
Spectral simulations of hydrodynamic and
thermal turbulence for extreme resolutions

A Thesis Submitted

in partial fulfilment of the requirements

for the degree of
Doctor of Philosophy

by

Anando Gopal Chatterjee

DEPARTMENT OF PHYSICS

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

March, 2018

Spectral simulations of thermal and
hydrodynamic turbulence for extreme

resolutions

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of
Doctor of Philosophy

by

Anando Gopal Chatterjee

to the

DEPARTMENT OF PHYSICS

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

March, 2018

v

Synopsis

Name : Anando Gopal Chatterjee

Roll No. : 12109870

Degree for which submitted : Doctor of Philosophy

Department : Physics

Title of the Thesis : Spectral simulations of thermal

and hydrodynamic turbulence

for extreme resolutions

Thesis Supervisors : Prof. Mahendra K. Verma

Prof. Mainak Chaudhuri

Month and year of submission : March, 2018

Turbulent flow is characterised by chaotic motion of fluid at different length and time
scales. Its multi-scale features make it one of the most challenging problems in physics.
Theoretical analysis of turbulence is very limited due to the complex nonlinearities
present in the Navier -Stokes equation. Therefore, significant attempts have been made
to understand turbulence through experiments and numerical simulations. Over time,
very powerful supercomputers and software tools have emerged that have propelled
the computational capabilities of turbulent flows to significant heights.

A turbulent flow contains a large number of interacting scales—from box size to
dissipation scale. For Re = 105, the grid resolution required for resolution is 60003,
which is a daunting task. Therefore, we need efficient flow solvers. Also, turbulent
flows comes in various forms—-hydrodynamics, passive scalar, magnetohydrodynam-
ics, thermal convection. Here, it is good to have a general purpose solver that can be
used to solve these flows. I have contributed towards development of one such solver,
Tarang.

We have developed a turbulent flow solver, Tarang, that is an object oriented pro-
gram. It can solve for fluid, Rayleigh-Bénard Convection (RBC), Rayleigh-Taylor in-
stability, Stratified flows, Magnetohydrodynamics, etc. Tarang can solve these systems
with four boundary conditions. These are, i) periodic along the three directions (called

vii

FFF basis), ii) wall along one and periodic along two directions (called SFF basis), iii)
wall along two and periodic along one direction (called SSF basis), and iv) wall along
three directions (called SSS basis). The main solver and many functions of Tarang are
agnostic of the boundary condition. A large-resolution simulations involve input/out-
put of large data sets. We have developed a library H5SI (HDF5 simple interface) that
simplifies implementation of hdf5 library for various basis function.

A large fraction of computation time of a spectral solver is spent on Fast Fourier
Transform (FFT). We have developed a pencil-based FFT library called FFTK (FFT Kan-
pur). This library scales well up to 196608 cores and grids up to 81923. Our study
shows how MPI-all-to-all communication affects scaling. Also, FFTK works for FFF,
SFF, SSF, and SSS basis.

We performed detailed scaling analysis of two solvers—hydrodynamic flows and
thermal convection. We showed that these solvers scale quite well up to 196608 cores.
The solvers exhibit strong and weak scaling.

We performed direct numerical simulation (DNS) of turbulent RBC on a 40963

grid for a Rayleigh number (ratio of the buoyancy term to the diffusive term) Ra =

1.1 × 1011 and Prandtl number (ratio of kinematic viscosity and thermal diffusivity)
Pr = 1. Our grid resolution of RBC simulation is the highest ever employed for such
studies, and the Rayleigh number of 1.1× 1011 is the largest for any spectral simulation.
These runs were performed on 196608 cores of Cray XC40 of KAUST. Using the simula-
tion results we showed that turbulent thermal convection exhibits Eu(k) ∼ k−5/3, thus
we show that turbulent thermal convection has behaviour similar to hydrodynamic
turbulence.

We also performed a hydrodynamic turbulence simulation on a 40963 grid for
Re = 6.8× 104, and computed the energy spectrum and flux. We show that the nu-
merical results matches well with Pao’s predictions that Eu(k) ∼ k−5/3 exp(−k4/3) and
the energy flux Πu(k) ∼ exp(−k4/3) for both inertial and dissipative ranges. We also
show that the shell-to-shell energy transfer is local and forward in both inertial and
dissipative ranges.

The outline of the thesis is as follows:

In Chapter 1 we introduce various topic covered in the thesis.

In Chapter 2 we introduce the pseudo-spectral method and the structure of the
code Tarang . Here we describe the class and directory structure of Tarang. In addition,
we discuss the H5SI library that is used for parallel I/O.

viii

In Chapter 3 we present the design of our parallel FFT library, FFTK (FFT Kan-
pur). In FFTK, along with slab and pencil decomposition, all the required boundary
conditions have been incorporated. This chapter contains discussion on scaling results
of FFTK.

In Chapter 4, we describe the scaling results of two of the Tarang’s solvers—
hydrodynamics and thermal convection.

In Chapter 5 we describe the turbulence models of Pao [1] and Pope [2] and com-
pare them with high resolution energy spectrum produced by our simulations.

In Chapter 6 we compare kinetic energy spectrum of RBC simulation with Pao’s
model. The numerical curve matches quite well with the model curves in the inertial
range. We show that convective turbulence follows Kolmogorov’s model of fluid tur-
bulence. Using the steady-state data of our simulation, we compute the shell-to-shell
energy transfers and show that they are local and forward, very similar to hydrody-
namic turbulence.

In Chapter 7 we summarize the main results obtained in this thesis.

[1] PAO, Y.H. Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids 8, 6
(1965), 1063
[2] POPE, S. B. Turbulent Flows. Cambridge University Press, Cambridge, 2000

ix

Acknowledgements

I am delighted to express my sincere gratitude and warm appreciation to all the
persons who were instrumental to the completion of my Ph.D. journey.

First of all, I would like to express my deepest gratitude to my thesis advisors
Prof. Mahendra K. Verma and Prof. Mainak Chaudhuri for providing me an oppor-
tunity to work with them on one of the most important and rich problems in fluid
dynamics, performing spectral simulations of thermal and hydrodynamic turbulence
for extreme resolutions. I am highly indebted to Prof. Mahendra K. Verma for pro-
viding me state-of-the-art computational resources. His devotion for work always mo-
tivated and inspired me to work harder. I learned the basics of my research from his
courses on Turbulence, Magnetohydrodynamics, Nonlinear Dynamics, Computational
Physics, and High Performance Computing. His guidance and constant supervision
strongly supported me in completing this endeavor. He helped me a lot in writing of
the thesis.

I am highly grateful to my Peer Review Committee members, Prof. Sagar Chakra-
borty, Prof. Anand Jha, and Prof. Saikat Ghosh for valuable suggestions on my work.
I am thankful to Prof. Ravi Samtaney for introducing me to some new concepts in
physics and for providing access to the computational facilities of KAUST, Saudi Ara-
bia. I acknowledge all the teachers who taught me during my M.Sc. and course work.
I thank Dr. Supriyo Paul for the fruitful discussions and suggestions during our col-
laboration at the initial stage of my Ph.D. I thank Prof. Pankaj K. Mishra for meticulous
discussions and suggestions during our collaboration.

I would further like to thank my friends and colleagues Dr. Rohit Kumar, Dr.
Ambrish Pandey, Dr. Abhishek Kumar for all kinds of help and support during my
entire stay at IIT Kanpur. We have always shared our knowledge with each other. I
have benefited from the countless discussions during lab hours. I am thankful to Dr.
Dinesh Nath, Biplab Dutta, Dr. Rakesh Yadav and Mani Chandra for all their support.

I would like to thank Akanksha Gupta, Manohar Sharma, Mohammad Anas,
Roshan Samuel, Shashwat Bhattacharya and Shubhadeep Sadhukhan for helping me
to revise the thesis. I am thankful to Roshan Bhaskaran and Manmohan Dewbanshi
for their cooperation and help.

I would also like to thank Mr. Arvind Mishra for all the computation related help,
and all the staff members of the Department of Physics for their kind cooperation and

xi

support.

I extend my thanks to IIT Kanpur for providing financial support to attend the
international conferences.

I am grateful for the computational facilities offered by IIT Kanpur and CDAC
Pune. Our numerical simulations were also performed on Shaheen-I and Shaheen-
II at KAUST supercomputing laboratory under the project k97 and k1052. My work
was supported by the research grants PLANEX/PHY/2015239 from Indian Space Re-
search Organization, India, by the Department of Science and Technology, India (INT/
RUS/RSF/P-03) and Russian Science Foundation Russia (RSF-16-41-02012) for the Indo-
Russian project.

Finally, I would like to express my deep gratitude to my parents and family mem-
bers for their continuous support and encouragement throughout the journey.

April, 2018 Anando Gopal Chatterjee

xii

To my family and teachers...

List of Publications

Published/Accepted

1. A. G. Chatterjee, M. K. Verma, A. Kumar, R. Samtaney, B. Hadri, R. Khurram,
“Scaling of a Fast Fourier Transform and a pseudo-spectral fluid solver up to 196608
cores", JPDC, 113, 77 (2018).

2. S. Sundar, M. K. Verma, A. Alexakis, and A. G. Chatterjee, “Dynamic anisotropy in
MHD turbulence induced by mean magnetic field", Phys. Plasmas, 24, 022304 (2017).

3. A. Kumar, A. G. Chatterjee, and M. K. Verma, “Energy spectrum of buoyancy-driven
turbulence", Phys. Rev. E, 90, 023016 (2014)

4. A. Pandey, A. Kumar, A. G. Chatterjee, and M. K. Verma, “Dynamics of large-scale
quantities in Rayleigh-Bénard convection", Phys. Rev. E, 94, 053106 (2016).

5. A. Pandey, M. K. Verma, A. G. Chatterjee, and B. Dutta, “Similarities between 2D
and 3D convection for large Prandtl number", Pramana-J. Phys., 87, 13 (2016).

6. M. K. Verma, A. Kumar, and A. G. Chatterjee, “Energy spectrum and flux of buoyancy-
driven turbulence", Physics Focus, AAPPS Bulletin, 25, 45, 2015

7. M. K. Verma, A. Chatterjee, K. S. Reddy, R. K. Yadav, S. Paul, M. Chandra, and
R. Samtaney, “Benchmarking and scaling studies of pseudospectral code Tarang for tur-
bulence simulations", Pramana, 81, 617, 2013.

Conference Proceeding

1. M. K. Verma, A. Kumar, and A. G. Chatterjee, “Energy Spectrum and Flux of
Buoyancy-Driven Turbulence, In Proc. Advances in Computation, Modeling and Con-
trol of Transitional and Turbulent Flows", Eds. T. K. Sengupta, S. Lele, K. R. Sreeni-
vasan, and P. A. Davidson, p. 442, World Scientific (2016).

2. M. K. Verma, A. Chatterjee, and S. Reddy, “Object-oriented Pseudo-spectral code
Tarang for turbulence simulation", In Proc. “ATIP/A*CRC Workshop on Accelera-
tor Technologies for High-Performance Computing: Does Asia Lead the Way?",
Singapore (2012).

