only

25% of all LLC accesses coming from the GPU. As a result, throttling only the

texture access rate is not enough. The render output pipeline (ROP) consisting of

the color blenders, depth test units, and color writers receives shaded and textured

fragments from the shader cores and is responsible for writing out the final pixel

colors to the render buffer. It is necessary to drive the usually over-utilized ROP

to an under-utilized region of operation to be able to see an effect of shader core

throttling on the LLC access rate from the ROP. In practice, this is impossible to

achieve through shader core throttling alone. While it is feasible to throttle indi-

vidual units of the 3D rendering pipeline at appropriate rates, this leads to a design

that is far more complex than what we propose. Our proposal does not focus on any

particular unit in the rendering pipeline; it throttles the collective rate at which the

GPU can access the LLC. Second, different applications show different performance

sensitivity toward texture access rate, which experiences the first order impact of

shader core throttling. So, throttling the texture access rate is not guaranteed to

have a significant performance influence on the GPU. Third, at run-time when the

CM-BAL policy is applied, only a fraction of the texture accesses undergo throttling

further diminishing the overall performance impact.

DRAM access scheduling has been explored for CPU-based platforms, discrete

GPU parts, and heterogeneous CMPs. In the following, we discuss the contributions

relevant to the discrete GPU parts and heterogeneous CMPs. The memory access

4.3 Related Work 91

scheduling studies for the discrete GPU parts have been done with the GPGPU

applications. These studies have explored memory access scheduling to minimize the

latency variance among the threads within a warp [6], to accelerate the critical shader

cores that do not have enough short-latency warps which could hide long memory

latencies [41], and to minimize a potential function so that an appropriate mix of

shortest-job-first and FR-FCFS can be selected with the overall goal of accelerating

the less latency-tolerant shader cores [60]. There have been studies on warp and

thread block schedulers for improving the memory system performance [2, 39, 40,

45, 61, 63].

Motivated by the bandwidth-sensitive nature of the massively threaded GPU

workloads and the deadline-bound nature of the 3D scene rendering workloads exe-

cuted on the GPUs, prior proposals have explored specialized memory access sched-

ulers for heterogeneous systems [3, 37, 78, 95]. The staged memory scheduler (SMS)

clubs the memory requests from each source (CPU or GPU) into source-specific

batches based on DRAM row locality [3]. Each batch is next scheduled with a

probabilistic mix of shortest-batch-first (favoring latency-sensitive CPU jobs) and

round-robin (enforcing fairness among bandwidth-sensitive CPU and GPU jobs).

The dynamic priority (DynPrio) scheduler [37], proposed for mobile heterogeneous

platforms, employs dynamic progress estimation of tile-based deferred rendering

(TBDR) and offers the GPU accesses equal priority as the CPU accesses if the

GPU progress lags behind the target frame rendering time. Also, during the last

10% of the left time to render a frame, the GPU accesses are given higher prior-

ity than the CPU accesses. The progress estimation algorithm used by DynPrio

is designed specifically for the GPUs employing TBDR, typically supported only in

mobile GPUs such as ARM Mali [80], Kyro, Kyro II, and PowerVR from Imagination

92 QoS-guided Dynamic GPU Access Throttling

Technologies, and Imageon 2380, Xenos, Z430, and Z460 from AMD [86]. The Dyn-

Prio scheduler study, however, shows the inefficiency of a previously proposed static

priority scheduler that always offers higher priority to the CPU accesses [95]. The

option of statically partitioning the physical address space between the CPU and

GPU datasets and assigning two independent memory controllers to handle accesses

to the two datasets has been explored [78]. A subsequent study has shown that

such static partitioning of memory resources can lead to sub-optimal performance

in heterogeneous systems [46]. In Section 4.4, we present a quantitative comparison

of our proposal with DynPrio and two variants of SMS.

There have been studies on managing the shared LLC in a CPU-GPU hetero-

geneous processor. Two of these studies (thread-aware policy [62] and dynamic

reuse probability-aware policy [85]) propose new insertion, promotion, and replace-

ment policies for LLC blocks. Another study (HeLM) proposes to selectively bypass

the LLC for GPU read misses coming from the shader cores that are dynamically

identified to be latency-tolerant, thereby opportunistically shifting LLC capacity to

the co-executing CPU workloads [71]. In Section 4.1, we have already pointed out

the shortcomings of such a mechanism that is based purely on LLC bypass tech-

niques. Nonetheless, since our proposal is closer to HeLM in its goal, we present a

quantitative comparison of our proposal with HeLM in Section 4.4.

4.4 Simulation Results

In this section, we evaluate our proposal on a simulated heterogeneous CMP with

four CPU cores and one GPU. With each GPU workload, we co-execute a mix of

four CPU applications. We divide the discussion into evaluation of the individual

4.4 Simulation Results 93

components that constitute our proposal.

Accuracy of Dynamic Frame Rate Estimation. Figure 4.8 shows the per-

cent error observed in our dynamic frame rate estimation technique. A positive

error means over-estimation and a negative error means under-estimation. Several

applications have zero error. Among the applications that have non-zero error, the

maximum over-estimation error is 6% (UT2004) and the maximum under-estimation

error is 4% (COR). The average error across all applications is less than 1%.

−4
−2

0
2
4
6

P
e

rc
e

n
t

e
rr

o
r

3D
M

ar
k0

6G
T1

3D
M

ar
k0

6G
T2

3D
M

ar
k0

6H
D
R
1

3D
M

ar
k0

6H
D
R
2

U
T3

U
T20

04

C
R
YSIS

C
O
R

C
O
D
2

L4
D

D
O
O
M

3
N
FS

H
L2

Q
U
AKE4

Ave
ra

ge

Figure 4.8: Percent error in dynamic frame rate estimation.

Evaluation of Access Throttling. Figure 4.9 quantifies the performance of our

GPU access throttling mechanism. In this evaluation, we set the target frame rate

as 40 FPS for the GPU applications. Referring to the last column of Table 2.2,

we see that there are six applications that have frame rates higher than this tar-

get. The rest of the applications never go above 40 FPS for the selected frame

sequence. Therefore, our proposal will be able to apply access throttling to these

six applications. The left panel of Figure 4.9 quantifies average FPS for the GPU

applications. For each application, we show three bars. The leftmost bar corre-

sponds to baseline. The middle bar corresponds to a system with access throttling

enabled. The rightmost bar corresponds to a system with access throttling enabled

and the CPU applications given higher priority over the GPU in the DRAM access

scheduler. The right panel of this figure shows the weighted speedup (normalized

94 QoS-guided Dynamic GPU Access Throttling

0

20

40

60

80

100

120

140

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

 (
F

P
S

)

D
O
O
M

3
H
L2

N
FS

Q
U
AKE4

C
O
R

U
T20

04

Baseline Throttled Throttled+CPU priority

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

N
o

rm
a

liz
e

d
 w

e
ig

h
te

d
 C

P
U

 s
p

e
e

d
u

p

41
0,

43
3,

46
2,

47
1

41
0,

42
9,

43
3,

43
4

41
0,

42
9,

43
3,

47
1

40
1,

43
7,

45
0,

48
1

40
3,

 4
37

, 4
50

, 4
81

40
1,

 4
37

, 4
62

, 4
70

G
EO

M
EAN

Figure 4.9: Left: FPS of GPU applications that are amenable to access throttling.
Right: weighted CPU speedup for the mixes when the GPU application in the mix
is throttled. The CPU application mixes are shown in terms of the combination of
the SPEC application ids along the x-axis of the right panel.

to the baseline, which is at 1.0) achieved by the four-way multi-programmed CPU

workloads when the corresponding GPU workload in the mix is undergoing access

throttling. We identify each CPU application in a mix by its SPEC id. The GPU ap-

plication results confirm that the six applications operate just around 40 FPS when

access throttling is enabled. While this represents the average frame rate over the

multi-frame sequence for each application, we also verified that each frame within

the sequence meets the target frame rate. For the CPU applications, the mixes

improve significantly offering an average 11% speedup with GPU access throttling

alone; the average speedup improves to 18% when higher CPU priority is enabled

in the DRAM access scheduler.

To further understand the sources of CPU performance improvement, Figure 4.10

quantifies the LLC miss count of the GPU applications (left panel) and the corre-

sponding CPU workload mixes (right panel) normalized to the baseline. The GPU

applications suffer from an average 39% increase in LLC miss count when GPU ac-

4.4 Simulation Results 95

cess throttling is enabled. This number further increases to 42% when CPU priority

in the DRAM access scheduler is boosted in addition to GPU access throttling. As

already explained, this is an expected behavior resulting from faster aging of the

GPU blocks in the LLC due to lowered LLC access rate of the GPU application.

In addition to GPU access throttling, when the CPU priority in the DRAM access

scheduler is boosted, the CPU fills return faster to the LLC, thereby evicting the

aged GPU blocks even more quickly. The right panel shows that the additional LLC

space created due to this leads to a 4% and 4.5% average reduction in CPU LLC miss

counts for the throttled and throttled+CPUpriority configurations, respectively.

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

N
o

rm
a

liz
e

d
 L

L
C

 m
is

s
 c

o
u

n
t

Ave
ra

ge

U
T20

04
C
O
R

Q
U
AKE4

N
FS

H
L2

D
O
O
M

3

Throttled Throttled+CPU priority

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

N
o

rm
a

liz
e

d
 L

L
C

 m
is

s
 c

o
u

n
t

Ave
ra

ge

41
0,

43
3,

46
2,

47
1

41
0,

42
9,

43
3,

43
4

41
0,

42
9,

43
3,

47
1

40
1,

43
7,

45
0,

48
1

40
3,

43
7,

45
0,

48
1

40
1,

43
7,

46
2,

47
0

Figure 4.10: Left: normalized LLC miss count of GPU applications that are
amenable to access throttling. Right: normalized LLC miss count of CPU workloads
when the GPU application in the mix is throttled.

The significant increase in the LLC miss count of the GPU applications can be of

concern because this may lead to higher DRAM bandwidth consumption defeating

the very purpose of GPU access throttling. However, it is important to note that

these misses occur over a much longer period of time due to a lowered frame rate.

Our access throttling algorithm automatically adjusts the throttling rate taking all

these into consideration so that the frame rate hovers close to the target level. Fig-

96 QoS-guided Dynamic GPU Access Throttling

ure 4.11 substantiates this fact by quantifying the average DRAM bandwidth (read

and write separately shown) consumed by the GPU applications normalized to the

baseline. 1 On average, the GPU bandwidth demand reduces by 35% and 37%

CO
R

DO
OM
3

QU
AK
E4 NF

S
HL
2

UT
4

Av
era
ge

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz
ed
 D
RA

M
 B
an
dw

id
th

Ba
se
lin
e

Th
ro
ttl
e

Th
ro
ttl
e
+
 C
PU

 P
rio

rit
y

He
LM

DRAM Read DRAM Write

Figure 4.11: Normalized DRAM bandwidth (read and write) consumed by GPU
applications that are amenable to access throttling.

for the throttled and throttled+CPUpriority configurations, respectively. Both read

and write bandwidth demands go down by significant amounts, across the board,

where as, for HeLM due to read miss bypass DRAM bandwidth increases signifi-

1 In a few GPU applications (e.g., DOOM3 and HL2), the volume of writes can be more than
the volume of reads because the rendering pipeline can create fully dirty color or depth lines in the
internal ROP caches and later flush them out to the LLC for allocation without doing a DRAM
read.

4.4 Simulation Results 97

cantly. In summary, our proposal frees up more than one-third GPU bandwidth for

the CPU workloads to consume. A comparison with the right panel of Figure 4.10

reveals that DRAM bandwidth shifting is a bigger benefit of our proposal than LLC

miss saving for CPU workloads.

Comparison to Related Proposals. Several DRAM scheduling policies have

been proposed for heterogeneous CMPs and evaluated on mixes of 3D scene ren-

dering workloads and CPU workloads. In the following, we compare our proposal

against staged memory scheduling (SMS) [3] and dynamic priority scheduler (Dyn-

Prio) [37]. Additionally, we present a comparison with HeLM, the state-of-the-art

LLC management policy for CPU-GPU heterogeneous processors [71]. We evaluate

two versions of SMS, namely, one with a probability of 0.9 of using shortest-job-

first (SMS-0.9) and the other with this probability zero i.e., it always selects a

round-robin policy (SMS-0). SMS-0.9 is expected to favor latency-sensitive CPU

jobs while SMS-0 is expected to favor GPU jobs. DynPrio makes use of our frame

rate estimation technique to compute the time left in a frame. Figure 4.12 com-

pares the proposals for the heterogeneous mixes containing GPU applications that

meet the target 40 FPS. The upper panel shows that all proposals deliver higher

than 40 FPS. Our proposal (ThrotCPUprio) opportunistically applies GPU access

throttling and CPU prioritization in the DRAM scheduler to deliver an FPS that

is just around the target. As a result, our proposal is able to improve the CPU

mixes most (lower panel of Figure 4.12). On average, SMS-0.9, SMS-0, DynPrio,

HeLM, and our proposal improve the performance of the CPU mixes by 4%, 4%,

10%, 3%, and 18%, respectively. The performance improvement achieved by HeLM

is low because it suffers from an increased DRAM bandwidth consumption arising

from the additional GPU misses that result from aggressive LLC bypass of GPU

98 QoS-guided Dynamic GPU Access Throttling

0
20
40
60
80

100
120
140

F
P

S

DOOM3 HL2 NFS QUAKE4 COR UT2004

Baseline SMS−0.9 SMS−0 DynPrio HeLM ThrotCPUprio

1

1.1

1.2

1.3

1.4

C
P

U
 s

p
e

e
d

u
p

GMEAN

41
0,

43
3,

46
2,

47
1

41
0,

42
9,

43
3,

43
4

41
0,

42
9,

43
3,

47
1

40
1,

43
7,

45
0,

48
1

40
3,

43
7,

45
0,

48
1

40
1,

43
7,

46
2,

47
0

Figure 4.12: FPS of GPU applications (top panel) and normalized weighted CPU
speedup (bottom panel) for the mixes with high frame rate GPU applications.

fills. Our proposal remains disabled in the remaining mixes containing the GPU

0.6

0.7

0.8

0.9

1

1.1

1.2

N
o
rm

a
liz

e
d
 F

P
S

3D
M

ar
k0

6G
T1

3D
M

ar
k0

6G
T2

3D
M

ar
k0

6H
D
R
1

3D
M

ar
k0

6H
D
R
2

C
O
D
2

C
R
YSIS

L4
D

U
T3 GMEAN

Baseline SMS−0.9 SMS−0 DynPrio HeLM ThrotCPUprio

0.6

0.7

0.8

0.9

1

1.1

1.2

C
P

U
 s

p
e
e
d
u
p

GMEAN

40
3,

43
7,

45
0,

48
1

41
0,

43
3,

46
2,

47
1

40
3,

45
0,

48
1,

48
2

40
3,

42
9,

43
4,

46
2

40
1,

43
7,

45
0,

47
0

40
1,

46
2,

47
0,

47
1

40
1,

43
7,

45
0,

47
0

42
9,

43
3,

43
4,

48
2

Figure 4.13: FPS speedup (top panel) and weighted CPU speedup (bottom panel)
over the baseline for the mixes with low frame rate GPU applications.

applications that fail to meet the target FPS. For completeness, Figure 4.13 shows

4.4 Simulation Results 99

the comparison for these mixes. The upper panel evaluates the proposals for the

GPU applications. SMS suffers from large losses in FPS due to the delay in batch

formation. DynPrio fails to observe any overall benefit because it offers express

bandwidth to the GPU application only during the last 10% of a frame time and

otherwise the CPU and GPU are offered equal priority as in the baseline FR-FCFS.

HeLM suffers from an average loss of 7% in FPS due to DRAM bandwidth shortage

resulting from the additional GPU misses that arise due to aggressive LLC bypass.

SMS-0.9 and SMS-0 improve CPU mix performance (lower panel of Figure 4.13)

by 7% and 6%, respectively, while suffering large losses in GPU performance. Dyn-

Prio delivers the same level of performance as the baseline for both GPU and CPU

workloads. HeLM enjoys a 4% average improvement in CPU mix performance. In

summary, these results clearly indicate that the GPU performance can be traded off

to improve CPU performance and vice-versa in such heterogeneous platforms. To

understand the overall performance in such scenarios, we assign equal weightage to

the CPU and GPU performance and derive the overall performance of the heteroge-

neous processor. Figure 4.14 shows these results for the mixes containing the GPU

applications that fail to meet the target FPS. 1 On average, our proposal and Dyn-

Q1 Q2 Q3 Q4 Q5 Q6 Q9 Q14 GMEAN
0.7

0.8

0.9

1

1.1

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

Baseline SMS−0.9 SMS−0 DynPrio HeLM ThrotCPUprio

Figure 4.14: Normalized performance of the heterogeneous processor for the mixes
with low frame rate GPU applications when the CPU and GPU are given equal
weight in terms of performance.

100 QoS-guided Dynamic GPU Access Throttling

Prio both deliver baseline performance for these mixes, while both variants of SMS

suffer from large losses. HeLM performs 1% worse than the baseline on average.

Exploring the Option of Phased Execution. Our proposal uniformly throt-

tles the GPU access rate throughout the execution. Another option is to divide the

execution into two types of coarse grain phases that alternate. The execution be-

gins with a CPU+GPU (heterogeneous) phase where the GPU completes rendering

of one frame. If the GPU application is able to meet the target frame rate, the

execution transitions to a CPU-only phase. In this phase, rendering of subsequent

frames is suspended until the desired number of cycles has elapsed so that the GPU

is able to perform just at the target frame rate. All memory system resources can

be utilized by the CPU in this phase. The execution keeps alternating between

the heterogeneous and CPU-only phases. For example, if the target frame rate is

40 FPS and the GPU completes rendering of a frame in the heterogeneous mode

in 0.02 seconds, it will suspend rendering of the next frame for the next 0.005 sec-

onds. During these 0.005 seconds, the CPU can enjoy exclusive ownership of all

memory system resources. Figure 4.15 shows the performance improvement of the

CPU workload mixes in our proposal normalized to the option of phased execution.

We identify the CPU workloads on the x-axis by the associated GPU application

name in the heterogeneous mix. Our proposal improves CPU performance by 3%

on average and up to 6% compared to the option of phased execution. The CPU

workload associated with COR is the only case that gains slightly more with phased

execution.

1 For the mixes where the GPU application already meets the target FPS, this kind of a
combined CPU-GPU performance metric is irrelevant because the GPU performance goal is already
satisfied and an evaluation of the CPU performance improvement, as shown in Figure 4.12, is
sufficient.

4.4 Simulation Results 101

DOOM3
HL2 NFS

QUAKE
4

COR
UT4

MEA
N

−2

−1

0

1

2

3

4

5

6

7

Pe
rc

en
t S

pe
ed

up

2%

6%

4%

6%

-1%

4%

3%

Figure 4.15: Performance of CPU application mixes in our proposal normalized to
the option of phased execution (higher is better). We use the GPU application
names on the x-axis to uniquely identify the associated CPU mix.

The reason for our proposal to be better in the other cases is the reduction in

cache and DRAM contention throughout the execution. The phased execution al-

ternative fails to recover the performance lost by the CPU during the heterogeneous

phase of execution as efficiently as our proposal does. This is primarily because the

CPU-only phase of the CPU workload mix may not be equally memory-intensive as

the heterogeneous phase. As a result, the CPU-only phase may not be able to fully

exploit the resources temporarily freed up due to suspension of the GPU application.

However, we find that for the CPU workloads that are uniformly memory-bound

throughout the execution, phased execution performs better than our proposal. For

such workloads, running both CPU and GPU together for the entire execution leads

102 QoS-guided Dynamic GPU Access Throttling

to higher overall DRAM contention than observed in phased execution.

4.5 Conclusions

We have presented a novel memory access management mechanism for heterogeneous

CMPs. The proposed mechanism dynamically shifts LLC capacity and DRAM

bandwidth to CPU applications from the co-executing GPU application whenever

the GPU application meets the target frame rate. Two light-weight, yet highly

effective, algorithms form the crux of our proposal. The first algorithm accurately

estimates the projected frame rate of a GPU application. Based on this estimation,

the second algorithm computes the effective GPU access rate to the LLC and assists

the DRAM access scheduler to decide if CPU priority should be boosted. Detailed

simulation studies show that our proposal achieves its goal of offering a bigger share

of the memory system resources to the CPU when the GPU does not need it. For the

heterogeneous mixes containing GPU applications that meet the target frame rate,

our proposal improves the CPU performance by 18% on average while requiring just

over a kilobyte of additional storage.

Chapter 5

GPU Criticality-driven Memory

Management

This chapter presents our proposal on memory access scheduling driven by criti-

cality of GPU accesses for CPU-GPU heterogeneous system. Different GPU access

streams originating from different parts of the GPU rendering pipeline behave very

differently compared to the typical CPU pipeline requiring new techniques for GPU

access criticality estimation. We propose a novel queuing network model to esti-

mate the performance-criticality of the GPU access streams. If a GPU application

performs below the quality of service requirement (e.g., frame rate in 3D rendering),

the memory access scheduler uses the estimated criticality information to acceler-

ate the critical GPU accesses. Detailed simulations done on a heterogeneous chip-

multiprocessor model with one GPU and four CPU cores running DirectX, OpenGL,

and CPU application mixes show that our proposal improves the GPU performance

by 15% on average without degrading the CPU performance much. Extensions pro-

posed for the mixes containing GPGPU applications, which do not have any quality

104 GPU Criticality-driven Memory Management

of service requirement, improve the performance by 7% on average.

The rest of the chapter is organized as follows. Section 5.1 presents a motivational

study demonstrating varying sensitivity of different GPU streams toward rendering

performance. Section 5.2 presents different components of our proposal followed by

related work, experimental evaluation, and conclusions in Sections 5.3, 5.4, and 5.5,

respectively.

5.1 Motivation

Different types of data are accessed by the programmable and the fixed function units

in a GPU rendering pipeline. Examples of such data include vertex data, vertex

index data, pixel color data, texture sampler data, pixel depth data, hierarchical

depth data [24], shader cores’ instruction and data, blitter data, etc.. An access

from a data stream looks up the internal cache hierarchy of the GPU dedicated to

that stream and, on a miss, looks up the LLC shared between the GPU and CPU

cores. The LLC misses are served by the DRAM. In this section, we demonstrate

that the sensitivity of different types of GPU access streams toward memory system

optimization is not uniform necessitating a stream-wise criticality measure.

5.1.1 GPU Stream-wise Criticality

Figure 5.1 shows the distribution of DRAM read accesses across different stream

types coming from the GPU for fourteen DirectX and OpenGL workloads. Each

workload renders a multi-frame segment of a popular PC game. These data are

collected on a simulated heterogeneous CMP. We consider the following stream

categories: color (C), texture sampler (T), depth (Z), blitter (B), and everything

5.1 Motivation 105

else clubbed into the “other” (O) category.1 Figure 5.1 shows that, in general, the

color, texture, and depth streams constitute the larger share of the DRAM accesses

from the GPU; the actual distribution varies widely across applications.

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
G

P
U

 a
c
c
e

s
s
e

s
 t

o
 D

R
A

M

3D
M

ar
k0

6G
T
1

3D
M

ar
k0

6G
T
2

3D
M

ar
k0

6H
D
R
1

3D
M

ar
k0

6H
D
R
2

C
O
D
2

C
R
Y
S
IS

D
O
O
M

3
H
L2

L4
D

N
F
S

Q
U
A
K
E
4

C
O
R

U
T
20

04

U
T
3

C T Z B O

Figure 5.1: Distribution of DRAM accesses from 3D scene rendering workloads.