xv

Contents

Thesis Synopsis vii

Acknowledgements xi

List of Publications xv

Table of Contents xvii

List of Figures xix

List of Tables xxi

1 Introduction 1

1.1 Fast Fourier Transform . 1

1.2 Spectral Solver . 2

1.3 Complexity of turbulence simulations . 5

1.4 Parallel Fourier Transforms: present status 6

1.5 Large-scale parallel spectral flows solvers: present status 7

1.6 Structured spectral solver: Tarang . 8

1.7 Hydrodynamic simulation using Tarang 9

1.8 Simulation of thermal convection using Tarang 10

xvii

CONTENTS

2 Implementation of a pseudospectral code as general PDE solver 13

2.1 Spectral method for solving turbulent flows 14

2.2 Design and implementation issues of Tarang 16

2.2.1 Basis functions . 16

2.3 Classes of Tarang . 18

2.3.1 Fluid Incompressible Classes . 24

2.4 Solvers of Tarang . 25

2.5 External libraries . 28

2.6 The H5SI Library . 28

2.6.1 Group . 30

2.6.2 Dataset . 31

2.7 Energy transfers in turbulent flows . 33

2.7.1 Class EnergyTr . 36

2.8 Summary . 37

3 Parallelisation of FFT and its scaling 39

3.1 Parallelization Strategy . 41

3.2 The FFTK Library . 43

3.2.1 void Init(string basis, int Nx, int Ny, int Nz, int num_p_rows) . . 43

3.2.2 Forward_transform . 44

3.2.3 Inverse_transform . 44

3.3 About the HPC systems . 45

3.3.1 Blue Gene/P . 45

3.3.2 Cray XC40 . 45

3.4 Scaling of FFTK . 46

3.4.1 Scaling on Blue Gene/P . 49

3.4.2 Scaling on Cray XC40 . 53

3.5 Hybridization . 58

3.6 Summary of the chapter . 59

4 Parallel scaling of Tarang solvers 61

4.1 Scaling of fluid solver on HPC systems . 61

xviii

CONTENTS

4.1.1 Scaling on Blue Gene/P . 62

4.1.2 Scaling on Cray XC40 . 62

4.2 Scaling of turbulent convection module of Tarang 65

4.2.1 Blue Gene/P . 67

4.2.2 Cray XC40 . 69

4.3 Summary and discussion . 69

5 High-resolution simulation of hydrodynamic turbulence 71

5.1 Models of energy spectrum in inertial and dissipative range 71

5.2 Model description . 72

5.2.1 Pao’s model of turbulent flow . 74

5.2.2 Pope’s model of turbulent flow . 75

5.3 Numerical Validation of the Models . 76

5.4 Summary . 81

6 Simulation of turbulent thermal convection 83

6.1 Governing equations of Rayleigh-Bénard convection 84

6.2 Phenomenology of turbulent convection 85

6.2.1 Classical Bolgiano-Obukhov scaling for stably-stratified turbu-

lence (SST): . 86

6.2.2 Generalization of Bolgiano-Obukhov scaling to RBC: 88

6.2.3 A phenomenological argument based on kinetic energy flux: . . . 88

6.3 Structure functions of turbulent convection 90

6.4 Past work of Convective Turbulence Phenomenology 91

6.5 Deducing physics of convective turbulence using very high-resolution

simulations . 92

6.6 Summary of the results . 100

7 Conclusion 103

7.1 Summary of hydrodynamic turbulence 103

7.2 Summary of DNS results on hydrodynamic turbulence 104

7.3 Summary of DNS results on turbulent thermal convection 105

xix

CONTENTS

7.4 Implications and future directions . 105

Appendices 107

A Transpose-free Fast Fourier Transform 109

B Datatypes for the H5SI library 115

xx

List of Figures

2.1 A schematic diagram of the computation of Fourier transform of the

nonlinear term (u · ∇)u in a pseudo-spectral solver. 14

2.2 Organisation of various classes of Tarang. Green outer boxes represent

folder structures. Red inner boxes represent classes. Blue solid arrows

represent is-a relation between classes (top class is derived from the

bottom class) and gray dashed arrows represent has-a relation between

classes (top class has an instance of the bottom class). The (*) represents

that this class contains virtual functions and hence cannot be instanti-

ated without inheriting and defining virtual functions. 18

2.3 (a) Schematic diagram of the energy flux from a wavenumber sphere of

radius k0. The red region denotes the modes inside the sphere, and the

blue region the modes outside the sphere. (b) A depiction of the shell-

to-shell energy transfers from a wavenumber-shell m (red) to another

wavenumber-shell n (blue). 34

2.4 Schematic diagram of the ring decomposition in Fourier space. 36

xxi

LIST OF FIGURES

2.5 Inheritance diagram of EnergyTr (Energy Transfer) class. It has an in-

stance of PlainFluidVF for computing Giver which again has instance

of RVF and CVF. CVF inherits PlainFluidVF 37

3.1 (a) Slab decomposition of an array. (b) Pencil decomposition of an array.

Taken from Chatterjee et al. [12]. 39

3.2 Pencil decomposition of data for FFT: (a) real space data, (b) interme-

diate configuration, (c) data in Fourier space. (d, e, f) Division of cores

into prow and pcol such that p = prow × pcol corresponding to the above

data division. We maintain consistent colour convention in all the fig-

ures. In the subfigure (a), N = 12, prow = 3, pcol = 4, thus each core

contains Nx/pcol × Ny/prow × Nz = 3× 4× 12 data points. Taken from

Chatterjee et al. [12]. 42

3.3 Scalings of the FFTK library on Blue Gene/P: (a) Plot of inverse com-

putation time T−1
comp vs. p (number of cores) for 1ppn (red circle), 2ppn

(green triangle), 4ppn (blue square). Here ppn represents number of MPI

processes per node. The data for grids 20483, 40963, and 81923 are rep-

resented by the same symbols but with increasing sizes. The plots show

that FFTK exhibits strong scaling in Blue Gene/P. (b) Plot of inverse

communication time T−1
comm vs. n (number of nodes) with the above no-

tation. T−1
comm for p = 256 and 512 exhibits a better scaling due to the

slab decomposition employed. Taken from Chatterjee et al. [12]. 47

3.4 Scalings of FFTK in Blue Gene/P: (a) Plot of inverse of total time T−1

vs. p exhibits strong scaling. (b) Plot of T−1 vs. p/N3 exhibits weak

scaling with the exponent γ = 0.91± 0.04. We follow the same colour

and symbol convention as Fig. 3. Taken from Chatterjee et al. [12]. 48

3.5 Scalings of FFTK on Cray XC40: (a) Plots of T−1
comp vs. p (number of cores)

for 7683, 15363, and 30723 grids. (b) Plots of T−1
comm vs. n (number of

nodes) using the above convention. Taken from Chatterjee et al. [12]. . . 52

xxii

LIST OF FIGURES

3.6 Scaling of FFTK on Cray XC40 for the FFF basis: (a) plots of T−1 vs. p

for 7683, 15363, and 30723 grids. (b) plots of T−1 vs. p/N3 exhibits weak

scaling with an exponent of γ = 0.72± 0.03. Taken from Chatterjee et al.

[12]. 55

3.7 In these figures, blue circles, green triangles and red squares respec-

tively represent 2563, 5123 and 10243 grids. γ is averaged over three

lines except for weak scaling for which it is averaged over two. (a)

Speedup, S = Ts/Tp, γ = 0.53± 0.03, (b) Efficiency E = S/p = Ts/pTp,

γ = −0.47± 0.03 (c) Total time inverse, γ = 0.53± 0.06 (d) Weak scaling,

γ = 0.94± 0.07 . 59

4.1 Scaling of the fluid spectral solver on Blue Gene/P: (a) Plot of T−1 vs. p

for 20483 (red triangle) and 40963 (green square) grids exhibits strong

scaling. (b) Plot of T−1 vs. p/N3 exhibits weak scaling with an exponent

of γ = 0.97± 0.06. Taken from Chatterjee et al. [12]. 63

4.2 Scaling of the fluid spectral solver on Cray XC40: (a) Plot of T−1 vs. p

for 7683, 15363, and 30723 grids exhibits strong scaling. (b) Plot of T−1

vs. p/N3 exhibits weak scaling with an exponent γ = 0.62± 0.07. Taken

from Chatterjee et al. [12]. 64

4.3 Scaling of the RBC solver on Blue Gene/P for the FFF basis: (a) Plot of

T−1 vs. p for 20483 (red triangle) and 40963 (green square) grids exhibits

strong scaling. (b) Plot of T−1 vs. p/N3 exhibits weak scaling with an

exponent of γ = 0.68± 0.08. Taken from Chatterjee et al. [12]. 65

4.4 Scaling of the RBC spectral solver for the FFF basis on Cray XC40: (a)

Plot of T−1 vs. p for 7683, 15363, and 30723 grids exhibits strong scaling.

(b) Plot of T−1 vs. p/N3 exhibits weak scaling with an exponent of γ =

0.72± 0.06. Taken from Chatterjee et al. [12]. 67

xxiii

LIST OF FIGURES

4.5 Scaling of the RBC spectral solver for the SFF basis on Cray XC40: (a)

Plot of T−1 vs. p for 7683, 15363, and 30723 grids exhibits strong scaling.

(b) Plot of T−1 vs. p/N3 exhibits weak scaling with an exponent of γ =

0.83± 0.03. Taken from Chatterjee et al. [12]. 68

5.1 Isosurface of the contours of constant vorticity |∇× u| (30% of the max-

imum value). The figure indicates regions of strong vorticity in the flow.

. 76

5.2 For the grid resolutions of 5123, 10243, and 40963: (a,b,c) plots of the

normalized energy spectrum Ẽ(k̃)/KKo vs. k̃; (d,e,f) plots of normalized

energy flux Π̃(k̃) vs. k̃. See Eqs. (5.14) and Eq. (5.15) for definitions.

The plots include the spectra and fluxes computed using numerical data

(thick solid line), and the model prediction of Pao (thin solid line) and

Pope (dashed line). Taken from [97]. 79

5.3 For the turbulent simulation on 40963 grid: the shell-to-shell energy

transfer rate (a) for the whole wavenumber range, (b) for the dissipa-

tive range corresponding to the boxed region of subfigure (a). Here m

denotes the giver shell, while n denotes the receiver shell. Our results

indicate forward and local energy transfers in the inertial as well as in

the dissipative wavenumber range. Taken from [97]. 80

6.1 Schematic diagrams of the kinetic energy flux Πu(k) for the stably strat-

ified system and convective system. (a) In stably stratified flows, Πu(k)

decreases with k due to the negative energy supply rate FB(k). (b) In

convective system, FB(k) > 0, hence Πu(k) first increases for k < kt

where FB(k) > D(k), then Πu(k) ≈ constant for kt < k < kd where

FB(k) ≈ D(k); Πu(k) decreases for k > kd where FB(k) < D(k). From

Kumar et al. [45]. 89

6.2 Isocontours of two constant temperatures. The hot and cold structures

of the flow are represented by the red and blue colors respectively. . . . 93

xxiv

LIST OF FIGURES

6.3 For the RBC simulation with Pr = 1 and Ra = 1.1 × 1011 on 40963

grid: (a) plots of normalized KE spectra for Bolgiano-Obukhov (BO) and

Kolmogorov-Obukhov (KO) scaling; KO scaling fits better with the data

than BO scaling. (b) KE flux Πu(k) and entropy flux Πθ(k). The shaded

region exhibits the inertial range. Taken from Verma et al. [98]. 94

6.4 For RBC simulation on 40963 grid for Pr = 1 and Ra = 1.1× 1011: (a)

Plots of the normalised kinetic energy spectra E(k)k5/3/(KKoε2/3) and

exp (−k̃4/3) where k̃ = k/kd. (b) Plot of kinetic energy flux Π(k) and

exp (−k̃4/3). These curves demonstrate that Kolmogorov’s theory of

fluid turbulence describes the energy spectrum and flux of RBC quite

well. 95

6.5 For the RBC simulation with Pr = 1 and Ra = 1.1× 1011: (a) plots of

FB(k) and D(k). (b) plots of [dΠu(k)/dk]/Πu(k) in the inertial range

15 < k < 600. Taken from Verma et al. [98]. 97

6.6 For RBC simulation on 40963 grid for Pr = 1 and Ra = 1.1 × 1011,

the plot of the shell-to-shell energy transfers Tm
n of Eq. (2.15). The plot

demonstrates local and forward energy transfers, similar to fluid turbu-

lence. Taken from Verma et al. [98]. 98

6.7 For RBC simulation on 40963 grid for Pr = 1 and Ra = 1.1× 1011: Plot

of the ring spectrum E(k, β) demonstrates near isotropy in the Fourier

space. Taken from Verma et al. [98]. 99

6.8 For RBC simulation with Pr = 1 and Ra = 1.1× 1011, plot of the entropy

spectrum that exhibits dual branches. The upper branch matches with

k−2 quite well, while the lower part is fluctuating. Taken from Verma et

al. [98]. 100

xxv

LIST OF FIGURES

A.1 Data division for FFT with transpose: (a) Complex data of size n0× n1×

(n2/2 + 1) in Fourier space. (b) Real data of size n1 × n0 × n2 in real

space. Note that the axes n0 and n1 are exchanged during the transpose.

Taken from Chatterjee et al.. [12]. 109

A.2 The standard transpose procedure in during a FFT. It involves two local

transposes and a MPI_Alltoall. Taken from Chatterjee et al. [12]. 110

A.3 Transpose using strided MPI_Isend/MPI_Recv that does not require a lo-

cal transpose. This is employed in the transpose-free FFT. Taken from

Chatterjee et al. [12]. 112

A.4 Data division for a transpose-free FFT: (a) Complex data of size n0 ×

n1 × (n2/2 + 1) in Fourier space. (b) Real data of size n0 × n1 × n2 in

real space. Note that there is no exchange of axes here. Compare it with

Fig. A.1. Taken from Chatterjee et al. [12]. 112

A.5 Comparison between FFTs with transpose and without transpose for (a)

10243 grid, and (b) 20483 grid. Transpose-free FFT is marginally superior

than the one with transpose. Taken from Chatterjee et al. [12]. 113

xxvi

List of Tables

3.1 FFTK scaling on Blue Gene/P: The exponents γ1 for the computation

time (Tcomp), γ2 for the communication time (Tcomm), and γ for the total

time (T) [refer to Eq. (3.2) for definition]. The maximum nodes used:

16384 with 1ppn, 2ppn, and 4ppn. 49

3.2 Comparison of FFTK and P3DFFT on Blue Gene/P for 8192 nodes with

1ppn and 4ppn. Here p = nodes × ppn. 51

3.3 FFTK on Blue Gene/P: Effective FLOP rating in Giga FLOP/s of Blue

Gene/P cores for various grid sizes and ppn. The efficiency E is the ratio

of the effective per-core FLOP rating and the peak FLOP rating of each

core (approximately 3.4 Giga FLOP/s). 53

3.4 FFTK scaling on Cray XC40 for the FFF and SFF basis: The exponents

γ1 for the computation time (Tcomp), γ2 for the communication time

(Tcomm), and γ for the total time (T) [refer to Eq. (3.2) for definition].