1

1.1

1.2

1.3

1.4

1

1.1

1.2

1.3

1.4

G
P

U
 p

e
rf

o
rm

a
n

c
e

 s
p

e
e

d
u

p

1.64 1.50 1.57

1.47 1.913D
M

ar
k0

6G
T1

3D
M

ar
k0

6G
T2

3D
M

ar
k0

6H
D
R
1

3D
M

ar
k0

6H
D
R
2

C
O
D
2

C
R
YSIS

D
O
O
M

3

H
L2

L4
D

N
FS

Q
U
AKE4

C
O
R

U
T20

04
U
T3

C

T

Z

B

O

Figure 5.2: Speedup achieved when each individual stream is made to behave ideally.

We evaluate the performance-criticality of each stream by treating all non-

compulsory LLC misses from that stream as hits. Figure 5.2 quantifies the speedup

(ratio of frame rates with and without this optimization) achieved by accelerat-

ing each stream in this way. Performance-sensitivity of any particular stream varies

1 Recall that the blitter is a special fixed function unit used to copy and process color data
before it is sampled by the texture sampler.

106 GPU Criticality-driven Memory Management

across applications. A comparison of Figures 5.1 and 5.2 shows that the performance-

sensitivity of the streams is not always in proportion to the volumes of DRAM

accesses of the streams within an application. For example, in COD2, the depth ac-

cesses are more in number than the color accesses, but accelerating the color stream

brings much higher speedup compared to accelerating the depth stream. In L4D,

accelerating the color stream brings most benefits, but color accesses are much less

in number compared to the texture accesses. In NFS, accelerating the texture ac-

cesses brings much bigger benefit than accelerating the depth accesses, although the

access counts of these two streams are nearly equal.

Figure 5.3 quantifies the performance-criticality of a set of streams by treating

all their non-compulsory LLC misses as hits. We focus on only a few sets for ac-

celeration, namely, CT (set of color and texture), CTZ, CTZB, and CTZBO. The

left bar (“COMBINED”) for each application shows the stacked speedup as a new

stream is added to the accelerated set starting from CT. For comparison, we also

show the accumulated speedup when each stream in a set is individually accelerated

in the bar “INDIVIDUAL”. We observe that the combined speedup is much higher

than the accumulated individual speedup in several applications. This indicates that

there are certain inter-stream performance-dependencies that must be accelerated

together. For example, a semantic dependence arises from the fact that the color

and depth data may be consumed by the texture sampler for generating dynamic

texture maps and shadow maps, respectively [26, 66]. On the other hand, accelerat-

ing the color stream without improving a bottlenecked texture stream may not be

helpful because color blending is typically implemented after shading and texturing.

We need to discover this inter-dependent critical group of streams at run-time.

5.1 Motivation 107

1

1.5

2

2.5

3

1

1.5

2

2.5

3

G
P

U
 p

e
rf

o
rm

a
n

c
e

 s
p

e
e

d
u

p

3D
M

ar
k0

6G
T1

3D
M

ar
k0

6G
T2

3D
M

ar
k0

6H
D
R
1

3D
M

ar
k0

6H
D
R
2

C
O
D
2

C
R
YSIS

D
O
O
M

3

H
L2 L4

D
N
FS

Q
U
AKE4

C
O
R

U
T20

04
U
T3

C
O

M
B

IN
E

D

IN
D

IV
ID

U
A

L CT CTZ CTZB CTZBO

Figure 5.3: Speedup achieved when a set of streams is made to behave ideally.

5.1.2 Stream-centric Behavior in 3D Rendering Pipeline

To gain a better insight into the stream-centric criticality behavior shown by the 3D

rendering applications, we conduct another experiment. In this experiment, on every

ROP stall, we identify the stall sourcing unit (the unit where the next fragment to

be processed is waiting) and record this event in a per stream counter where the stall

sourcing unit is associated with the stream the unit generates. Figure 5.4 presents

these results as a stacked bar chart showing percentage of stall cycles contributed

by Z, T, and C streams, respectively. As the figure shows, stalls are distributed

across streams. Since the expected performance improvement that can come from

accelerating a stream is proportional to its stall contribution, a stream contributing a

higher number of stall cycles can produce a higher gain than a stream contributing

fewer stall cycles. Thus, criticality of a stream correlates directly with its stall

contribution. We took this important insight and formalized it using a queuing

network model discussed in Section 5.2.

108 GPU Criticality-driven Memory Management

3D
MG
T1

3D
MG
T2

3D
MH
DR
1

3D
MH
DR
2
CO
D2

CR
YS
IS

DO
OM
3
HL
2

L4
D

NF
S

QU
AK
E4 CO

R
UT
4

UT
3
ME
AN

0

20

40

60

80

100

Pe
rc
en

t s
ta
ll
co
nt
rib

ut
io
n

Z T C

Figure 5.4: Stalls contributed by the Z, T, and C streams.

5.1.3 Stream Analysis of GPGPU Applications

For the GPGPU applications, the shader accesses constitute the dominant stream.

We further divide the shader access stream based on the source static load/store

instructions of the shader accesses. In this study, each static load/store shader

instruction defines a distinct shader access stream. We adopt well-known stall-

based techniques used in the CPU space for identifying the critical shader access

streams [57, 67, 77]. More specifically, in each shader core, we maintain a fully-

associative stall table with least-recently-used (LRU) replacement. Each entry of

the table records the program counter (PC) of a shader instruction. If a shader

instruction I stalls at dispatch time due to a pending operand, the parent shader

instruction P that produces the operand is inserted into the stall table, provided P is

a load instruction that has missed in the shader core’s private cache. Subsequently,

the accumulated stall cycle count introduced by P is tracked in its entry. The left

5.2 GPU Criticality-aware Memory Management 109

panel of Figure 5.5 shows the distribution of the DRAM accesses sourced by the

shader instructions sorted by stall cycle count for six GPGPU workloads. “TnPC”

denotes the top n shader instructions in this sorted list, while “All’ denotes all

load/store shader instructions. Top four shader instructions can cover almost all

DRAM accesses except for LBM and CFD.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

F
ra

c
ti
o

n
 o

f
G

P
U

 a
c
c
e

s
s
e

s
 t

o
 D

R
A

M

LB
M

C
FD

BFS

FASTW
ALS

H

BLA
C
KSC

H
O
LE

S

R
ED

U
C
TIO

N
1

1.5

2

2.5

3

G
P

U
 p

e
rf

o
rm

a
n

c
e

 s
p

e
e

d
u

p

LB
M

C
FD

BFS

FASTW
ALS

H

BLA
C
KSC

H
O
LE

S

R
ED

U
C
TIO

N

T1PC T2PC T4PC T8PC T16PC All

Figure 5.5: Left: distribution of DRAM accesses from GPGPU workloads. Right:
speedup achieved when the top n PC streams are made to behave ideally.

The right panel of Figure 5.5 shows the speedup achieved when the load/store

accesses sourced by the top n shader instructions are treated ideally in the LLC.

We observe that the speedup data correlate well with the DRAM access distribution

indicating that pipeline stall-based critical shader stream identification is a fruitful

direction to pursue.

5.2 GPU Criticality-aware Memory Management

In this section, we present the GPU criticality-aware memory management proposal

for heterogeneous CMPs. Section 5.2.1 discusses the mechanism for identifying the

critical GPU access streams. The DRAM access scheduler presented in Section 5.2.2

110 GPU Criticality-driven Memory Management

shapes the priorities assigned to the CPU and GPU memory accesses.

5.2.1 Identifying Critical GPU Accesses

In the following, we present the mechanism used for identifying the critical accesses

in 3D rendering and GPGPU workloads.

5.2.1.1 3D Scene Rendering Workloads

We represent the 3D rendering pipeline as an abstract queuing network of five

units, namely, front-end (FE), depth/stencil test units (ZS), shader cores (SH), color

blenders and writers (CW), and blitters (BT). The texture samplers are attached to

the shader cores. The front-end loads vertex indices and vertex attributes, generates

the geometry primitives, and produces the rasterized fragment quads.1 The ZS unit

removes the hidden surfaces based on a depth/stencil test on the fragments. The

shader cores run a user-defined parallel shader program on each of the fragments

received from the ZS unit. The shaded fragment quads are passed on to the CW

unit for computing the final pixel color.2 One ZS unit and one CW unit constitute

one render output pipeline (ROP).

Queuing Model for Rendering Pipeline. We model the inter-dependence be-

tween the 3D rendering pipeline units using a queuing network shown in Figure 5.6.

The model has 2n + 3 queues, where n is the number of ROPs. The FE, SH, and

BT units have one queue each. Each of the n ZS and CW units has one queue. Pro-

cessing in the pipeline model can begin at FE or BT. In the first case, information

1 A fragment quad is made of four fragments, each with complete information to render a pixel
in the render buffer.

2 In this discussion, we assume that depth/stencil test is done before pixel shading (known as
early-Z). In certain situations, the ZS unit may have to be invoked after SH and before CW (known
as late-Z).

5.2 GPU Criticality-aware Memory Management 111

flows through FE, ZS, SH, and CW in that order leading to the color output. This

path gets activated during a traditional draw operation. The second path, which

connects BT to the output, gets activated during the blitting process.

FE

ZS1

...
ZSn

SH

CW1

...
CWn

BT

Figure 5.6: Queuing network for GPU pipeline.

Request Flow Monitoring. We monitor the request arrival and completion

rates at each of the units to first identify the bottleneck units. For this purpose,

we associate two up-down saturating counters Cin[i] and Cout[i] of width w bits to

each unit i, where w is a configuration parameter (our evaluations use w = 8).1 All

counters are initialized to the mid-point i.e., 2w−1. At the end of a cycle, Cin[i] is

incremented if unit i is found to have pending requests the count of which is above a

threshold thin[i]; otherwise Cin[i] is decremented. Similarly, Cout[i] is incremented, if

unit i has completed more than a threshold, thout[i], number of requests; otherwise

Cout[i] is decremented. The peak input bandwidths of FE, ROP, and BT are used

as thin[FE], thin[ROP], and thin[BT], respectively. Similarly, the peak output

bandwidths determine thout[FE], thout[ROP], and thout[BT]. We use the shader’s

peak input bandwidth divided by a constant2 as thin[SH] as well as thout[SH].

Critical Stream Selection Algorithm. Using the values of Cin[i] and Cout[i],

we first generate three bits for each unit i: IOccupancy[i], AOccupancy[i], and

Throughput[i]. IOccupancy[i] is 1 iff Cin[i] of any instance of unit i is more than

1 All algorithm parameters are tuned meticulously.
2 The constant represents the number of cycles the shader program takes to process a fragment.

112 GPU Criticality-driven Memory Management

2w−1. AOccupancy[i] is 1 iff Cin[i] for all instances of unit i are more than 2w−1.

Throughput[i] is 1 iff Cout[i] for all instances of unit i are more than 2w−1. In general,

if Throughput[i] is 0 and IOccupancy[i] is 1, the unit i is classified as bottlenecked

and all accesses originating from it are classified as critical. For example, if SH is

bottlenecked, all shader and texture sampler accesses would be marked critical. For

SH to be bottlenecked, Throughput[SH] must be 0 and AOccupancy[SH] must be

1 meaning that throughput is low even though all shader units have enough work

to do. If a unit i has multiple instances, e.g., ZS, SH, CW, and AOccupancy[i]

is 0, we identify the unit i as underloaded. To identify the bottleneck unit(s), we

periodically execute Algorithm 1. First, this algorithm determines if CW and BT are

bottlenecked. Next, it traverses the path FE-ZS-SH-CW (if early-Z is enabled) or

the path FE-SH-ZS-CW (if early-z is disabled) from back to front. During this back-

to-front traversal, if the algorithm encounters an underloaded unit U , it examines

the unit V in front of U and finds out whether U is underloaded because V is

bottlenecked.

5.2.1.2 GPGPU Workloads

For the GPGPU workloads, we employ a two-level algorithm invoked periodically

for identifying the critical accesses. The first level of the algorithm identifies the bot-

tlenecked shader cores. For each shader core, we maintain two saturating counters

named InputStall and OutputStall, each of width w bits (w = 8 in our implementa-

tion) and initialized to the mid-point i.e., 2w−1. In a cycle, if the front-end of a shader

core i fails to dispatch any warp due to pending source operands, the InputStall[i]

counter is incremented by one; otherwise it is decremented by one. Similarly, in a

cycle, if the back-end of the shader core i fails to commit any shader instruction,

5.2 GPU Criticality-aware Memory Management 113

Algorithm 1 Algorithm to find bottleneck units

Inputs: IOccupancy (IO), AOccupancy (AO),
Throughput (TH) vectors

Returns: Bottleneck vector

Initialize Bottleneck vector to zero.

if TH[CW] == 0 and IO[CW] == 1 then
Bottleneck[CW] = 1

end if
if TH[BT] == 0 and IO[BT] == 1 then

Bottleneck[BT] = 1
end if

. Back to front traversal
if CW is underloaded then

if early-Z enabled then
Check bottleneck unit using Algorithm 2

else
Check bottleneck unit using Algorithm 3

end if
end if

the OutputStall[i] counter is incremented by one; otherwise it is decremented by

one. For a shader core i, if both InputStall[i] and OutputStall[i] are found to be

above 2w−1, the core is classified as bottlenecked. The second level of the algorithm

employs the stall table introduced in Section 5.1 to identify the critical accesses from

the bottlenecked cores. We use a sixteen-entry fully-associative LRU stall table per

shader core. Among the instruction PC’s captured by this table, the top few PC’s

covering up to 90% of the total stall cycles are considered to be generating critical

accesses to the memory sub-system. If a load/store instruction misses in a bottle-

necked shader core’s private cache and is among the top few critical instructions

captured by the stall table, the miss request sent to the LLC is marked critical.

If such a shader instruction is not found in the stall table of a bottlenecked core,

the request to the LLC is still marked critical, provided the LLC miss rate of GPU

114 GPU Criticality-driven Memory Management

Algorithm 2 Module to find bottleneck units in early-Z enable mode

if TH[SH] == 0 and AO[SH] == 1 then
Bottleneck[SH] = 1

end if
if SH is underloaded then

if TH[ZS] == 0 and IO[ZS] == 1 then
Bottleneck[ZS] = 1

end if
if ZS is underloaded then

Check FE state using Algorithm 4
end if

end if

Algorithm 3 Module to find bottleneck units in early-Z disable mode

if TH[ZS] == 0 and IO[ZS] == 1 then
Bottleneck[ZS] = 1

end if
if ZS is underloaded then

if TH[SH] == 0 and AO[SH] == 1 then
Bottleneck[SH] = 1

end if
if SH is underloaded then

Check FE state using Algorithm 4
end if

end if

accesses is at most 80%. In all other cases, the GPU access is marked non-critical.

The non-critical shader accesses that miss in the LLC bypass the LLC freeing up

space for other blocks.

5.2.2 Scheduling DRAM Accesses

The CPU and GPU requests that miss in the shared LLC access the DRAM. Every

DRAM access coming from the GPU carries a bit specifying if the access is critical.

We propose two DRAM scheduling policies, namely, the GPU-favoring policy and

5.2 GPU Criticality-aware Memory Management 115

Algorithm 4 Module to check FE bottleneck

if TH[FE] == 0 and IO[FE] == 1 then
Bottleneck[FE] = Bottleneck[SH] = Bottleneck[ZS] = 1

end if

the interference mitigation policy (IM policy). The idea of prioritizing one kind

of DRAM accesses over others has been proposed in the past [23, 37, 41, 100].

Our DRAM scheduling policy bears some similarity with these ideas. However, the

manner in which we identify critical streams and mitigate interference due to critical

stream prioritization adds novelty to our approach.

In the GPU-favoring policy, among the requests to the currently open row in a

bank, the critical GPU accesses are served before considering the rest. When a new

row needs to be activated in a bank, the oldest critical GPU access is given priority

over the global oldest access. The GPU-favoring policy leads to two performance

problems. First, the GPU fills arrive at a faster rate to the LLC replacing the CPU

blocks earlier than the baseline. Second, the CPU requests may starve due to a long

burst of critical GPU requests. The IM policy, designed to mitigate these problems,

has two components, one to mitigate CPU starvation in the scheduler (IM-SCHED)

and another to handle LLC interference (IM-LLC). While IM-SCHED is the default

policy, a switch to IM-LLC takes place on detecting LLC interference.

The IM-SCHED component prioritizes CPU accesses over critical GPU accesses

with a certain probability. The probability is obtained as follows. The execution

is divided into equal intervals and at the end of each interval, the fraction of CPU

requests de-prioritized by younger critical GPU requests during the interval is com-

puted. This is used as the CPU prioritization probability for the next interval. If

this probability is more than half, it is capped to half. This probability exceeds half

116 GPU Criticality-driven Memory Management

only in the GPGPU applications during 2-6% of all intervals.

For detecting LLC interference, the execution is divided into equal intervals and

within an interval, the CPU applications are classified into high (H), medium (M),

and low (L) intensities based on their LLC miss rates. The H category has more

than 70% miss rate, the M category has miss rate between 10% and 70%, and

the L category has miss rate at most 10%. In two consecutive intervals, if a CPU

application’s state is found to change from L to M or L to H which can be due to

possible LLC interference, the application enters an emergency mode. The IM-LLC

component is activated if there is at least one emergency mode CPU application.

It schedules requests from emergency mode applications as often as critical GPU

accesses. The remaining accesses are assigned lower priority. At the end of an

interval, if an emergency mode application is found to go back to the L state, this

indicates that the application benefits from IM-LLC. It continues to stay in the

emergency mode. On the other hand, at the end of an interval, if an emergency

mode application is still in M or H state, the application exits the emergency mode

because it is not helpful for this application.

The CPU accesses are given higher priority than the non-critical GPU accesses

except in one situation. In certain phases of the GPGPU workloads, the GPU be-

comes very sensitive to memory system performance. In these phases, it is possible

to improve the GPU performance by sacrificing an equal amount of CPU perfor-

mance and vice-versa. We decide to maintain the GPU performance in these phases

by prioritizing all GPU accesses over the CPU accesses. To identify such phases, we

periodically give the highest priority to all GPU accesses in the DRAM scheduler

over a small time-window of 100K GPU cycles. If the GPGPU performance (shader

instructions retired per cycle) improves during this window compared to the last

5.2 GPU Criticality-aware Memory Management 117

window, the scheduler continues to offer higher priority to all GPU accesses. The

proposal on dynamic priority scheduler for heterogeneous mobile SoCs also gives

highest priority to the GPU during the last 10% of a frame [37]. However, the

purpose of our proposal offering highest priority to the GPU periodically is entirely

different.

5.2.3 Additional Hardware Overhead

The critical stream identification logic needs to maintain the Cin and Cout counters

for the FE, BT, ZS, SH, and CW units. The 3D rendering GPU models 64 SH units

and sixteen ZS and CW units leading to 98 Cin and Cout counters requiring a total

of 196 bytes. The GPGPU model has sixteen shader cores. Each core maintains

one OutputStall counter, one InputStall counter, and a sixteen-entry stall table

with each entry being 69 bits (32-bit PC, 32-bit stall cycles, one valid bit, and four

LRU bits) amounting to 2.2 KB for all cores. The GPU criticality-aware policy is

applied to the GPGPU applications and the 3D scene rendering applications that

fail to meet a target FPS. As in the last chapter, we use 40 FPS as the target. To

be able to identify the 3D scene rendering applications or application phases that

fail to meet 40 FPS target, we keep our frame rate estimation hardware enabled.

This hardware is borrowed from the previous chapter. The frame rate estimation

mechanism maintains a 64-entry RTP information table, each entry being 97 bits.

Overall, the storage overhead of our proposal is only 3.1 KB. Most importantly,

none of the additional structures are accessed or updated on the critical path of

execution. The structures that are accessed every cycle (such as the Cin, Cout,

InputStall, and OutputStall counters) are small in size and expend energy much

118 GPU Criticality-driven Memory Management

smaller than what we save throughout the system (CMP die and DRAM device) by

improving performance. The remaining structures are accessed less frequently and

expend much lower energy.

5.3 Related Work

Memory access scheduling has been explored for CPU platforms, discrete GPU parts,

and heterogeneous CMPs. The studies targeting the CPU platforms have attempted

to improve the throughput as well as fairness of the threads that share the DRAM

system [14, 18, 19, 23, 30, 34, 54, 56, 75, 76, 79, 87, 99, 100, 101]. Profile-guided

assignment of DRAM channels to application groups has also been proposed [74].

Criticality estimation of load instructions [98] and criticality-driven memory access

schedulers [23] for CPUs have been explored.

The memory access scheduling studies for the discrete GPU parts focus on the

shader cores only and do not consider the rest of the GPU rendering pipeline. These

studies have explored ways to minimize the latency variance among the threads

within a warp [6], to accelerate the critical shader cores that do not have enough

short-latency warps [41], and to design an appropriate mix of shortest-job-first and

FR-FCFS with the goal of accelerating the less latency-tolerant shader cores [60].

There have been studies on warp and thread block schedulers for improving the

memory system performance [2, 39, 40, 45, 61, 63].

Several studies have explored specialized memory access schedulers for hetero-

geneous systems [3, 37, 78, 95, 103]. The staged memory scheduler (SMS) clubs

the memory requests from each source (CPU or GPU) into source-specific batches

based on DRAM row locality [3]. Each batch is next scheduled with a probabilistic

5.4 Simulation Results 119

mix of shortest-batch-first (favoring latency-sensitive jobs) and round-robin (enforc-

ing fairness among bandwidth-sensitive jobs). The dynamic priority scheduler [37]

proposed for mobile heterogeneous platforms employs dynamic progress estimation

of tile-based deferred rendering (TBDR) [80, 86] and offers the GPU accesses equal

priority as the CPU accesses if the GPU lags behind the target frame rendering time.

Also, during the last 10% of the left time to render a frame, the GPU accesses are

given higher priority than the CPU accesses. The subsequently proposed deadline-

aware memory scheduler for heterogeneous systems (DASH) further improves the

dynamic priority scheme by offering the highest priority to short-deadline applica-

tions and prioritizing the GPU applications that lag behind the target [103]. The

option of statically partitioning the physical address space between the CPU and

GPU datasets and assigning two independent memory controllers to handle accesses

to the two datasets has been explored [78]. A subsequent study has shown that such

static partitioning of memory resources can be sub-optimal [46].

Insertion and replacement policies to manage the shared LLC in the heteroge-

neous CMPs have been explored [62, 85]. Selective LLC bypass policies for GPU

misses arising from latency-tolerant shader cores have been proposed [71].

5.4 Simulation Results

We evaluate our proposal on a simulated heterogeneous CMP with four CPU cores

and one GPU. We use a bigger set of heterogeneous workload mixes in this study

compared to the previous two studies. The set of fourteen 3D scene rendering jobs is

same as in the previous studies. We use six GPGPU applications shown in Table 5.1.

We select thirteen SPEC CPU 2006 applications and partition them into two groups

120 GPU Criticality-driven Memory Management

Table 5.1: CUDA application details

Application Thread configuration

LBM 120×150 blocks, 120 threads/block
CFD 759 blocks, 128 threads/block
BFS 1954 blocks, 512 threads/block
FASTWALSH 8192 blocks, 256 threads/block
BLACKSCHOLES 480 blocks, 128 threads/block
REDUCTION 64 blocks, 256 threads/block

based on the LLC misses per kilo instructions (MPKI). The high MPKI group (H-

group) contains bwaves, lbm, leslie3d, libquantum, mcf, milc, and soplex. The low

MPKI group (L-group) contains bzip2, gcc, omnetpp, sphinx3, wrf, and zeusmp.