Maximum cores used: 196608. 57

xxvii

3.5 FFTK on Cray XC40: Effective FLOP rating in Giga FLOP/s of Cray

XC40 cores for various grid sizes and ppn. The efficiency E is the ratio

of the effective per-core FLOP rating and the peak FLOP rating of each

core (approximately 36 Giga FLOP/s). 58

4.1 Scaling exponent of the total time of the fluid solver on Blue Gene/P

and Cray XC40 for various grids (definition: T ∼ p−γ). 63

4.2 Scaling exponents of the total time of the RBC solver on Blue Gene/P

and Cray XC40 for various grids for the FFF and SFF basis functions

(definition: T ∼ p−γ). 66

5.1 Parameters of our direct numerical simulations (DNS) for turbulent flow:

grid resolution; kinematic viscosity ν, Reynolds number Re, Kolmogorov

constant KKo, Kolmogorov wavenumber kd, kmaxη, and ε/(u3
rms/L). For

all our runs the energy supply rate is 0.1, and the energy dissipation rate

ε ≈ 0.1 with 2-3% error. In the Table, we report the value of ε/(u3
rms/L)

which is approximately unity for all three simulations. 77

Chapter 1

Introduction

Turbulent flow which is characterized by chaotic changes in pressure and flow velocity
remains as one of the most challenging problems of physics. There are only a limited
number of analytical results in turbulence. Therefore, researchers have attempted to
understand turbulence using experiments and numerical simulations. In recent times,
very powerful supercomputers and software tools have emerged that have propelled
research in computational turbulence to unimaginable heights.

Some of the popular schemes to solve fluid flows are finite difference, finite element,
finite volume, spectral elements, pseudo-spectral, vortex method, etc. The pseudo-spectral
method [6, 9] is one of the most accurate schemes among them; it has been employed
for studying physics of small-scale turbulence. This thesis is focussed on computa-
tional aspects, in particular spectral method, of turbulence.

We start our discussion by introducing spectral method for solving turbulent
flows. In a pseudospectral code, approximately 70% to 80% of the total time is spent
on the forward and inverse Fourier transforms. In next two sections we briefly explain
the numerical schemes for FFT and the spectral solver Tarang.

1.1 Fast Fourier Transform

The inverse Fourier transform is defined as

f (x, y, z) = ∑
kx,ky,kz

f (kx, ky, kz)φkx(x)φky(y)φkz(z), (1.1)

1

Introduction

where f (kx, ky, kz) is the Fourier transform of f (x, y, z). Here we compute f (x, y, z)
from f (kx, ky, kz). The functions φk(s) are the basis functions that appear in the follow-
ing forms:

Fourier : φk(s) = exp(iks), (1.2a)

Sine : φk(s) = 2 sin(ks), (1.2b)

Cosine : φk(s) = 2 cos(ks), (1.2c)

where k could be kx, ky, or kz, s could be x, y, or z, and i =
√
−1. We use Fourier

basis function for the periodic boundary condition, and employ the sine and cosine
basis functions for the free-slip boundary condition. The FFTK library can perform the
above transformations in different combinations. , for the periodic boundary condition
along the three directions, we employ Fourier basis function

exp(ikxx + ikyy + ikzz). (1.3)

But for the free-slip boundary condition at all the three walls, uz, the z-component of
the velocity is expanded using the basis function

8 cos(kxx) cos(kyy) sin(kzz). (1.4)

Similar schemes are used for ux and uy. We term the above two basis functions as FFF
(Fourier Fourier Fourier) and SSS (Sin/Cos Sin/Cos Sin/Cos) respectively. In a sim-
ilar fashion, we define other basis functions—SFF for one free-slip wall direction and
two periodic directions, SSF (Sin/Cos Sin/Cos Fourier)for two free-slip wall directions
and one periodic direction, and ChFF (Chebyshev Fourier Fourier)for one no-slip wall
direction and two periodic directions. Note that the inverse of sine (or cosine) basis
function is sine (or cosine) itself, but exp(ikx) and exp(−ikx) are mutual inverses of
each other.

In Sec. 3.1 we will describe the FFT implementation in our library.

1.2 Spectral Solver

As described in the introduction, the pseudospectral scheme is one of the most accurate
methods to solve partial differential equations. The incompressible fluid equation is

2

1.2 Spectral Solver

described using the celebrated Navier Stokes equation, which is

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ν∇2u, (1.5)

∇ · u = 0, (1.6)

where u is the velocity field, p is the pressure field, and ν is the kinematic viscosity. For
simplicity we take the density of the fluid, ρ, to be unity. An estimate of the ration of
the nonlinear term and the viscous term is Reynolds number, which is

Re =
UL
ν

, (1.7)

where U and L represent the large-scale velocity and length scales respectively.

We rewrite the above equations in Fourier space:

(∂t + νk2)uj(k) = −ikl(uluj)(k)− ik j p(k), (1.8)

k juj(k) = 0, (1.9)

where i =
√
−1. The above equations are time advanced using standard methods, e.g.,

Runge Kutta scheme. The uluj term of Eq. (1.8) is a convolution in spectral space that is
very expensive to compute. In spectral method, the Navier-Stokes equation is solved
in Fourier-Space, except for the nonlinear term, which is calculated in real space and
transformed back to Fourier Space [6, 9].

A spectral transform is general, and it can involve basis functions from Fourier
series, sines and cosines, Chebyshev polynomials, spherical harmonics, or a combina-
tion of these functions. The FFTK library uses Fourier, sines, and cosine functions only.
We plan to incorporate Chebyshev polynomials and spherical harmonics in future. In
this thesis, we solve Eqs. (1.8,1.9) in a periodic box (FFF basis) using Tarang. There-
fore we illustrate the implementation and usage of FFF basis, and then describe scaling
analysis of FFT, and the fluid and convection solvers.

We have employed Tarang to simulate fluid and magnetohydrodynamic flows,
liquid metal flows, Rayleigh-Bénard convection (RBC), rotating convection, and rotat-
ing flows. In the following we will illustrate one of the above modules, the RBC solver,

3

Introduction

whose governing equations are

∂u
∂t

+ (u · ∇)u = −∇σ + αgθẑ + ν∇2u, (1.10)

∂θ

∂t
+ (u · ∇)θ =

∆
d

uz + κ∇2θ, (1.11)

∇ · u = 0, (1.12)

where θ is the temperature fluctuation from the steady conduction state,

T(x, y, z) = Tc(z) + θ(x, y, z), (1.13)

with Tc as the conduction temperature profile, σ is the pressure fluctuation, ẑ is the
buoyancy direction, ∆ is the temperature difference between the two plates that are
separated by a distance d, ν is the kinematic viscosity, and κ is the thermal diffusivity.

We solve a nondimensionalized version of the RBC equations, which are obtained
using d as the length scale, (αg∆d)1/2 as the velocity scale, and ∆ as the temperature
scale:

∂u
∂t

+ (u · ∇)u = −∇σ + θẑ +

√
Pr
Ra
∇2u, (1.14)

∂θ

∂t
+ (u · ∇)θ = uz +

1√
RaPr

∇2θ. (1.15)

Here the two important nondimensional parameters are the Rayleigh number Ra and
the Prandtl number Pr are defined as

Ra = αg∆d3/νκ (1.16)

Pr = ν/κ. (1.17)

We perform our simulations in a cubic fluid domain of unit size in each direction.

For the scaling analysis, we solve the RBC equations (Eqs. (1.14, 1.15)) with FFF

and SFF basis functions. We also perform a production run for computing the energy
spectrum and energy flux during the statistical steady state. Note that the SFF basis
function corresponds to the free-slip boundary condition for which the velocity field
at the top and bottom plates (z = 0, 1):

uz = ∂zux = ∂zuy = 0, (1.18)

and periodic boundary conditions imposed on the vertical side walls. For the temper-

4

1.3 Complexity of turbulence simulations

ature field, we employ isothermal boundary condition (θ = 0) at the top and bottom
plates, and periodic boundary conditions at the side walls.

Many fluid flow simulations, especially Rayleigh-Bénard convection, employ no-
slip boundary condition that requires Chebyshev basis functions (ChFF), which are
somewhat complex to implement. Note however that the ChFF basis has its own lim-
itations. For example, the energy spectrum and flux computations performed in the
Fourier space requires a uniform grid. The collocation points in ChFF are nonuni-
form, and hence we need to interpolate the data to a uniform mesh that induces errors.
Therefore, the free-slip basis functions that involves uniform mesh are convenient for
studying the energy spectrum and flux. We remark the no-slip boundary condition
captures the boundary layers near the walls. The flow near the walls contributes to the
energy spectrum at small scales or large wavenumbers, therefore the boundary layers
at the top and bottom walls do not significantly impact the inertial-range energy spec-
trum and flux. For example, for turbulent thermal convection, Kumar et al. [45], and
Verma et al. [98] observed Kolmogorov-like energy spectrum for free-slip basis func-
tion, while Kumar and Verma [46] observe the same spectrum for no-slip basis. See
Verma [91] for more details. For such studies, the free-slip basis suffices.

The above example illustrates that we can easily perform simulations with differ-
ent boundary conditions using Tarang solvers just by changing the basis function in
the input file. We report our results for the RBC solvers in Chapter 6.

1.3 Complexity of turbulence simulations

Flows become turbulent when the Reynolds number becomes large. But, the transition
Reynolds number depends on the system. For example, for pipe flows, transition to
turbulence occurs at around Re ∼ 2000. For the simulation of turbulence flows, the
computation turns out to be very expensive. It can be shown that the grid size increases
with Re as N ∝ Re3/4 [47]. For instance, for Re as high as ≈ 108, the required grid size
is ≈ 106, while that for Re = 105 requires grid size of 60003. Simulation with such a
large number of grid points requires a large amount of memory and consumes a lot of
time resource. For a typical simulation of this size, it may take months or even years
to get good results. To reduce the simulation time, a highly parallel and efficient code
is essential to resolve the relevant scales of the problem. For spectral codes, we need to
optimize the Fourier transforms, which is the topic of the next section.

5

Introduction

1.4 Parallel Fourier Transforms: present status

The Fast Fourier Transform (FFT), first ideated by Cooley and Tukey [17]1, is an im-
portant tool for image and signal processing, and radio astronomy. Using FFT one
can solve partial differential equations, fluid flows, density functional theory, many-
body theory, etc. For a three-dimensional N3 grid, FFT has large time complexity
O(N3 log N) for large N (e.g. 4096 or 8192). Hence, a parallel algorithm becomes nec-
essary to compute FFT of large grids.

FFTW (Fastest Fourier Transform in the West) is one of the most popular open-
source FFT libraries in which a three-dimensional (3D) array is divided into slabs
(hence called slab decomposition). In this decomposition, we can employ a maximum
of N cores in FFT operations on an array of size N3. This is a severe limitation since
present-day supercomputers offer several hundreds of thousands of cores for use. To
overcome this issue, Pekurovsky [63] employed a pencil decomposition in which the data
is divided into pencils. This method allows usage of a maximum of N2 cores, equal to
the maximum number of pencils.

The most well-known pencil-based FFT library is P3DFFT, written by Pekurovsky
[63]. Pekurovsky computed that the total time T for a FFT operation as the sum of com-
putation time a/p and communication time b/p2/3, where p is the number of cores.
This scaling was deduced based on runs using a grid of 81923 points on a Cray XT5
with a 3D torus interconnect, and 65536 cores. In these tests, the communication time
dominates the computation time due to the MPI_Alltoall data transfer. Chan et al. [11]
studied scaling of P3DFFT on a 16384 nodes of Blue Gene/L system; they reported that
a combination of the network topology and the communication pattern of P3DFFT can
affect performance.

Pippig and Potts [65] devised a similar FFT named PFFT, and ran it on a large
number of cores; they observed that PFFT has a similar scaling as P3DFFT. Czechowski
et al. [18] analyzed the memory hierarchy traffic and network communication in GPU-
based FFT, DiGPUFFT. Mininni et al. [57] employed hybrid scheme (MPI + OPENMP)
to use large number of cores optimally; their FFT implementations scales well on 15363

and 30723 grids for approximately 20000 cores with 6 and 12 threads on each core.

We have designed another pencil-based FFT called FFTK (FFT Kanpur) and tested
it on 65536 cores of Blue Gene/P (Shaheen I) and 196608 cores of Cray XC40 (Shaheen

[1] It is worth making a remark that historically Gauss was first to discover an algorithm similar to
Cooley and Tukey; it is however unpublished in his lifetime.

6

1.5 Large-scale parallel spectral flows solvers: present status

II) of KAUST [12]. We measure separately the time required for the computation and
communications during the FFT process and show that the computation time scales
linearly, while the communication component approaches the ideal bisection band-
width scaling for large arrays. Note that the bisection bandwidth is defined as the
net bandwidth available between bisected partitions of the network. It is essentially
proportional to the area in the network topology. In this thesis, we present the perfor-
mance of FFTK on Blue Gene/P and Cray XC40, and show that the relative speed of
cores and switch matters for the efficiency. We show later that the per-core efficiency
of Cray XC40 is lower than that of Blue Gene/P because the speed of the interconnect
of Cray XC40 has not increased in proportion to the increase in speed of the processor.
FFTK library is available for download at http://www.turbulencehub.org/codes/fftk.
In this thesis, we describe the scaling results of FFTK library in Chapter 3. We remark
that FFTK is as efficient as P3DFFT, yet it offers transforms for a more general set of
basis functions. We detail them in the introduction of Chapter 3.