Each of the twenty GPU workloads (fourteen 3D rendering and six GPGPU) is

co-executed with three different four-way multi-programmed CPU workload mixes.

To do this, we use the applications from the H-group to prepare twenty four-way

H mixes. Similarly, we prepare twenty four-way L mixes from the L-group. We

also prepare twenty four-way HL mixes, each of which has two H-group and two

L-group applications. Each of the twenty GPU workloads is mixed with one CPU

mix each from the H, L, and HL sets. We evaluate our proposal on these sixty

different heterogeneous mixes executed on a CMP with four CPU cores and a GPU.

For each GPU workload, we report the performance averaged (geometric mean) over

the three mixes containing that GPU workload. Sections 5.4.1 and 5.4.2 respectively

discuss the results for the mixes containing the 3D rendering and CUDA workloads.

5.4 Simulation Results 121

5.4.1 Mixes with 3D Rendering Workloads

We divide the discussion into evaluation of the several individual components that

constitute our proposal.

Critical vs. Non-critical Accesses. We conduct two experiments to understand

whether our critical access identification logic is able to mark the critical GPU ac-

cesses as such. In one case, we treat all non-compulsory LLC misses from the critical

accesses as hits. In the other case, we treat all non-compulsory LLC misses from

the non-critical accesses as hits. Figure 5.7 shows the improvement in FPS over the

baseline in the two cases. Except for L4D, all applications show much higher FPS

improvement when the critical accesses are treated ideally. These results confirm

that our proposal is able to identify a subset of the critical accesses correctly. On av-

erage, treating the critical accesses ideally offers an FPS improvement of 48%, while

favoring the complementary access set offers only 13% improvement. In L4D, our

algorithm misclassifies a number of critical blitter accesses. COR loses performance

when the non-critical accesses are treated ideally because some of the non-critical

accesses negatively interfere with the critical ones.

−15
0

15
30
45
60
75
90

105

P
e

rc
e

n
t

in
c
re

a
s
e

 i
n

 F
P

S

3D
M

ar
k0

6G
T1

3D
M

ar
k0

6G
T2

3D
M

ar
k0

6H
D
R
1

3D
M

ar
k0

6H
D
R
2

U
T3

U
T20

04

C
R
YSIS

C
O
R

C
O
D
2

L4
D

D
O
O
M

3
N
FS

H
L2

Q
U
AKE4

Ave
ra

ge

Critical Non−critical

Figure 5.7: Percent improvement in FPS when LLC behaves ideally for critical and
non-critical accesses.

122 GPU Criticality-driven Memory Management

Figure 5.8 shows the distribution of the critical color (C), critical texture (T),

critical depth (Z), critical blitter (B), critical other (O), and non-critical (NC) ac-

cesses as identified by our algorithm in the aforementioned experiment. The distri-

bution varies widely across the applications with 62% of accesses being identified

as critical on average. It is encouraging to note that for most of the applications,

the stream that was found to enjoy the largest speedup in Figure 5.2 is among the

dominant critical streams identified by our algorithm.

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n
 o

f
a
ll

G
P

U
 a

c
c
e
s
s
e
s

3D
M

ar
k0

6G
T1

3D
M

ar
k0

6G
T2

3D
M

ar
k0

6H
D
R
1

3D
M

ar
k0

6H
D
R
2

C
O
D
2

C
R
YSIS

D
O
O
M

3
H
L2 L4

D
N
FS

Q
U
AKE4

C
O
R

U
T20

04
U
T3

Ave
ra

ge

C T Z B O NC

Figure 5.8: Distribution of critical accesses.

DRAM Scheduling for Critical GPU Accesses. Our DRAM scheduling pro-

posal employs the access criticality information for the 3D rendering applications

that fail to meet a target FPS. We set this target to 40 FPS and show the results for

the eight applications that deliver frame rate below this level (see the last column

of Table 2.2). Figure 5.9 evaluates the GPU-favoring and IM policies (Section 5.2.2)

for the mixes containing these GPU applications. The left panel shows the FPS of

the GPU normalized to the baseline. The right panel shows the weighted speedup

for the corresponding CPU mixes normalized to the baseline. We identify each CPU

workload by GPUworkloadnameCPU . The GPU-favoring policy improves the FPS

by 18% on average while degrading the weighted speedup of the CPU mixes by 8%

on average. The IM policy is able to recover most of the lost CPU performance.

5.4 Simulation Results 123

This policy improves the FPS of the GPU applications by 15% on average while

performing within 3% of the baseline for the CPU application mixes. The CPU

mixes co-scheduled with 3DMark06HDR1 perform better than the baseline, on av-

erage. The IM policy has the IM-SCHED and IM-LLC components. Compared to

the GPU-favoring policy, the IM-LLC component alone reduces CPU performance

loss by 3% while sacrificing 2% GPU performance. The IM-SCHED component

alone reduces CPU performance loss by 2% while sacrificing 1% GPU performance.

Effects are additive when they work together in the IM policy.

1

1.05

1.1

1.15

1.2

1.25

1.3

F
P

S
 n

o
rm

a
liz

e
d

 t
o

 b
a

s
e

lin
e

G
EO

M
EAN

3D
M

ar
k0

6H
D
R
2

3D
M

ar
k0

6H
D
R
1

3D
M

ar
k0

6G
T2

3D
M

ar
k0

6G
T1

C
O
D
2

C
R
YSIS

L4
D

U
T3

GPU−favoring policy

IM policy

0.8

0.85

0.9

0.95

1

1.05

1.1

N
o

rm
a

liz
e

d
 w

e
ig

h
te

d
 s

p
e

e
d

u
p

G
EO

M
EAN

U
T3C

PU

L4
D
C
PU

C
R
YSIS

C
PU

C
O
D
2C

PU

H
D
R
2C

PU

H
D
R
1C

PU

G
T2C

PU

G
T1C

PU

GPU−favoring policy

IM policy

Figure 5.9: Left: normalized FPS of GPU applications that perform below target
FPS. Right: weighted CPU speedup for the mixes.

Comparison to Related Proposals. We compare our proposal against staged

memory scheduling (SMS) [3], dynamic priority scheduler (DynPrio) [37], and deadline-

aware scheduling (DASH) [103]. These proposals were discussed in Section 5.3. We

evaluate two versions of SMS, namely, one with a probability of 0.9 of using shortest-

job-first (SMS-0.9) and the other with this probability zero (SMS-0) i.e., it always

selects the round-robin policy. DynPrio and DASH make use of our frame rate es-

timation technique to compute the time left in a frame. Additionally, we compare

our proposal against HeLM, the state-of-the-art shared LLC management policy for

124 GPU Criticality-driven Memory Management

heterogeneous CMPs [71].

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 F

P
S

GEOMEAN

3D
M

ar
k0

6G
T1

3D
M

ar
k0

6G
T2

3D
M

ar
k0

6H
D
R
1

3D
M

ar
k0

6H
D
R
2

C
O
D
2

C
R
YSIS

L4
D

U
T3

0.8

0.9

1

1.1

1.2

C
P

U
 s

p
e

e
d

u
p

GEOMEAN

G
T1C

PU

G
T2C

PU

H
D
R
1C

PU

H
D
R
2C

PU

C
O
D
2C

PU

C
R
YSIS

C
PU

L4
D
C
PU

U
T3C

PU

SMS−0.9 SMS−0 DynPrio DASH HeLM GPU criticality

Figure 5.10: Top: FPS speedup over baseline. Bottom: weighted CPU speedup for
the mixes.

Figure 5.10 shows the comparison for the heterogeneous mixes containing the

GPU applications that fail to meet the target FPS. SMS suffers from large losses in

FPS (upper panel) due to the delay in batch formation. DynPrio fails to observe

any overall benefit because it offers express bandwidth to the GPU application only

during the last 10% of a frame time. Both DASH and our GPU criticality-aware pro-

posal (IM policy) improve average FPS by 14%. DASH prioritizes the GPU accesses

throughout the execution. Such a policy, however, hurts the performance of the co-

scheduled CPU mixes by 10% on average (lower panel of Figure 5.10). Our proposal,

on the other hand, accelerates only the critical GPU accesses and improves average

FPS by the same amount as DASH while delivering CPU performance within 3% of

the baseline. Both SMS-0.9 and SMS-0 improve CPU mix performance by 8%, while

suffering from large losses in GPU performance. HeLM improves CPU performance

by 6% on average, while degrading GPU performance by 5%. To understand how

these proposals fare in terms of combined CPU-GPU system performance, we con-

sider a performance metric in which the CPU and the GPU performance are weighed

equally i.e., overall speedup is the geometric mean of the FPS speedup and the nor-

5.4 Simulation Results 125

malized weighted speedup of the CPU mix [62]. We find that DASH and HeLM

improve this performance metric by 1% on average compared to the baseline, while

our proposal improves this metric by 5%. DynPrio delivers baseline performance,

while both SMS-0.9 and SMS-0 degrade the equal-weight metric by 9%.

Sensitivity to LLC Capacity. Figure 5.11 summarizes the performance of the IM

policy when the heterogeneous CMP is equipped with an 8 MB shared LLC (as op-

posed to 16 MB considered so far). The GPU applications improve by an impressive

17% over the baseline and the co-scheduled CPU application mixes perform within

4% of the baseline, on average. The CPU mixes co-scheduled with 3DMark06HDR1

and 3DMark06HDR2 outperform the baseline, on average. Referring back to Fig-

ure 5.9, we observe that for a 16 MB LLC, the GPU gain is 15% and the CPU mixes

perform within 3% of the baseline, on average.

1

1.05

1.1

1.15

1.2

1.25

1.3

F
P

S
 n

o
rm

a
liz

e
d
 t
o
 b

a
s
e
lin

e

3D
M

ar
k0

6G
T1

3D
M

ar
k0

6G
T2

3D
M

ar
k0

6H
D
R
1

3D
M

ar
k0

6H
D
R
2

C
O
D
2

C
R
YSIS

L4
D

U
T3

G
EO

M
EAN

IM policy

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02

N
o
rm

a
liz

e
d
 w

e
ig

h
te

d
 s

p
e
e
d
u
p

G
T1C

PU

G
T2C

PU

H
D
R
1C

PU

H
D
R
2C

PU

C
O
D
2C

PU

C
R
YSIS

C
PU

L4
D
C
PU

U
T3C

PU

G
EO

M
EAN

IM policy

Figure 5.11: Left: normalized FPS of GPU applications that perform below target
FPS. Right: weighted CPU speedup for the mixes.

5.4.2 Mixes with GPGPU Workloads

Figure 5.12 evaluates SMS-0.9, SMS-0, HeLM, and our GPU criticality-aware pro-

posal for the heterogeneous mixes containing CUDA applications when the CMP is

126 GPU Criticality-driven Memory Management

equipped with a 16 MB shared LLC.1 Both SMS-0.9 and SMS-0 degrade GPU per-

formance (left panel) by 4% on average while improving the CPU performance (right

panel) by 7% and 8%, respectively. HeLM improves GPU performance by 6% and

CPU performance by 7%, on average. Our proposal improves GPU performance by

1% and CPU performance by 14%, on average. Since the GPU performance can

be traded off for CPU performance and vice-versa, we use the equal-weight perfor-

mance metric to understand the overall system performance. Both SMS-0.9 and

SMS-0 improve the equal-weight metric by 2%, while HeLM improves this metric

by 6%. Our proposal achieves a 7% improvement in this metric.

0.9

1

1.1

1.2

G
P

U
 s

p
e

e
d

u
p

SMS−0.9 SMS−0 HeLM GPU criticality

0.9

1

1.1

1.2

1.3

C
P

U
 s

p
e

e
d

u
p

1.81

LB
M

C
FD

BFS

FASTW
ALS

H

BLA
C
KSC

H
O
LE

S

R
ED

U
C
TIO

N

G
EO

M
EAN

LB
M

−C
PU

C
FD

−C
PU

BFS−C
PU

FW
−C

PU

BS−C
PU

R
ED

−C
PU

G
EO

M
EAN

Figure 5.12: Left: GPU application speedup. Right: weighted CPU speedup for the
mixes.

5.5 Conclusions

We have presented a new class of memory access schedulers for heterogeneous CMPs.

Our proposal dynamically identifies the critical GPU accesses and probabilistically

prioritizes them in the memory access scheduler. Detailed simulation studies show

that our proposal achieves its goal of offering a bigger share of the shared memory

system resources to the critical GPU accesses. The GPU performance improves

1 DynPrio and DASH are left out from this evaluation because these two proposals are suitable
for deadline-sensitive GPU workloads.

5.5 Conclusions 127

by 15% on average for the 3D scene rendering applications, while the co-scheduled

CPU application mixes perform within 3% of the baseline on average. For the

heterogeneous mixes with GPGPU applications, the CPU application mixes improve

by 14% on average, while the GPU performs 1% above the baseline leading to an

overall 7% improvement in system performance, measured in terms of a CPU-GPU

equal-weight performance metric.

128 GPU Criticality-driven Memory Management

Chapter 6

Summary and Future Work

In this dissertation, we have presented solutions to improve the memory system

performance of a single-chip CPU-GPU heterogeneous processor design. Our tar-

get architecture is similar to the Intel’s integrated GPU architectures, sharing re-

sources, such as, last-level cache, on-chip interconnect, on-chip memory controller,

and DRAM channels, ranks, banks between the two type of cores. We have explored

heterogeneous workload scenarios where general purpose CPU applications (drawn

from the SPEC CPU 2006 suite) and 3D scene rendering or GPGPU applications

are simultaneously executed on the CPU and GPU cores, respectively. Our experi-

ments show that, in such an environment, both CPU and GPU applications degrade

significantly from their standalone performance due to the contention for the shared

memory system resources. The case study with Intel Haswell presented in Chapter 1

confirms that such problems exist in modern commercial heterogeneous processors.

Since the LLC capacity and DRAM bandwidth are the two major resources

shared between the CPU and GPU cores in a heterogeneous environment like the

one studied in this dissertation, we explore LLC capacity, DRAM bandwidth, and

130 Summary and Future Work

their collective management policies covering various heterogeneous execution use

cases. We find that efficient LLC capacity management not only improves memory

access latency but also helps alleviate bandwidth pressure in the shared DRAM

system. Performance feedback-directed dynamic partitioning of DRAM bandwidth

between CPU and GPU applications is another solution space that we explore to deal

with the DRAM interference problem. Further, we show that in certain scenarios,

the memory access rate of the GPU can be controlled to improve memory system

resource allocation in a heterogeneous processor.

Our LLC management policy that dynamically partitions cache capacity between

CPU and GPU applications is discussed in Chapter 3. Since these applications differ

vastly in reuse characteristics and access patterns, for efficient management, these

applications need to be handled appropriately. Moreover, we find that the GPU

applications exhibit large working sets, and as a result, effectively learning their

reuse patterns is difficult. To this end, we propose a novel working set sample

cache and employ it to effectively learn dynamic reuse probability of CPU and

GPU access streams. The measured reuse probability is further used to induce an

implicit partition of the LLC capacity between the CPU and GPU access streams.

Evaluation done on a heterogeneous processor simulator shows that with a 16 MB

shared last-level cache we are able to improve the performance of the GPU workloads

spanning DirectX and OpenGL as well as CUDA applications by 12% on average

and of the co-scheduled quad-core CPU workloads by 7% on average.

3D scene rendering applications executing on GPU have well-defined QoS re-

quirements (i.e., target frame rate) for visual satisfaction of the end-users. If such

an application is able to meet the required level of performance, memory resources

can be shifted from GPU to CPU by controlling the memory access rate of the

131

GPU. In Chapter 4, we present our QoS-guided dynamic GPU access throttling

algorithm. Our proposal uses an accurate frame rate prediction algorithm that dy-

namically measures the QoS of the GPU applications and a light-weight memory

access throttling mechanism that dynamically controls the memory access rate of

the GPU application. Our proposal is able to effectively transfer the LLC capacity

and DRAM bandwidth from GPU to CPU cores whenever the GPU application is

able to meet the target QoS level. Evaluation done on a simulated heterogeneous

configuration having four CPU cores and a GPU shows that we are able to improve

the CPU performance by 18% on average while effectively meeting the QoS target

for the GPU applications.

Our GPU criticality-driven memory management proposal presented in Chap-

ter 5 deals with the problem of dynamic partitioning of the DRAM bandwidth

between CPU and GPU access streams. We find that the accesses originating from

different parts of the rendering pipeline or different shader load/store instructions

are not equally important for end-performance. To dynamically learn this criticality

information, we propose a queuing network to model the information flow through

the rendering pipeline. This model forms the central contribution of our proposal.

For estimating the criticality of shader load/store instructions we make use of the

front-end and back-end shader core pipeline stalls to design a two-level algorithm.

We use the measured criticality information to partition the DRAM bandwidth be-

tween the critical GPU, non-critical GPU, and CPU accesses. Evaluation done on

a heterogeneous chip-multiprocessor simulator having four CPU cores and a GPU

shows that for the 3D scene rendering applications, our proposal is able to improve

the GPU performance by 15% on average without degrading the performance of

the co-scheduled CPU applications by much. For the GPGPU applications, our

132 Summary and Future Work

proposal improves the system performance by 7% on average.

6.1 Future Work

The heterogeneous processors available today enable tight coupling between the

CPU and GPU cores. Introduction of shared virtual memory, system wide atomics,

and global coherence in such processors allow partitioning of data and instruction be-

tween CPU and GPU cores at various granularity leading to fine-grain data sharing

between the CPU and the GPU. Our work can be extended to deal with the mem-

ory system interference in such fine-grain partitioned heterogeneous applications for

improving the overall system performance.

The studies presented in this dissertation show that the working set of the GPU

applications is very large, far exceeding the capacity of the modern on-chip SRAM

caches. Systems employing large high-bandwidth die-stacked or embedded last-

level DRAM caches are attractive for workloads having large working sets with

high bandwidth demands. It is known that effectively managing the bandwidth

and capacity of the DRAM cache in such systems is an important problem. Our

proposals can be effectively extended to tackle such problems.

Different kinds of cores (CPU and GPU) feature very different execution models

and thus stress the memory system in very different ways. A CPU needs to perform

memory reads with low latency, while a GPU can tolerate long memory latency

due to the massively parallel design with thousands of ready contexts, but requires

significantly large memory system bandwidth. A hybrid memory system combining

high-bandwidth non-volatile memory (NVM) with traditional DDRx memory and

a low-latency SRAM cache can be used to improve the overall system performance

6.1 Future Work 133

and power in CPU-GPU heterogeneous processors. Our proposals can be suitably

augmented to work in such hybrid memory systems.

134 Summary and Future Work

References

[1] K. Asanovic et al. A View of the Parallel Computing Landscape. In Communi-

cations of the ACM , 52(10): 56–67, October 2009.

[2] R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R. Das, M. T. Kan-

demir, and O. Mutlu. Exploiting Inter-Warp Heterogeneity to Improve GPGPU

Performance. In Proceedings of the International Conference on Parallel Archi-

tecture and Compilation Techniques , pages 25–38, October 2015.

[3] R. Ausavarungnirun, K. K-W. Chang, L. Subramanian, G. H. Loh, and O.

Mutlu. Staged Memory Scheduling: Achieving High Performance and Scalabil-

ity in Heterogeneous Systems. In Proceedings of the 39th International Sympo-

sium on Computer Architecture, pages 416–427, June 2012.

[4] L. A. Belady. A Study of Replacement Algorithms for a Virtual-storage Com-

puter. In IBM Systems Journal , 5(2): 78–101, 1966.

[5] D. Bouvier, B. Cohen, W. Fry, S. Godey, and M. Mantor. Kabini: An AMD

Accelerated Processing Unit System on a Chip. In IEEE Micro, 34(2):22–33,

March/April 2014.

136 REFERENCES

[6] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubramonian.

Managing DRAM Latency Divergence in Irregular GPGPU Applications. In

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis , pages 128–139, November 2014.

[7] M. Chaudhuri et al. Introducing Hierarchy-awareness in Replacement and By-

pass Algorithms for Last-level Caches. In Proceedings of the 21st International

Conference on Parallel Architecture and Compilation Techniques , pages 293–

304, September 2012.

[8] M. Chaudhuri. Pseudo-LIFO: The Foundation of a New Family of Replace-

ment Policies for Last-level Caches. In Proceedings of the 42nd International

Symposium on Microarchitecture, pages 401–412, December 2009.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K.

Skadron. Rodinia: A Benchmark Suite for Heterogeneous Computing. In Pro-

ceedings of the IEEE International Symposium on Workload Characterization,

pages 44–54, October 2009.

[10] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron. A

Characterization of the Rodinia Benchmark Suite with Comparison to Contem-

porary CMP Workloads. In Proceedings of the IEEE International Symposium

on Workload Characterization, pages 1–11, December 2010.

[11] X. Chen et al. Adaptive Cache Management for Energy-efficient GPU Comput-

ing. In Proceedings of the 47th International Symposium on Microarchitecture,

pages 343–355, December 2014.

REFERENCES 137

[12] C. J. Choi et al. Performance Comparison of Various Cache Systems for Texture

Mapping. In Proceedings of the 4th International Conference on High Perfor-

mance Computing in Asia-Pacific Region, pages 374–379, May 2000.

[13] M. Cox, N. Bhandari, and M. Shantz. Multi-level Texture Caching for 3D

Graphics Hardware. In Proceedings of the 25th International Symposium on

Computer Architecture, pages 86–97, June/July 1998.

[14] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi. Application-

to-core Mapping Policies to Reduce Memory System Interference in Multi-core

Systems. In Proceedings of the 19th International Symposium on High Perfor-

mance Computer Architecture, pages 107–118, February 2013.

[15] M. Demler. Iris Pro Takes On Discrete GPUs. In Microprocessor Report ,

September 9, 2013.

[16] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark. Ocelot: A Dynamic

Optimization Framework for Bulk-synchronous Applications in Heterogeneous

Systems. In Proceedings of the 19th International Conference on Parallel Ar-

chitecture and Compilation Techniques , pages 353–364, September 2010.

[17] N. Doung et al. Improving Cache Management Policies Using Dynamic Reuse

Distances. In Proceedings of the 45th International Symposium on Microarchi-

tecture, pages 389–400, December 2012.

[18] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via Source Throt-

tling: A Configurable and High-performance Fairness Substrate for Multi-core

Memory Systems. In Proceedings of the 15th International Conference on Ar-

138 REFERENCES

chitectural Support for Programming Languages and Operating Systems , pages

335–346, March 2010.

[19] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu,

and Y. N. Patt. Parallel Application Memory Scheduling. In Proceedings of the

44thInternational Symposium on Microarchitecture, pages 362–373, December

2011.

[20] H. Esmaeilzadeh, E. R. Blem, R. S. Amant, K. Sankaralingam, and D. Burger.

Dark Silicon and the End of Multicore Scaling. In Proceedings of the 38th In-

ternational Symposium on Computer Architecture, pages 365–376, June 2011.

[21] J. Gaur et al. Efficient Management of Last-level Caches in Graphics Processors

for 3D Scene Rendering Workloads. In Proceedings of the 46th International

Symposium on Microarchitecture, pages 395–407, December 2013.

[22] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and Insertion Algorithms

for Exclusive Last-level Caches. In Proceedings of the 38th International Sym-

posium on Computer Architecture, pages 81–92, June 2011.

[23] S. Ghose, H. Lee, and J. F. Martinez. Improving Memory Scheduling via

Processor-side Load Criticality Information. In Proceedings of the 40th Inter-

national Symposium on Computer Architecture, pages 84–95, June 2013.

[24] N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer Visibility. In Proceed-

ings of the 20th SIGGRAPH Annual Conference on Computer Graphics and

Interactive Techniques , pages 231–238, August 1993.