In the next section, we describe the present status of large-scale spectral solvers.

1.5 Large-scale parallel spectral flows solvers: present sta-

tus

As described in Section 1.3, turbulent flows with large Reynolds numbers require large
memory and computation time. Hence such computations are performed on large high
performance computing clusters (HPC).

Many researchers [107, 38, 29, 105, 74, 30, 28, 26, 103, 104, 73, 20] have performed
high resolution turbulence simulations. Yokokawa et al. [107] performed first turbu-
lence simulation on 40963 grid using the Earth Simulator. Donzis et al. [29] performed
turbulence simulation on 40963 grid using P3DFFT library; they employed 32768 cores
of Blue Gene/L and Cray XT4, and reported that the effective performance of the FFT
is approximately 5% of the peak performance due to the extensive communication and
cache misses. Yeung et al. [105] and Clay et al. [16] performed pseudo spectral simula-
tions of fluid turbulence on one of the highest resolution grids (81923) to study extreme
events. Biferale et al. [3] simulated rotating turbulence on a 40963 grid and studied its
energy spectrum. Rosenberg et al. [74] simulated rotating stratified turbulence on a
40963 grid. Scheel and Schumacher [78] simulated Rayleigh-Bénard Convection using
a spectral-element code Nek5000 with 6.27 million element and 13th order polynomials

7

Introduction

within each element.

Finite difference scheme is also used for turbulence simulations. For example,
van der Poel et al. [87] employed this scheme to simulate turbulent wall-bounded flow
on grids up to 40963. They appear to observe perfect strong and weak scaling for their
simulation up to large number of processors due lower amount of data communica-
tion. A detailed comparison of efficiency between pseudo-spectral and finite difference
codes will be useful.

1.6 Structured spectral solver: Tarang

Tarang is a pseudo-spectral object-oriented parallel code that can simulate flows in flu-
ids, convections, magneto-fluids, magneto-convection, etc. The convective flow mod-
ule can also solve a stratified flow, passive scalar and Rayleigh-Taylor instability, etc.
We designed Tarang in an object-oriented fashion for generality and easy adaptabil-
ity to solve various problems. We have put all boundary condition related functions
in virtual functions of C++ so that subsequent calculations become independent of
boundary condition.

Tarang follows the standard procedure of pseudo-spectral method [6, 9]. The
Navier-Stokes and related equations are solved numerically with an initial condition
of the fields. The fields are time-stepped using one of Euler, Runge-Kutta second and
fourth order (RK2 or RK4). The nonlinear terms, e.g. u · ∇u, transform to convolu-
tions in the spectral space, which are very expensive to compute. Orszag devised a
clever scheme to compute the convolution in an efficient manner using Fast Fourier
Transforms (FFT) [6, 9]. In this scheme, the fields are transformed from the Fourier
space to the real space, multiplied with each other, and then transformed back to the
Fourier space. Note that the spectral transforms could involve Fourier functions, sines
and cosines, Chebyshev polynomials, spherical harmonics, or a combination of these
functions depending on the boundary conditions [6, 9].

In this thesis we describe salient features and innovations of Tarang. I have con-
tributed significantly to the code, namely in the construction of FFTK and I/O library
called H5SI. These topics will be detailed in Chapter 2. We performed scaling tests of
the fluid and thermal-convection solvers of Tarang. We observe that Tarang solvers
scale well up to 196608 processors of Cray XC40. The scaling results are described in
Chapter 4.

8

1.7 Hydrodynamic simulation using Tarang

1.7 Hydrodynamic simulation using Tarang

We performed a large-scale simulation of hydrodynamic turbulence on 40963 grid us-
ing 65536 processors of Cray XC40. Using the numerical data, we compute the en-
ergy spectrum and flux for isotropic and homogeneous hydrodynamic turbulence. The
most well-known theory of turbulence is by Kolmogorov [43]. According to this the-
ory, the energy supplied at the large scales cascades to small scales. The wavenumber
range dominated by forcing is called forcing range, while that dominated by dissipation
is called dissipative range. The wavenumbers between these two ranges are termed as
inertial range. According to Kolmogorov [43], the energy cascade rate or the energy flux
is constant in the inertial range. Quantitatively, the one-dimensional energy spectrum
Eu(k) and the energy flux Πu(k) in the inertial range are

Eu(k) = KKoε2/3k−5/3, (1.19)

Πu(k) = ε, (1.20)

where ε is the energy dissipation rate, and KKo is the universal constant. The above law
has been verified using experiments and high-resolution simulations (see Frisch [33],
McComb [55], Davidson [22], and references therein). There is, however, a small correc-
tion, called intermittency correction [33], to the exponent −5/3; this issue is however
beyond the scope of this paper. Kolmogorov’s theory of turbulence and its ramifica-
tions have been discussed in detail in several books [48, 55, 33, 22, 47, 67].

The above Eu(k) has been generalized to the following form to model the spec-
trum in the dissipation range of a turbulent flow:

Eu(k) = KK0ε2/3k−5/3 f (k/kd), (1.21)

where kd, called Kolmogorov’s wavenumber, denotes the dissipation wavenumber
scale. Pao [62] proposed that

f (x) = exp(−x4/3) (1.22)

But, according to Pope [67]

f (x) ∼ exp
{
[x4 + c4

η]
1/4 − cη

}
, (1.23)

where cη is a constant.

Martínez et al. [54] computed Eu(k) for moderate Reynolds number and showed

9

Introduction

it to be consistent with the following energy spectrum:

Eu(k) ∼ (k/kd)
α exp[−β(k/kd)], (1.24)

Ishihara et al. [39] showed that near the dissipation range, Eq. (1.24) is a good approxi-
mation for high Reynolds number flows. Here, we perform numerical simulations on
very high-resolution (up to 40963 grid), and discuss Eu(k) and Πu(k) in detail, both in
inertial and dissipative regime. We find that Pao’s model is a better fit in the dissipation
range.

The energy flux of a laminar flow has not been investigated in detail, either by
numerical simulation or experiments. Typically Πu(k) in the dissipative range is as-
sumed to be very small and it is typically ignored. Verma et al. [97] showed that
Eu(k) ∼ Πu(k) ∼ exp(−k). This issue will not be discussed in this thesis.

1.8 Simulation of thermal convection using Tarang

Our spectral code can solve the equations, Eqs. (1.14, 1.15), of thermal convection with
horizontal thermal plates at the top and bottom, as well as using plates along all sides.
At present, the velocity boundary condition implemented in Tarang is free-slip. The
boundary condition for the temperature field is thermally conducting, i.e., θ = 0 at the
walls.

Bolgiano [4] and Obukhov [60] first gave a theory of stably-stratified flow for
which energy spectrum is Eu(k) ∼ k−11/5. Later L’vov and Falkovich [53] argued that
the turbulent thermal convection also follow Bolgiano and Obukhov’s (BO) scaling. In
this thesis, we report our results of a very high-resolution numerical simulation.

Researchers have performed a large number of numerical simulations with an
aim to identify which among the two, BO or Kolmogorov-like, scaling is applicable
to RBC [51]. Orszag [5] and Škandera et al. [80] found Kolmogorov’s scaling for the
velocity and temperature fields. Grossmann and Lohse [36] studied RBC for Pr = 1
under Fourier-Weierstrass approximation and reported Kolmogorov’s scaling. Based
on periodic boundary condition, Borue and Kerr [41] reported the horizontal spec-
trum as a function of horizontal wavenumber and observed Kolmogorov’s spectrum.
Verzicco and Camussi [100], and Camussi and Verzicco [8] reported BO scaling us-
ing the frequency spectrum of real space probe data. Kaczorowski and Xia [40] pub-
lished Kolmogorov scaling for the longitudinal velocity structure functions, but BO

10

1.8 Simulation of thermal convection using Tarang

scaling for the temperature structure functions in the centre of a cubical cell. Kumar
et al. [45] computed Eu(k) and Πu(k) in RBC and showed Kolmogorov-like behaviour,
i.e., Eu(k) ∼ k−5/3 and Πu(k) ∼ const.

We performed high-resolution simulations of Rayleigh-Bénard convection (RBC)
by solving Eqs. (1.14, 1.15). The fluid is assumed to be contained in a box of unit di-
mension. Presently, we report the scaling results for SFF (free-slip boundary condition)
basis functions. Note that in SFF basis, uz = ∂zux = ∂zuy = 0 at the top and bot-
tom plates, and periodic along the side walls. The temperatures at the top and bottom
plates are assumed to be constant (conducting walls), while at the side walls, the tem-
perature is assumed to be periodic. For the energy spectrum and flux computations,
we employ a free-slip boundary condition.

We compute the energy spectrum and show that the convective turbulence has
a behavior similar to fluid turbulence. We also measure energy transfer diagnostics
and show that the energy flux is constant in the inertial range, the shell-to-shell energy
transfer is local and forward, and the ring-to-ring energy transfers are nearly isotropic.
The ring spectrum also exhibits a near-isotropic behavior. These conclusions were pos-
sible due to the extreme resolution of our simulation. We remark that the grid resolu-
tion of our simulation is highest in the field. Also, we achieved the largest Rayleigh
number among spectral codes. These results are described in Chapter 6.

In the next chapter, we describe the features of Tarang.

11

Chapter 2

Implementation of a pseudospectral code
as general PDE solver

We encounter many versions of fluid flows, e.g. hydrodynamics, thermal convection,
magnetohydrodynamics, rotating flows, liquid metal flows, etc. In a research group,
we need to solve several versions of such flows. Writing different spectral codes for
each of the above flows and then maintaining all of them is a tedious task. To avoid
this problem, the group of Verma has developed a general-purpose partial-differential
equation (PDE) solver named Tarang [93] for turbulence and instability studies. Tarang
is a parallel and modular code written in the object-oriented language C++ that can
solve incompressible flows involving pure fluid, Rayleigh-Bénard convection, passive
and active scalars, magnetohydrodynamics, liquid metals, etc. For efficiency, we use a
meta-template C++ library blitz++ for array manipulation, hdf5 for parallel I/O, yaml
parser for reading parameters, and CMake for building the codes.

Tarang is an open-source code and it can be downloaded from the group website
http://turbulencehub.org. In this chapter, we will describe some details of the code.
I will also highlight my contribution to the code Tarang. The scaling results will be
presented in Chapter 4.

Before detailing the features of Tarang, we describe how a spectral method is used
for solving fluid flows.

13

http://turbulencehub.org

Implementation of a pseudospectral code as general PDE solver

2.1 Spectral method for solving turbulent flows

We illustrate the steps of a spectral method for solving incompressible fluid flow. The
governing equations for such flows are the Navier-Stokes equation and the incom-
pressibility condition:

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ν∇2u, (2.1)

∇ · u = 0, (2.2)

where u is the velocity field, p is the pressure field, and ν is the kinematic viscosity. We
set the density ρ to be a constant, equal to unity. In Fourier space, the above equations
are transformed to [47]

(∂t + νk2)uj(k) = −ikluluj(k)− ik j p(k), (2.3)

k juj(k) = 0, (2.4)

where u(k) and p(k) are the Fourier transforms of u(r) and p(r) respectively.

In spectral method, the Navier-Stokes equation is solved in Fourier space. The
main advantage of pseudo-spectral method is that derivative computation in this method
is very accurate. For example, in central differencing scheme, two points are used for
finding derivatives, but in pseudo spectral method, all the points contribute to the
derivative. The uluj term of Eq. (2.3) is a convolution in spectral space that is very
expensive to compute. Orszag [61] devised an efficient scheme in which u(k) is trans-
formed to real space, components of which are multiplied with each other, and the
product is then transformed back to Fourier space, as in Figure 2.1. Due to the multi-
plication of arrays in real space, this method is called pseudospectral method. This multi-
plication however generates aliasing errors, which are mitigated by filling up only 2/3
of the array in each direction. See Boyd [6] and Canuto [9] for details.

IFFT

F
F
T

Mult

FIGURE 2.1: A schematic diagram of the computation of Fourier transform of the

nonlinear term (u · ∇)u in a pseudo-spectral solver.

The main steps of a pseudo-spectral method are as follows:

14

2.1 Spectral method for solving turbulent flows

1. We compute the nonlinear terms (u · ∇)u in real space using following steps (see
Fig. 2.1):

(a) We compute u(r) by performing inverse Fourier transforms of u(k) using
the Fast Fourier Transform (FFT) [93].

(b) We compute the products ui(r)uj(r) at each grid point in real space. Here
i, j ∈ (x, y, z).

(c) For incompressible flows, we compute the nonlinear terms using
ik jFT[ui(r)uj(r)] for i, j ∈ (x, y), where FT denotes Fourier Transform.

2. In computation of the nonlinear terms, wavenumber of some generated modes is
larger than the maximum wavenumber, kmax, and therefore they introduce errors
in computation. We use 2/3 dealiasing rule to remove this error, in which we set
the coefficients of the last one-third Fourier modes to zero before computing the
nonlinear terms, and consider only the first two-third modes.

3. Using the incompressibility condition (k · u(k) = 0), we compute the pressure
field as

σ(k) =
i

k2 [k ·Nu(k)], (2.5)

where Nu(k) is the Fourier transform of the nonlinear term u · ∇u that is com-
puted following the previous step.