REFERENCES 139

[25] Z. S. Hakura and A. Gupta. The Design and Analysis of a Cache Architecture

for Texture Mapping. In Proceedings of the 24th International Symposium on

Computer Architecture, pages 108–120, May 1997.

[26] M. Harris. Dynamic Texturing. Available at

http://developer.download.nvidia.com/assets/gamedev/docs/ DynamicTex-

turing.pdf.

[27] HP Labs. McPAT: An Integrated Power, Area, and Timing Model-

ing Framework for Multicore and Manycore Architectures. Available at

http://www.hpl.hp.com/research/mcpat/.

[28] Joshua Ho, Ryan Smith. NVIDIA Tegra Xl Preview and Architecture Analysis.

Available at https://www.anandtech.com/show/8811/nvidia-tegra-x1-preview.

[29] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the Memory System:

Predicting and Optimizing Memory Behavior. In Proceedings of the 29th Inter-

national Symposium on Computer Architecture, pages 209–220, May 2002.

[30] I. Hur and C. Lin. Adaptive History-Based Memory Schedulers. In Proceed-

ings of the 37th International Symposium on Microarchitecture, pages 343–354,

December 2004.

[31] H. Igehy, M. Eldridge, and P. Hanrahan. Parallel Texture Caching. In Proceed-

ings of the SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware,

pages 95–106, August 1999.

140 REFERENCES

[32] H. Igehy, M. Eldridge, and K. Proudfoot. Prefetching in a Texture Cache Ar-

chitecture. In Proceedings of the SIGGRAPH/EUROGRAPHICS Workshop on

Graphics Hardware, pages 133–142, August/September 1998.

[33] Intel Corporation. Intel Core i7-4770 Processor. Available at

http://ark.intel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-

up-to-3 90-GHz.

[34] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana. Self-Optimizing Memory

Controllers: A Reinforcement Learning Approach. In Proceedings of the 35th

International Symposium on Computer Architecture, pages 39–50, June 2008.

[35] A. Jaleel et al. High Performance Cache Replacement using Re-reference Inter-

val Prediction (RRIP). In Proceedings of the 37th International Symposium on

Computer Architecture, pages 60–71, June 2010.

[36] A. Jaleel et al. Adaptive Insertion Policies for Managing Shared Caches. In

Proceedings of the 17th International Conference on Parallel Architecture and

Compilation Techniques , pages 208–219, October 2008.

[37] M. K. Jeong, M. Erez, C. Sudanthi, and N. C. Paver. A QoS-aware memory

controller for dynamically balancing GPU and CPU bandwidth use in an MP-

SoC. In Proceedings of the 49th Annual Design Automation Conference, pages

850–855, June 2012.

[38] W. Jia, K. A. Shaw, and M. Martonosi. MRPB: Memory Request Prioritization

for Massively Parallel Processors. In Proceedings of the 20th International Sym-

posium on High Performance Computer Architecture, pages 272–283, February

2014.

REFERENCES 141

[39] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C.

R. Das. Orchestrated Scheduling and Prefetching for GPGPUs. In Proceedings

of the 40th International Symposium on Computer Architecture, pages 332–343,

June 2013.

[40] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir,

O. Mutlu, R. Iyer, and C. R. Das. OWL: Cooperative Thread Array Aware

Scheduling Techniques for Improving GPGPU Performance. In Proceedings of

the 18th International Conference on Architectural Support for Programming

Languages and Operating Systems , pages 395–406, March 2013.

[41] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and

C. R. Das. Exploiting Core Criticality for Enhanced GPU Performance. In

Proceedings of the International Conference on Measurement and Modeling of

Computer Science (SIGMETRICS), pages 351–363, June 2016.

[42] D. Kanter. Intel’s Ivy Bridge Graphics Architecture. April 2012. Available at

http://www.realworldtech.com/ivy-bridge-gpu/.

[43] D. Kanter. Intel’s Sandy Bridge Graphics Architecture. August 2011. Available

at http://www.realworldtech.com/sandy-bridge-gpu/.

[44] D. Kanter. AMD Fusion Architecture and Llano. June 2011. Available at

http://www.realworldtech.com/fusion-llano/.

[45] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither More nor

Less: Optimizing Thread-level Parallelism for GPGPUs. In Proceedings of the

22nd International Conference on Parallel Architectures and Compilation Tech-

niques , pages 157–166, September 2013.

142 REFERENCES

[46] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun, M. T. Kandemir,

G. H. Loh, O. Mutlu, and C. R. Das. Managing GPU Concurrency in Hetero-

geneous Architectures. In Proceedings of the 47th International Symposium on

Microarchitecture, pages 114–126, December 2014.

[47] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache Replacement Based on

Reuse Distance Prediction. In Proceedings of the 25th International Conference

on Computer Design, pages 245–250, October 2007.

[48] S. Khan, A. Alameldeen, C. Wilkerson, O. Mutlu, and D. A. Jimènez. Improving

Cache Performance by Exploiting Read-Write Disparity. In Proceedings of the

20th International Symposium on High Performance Computer Architecture,

pages 452–463, February 2014.

[49] S. Khan and D. A. Jimènez. Insertion Policy Selection Using Decision Tree

Analysis. In Proceedings of the 28th International Conference of Computer De-

sign, pages 106–111, October 2010.

[50] S. Khan, Y. Tian, and D. A. Jimènez. Dead Block Replacement and Bypass

with a Sampling Predictor. In Proceedings of the 43rd International Symposium

on Microarchitecture, pages 175–186, December 2010.

[51] S. Khan, Z. Wang, and D. A. Jimènez. Decoupled Dynamic Cache Segmenta-

tion. In Proceedings of the 18th International Symposium on High Performance

Computer Architecture, pages 235–246, February 2012.

[52] S. Khan et al. Using Dead Blocks as a Virtual Victim Cache. In Proceedings

of the 19th International Conference on Parallel Architectures and Compilation

Techniques , pages 489–500, September 2010.

REFERENCES 143

[53] M. Kharbutli and Y. Solihin. Counter-based Cache Replacement and Bypassing

Algorithms. In IEEE Transactions on Computers , 57(4): 433–447, April 2008.

[54] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A Scalable and

High-performance Scheduling Algorithm for Multiple Memory Controllers. In

Proceedings of the 16th International Conference on High-Performance Com-

puter Architecture, January 2010.

[55] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho. MacSim:

A CPU-GPU Heterogeneous Simulation Framework. February 2012. Available

at https://code.google.com/p/macsim/.

[56] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread Cluster

Memory Scheduling: Exploiting Differences in Memory Access Behavior. In

Proceedings of the 43rd International Symposium on Microarchitecture, pages

65–76, December 2010.

[57] N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martinez. Checkpointed Early

Load Retirement. In Proceedings of the 11th International Conference on High-

Performance Computer Architecture, pages 16–27, February 2005.

[58] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P.

Jouppi, and Keith I. Farkas. 2004. Single-ISA Heterogeneous Multi-Core Archi-

tectures for Multithreaded Workload Performance. In Proceedings of the 31st

annual international symposium on Computer architecture (ISCA ’04). IEEE

Computer Society, Washington, DC, USA, 64-.

144 REFERENCES

[59] A-C. Lai, C. Fide, and B. Falsafi. Dead-block Prediction & Dead-block Cor-

relating Prefetchers. In Proceedings of the 28th International Symposium on

Computer Architecture, pages 144–154, June/July 2001.

[60] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin. DRAM Scheduling Policy

for GPGPU Architectures Based on a Potential Function. In IEEE Computer

Architecture Letters , 11(2): 33–36, July 2012.

[61] S-Y. Lee, A. Arunkumar, and C-J. Wu. CAWA: Coordinated Warp Scheduling

and Cache Prioritization for Critical Warp Acceleration of GPGPU Workloads.

In Proceedings of the 42nd International Symposium on Computer Architecture,

pages 515–527, June 2015.

[62] J. Lee and H. Kim. TAP: A TLP-aware Cache Management Policy for a CPU-

GPU Heterogeneous Architecture. In Proceedings of the 18th International Sym-

posium on High Performance Computer Architecture, pages 91–102, February

2012.

[63] S-Y. Lee and C-J. Wu. CAWS: Criticality-aware Warp Scheduling for GPGPU

Workloads. In Proceedings of the International Conference on Parallel Archi-

tectures and Compilation Techniques , pages 175–186, August 2014.

[64] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger, D. S. Fussell,

and S. W. Redder. Priority-based Cache Allocation in Throughput Processors.

In Proceedings of the 21st IEEE International Symposium on High Performance

Computer Architecture, pages 89–100, February 2015.

REFERENCES 145

[65] H. Liu et al. Cache Bursts: A New Approach for Eliminating Dead Blocks and

Increasing Cache Efficiency. In Proceedings of the 41st International Symposium

on Microarchitecture, pages 222–233, November 2008.

[66] F. D. Luna. Introduction to 3D Game Programming with DirectX 10 . Wordware

Publishing Inc..

[67] R. Manikantan and R. Govindarajan. Focused Prefetching: Performance Ori-

ented Prefetching Based on Commit Stalls. In Proceedings of the 22nd Interna-

tional Conference on Supercomputing , pages 339–348, June 2008.

[68] R. Manikantan, K. Rajan, and R. Govindarajan. Probabilistic Shared Cache

Management (PriSM). In Proceedings of the 39th International Symposium on

Computer Architecture, pages 428–439, June 2012.

[69] R. Manikantan, K. Rajan, and R. Govindarajan. NUcache: An Efficient Mul-

ticore Cache Organization Based on Next-Use Distance. In Proceedings of the

17th IEEE International Symposium on High-performance Computer Architec-

ture, pages 243–253, February 2011.

[70] R. L. Mattson et al. Evaluation Techniques for Storage Hierarchies. In IBM

Systems Journal , 9(2): 78–117, 1970.

[71] V. Mekkat et al. Managing Shared Last-level Cache in a Heterogeneous Multi-

core Processor. In Proceedings of the 22nd International Conference on Parallel

Architectures and Compilation Techniques , pages 225–234, September 2013.

146 REFERENCES

[72] P. Messmer. Interactive Supercomputing with In-Situ Visualization on Tesla

GPUs. Available at https://devblogs.nvidia.com/parallelforall/interactive-

supercomputing-in-situ-visualization-tesla-gpus/.

[73] V. Moya et al. ATTILA: A Cycle-Level Execution-Driven Simula-

tor for Modern GPU Architectures. In Proceedings of the IEEE In-

ternational Symposium on Performance Analysis of Systems and Soft-

ware, pages 231–241, March 2006. Source and traces available at

http://attila.ac.upc.edu/wiki/index.php/Main Page.

[74] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. T. Kandemir, and T. Mosci-

broda. Reducing Memory Interference in Multicore Systems via Application-

aware Memory Channel Partitioning. In Proceedings of the 44th International

Symposium on Microarchitecture, pages 374–385, December 2011.

[75] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for

Chip Multiprocessors. In Proceedings of the 40th International Symposium on

Microarchitecture, pages 146–160, December 2007.

[76] O. Mutlu and T. Moscibroda. Parallelism-aware Batch Scheduling: Enhancing

both Performance and Fairness of Shared DRAM Systems. In Proceedings of

the 35th International Symposium on Computer Architecture, pages 63–74, June

2008.

[77] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead Execution: An

Alternative to Very Large Instruction Windows for Out-of-Order Processors.

In Proceedings of the 9th International Symposium on High-Performance Com-

puter Architecture, pages 129–140, February 2003.

REFERENCES 147

[78] N. C. Nachiappan, P. Yedlapalli, N. Soundararajan, M. T. Kandemir, A. Siva-

subramaniam, and C. R. Das. GemDroid: A Framework to Evaluate Mobile

Platforms. In Proceedings of the International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), pages 355–366, June 2014.

[79] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. 2006. Fair Queuing

Memory Systems. In Proceedings of the 39th International Symposium on Mi-

croarchitecture, pages 208–222, December 2006.