4. Having computed each term of Eqs. (2.3) except the ∂u(k)/∂t, we typically evolve
the fields u(k) in time using the fourth order Runge-Kutta (RK4) method. Our
code however has options of Euler and RK2 schemes as well. The time step dt is
computed using the Courant-Friedrichs-Lewy (CFL) condition.

5. The aforementioned steps are repeated until a steady state is reached.

6. In the turbulent regime, the two relevant time scales, the large-eddy turnover
time and the small-scale viscous time, are very different (order of magnitude
apart). To handle this, we have incorporated the “exponential trick” that absorbs
the viscous term using a change of variable [10].

7. The code provides an option for dealiasing the fields. The 3/2 rule is used for
dealiasing [10].

8. The wavenumber components ki are

ki =
2π

Li
ni (2.6)

15

Implementation of a pseudospectral code as general PDE solver

where Li is the box dimension in the i-th direction, and ni is an integer. We use
parameters

kfactori =
2π

Li
(2.7)

This feature is to control the box size, especially for Rayleigh-Bénard convection.
Note that typical spectral codes take kfactori = 1, or ki = ni.

2.2 Design and implementation issues of Tarang

In Tarang, we use the object-oriented features of C++ to design general purpose li-
braries to create solvers for the incompressible fluid flows. We use classes to abstract
fluid variables as vector and scalar fields. We have designed general functions that
act on these fields. For example, we construct function compute_nlin(FluidVF& U) to
compute U · ∇U, while compute_nlin(FluidVF& U, FluidSF& T) to compute U · ∇U
and U · ∇T; here the classes FluidVF and FluidSF represent vector and scalar fields
respectively. The above design helps us solve various systems like magnetohydrody-
namics, fluid, convection, and rotating turbulence [93].

A solver containing many complex features including boundary conditions and
more field variables are easily constructed using these functions. Main features includ-
ing the class structures of Tarang are described below.

2.2.1 Basis functions

A pseudo-spectral code uses basis functions to expand the fields in Fourier-space. The
choice of basis functions depends critically on the boundary conditions. Complex-
exponential functions such as exp (ik · r), where k and r are the wavenumber and real-
space coordinates respectively, are natural choices for periodic boundary conditions.
Many problems in turbulence however involve walls, e.g. convection, channel flows,
etc. All the components of the velocity field must vanish at the wall for no-slip bound-
ary condition. Chebyshev and Legendre polynomials are often used as basis functions
for no-slip boundary conditions. For free-slip boundary condition, the normal compo-
nent of the velocity field to the wall, and the perpendicular gradient of the horizontal
velocity components are zero. Sine and cosine functions are simple choices for simu-
lations involving free-slip boundaries. Similarly, spherical harmonics are also natural
choices as basis functions for turbulence simulations in spheres.

16

2.2 Design and implementation issues of Tarang

Note that a general inverse Fourier transform is defined as

f (x, y, z) = ∑
kx,ky,kz

f (kx, ky, kz)φkx(x)φky(y)φkz(z) (2.8)

where f (kx, ky, kz) is the Fourier transform of f (x, y, z). Most commonly used basis
functions φk(s) are:

Fourier : φk(s) = exp(iks), (2.9a)

Sine : φk(s) = 2 sin(ks), (2.9b)

Cosine : φk(s) = 2 cos(ks), (2.9c)

where k could be kx, ky, or kz, and s could be x, y, or z. For instance, an RBC simulation
with free-slip boundary condition at the top and bottom plates, and periodic boundary
condition along the horizontal is implemented using

φ(x)φ(y)φ(z) = exp(ikxx + ikyy)[sin(kzz), cos(kzz)] (2.10)

basis functions. We term the above basis function as SFF (Sin/Cos Fourier Fourier). We
define other basis functions in a similar manner.

Tarang focuses on basis-independent libraries, so we have designed the basis
functions in a modular fashion. For this purpose we use virtual functions of C++.
Virtual functions can be overridden by derived classes. We have a Universal class that
has many virtual functions for operations common to all basis but their implementa-
tion is basis dependent.

At present Tarang has four basis functions that can simulate flows in box geom-
etry — FFF: under periodic boundary conditions along all directions, SFF: periodic
along two directions and walls along one direction, SSF: periodic along one direction
and walls along two directions, and SSS: walls along all directions. We have designed
a class UNIVERSAL containing various virtual classes that are overridden in various
basis classes i.e. FFF, SFF, SSF, and SSS. The advantage of this implementation is that
fluid solvers are independent of basis functions. Universal function and structures were
designed and implemented by me.

Primary functions related to the basis functions are forward_transform (transfor-
mation from the real space to the Fourier space), inverse_transform (transformation from
the Fourier space to the real space), computation of energy spectrum etc. We use the
FFTK library for majority of transform operations.

17

Implementation of a pseudospectral code as general PDE solver

In the next section, we describe various important classes of Tarang.

2.3 Classes of Tarang

The class structure of Tarang is illustrated in Fig. 2.2. We describe the main features of
the classes below.

Global

global

FluidIO_incompress

FluidVF

PlainFluidVF

CVF Pressure

FluidSF

Correlation

Time_advance_incompress

MHD

FORCE Nlin_incompress

CSFRVF

fluid

fluid_base

FluidIO

incompressible

RSF

PlainFluidVF (Giver)

EnergyTr

CVF

PlainCVF

CSF

PlainCSF

ArrayOps

Universal*

BasicIO

SFFFFF SSSSSF

basis

RVF RSF

fields

basicfn

FIGURE 2.2: Organisation of various classes of Tarang. Green outer boxes represent

folder structures. Red inner boxes represent classes. Blue solid arrows represent

is-a relation between classes (top class is derived from the bottom class) and gray

dashed arrows represent has-a relation between classes (top class has an instance

of the bottom class). The (*) represents that this class contains virtual functions and

hence cannot be instantiated without inheriting and defining virtual functions.

18

2.3 Classes of Tarang

Global

The instance of Global class is a globally available object that includes all the input
parameters, MPI coordinates and parameters, a set of secondary parameters (those
derived from input parameters) such as min_radius_outside of shells, and a few tem-
porary arrays. It also includes the para.yaml reader. This class resides in directory
global.

Basis

The following two classes defined within the folder basicfn contain some basic array
operations that are required throughout the program.

ArrayOps is an acronym for Array Operations. This class contains functions for
multiplying and dividing arrays in point-by-point fashion so that they can be threaded
easily.

BasicIO is acronym for Basic Input Output in the interface of Tarang, and H5SI for
reading/writing HDF5 data.

The following classes contain boundary condition dependent functions. These
classes reside in directory basis.

Universal class contains all boundary condition dependent functions. All func-
tions in Universal class are virtual functions. These functions can be overridden by
derived classes. There are some functions which have same definition for all bound-
ary conditions, such as Get_total_energy. Get_total_energy calls Get_local_energy
which has different definitions for various boundary condition and uses MPI_reduce

to get the total energy. The instance of this class is a pointer to one of FFF, SFF, SSF, or
SSS depending on basis_type in para.yaml.

FFF is acronym for Fourier Fourier Fourier and represents periodic boundary con-
dition along all axes. Since the value of a mode in a periodic boundary can be anything
at the boundary, they are best-represented by exponential modes. This class is derived
from the Universal class.

SFF, acronym for Sin/Cos Fourier Fourier, represents periodic boundary condition
along Y-axis and Z-axis and wall along X-axis. This class is derived from the Universal
class.

19

Implementation of a pseudospectral code as general PDE solver

SSF, acronym for Sin/Cos Sin/Cos Fourier, represents periodic boundary condition
along Z-axis and wall along X-axis and Y-axis. This class is derived from the Universal
class.

SSS, acronym for Sin/Cos Sin/Cos Sin/Cos, represents wall along all axes. This
class is derived from the Universal class.

void Universal :: Compute_divergence(Array <Complex ,3> Ax, Array

<Complex ,3> Ay, Array <Complex ,3> Az, Array <Complex ,3> div ,

string field_or_nlin , Real &max_abs_div , bool

print_switch)

{

global.program.sincostr_switch = sincostr_switch_Vx;

Xderiv(Ax, div);

global.program.sincostr_switch = sincostr_switch_Vy;

Add_Yderiv(Ay, div);

global.program.sincostr_switch = sincostr_switch_Vz;

Add_Zderiv(Az, div);

if (field_or_nlin == "field") {

max_abs_div = max(abs(div));

if ((print_switch) && (max_abs_div > MYEPS2)) {

if (master)

cout << "NON -ZERO DIVERGENCE for the following modes:"

<< endl;

Print_large_Fourier_elements(div , "Divergence");

}

}

}

LISTING 2.1: Function Compute_divergence

20

2.3 Classes of Tarang

void FFF_PENCIL :: Xderiv(Array <Complex ,3> A, Array <Complex ,3>

B)

{

Real Kx;

for (int lx=0; lx<maxlx; lx++) {

Kx = Get_kx(lx)*kfactor [1];

B(lx,Range ::all(),Range ::all()) = Complex(0,Kx)*A(lx,

Range::all(),Range::all());

}

}

void FFF_PENCIL :: Add_Yderiv(Array <Complex ,3> A, Array <Complex

,3> B)

{

Real Ky;

for (int ly=0; ly<maxly; ly++) {

Ky = Get_ky(ly)*kfactor [2];

B(Range::all(),ly ,Range ::all()) += Complex(0,Ky)*A(Range

::all(),ly,Range ::all());

}

}

void FFF_PENCIL :: Add_Zderiv(Array <Complex ,3> A, Array <Complex

,3> B)

{

Real Kz;

for (int lz=0; lz<maxlz; lz++) {

Kz = Get_kz(lz)*kfactor [3];

B(Range::all(),Range::all(),lz) += Complex(0,Kz)*A(Range

::all(),Range::all(),lz);

}

}

LISTING 2.2: Derivative functions

21

Implementation of a pseudospectral code as general PDE solver

Fields

These are the Vector/Scalar fields based on which Vector/Scalar Fluid and Pressure
are created. These classes reside in directory fields.

CVF stands for Complex Vector Field. It contains three dynamic arrays associated
with the three components of the velocity or magnetic fields in the Fourier space. Size
of each array is Nx × Ny × Nz/2 + 1 that spans wavenumbers (kx, ky, kz) = [−Nx/2 :
Nx/2− 1,−Ny/2 : Ny/2− 1, 0 : Nz/2− 1] in FFF basis. Size of the array is same in
SFF, and SSF basis whereas the wave number span for SSS is (kx, ky, kz) = [0 : Nx −
1,−Ny/2 : Ny/2− 1, 0 : Nz/2] and (kx, ky, kz) = [0 : Nx − 1, 0 : Ny − 1, 0 : Nz/2− 1]
in SSS basis. These arrays contain complex numbers that represent the Fourier ampli-
tudes of the vector field. In SSS basis, the complex numbers contain real values of two
wavenumbers. These arrays are created dynamically at run-time.

RVF stands for Real Vector Field, and it contains three dynamic arrays to represent
the vector fields in real space. These arrays are of size Nx, Ny, Nz + 2.

CSF stands for Complex Scalar Field. It contains a dynamic array associated with a
scalar field, e.g. temperature, in the Fourier space. The indexing of the array is similar
to that of CVF.

RSF stands for Real Scalar Field, and it contains a dynamic array associated with
a scalar. The array features are same as that for RVF. Forward and inverse transforms,
and input/output of vector fields are some of the main functions of these four classes
– CVF, RVF, CSF, and RSF that in turn call corresponding functions of Universal.

Fluid Base Classes

These classes store and compute various aspects of a fluid that are independent of
compressibility. These classes reside in directory fluid/fluid_base.

PlainFluidVF stands for Plain Fluid Vector Field. It contains an instance of CVF
(Complex Vector Field) and RVF (Real Vector Field). CVF is used to store the fields in
Fourier space, and RVF is used to store them in real space. Forward and inverse trans-
forms are the main functions of the class PlainFluidVF. These functions in turn call
those of CVF class and RVF class.

FluidVF stands for Fluid Vector Field and it inherits PlainFluidVF. It contains

22

2.3 Classes of Tarang

three dynamic arrays associated with the three components of the non-linear term and
force terms in Fourier space. The size of these arrays are same as those in CVF. These
arrays contain complex numbers that represent the Fourier amplitudes of the vector
field. This class also stores the dissipation_coefficient and hyper_dissipation_coefficient
of the associated fluid. Compute_divergence and Get_dt, are some of the main func-
tions of the class FluidVF.

FluidSF stands for Fluid Scalar Field. It contains an instance of CSF and RSF.
CSF is used to store a scalar field in Fourier space and RSF is used to store that
in real space. It also contains two dynamic arrays associated with one component
of the non-linear term and one for the force term in Fourier space. For properties
of the fluid, it stores dissipation_coefficient, hyper_dissipation_coefficient and hy-
per_dissipation_exponent. Forward_transform, Inverse_transform and Get_dt, are
some of the main functions of the class FluidSF.

The Correlation class can compute autocorrelations and cross correlations. For
example, in fluid simulations, the function Compute_shell_spectrum computes the au-
tocorrelation of velocity field, whereas the same function computes cross correlation
of velocity field and magnetic field for an MHD simulation. This class contains cor-
relation functions for shell spectrum, ring spectrum, cylindrical ring spectrum, some
helicity computation functions, etc.