[80] T. Olson. Mali 400 MP: A Scalable GPU for Mobile and Embedded Devices.

In Symposium on High-Performance Graphics , June 2010.

[81] David A. Patterson and John L. Hennessy. 1990. Computer Architecture: a

Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA.

[82] T. Piazza. Intel Processor Graphics. In Symposium on High-Performance

Graphics , August 2012.

[83] M. K. Qureshi et al. Adaptive Insertion Policies for High Performance Caching.

In Proceedings of the 34th International Symposium on Computer Architecture,

pages 381–391, June 2007.

[84] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A Low-

Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches.

In Proceedings of the 39th International Symposium on Microarchitecture, pages

423–432, December 2006.

148 REFERENCES

[85] S. Rai and M. Chaudhuri. Exploiting Dynamic Reuse Probability to Manage

Shared Last-level Caches in CPU-GPU Heterogeneous Processors. In Proceed-

ings of the 30th International Conference on Supercomputing , June 2016.

[86] M. Ribble. Next-gen Tile-based GPUs. In Game Developers’ Conference, 2008.

[87] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and J. D. Owens. Mem-

ory Access Scheduling. In Proceedings of the 27th International Symposium on

Computer Architecture, pages 128–138, June 2000.

[88] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-aware Warp

Scheduling. In Proceedings of the 46th International Symposium on Microar-

chitecture, pages 99–110, December 2013.

[89] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle Accurate

Memory System Simulator. In IEEE Computer Architecture Letters , 10(1): 16–

19, January-June 2011.

[90] D. Sanchez and C. Kozyrakis. Vantage: Scalable and Efficient Fine-grain Cache

Partitioning. In Proceedings of the 38th International Symposium on Computer

Architecture, pages 57–68, June 2011.

[91] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry. The Evicted-address

Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing.

In Proceedings of the International Conference on Parallel Architectures and

Compilation Techniques , pages 355–366, September 2012.

[92] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically Charac-

terizing Large Scale Program Behavior. In Proceedings of the 10th International

REFERENCES 149

Conference on Architectural Support for Programming Languages and Operating

Systems , pages 45–57, October 2002.

[93] A. L. Shimpi. Intel Iris Pro 5200 Graphics Review: Core i7-4950HQ Tested.

June 2013. Available at http://www.anandtech.com/show/6993/intel-iris-pro-

5200-graphics-review-core-i74950hq-tested.

[94] D. Shingari, A. Arunkumar, and C-J. Wu. Characterization and Throttling-

Based Mitigation of Memory Interference for Heterogeneous Smartphones. In

Proceedings of the International Symposium on Workload Characterization,

pages 22–33, October 2015.

[95] A. Stevens. QoS for High-performance and Power-efficient HD Multimedia.

ARM White Paper , 2010.

[96] J. Stone. HPC Visualization on Nvidia Tesla GPUs. Available at

https://devblogs.nvidia.com/parallelforall/hpc-visualization-nvidia-tesla-

gpus/.

[97] J. A. Stratton, C. Rodrigues, I-J. Sung, N. Obeid, L-W. Chang, N. Anssari, G.

D. Liu, and W-m. W. Hwu. Parboil: A Revised Benchmark Suite for Scientific

and Commercial Throughput Computing. IMPACT Technical Report IMPACT-

12-01 , March 2012.

[98] S. Subramaniam, A. Bracy, H. Wang, and G. H. Loh. Criticality-based Op-

timizations for Efficient Load Processing. In Proceedings of the 15th Interna-

tional Conference on High-Performance Computer Architecture, pages 419–430,

February 2009.

150 REFERENCES

[99] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu. The Black-

listing Memory Scheduler: Achieving High Performance and Fairness at Low

Cost. In Proceedings of the 32nd International Conference on Computer Design,

pages 8–15, October 2014.

[100] L. Subramanian, V. Seshadri, A. Ghosh, S. M. Khan, and O. Mutlu. The

Application Slowdown Model: Quantifying and Controlling the Impact of Inter-

application Interference at Shared Caches and Main Memory. In Proceedings of

the 48th International Symposium on Microarchitecture, pages 62–75, December

2015.

[101] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu. MISE: Provid-

ing Performance Predictability and Improving Fairness in Shared Main Memory

Systems. In Proceedings of the 19th International Symposium on High Perfor-

mance Computer Architecture, pages 639–650, February 2013.

[102] R. Ubal et al. Multi2Sim: A Simulation Framework for CPU-GPU Computing.

In Proceedings of the 21st International Conference on Parallel Architecture and

Compilation Techniques , pages 335–344, September 2012.

[103] H. Usui, L. Subramanian, K. K-W. Chang, and O. Mutlu. DASH: Deadline-

Aware High-Performance Memory Scheduler for Heterogeneous Systems with

Hardware Accelerators. In ACM Transactions on Architecture and Code Opti-

mization, 12(4), January 2016.

[104] A. Vartanian, J-L. Bechennec, and N. Drach-Temam. Evaluation of High Per-

formance Multicache Parallel Texture Mapping. In Proceedings of the 12th In-

ternational Conference on Supercomputing , pages 289–296, July 1998.

REFERENCES 151

[105] J. Walton. The AMD Trinity Review (A10-4600M): A New Hope. May

2012. Available at http://www.anandtech.com/show/5831/amd-trinity-review-

a10-4600m-a-new-hope/.

[106] C-J. Wu et al. SHiP: Signature-Based Hit Predictor for High Performance

Caching. In Proceedings of the 44th International Symposium on Microarchi-

tecture, pages 430–441, December 2011.

[107] Y. Xie and G. H. Loh. PIPP: Promotion/Insertion Pseudo-partitioning of

Multi-core Shared Caches. In Proceedings of the 36th International Symposium

on Computer Architecture, pages 174–183, June 2009.

[108] M. Yuffe et al. A Fully Integrated Multi-CPU, GPU, and Memory Controller

32 nm Processor. In Proceedings of the International Solid-State Circuits Con-

ference, pages 264–266, February 2011.

[109] 2015 International Technology Roadmap for Semiconductors (ITRS).

http://www.semiconductors.org.

[110] 3D Mark Benchmark. http://www.3dmark.com/.

152 REFERENCES

Appendix Study on Application

Working-set

This appendix presents LLC miss rates of the applications (3D rendering, CPU,

and GPGPU) studied in this dissertation as a function of the LLC capacity. Fig-

ures A.1, A.2, A.3, and A.4 present the results for the 3D rendering applications.

Figures A.5 and A.6 present results for CPU and GPGPU applications, respectively.

As these results show, the cache sensitivities of graphics, CPU, and GPGPU appli-

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is

s
ra

te

UT4

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is

s
ra

te

UT3

C Z T B I

Figure A.1: Working sets of different LLC access streams

cations are significantly different. Compared to the GPU applications (both 3D

154 Appendix Study on Application Working-set

rendering and GPGPU), the CPU applications are more sensitive to cache capacity.

For the 3D rendering applications, the sensitivity varies across different streams.

The GPGPU applications show mixed behavior. On one hand, lbm, fastwalsh, and

reduction have very large working sets, while bfs and cfd show higher sensitivity and

their LLC miss rates drop quickly with increasing LLC capacity.

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is

s
ra

te

3DMGT1

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100
M

is
s

ra
te

3DMGT2

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is

s
ra

te

3DMHDR1

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is

s
ra

te

3DMHDR2

C Z T B I

Figure A.2: Working sets of different LLC access streams

155

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

COD2

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

CRYSIS

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

DOOM3

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

HL2

C Z T B I

Figure A.3: Working sets of different LLC access streams

156 Appendix Study on Application Working-set

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

L4D

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

NFS

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

QUAKE4
8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

448 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
Cache size in KB

0

20

40

60

80

100

M
is
s
ra
te

COR

C Z T B I

Figure A.4: Working sets of different LLC access streams

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

Cache size in KB

0
10
20
30
40
50
60
70
80
90
100

M
is
s
ra
te

Working Set for CPU Applications

BWAVES
GCC
LBM
LESLIE3D
LQUANTUM
MCF
OMNETPP
SOPLEX
SPHINX3
ZEUSMP

Figure A.5: Working sets of CPU applications

157

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

Cache size in KB

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

M
is
s
ra
te

Working Set for GPGPU Applications

BFS
BSCHOLS
CFD
FWALSH
LBM
REDUCTION

Figure A.6: Working sets of GPGPU applications

158 Appendix Study on Application Working-set

Appendix Publications

1. Siddharth Rai and Mainak Chaudhuri, Exploiting Dynamic Reuse Probability
to Manage Shared Last-level Caches in CPU-GPU Heterogeneous Processors.
In Proceedings of the 30th ACM International Conference on Supercomputing,
article no. 3, June 2016.

2. Siddharth Rai and Mainak Chaudhuri, Improving CPU Performance through
Dynamic GPU Access Throttling in CPU-GPU Heterogeneous Processors. In
Proceedings of the 26th IEEE International Heterogeneity in Computing Work-
shop, pages 18-29, May 2017.

3. Siddharth Rai and Mainak Chaudhuri, Using Criticality of GPU Accesses in
Memory Management for CPU-GPU Heterogeneous Multi-core Processors. In
Proceedings of the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, October 2017.

160 Appendix Publications

	Abstract
	Acknowledgement
	1 Introduction
	1.1 Dissertation Objective and Summary

	2 Workload Characteristics and Motivation
	2.1 System Configuration and Target Workloads
	2.2 Execution Model of 3D Rendering
	2.2.1 Overview of the 3D Rendering Algorithm

	2.3 Performance Impact of Resource Sharing
	2.3.1 GPU Utilization in 3D Rendering
	2.3.2 Stall Contribution of Different GPU Units
	2.3.3 GPU Memory Access Characteristics
	2.3.4 Inter-stream Reuses in 3D Rendering

	3 Dynamic Reuse Probability-based Last-level Cache Management
	3.1 Study on LLC Miss Savings
	3.2 GPU Performance with Ideal LLC
	3.3 Selective LLC Bypass of GPU Read Misses
	3.4 Dynamic Reuse Probability for LLC
	3.4.1 Working Set Sample Cache
	3.4.2 Read Miss Policy
	3.4.3 Write Miss Policy
	3.4.4 Write Hit Policy
	3.4.5 Read Hit Policy
	3.4.6 Storage Overhead
	3.4.7 Latency Considerations

	3.5 Related Work
	3.5.1 LLC Management in CPUs
	3.5.2 Managing LLC in Heterogeneous CMPs
	3.5.3 LLC Management in Discrete GPUs

	3.6 Simulation Results
	3.6.1 Comparison to Related Proposals

	3.7 Conclusion

	4 QoS-guided Dynamic GPU Access Throttling
	4.1 Motivation
	4.2 Memory Access Management
	4.2.1 Dynamic Frame Rate Computation
	4.2.1.1 Learning Phase
	4.2.1.2 Prediction Phase

	4.2.2 Access Throttling Mechanism
	4.2.3 DRAM Access Scheduler
	4.2.4 Storage Overhead

	4.3 Related Work
	4.4 Simulation Results
	4.5 Conclusions

	5 GPU Criticality-driven Memory Management
	5.1 Motivation
	5.1.1 GPU Stream-wise Criticality
	5.1.2 Stream-centric Behavior in 3D Rendering Pipeline
	5.1.3 Stream Analysis of GPGPU Applications

	5.2 GPU Criticality-aware Memory Management
	5.2.1 Identifying Critical GPU Accesses
	5.2.1.1 3D Scene Rendering Workloads
	5.2.1.2 GPGPU Workloads

	5.2.2 Scheduling DRAM Accesses
	5.2.3 Additional Hardware Overhead

	5.3 Related Work
	5.4 Simulation Results
	5.4.1 Mixes with 3D Rendering Workloads
	5.4.2 Mixes with GPGPU Workloads

	5.5 Conclusions

	6 Summary and Future Work
	6.1 Future Work

	References
	Appendix Study on Application Working-set
	Appendix Publications