Force has functions to compute various kind of forces such as random forcing,
RBC forcing, Coriolis forcing etc.

MHD has functions that are specific to MHD. Presently they compute Elsasser
field, Elsasser force, and Elsasser nlin.

FluidIO stands for Fluid Input Output. It has handler for all files, functions of vari-
ous initial conditions and printing data to output files. It computes various parameters
during the printing process such as total energy, total helicity, etc.

23

Implementation of a pseudospectral code as general PDE solver

2.3.1 Fluid Incompressible Classes

These classes are related to incompressible fluid simulations. These classes reside in
directory fluid/incompressible.

Nlin_incompress computes the non-linear term for various kinds of simulations
such as Fluid, RBC, MHD assuming Boussinesq approximation for incompressible
fluid.

EnergyTr stands for Energy Transfer. This contains functions to compute shell-to-
shell, and ring-to-ring (spherical and cylindrical) energy transfers. This class contains
an instance of PlainFluidVF as Giver. It depends on Nlin_incompress. More details
on energy transfers can be found in Sec. 2.7.

Time_advance_incompress contains functions necessary for time stepping such
as Euler and Runge-Kutta integration schemes. It also contains functions to evaluate
various terms of Fluid, RBC and MHD equations and add them.

FluidIO_incompress contains functions to output Energy transfers and pressure.
This class inherits FluidIO.

Pressure contains functions to compute pressure. This class inherits CSF.

Nlin_incompress class has many nlin computation functions. One of them is Com-
pute_nlin. We will describe this function as an illustration of a Tarang function:

void Nlin_incompress :: Compute_nlin ()

{

...

// Perform Inverse Transform of field in U.cvf and store it in

U.rvf

U.Inverse_transform ();

// Compute u_i.k_i u

Compute_nlin_diag(U);

// Compute u_i.k_j u (i!=j)

Compute_nlin_offdiag(U);

24

2.4 Solvers of Tarang

...

}

LISTING 2.3: Function Compute_nlin

The comments above the C++ statements explain the logic of the functions. There
are related functions that compute the nonlinear term in the presence of scalar field and
another vector field.

2.4 Solvers of Tarang

We invoke the library functions discussed above to create solvers for fluid, magneto-
hydrodynamics, passive scalar, RBC flows etc. We illustrate a code segment containing
the time-loop of fluid solver for an illustration.

// A code segment of the fluid solver

// Read initial condition

FluidVF U(...); // Arguments have parameter from yaml file

FluidVF helicalU("helicalU");

Pressure P;

FORCE Force;

Time_advance_incompress time_advance_incompress;

fluidIO_incompress.Read_init_cond(U);

int iter =0; // iterations

do

{

iter ++;

time_advance_incompress.Time_advance_step(U, P, Force);

fluidIO_incompress.Output_all_inloop(U, P, helicalU);

}

while (global.time.now < global.time.final);

25

Implementation of a pseudospectral code as general PDE solver

LISTING 2.4: Fluid Solver

In the above code segment, U is an instantiation of the class FluidVF which con-
tains the incompressible velocity field.

26

2.4 Solvers of Tarang

For RBC, the above code segment is modified slightly. We create an instantiation
T of the class FluidSF to represent the temperature field.

// A code segment of the RBC solver

...

FluidVF U(...); // Arguments have parameter from yaml file

FluidVF helicalU("helicalU");

FluidSF T(...); // Arguments have parameter from yaml file

Pressure P;

FORCE Force;

Time_advance_incompress time_advance_incompress;

// Read initial condition

fluidIO_incompress.Read_init_cond(U, T);

int iter =0; // iterations

do {

iter ++;

time_advance_incompress.Time_advance_step(U,T, P, Force);

fluidIO_incompress.Output_all_inloop(U, T, P, helicalU);

}

while (global.time.now < global.time.final);

LISTING 2.5: RBC solver

27

Implementation of a pseudospectral code as general PDE solver

2.5 External libraries

The parameter file of Tarang is written in YAML format. We use YAML-CPP library to
read this file. Using this format, a program can easily read a numeric, a string, or an
array from a text file.

The handling of arrays and mathematical functions is quite inefficient in C++.
Fortunately, several efficient C++ libraries are available to perform these tasks. We use
Blitz++ for Tarang since it handles multidimensional arrays in a very nice and compact
manner. The other libraries that have similar functions are boost, ndarrays, and eigen,
but presently we continue our development with Blitz++.

Pseudo-spectral codes use FFT (Fast Fourier Transforms) heavily. In a typical
pseudo -spectral code, approximately 70-80% of the total computational time is spent
in performing FFTs. We have therefore developed a home made library FFTK that uses
FFTW for 1D transforms. Tarang uses FFTK in its implementation.

Performing input-output (IO) of data fields using ASCII (American Standard
Code for Information Interchange) format consumes more space, and it is less pre-
cise as well. Therefore we store our data in HDF5 (Hierarchical Data Format 5) format.
It uses MPI-IO in the underlying layers. Writing parallel IO using HDF5 is quite in-
volved and therefore, we have developed a new library, H5SI (HDF5 Simple Interface)
on top of the HDF5 library. The API (Application Programming Interface) of H5SI is
similar to that of h5py (Python interface of HDF5).

2.6 The H5SI Library

The H5SI library is a thin layer on top of the HDF5 library. Its purpose is to simplify
the IO API, especially in parallel operations. The parallel API of HDF5 is quite in-
volved and cumbersome. Thus we have developed H5SI. The API of H5SI is highly
inspired from h5py of Python and is very much similar to it. To compile the parallel
API, H5SI_ENABLE_MPI flag must be supplied to it during compilation.

28

2.6 The H5SI Library

To open a file in sequential mode for writing:

h5::File file;

file.open("foo.h5", "w");

LISTING 2.6: Open a file for writing

The open function supports the following modes:

r Read-only, file must exist.

r+ Read/write, file must exist.

w Create file, truncate if exists.

w- Create file, fail if exists.

a Read/write if exists, create otherwise.

By default it uses the SEC2 driver; this is the default driver of HDF5 which uses
Posix file-system functions like read and write to perform I/O to a single file.

To use other drivers they must be initialized before opening the file, such as,

h5::File file;

file.mpiioInit(MPI_COMM_WORLD);

file.open("foo.h5", "w");

LISTING 2.7: Open a file in parallel defaults to slab division

The following drivers are supported by H5SI library.

CORE: coreInit(size_t increment, hbool_t backing_store)

This enables an application to work with a file in memory, speeding up the read
and write operations as no disk access is made. File contents are stored only
in memory until the file is closed. The backing_store parameter determines
whether file contents are ever written to disk.

The argument increment specifies the increment by which allocated memory is
to be increased each time more memory is required.

If the backing_store is set to 1 (TRUE), the file contents are flushed to a file
with the same name as this core file when the file is closed or access to the file is
terminated in memory.

29

Implementation of a pseudospectral code as general PDE solver

If there is an existing file with HDF5_CORE driver in Read/Write mode with the
backing_store set to 1, any change to the file contents are saved to the disk when
the file is closed. If it is opened in Read/Write mode with backing_store set to 0,
any change to the file contents will be lost when the file is closed. If it is opened
in Read only mode, no change to the file is allowed either in memory or on disk.

Returns a non-negative value if successful. Otherwise returns a negative value.

Note: Currently this driver cannot create or open family of multiple files.

STDIO: stdioInit()

Buffered I/O using functions from stdio.h.

Returns a non-negative value if successful. Otherwise returns a negative value.

MPI-IO: mpiioInit(MPI_Comm MPI_COMMUNICATOR)

Stores MPI IO communicator information and some optimization parameters to
the File object.

This function is available only when compiled with the parallel HDF5 library (by
passing H5SI_ENABLE_MPI during compilation) and is not a collective function.

MPI_COMMUNICATOR is the MPI communicator to be used for opening the file.

1. This function does not create a duplicated communicator. Modifications to
the communicator after this function call returns may have an undetermined
effect on the access property list. Users should not modify the communicator
while it is defined in a property list.

2. Raw dataset chunk caching is not currently supported when using this file
driver in read/write mode. All IO operations will access the disk directly,
and H5Pset_cache and H5Pset_chunk_cache will have no effect on perfor-
mance. Raw dataset chunk caching is supported when this driver is used in
read-only mode.

Returns a non-negative value if successful. Otherwise returns a negative value.

2.6.1 Group

A group is like a folder that can store more groups or dataset (an array of data). To
create a new Group the following functions may be used

30

2.6 The H5SI Library

file.createGroup("group_name");

LISTING 2.8: Creating new group

createGroup fails if the group already exists. To open a group and create one if it does
not exist, requireGroup must be used. It also will fail if the group already exists.

file.requireGroup("group_name");

LISTING 2.9: Creating new group

To open an existing group for reading, file object is used as a dictionary.

h5si:: Group group = file["group_name"];

LISTING 2.10: Open group for reading

2.6.2 Dataset

A Dataset is like a file where the data is stored. Dataset creation is described in below

h5:: Dataset ds = file.create_dataset("dataset_name", h5::

shape (512 ,512 ,512), "double");

LISTING 2.11: Dataset creation

For datatypes, refer to Appendix 2.

31

Implementation of a pseudospectral code as general PDE solver

In the following Listings, we illustrate the usage of above-mentioned functions.

void write_array () {

Array <Complex ,3> A(32 ,64 ,64);

init_array(A);

h5::File f;

f.mpiioInit(MPI_COMM_WORLD);

f.open("foo.h5", "w");

// Method1

h5:: Dataset ds1 = f.create_dataset("U.V1", h5::shape

(64 ,64 ,64), H5Complex);

ds1 << A.data();

// Method 2

h5::Plan plan;

plan.set_plan(MPI_COMM_WORLD , h5::shape (64 ,64 ,64), h5::

Select ::all(3), h5::shape (64 ,64 ,64), h5:: Select ::all

(3), h5:: Dtype(H5Complex));

h5:: Dataset ds2 = f.create_dataset("U.V2", plan);

ds2 << A.data();

}

LISTING 2.12: Sample h5si writer

32

2.7 Energy transfers in turbulent flows

void read_array () {

Array <Complex ,3> A(32 ,64 ,64);

h5::File f("foo.h5", "r");

f.mpiioInit(MPI_COMM_WORLD);

// Method 1

f["U.V1"] >> A.data();

cout << A << endl;

// Method 2

h5::Plan plan;

plan.set_plan(MPI_COMM_WORLD , h5::shape (64 ,64 ,64), h5::

Select ::all(3), h5::shape (64 ,64 ,64), h5:: Select ::all

(3), h5:: Dtype(H5Complex));

h5:: Dataset ds = f["U.V2"];

ds.set_plan(plan);

ds >> A.data();

cout << A << endl;

}

LISTING 2.13: Sample h5si reader

In the next section we describe the energy transfer formalism for turbulent flows.

2.7 Energy transfers in turbulent flows

In turbulent flows, the nonlinear terms trigger interactions among various scales of the
flow. For example, the nonlinear terms of Navier-Stokes equation (u · ∇u) exchanges
energy from one Fourier mode to another. Accurate quantification of such transfer is
quite difficult. Fortunately, Fourier decomposition allows us to do this analysis as one
can study structures at different scales. Here, we describe how to quantify various
energy transfers among various scales of turbulence.

Due to nonlinear interactions, say a Fourier mode k generates two modes with

33

Implementation of a pseudospectral code as general PDE solver

Shell n

Shell m

(b)(a)

FIGURE 2.3: (a) Schematic diagram of the energy flux from a wavenumber sphere

of radius k0. The red region denotes the modes inside the sphere, and the blue

region the modes outside the sphere. (b) A depiction of the shell-to-shell energy

transfers from a wavenumber-shell m (red) to another wavenumber-shell n (blue).

wavenumbers, p and q. The nature of nonlinearity is such that k = p + q. Dar et
al. [21] and Verma [88] derived a formula to compute the energy transfer from the
Fourier mode p to the mode k with the mode q acting as a mediator:

Suu(k|p|q) = Real[−i{k · u(q)}{u(p) · u∗(k)}], (2.11)

where Re stands for the real part of the argument. This formalism is very useful for
studying energy transfers in various fluid applications, for example, field reversals in
RBC and dynamo. We use it to derive energy transfers from a set of Fourier modes in
a region A to another set of modes in region B of the spectral space:

Tu,A
u,B = ∑

k∈B
∑

p∈A
Suu(k|p|q)

= Real ∑
k∈B

{
∑

p∈A
−i[k · u(q)]uA(p)

}
·
{

uB(k)
}∗

= Real ∑
k∈B
{−N(k)} ·

{
uB(k)

}∗
, (2.12)

34

2.7 Energy transfers in turbulent flows

where

uA,B(k) =

{
u(k) for k ∈ (A, B)
0 otherwise

, (2.13)

and N(k) is the nonlinear field induced by the velocity field uA. The sum of the
term Re

{
N(k) · u∗B(k)

}
over the region B yields the energy transfer from the Fourier

modes of region A to the Fourier modes of region B. We can also define energy transfer
rate of entropy (θ2) in a similar manner [45].

We have implemented the energy transfer functions in our pseudo-spectral code.
The computation of the nonlinear term N(k) is the most expensive operation in the
code, and it is computed using FFT as described in Fig. 2.1. We use the above technique
to compute various energy transfers. The kinetic energy flux Π(k0), defined as the
energy coming out from the wavenumber sphere of radius k0, is computed using the
following formula:

Πu(k0) = ∑
k>k0

∑
p≤k0

Suu (k |p| q) . (2.14)

Here the region A is the volume within the sphere, while the region B is the region
outside the sphere [see Fig. 2.3(a)].

For viewing the energy transfers in more detail, the wavenumber space is divided
into a set of wavenumber shells. The energy contents of wavenumber shell of radius
k and of unit width is denoted by E(k). The shell-to-shell energy transfer rate from
the velocity field of the mth shell to the velocity field of the nth shell [see Fig. 2.3(b)] is
defined as

Tu,m
u,n = ∑

k∈n
∑

p∈m
S (k |p| q) . (2.15)

In Kolmogorov’s theory of fluid turbulence, the maximum shell-to-shell energy
transfer occurs from shell m to shell (m + 1), hence the energy transfer in fluid turbu-
lence is local and forward. We will explore using numerical simulations whether the
energy transfers in RBC is local and forward.

The energy flux and shell-to-shell energy transfers do not capture the dependence
on the polar angle ζ of Fig. 2.4. Therefore they do not quantify the anisotropy of the
flow. Convective flows are anisotropic due to buoyancy. Hence it is important to quan-
tify anisotropy using quantities that are dependent on the polar angle. For this, we
divide a wavenumber shell into rings as shown in Fig. 2.4. The energy contents of the
rings is called ring spectrum E(k, β), where β represents the sector index for the polar

35

Implementation of a pseudospectral code as general PDE solver

FIGURE 2.4: Schematic diagram of the ring decomposition in Fourier space.

angle. The ring-to-ring energy transfer from ring (m, α) to ring (n, β) is

T(u,n,β)
(u,m,α) = ∑

k∈(n,β)
∑

p∈(m,α)
S (k |p| q) . (2.16)

These ring-to-ring energy transfer calculations for all m and n’s are computationally
expensive. In thermal convection, the ring spectrum was computed by Nath et al. [59].
Also, Teaca et al. [83] and Verma [90] performed similar analysis for magnetohydrody-
namic turbulence and liquid metal flows respectively.

In the next subsection, we describe the class structure of EnergyTr in some detail.

2.7.1 Class EnergyTr

EnergyTr (Energy Transfer) class computes flux, helicity, magnetic helicity, enstrophy
flux, and magnetic enstrophy flux. Here we present the definition of Compute_flux as
a code demonstration.

void EnergyTr :: Compute_flux(FluidVF &U)

{

flux_self = 0.0;

36

2.8 Summary

FIGURE 2.5: Inheritance diagram of EnergyTr (Energy Transfer) class. It has an

instance of PlainFluidVF for computing Giver which again has instance of RVF

and CVF. CVF inherits PlainFluidVF

for (int sphere_index = 1; sphere_index <= global.

energy_transfer.flux.no_spheres; sphere_index ++) {

Fill_in_sphere(sphere_index , U);

Nlin_incompress :: Compute_nlin(U, Giver);

// U.nlin = U.grad Giver <

flux_self(sphere_index) = -Prod_out_sphere_nlinV(

sphere_index , U, U);

// flux_self = -(U.grad U<). U> = U.nlin < . U>

}

}

LISTING 2.14: Compute_flux

2.8 Summary

We have developed an object-oriented code Tarang that is highly modular. Such a
structure enables easy implementation of new forcing, initial-condition, etc. In subse-
quent chapters, we perform high-resolution fluid simulation using spectral method on
Blue Gene/P and Cray XC40, i.e., we solve the Navier-Stokes equation along with the
continuity equation on these systems. We assume the flow to be incompressible, and
use periodic boundary condition for which FFF basis function is appropriate.

37

Implementation of a pseudospectral code as general PDE solver

In the next chapter we describe the parallel implementation of our FFT library
FFTK.

38

Chapter 3

Parallelisation of FFT and its scaling

The Fast Fourier Transform (FFT) is an important tool for image and signal processing,
and radio astronomy. It is also used to solve partial differential equations, fluid flows,
density functional theory, many-body theory, etc. Note that FFT was first discovered
by Cooley and Tukey [17]. For a three-dimensional N3 grid, FFT has large time com-
plexity O(N3 log N) for large N (e.g. 4096 or 8192). Hence, parallel algorithms have
been devised to compute FFT of large grids. In this chapter we will discuss an im-
plementation of parallel FFT that can compute transforms on very large grids using a
large number of processors. We remark that in a pseudospectral code, typically 70%
to 80% of the total time is spent on the forward and inverse Fourier transforms. So,
optimisation of FFT is critical for spectral code.

(a) (b)

XY
Z

FIGURE 3.1: (a) Slab decomposition of an array. (b) Pencil decomposition of an

array. Taken from Chatterjee et al. [12].

39

Parallelisation of FFT and its scaling

One of the most popular opensource FFT libraries is FFTW (Fastest Fourier Trans-
form in the West) [32] in which a three-dimensional (3D) array is divided into slabs
(hence called slab decomposition) as shown in Fig. 3.1(a). Hence, we can employ a maxi-
mum of N cores in FFTW operations on an array of size N3. This is a severe limitation
for present-day supercomputers that offer several hundreds of thousands of cores. For
example, one of the largest clusters available today has 10, 649, 600 cores (National Su-
percomputing Center in Wuxi China). Therefore using just N cores yields suboptimal
performance of the cluster.

To overcome this difficulty, Pekurovsky [64] employed a pencil decomposition in
which the data is divided into pencils, as shown in Fig. 3.1(b). This method allows
usage of a maximum of N2 cores, equal to the maximum number of pencils. This
pencil-based FFT library is called P3DFFT. In P3DFFT, the total time T for a FFT opera-
tion is a sum of computation time a/p and communication time b/p2/3, where p is the
number of cores. This scaling was deduced based on runs using a grid of 81923 points
on a Cray XT5 with a 3D torus interconnect, and 65536 cores. Chan et al. [11] studied
scaling of P3DFFT on a 16384 nodes of Blue Gene/L system. These tests reveal that the
communication time dominates the computation time due to the MPI_Alltoall data
transfer.

Pippig and Potts [66] devised a similar FFT named PFFT and showed that PFFT
has a similar scaling as P3DFFT. Richards et al. [70] performed scalability analysis for
their two-dimensional pencil FFT library on Blue Gene/P. Czechowski et al. [19] con-
structed a GPU-based FFT, DiGPUFFT. Mininni et al. [57] employed hybrid scheme
(MPI + OPENMP) to use large number of cores optimally; their FFT implementations
scale well on 15363 and 30723 grids for approximately 20000 cores with 6 and 12 threads
on each socket.

We have devised another pencil-based FFT called FFTK (FFT Kanpur) and tested
it on 65536 cores of Blue Gene/P (Shaheen I) and 196608 cores of Cray XC40 (Sha-
heen II) of KAUST. We will describe the scaling results of FFTK in this chapter. We
computed separately the time required for the computation and communications dur-
ing the FFT process, and showed that the computation time scales linearly, while the
communication component approaches the ideal bisection bandwidth scaling for large
arrays. We also compare the performance of FFTK on Blue Gene/P and Cray XC40,
and show that the relative speed of cores and switch matters for the efficiency. We
show later that the per-core efficiency of Cray XC40 is lower than that of Blue Gene/P
because the speed of the interconnect of Cray XC40 has not increased in commen-
surate with the speed of the processor. FFTK library is available for download at

40

3.1 Parallelization Strategy

http://www.turbulencehub.org/codes/fftk.

We have implemented various kinds of boundary conditions in FFTK—1) Peri-
odic in all directions, 2) Free-slip wall in one direction and periodic along the other
directions, 3) Free-slip walls along two directions and periodic along the third direc-
tion, and 4) Free-slip walls along all the three directions. P3DFFT supports boundary
conditions of types 1) and 2) only. Thus, FFTK implementation is more general than
P3DFFT.

In subsequent discussion in this chapter, we describe the numerical scheme and
parallelization strategy, as well as the scaling results of FFTK on Blue Gene/P and Cray
XC40 of KAUST. These results are taken from our journal paper [12].

3.1 Parallelization Strategy

Here we describe the FFF basis of the FFTK library. Implementation of the other ba-
sis functions is similar. The data is equally divided in cores for load balancing. In
pencil decomposition the data is divided in prow rows and pcol columns such that
prow × pcol = p as shown in Fig. 3.2. The MPI processes are divided among two com-
municators MPI_COM_ROW and MPI_COM_COL (see Fig. 3.2). In real space [Fig. 3.2(a)] each
core has Nx/pcol × Ny/prow× Nz data points.

The forward FFT transform (from real to complex) follows the following set of
steps:

1. We perform forward FFT, r2c real-to-complex, along the Z-axis for each data
column.

2. We perform MPI_AlltoAll operation among the cores in MPI_COM_COL to trans-
form the data from the real configuration [Fig. 3.2(a)] to the intermediate config-
uration [Fig. 3.2(b)].

3. After interprocess communication, we perform forward c2c (complex-to-complex)
transform along the Y-axis for each pencil of the array.

4. We perform MPI_AlltoAll operation among the cores in MPI_COM_ROW to trans-
form the data from the intermediate configuration [Fig. 3.2(b)] to the Fourier con-
figuration [Fig. 3.2(c)].

41

Parallelisation of FFT and its scaling

Ny

Nx

M
P
I_
C
O
M
M
_R
O
W

MPI_COMM_COL
(d) (e) (f)

(a) (b) (c)

Ny

Nz

M
P
I_
C
O
M
M
_R
O
W

MPI_COMM_COL

Nx

Nz

M
P
I_
C
O
M
M
_R
O
W

MPI_COMM_COL

XY
Z

FIGURE 3.2: Pencil decomposition of data for FFT: (a) real space data, (b) interme-

diate configuration, (c) data in Fourier space. (d, e, f) Division of cores into prow and

pcol such that p = prow × pcol corresponding to the above data division. We main-

tain consistent colour convention in all the figures. In the subfigure (a), N = 12,

prow = 3, pcol = 4, thus each core contains Nx/pcol × Ny/prow × Nz = 3× 4× 12

data points. Taken from Chatterjee et al. [12].

42

3.2 The FFTK Library

5. Now we perform forward c2c transform along the X-axis for each pencil [see
Fig. 3.2(c)].

For one-dimensional FFT operations as described above, we use the FFTW trans-
forms in our library. To perform the FFT along y and z we do not perform local trans-
pose of the data, as it is prone to cache misses. Rather, we employ strided FFT for
non-contiguous data along y and x since the strided FFT is more efficient than the lo-
cal transpose. We also remark that FFTK and Tarang use a meta-template C++ library,
blitz++ [86] for array manipulation; this library provides efficient operations for ar-
rays. Strided FFT along Y and X takes double the time taken by contiguous FFT along
Z [12]. We describe strided Transpose-free FFT in Appendix A.

This completes the forward transform. The inverse transform is reverse of the
above operation. Note that the above strategy is general, and it works for all the basis
functions. Our library also works for two-dimensional (2D) data, for which we set
Ny = 1 and 1D transform, for which we set Nx = Ny = 1. The intermediate state is
avoided for 2D Fourier transforms. Also note that the slab FFT can be performed by
setting prow = 1, and again, the configuration (b) of Fig. 3.2 is avoided.

In the next section, we provide some details on the library structure of FFTK.

3.2 The FFTK Library

The FFTK class has following major functions. It uses FFTW for performing 1D trans-
forms.

3.2.1 void Init(string basis, int Nx, int Ny, int Nz, int num_p_rows)

This function initialises an instance according to basis, size of the grid and the division
of data. We have three spaces during a 3D transform:- Real space, Intermediate space
and Fourier space (Fig 3.2). This function sets the number of points along each axis for
all the spaces. e.g. In Fourier space the size of grid is Nx × Ny × Nz/2 + 1. It calls
several helper functions to set up the following:

• MPI variables (process rank, num of processors, MPI row communicator and MPI
column communicator , number of rows and columns in a pencil division) and
size of local arrays.

43

Parallelisation of FFT and its scaling

• Allocates some temporary buffers and sets up several parameters required dur-
ing data transfer operation.

• Sets FFTW plans and normalization factor according to the chosen basis, the size
of the grid, and the division of data.

3.2.2 Forward_transform

This executes the forward FFTW plans initialized earlier and invokes data transfer
functions according to the order

• Forward transform along Z

• Divide data along Z and X

• Forward transform along Y

• Divide data along Y and Z

• Forward transform along X

• Normalize the data

3.2.3 Inverse_transform

This executes the inverse FFTW plans initialized earlier in the init function and invokes
data transfer functions according to the order

• Inverse transform along X

• Divide data along Y and Z

• Inverse transform along Y

• Divide data along Z and X

• Inverse transform along Z

In the following discussion we will report the scaling results of FFTK . But before
that we introduce the HPC clusters on which the tests were performed.

44

3.3 About the HPC systems

3.3 About the HPC systems

We performed scaling tests of our FFT library and pseudospectral code on Shaheen I, a
Blue Gene/P cluster, and Shaheen II, a Cray XC40 cluster, of King Abdullah University
of Science and Technology (KAUST). Here are some of the relevant details of these
systems.

3.3.1 Blue Gene/P

The Blue Gene/P supercomputer consists of 16 racks with each rack containing 1024
quad-core, 32-bit, 850 MHz PowerPC compute nodes. Hence the total number of cores
in the system is 65536. It also has 65536 GB of RAM. The Blue Gene/P nodes are
interconnected by a three-dimensional point-to-point torus network. The theoretical
peak speed of the Blue Gene/P supercomputer is 222 Tera FLOP/s (Floating point
operations per second). This system has now been decommissioned by KAUST.

3.3.2 Cray XC40

The Cray XC40 supercomputer has 6174 dual-socket compute nodes each containing
two Intel Haswell processors with 16 cores. Each of these cores run at a clock speed of
2.3 GHz. In aggregate, the system has a total of 197568 cores and 790 TB of memory.
The compute nodes, contained in 36 water-cooled XC40 cabinets, are connected via a
Aries High Speed Network. Cray XC40 adopts a dragonfly topology that yields 57% of
the maximum global bandwidth between the 18 groups of two cabinets [37]. Shaheen II
delivers a theoretical peak performance of 7.2 Peta FLOP/s and a sustained LINPACK
performance of 5.53 Peta FLOP/s. According to the latest TOP500 list, announced in
June 2017, Shaheen II is ranked as 18th best supercomputer in the world.

In the next section, we describe the scaling results of FFTK. These results are taken
from our journal paper [12].

45

Parallelisation of FFT and its scaling

3.4 Scaling of FFTK

Total time in a parallel program can be divided into computation time Tcomp, commu-
nication time across nodes Tcomm, and latency Tlat, i.e.

T = Tcomp + Tcomm + Tlat. (3.1)

We report Tcomp and Tcomm of FFTK library on the Blue Gene/P and Cray XC40 clus-
ters. For large data size, Tlat is quite small compared to the above two, and hence
can be neglected. Since the data is divided equally among all the cores, we expect
Tcomp ∼ p−1, where p is the number of cores; we observe the above scaling in all
our tests. However since FFT involves MPI_Alltoall communications, communica-
tion time is the most dominant component of the total time.

We have performed forward and inverse transforms using FFTK several times
(100 to 1000) for large N3 grids, and then report the average time taken for a pair of
forward and inverse transforms. We computed Tcomp and Tcomm for various combina-
tions of grid sizes and number of cores, and observed that

Tcomp = c1p−γ1 , (3.2a)

Tcomm = c2n−γ2 , (3.2b)

T−1 =
1
C

pγ, (3.2c)

where c1, c2, C, γ1, γ2, and γ are constants, p is the number of cores, and n is the
number of nodes. Therefore the total time per FFT operation is

T = c1D
(

1
pγ1

)
+ c2D

(
1

nγ2

)
+ T0 = C

(
1
pγ

)
(3.3)

where D = N3 is the data size, and T0, a measure of latency, is a constant. We measure
Tcomp and Tcomm by computing the time taken by the respective code-segments using
the MPI function MPI_Wtime. We record the time when the process enters and leaves
the code segment, and then take their difference that yields Tcomp and Tcomm.

We now describe our results specific to the Blue Gene/P cluster.

46

3.4 Scaling of FFTK

10
2

10
3

10
4 10

5

p

10
-2

10
-1

10
0

10
1

T
−
1

co
m
p

(a)

10
2

10
3

10
4 10

5

n

10
-2

10
-1

10
0

10
1

T
−
1

co
m
m

(b)

FIGURE 3.3: Scalings of the FFTK library on Blue Gene/P: (a) Plot of inverse compu-

tation time T−1
comp vs. p (number of cores) for 1ppn (red circle), 2ppn (green triangle),

4ppn (blue square). Here ppn represents number of MPI processes per node. The

data for grids 20483, 40963, and 81923 are represented by the same symbols but with

increasing sizes. The plots show that FFTK exhibits strong scaling in Blue Gene/P.

(b) Plot of inverse communication time T−1
comm vs. n (number of nodes) with the

above notation. T−1
comm for p = 256 and 512 exhibits a better scaling due to the slab

decomposition employed. Taken from Chatterjee et al. [12].

47

Parallelisation of FFT and its scaling

10
2

10
3

10
4 10

5

p

10
-2

10
-1

10
0

10
1

T
−
1

(a)

10
2

10
3

10
4 10

5

(p N3)∗20483

10
-2

10
-1

10
0

10
1

T
−
1

(b)

/

FIGURE 3.4: Scalings of FFTK in Blue Gene/P: (a) Plot of inverse of total time T−1

vs. p exhibits strong scaling. (b) Plot of T−1 vs. p/N3 exhibits weak scaling with

the exponent γ = 0.91± 0.04. We follow the same colour and symbol convention

as Fig. 3. Taken from Chatterjee et al. [12].

48

3.4 Scaling of FFTK

3.4.1 Scaling on Blue Gene/P

In Fig. 3.3 we plot Tcomp and Tcomm. The results show that the computation time scales
as Tcomp ∝ p−1. In the following discussion, we sketch the scaling arguments for Tcomm

that was first provided by Pekurovsky [63].

A Blue Gene/P cluster has torus interconnect for which the bisection bandwidth B,
defined as the net bandwidth available between bisected partitions of the network, is
proportional to the area in the network topology. Hence B ∝ (n′)2/3, where n′ is the
number of nodes used in communication.

TABLE 3.1: FFTK scaling on Blue Gene/P: The exponents γ1 for the computation

time (Tcomp), γ2 for the communication time (Tcomm), and γ for the total time (T)

[refer to Eq. (3.2) for definition]. The maximum nodes used: 16384 with 1ppn, 2ppn,

and 4ppn.

γ ppn 20483 40963

γ1 1 1.00± 0.01 0.97± 0.01
2 1.00± 0.02 0.96± 0.01
4 1.00± 0.03 0.95± 0.03

γ2 1 0.7± 0.1 0.9± 0.1
2 0.7± 0.1 0.8± 0.2
4 0.7± 0.1 0.8± 0.2

γ 1 0.87± 0.05 0.94± 0.05
2 0.81± 0.05 0.96± 0.09
4 0.76± 0.07 0.9± 0.1

In the slab division, n′ = n, the total number of nodes, and the data to be commu-
nicated in the network is D = N3. Therefore, the inverse of the communication time
for each FFT is

T−1
comm,slab ∼

B
D
∼ n2/3. (3.4)

Here, we show that Tcomm depends only on number of interacting nodes, not cores
because the intra-node communication (among the cores within a node) is typically
much faster than the inter-node communication across an interconnect.

In pencil division, the nodes are divided into row nodes (nrow) and column nodes
(ncol). We estimate nrow ≈ ncol ≈ n1/2. Hence each communication within a row (or

49

Parallelisation of FFT and its scaling

a column) involves n′ ≈ n1/2 number of nodes during MPI_COM_ROW or MPI_COM_COL

communications. Hence, the effective bisection bandwidth, Be, is

Be ∼ (n′)2/3 = (n1/2)2/3 = n1/3. (3.5)

In this decomposition, the data per node is N3/n. During a communication, either row
nodes or column nodes are involved. Hence, the data to be communicated during a
MPI_Alltoall operation is

D = (N3/n)× n1/2 = N3/n1/2. (3.6)

Therefore, the inverse of communication time for each FFT is

T−1
comm ∼

Be

D
∼ n5/6 ≈ n0.83. (3.7)

We carried the scaling tests on arrays of size 20483, 40963, and 81923 on cores rang-
ing from 256 to 65536. Blue Gene/P has 4 cores in each node, therefore we executed
our efficiency test runs on 1, 2, and 4 cores per node, denoted as 1ppn, 2ppn, and 4ppn

respectively. We present these results in Fig. 3.3, with the subfigures (a,b) showing the
inverse of computation and communication timings respectively. We represent 1ppn,
2ppn, and 4ppn results using circles, triangles, and squares respectively, and the grid
sizes 20483, 40963, and 81923 using increasing sizes of the same symbols. Fig. 3.3 shows
that T−1

comm for p = 256 and 512 shows better scaling than those for larger number of
processors. This is attributed to the slab decomposition. Note however that the slab
decomposition is possible only when number of processors is smaller than the number
of planes of the data (N for N3 grid). In Fig. 3.4(a,b), we exhibit T−1 vs. p and T−1

vs. p/N3 to test strong and weak scaling, respectively.

We compute the exponents γ1, γ2, and γ of Eq. (3.3) using linear regression on the
data of Fig. 3.3 and Fig. 3.4(a). In Table 3.1, we list the exponents for 1ppn, 2ppn, and
4ppn and grids sizes of 20483 and 40963. As expected, the exponent γ1 ≈ 1 since the
data is equally distributed among all the cores. The exponent γ2 is approximately 0.7
for 20483 for all three cases, but it ranges from 0.8 to 0.9 for 40963. The increase in γ2

with the grid size is probably due to the larger packets communicated for 40963 grids.
The exponent γ2 is quite close to the theoretical estimate of 5/6 ≈ 0.83 for 40963 grid
[see Eq. (3.7)]. Our computation also shows the best match for γ2 with the theoretical
estimate is for 1ppn, and it decreases slightly for for larger ppn. The variations with ppn

is due to cache misses.

50

3.4 Scaling of FFTK

TABLE 3.2: Comparison of FFTK and P3DFFT on Blue Gene/P for 8192 nodes with

1ppn and 4ppn. Here p = nodes × ppn.

Grid p time/step (s) time/step (s)
FFTK P3DFFT

40963 8192× 1 8.18 8.06

40963 8192× 4 4.14 4.06

81923 8192× 1 71.2 70.0

81923 8192× 4 45.7 46.2

Now we present the scaling of the total time spent in a pair of FFT computation
(T). In Fig. 3.4(a), that shows a power law scaling T−1 ∝ pγ, we get a scaling close to the
ideal exponent γ = 5/6 [see Eq. (3.7)]. This feature is called strong scaling. Naturally
the larger grids take longer time than the smaller grids. However, when we increase p
and N3 proportionally, all our results collapse into a single curve, as exhibited in T−1

vs. p/N3 plot of Fig. 3.4(b). Thus FFTK exhibits both strong and weak scaling.

In Blue Gene/P, it is seen that Tcomp and Tcomm are comparable to each other due
to the fact that the interconnect is quite fast, but the compute processors are slow (850
MHz). Hence the total time T is affected by both Tcomp and Tcomm. Thus, γ is very
close to unity, yielding an almost linear scaling, at least for the 40963 grid. Moreover,
we have performed FFT for 81923 grid with 8192 and 16384 nodes; it was not possible
with lower number of nodes due to memory limitations. Due to lack of data points for
81923 grid, we do not have a reliable scaling exponent for this grid .

We compare the total time per step of FFTK with the popular library P3DFFT
for 40963 and 81923 grids on 8192 nodes with 1ppn and 4ppn. The comparison listed
in Table 3.2 shows that both the libraries are equally efficient. We also compute the
effective FLOP rating of FFTK and P3DFFT. A pair of forward and inverse FFT involves
2 × 5N3 log2 N3 floating point operations [32]. Using this formula we estimate the
effective FLOP rating of the cluster for various grid sizes and ppn. The results are
listed in Table 3.3. A comparison of the above performance with the average theoretical
rating of each core (approximate 3.4 Giga FLOP/s) suggests that the efficiency of the
system for a FFT ranges from approximately 5% (for 4ppn) to 10% (for 1ppn) of the peak
performance. The loss of performance is due to large communication time and cache
misses during a FFT operation. Typically, efficiency of a HPC system is measured using

51

Parallelisation of FFT and its scaling

103 104 105

p

100

101

102

103

104

T
−
1

co
m
p

(a)

7683

15363

30723

102 103 104

n

100

101

102

T
−
1

co
m
m

(b)

FIGURE 3.5: Scalings of FFTK on Cray XC40: (a) Plots of T−1
comp vs. p (number of

cores) for 7683, 15363, and 30723 grids. (b) Plots of T−1
comm vs. n (number of nodes)

using the above convention. Taken from Chatterjee et al. [12].

52

3.4 Scaling of FFTK

TABLE 3.3: FFTK on Blue Gene/P: Effective FLOP rating in Giga FLOP/s of Blue

Gene/P cores for various grid sizes and ppn. The efficiency E is the ratio of the ef-

fective per-core FLOP rating and the peak FLOP rating of each core (approximately

3.4 Giga FLOP/s).

Grid ppn Giga FLOP/s E

20483 1 0.38 0.11
2 0.28 0.082
4 0.17 0.050

40963 1 0.36 0.11
2 0.25 0.073
4 0.14 0.041

81923 1 0.36 0.11
2 0.26 0.076
4 0.15 0.044

T1/(pTp) where Tp is the time taken to perform operation using p processors. The data
for large grids, e.g. 10243, cannot fit in the memory of a single processor, hence we
cannot compute T1 and hence T1/(pTp). Therefore we use a more stringent measure.
We measure the efficiency (E) as the ratio of the per-core FLOP rating and the peak
rating. We list this efficiency in Table 3.3.

In the next subsection we discuss the scaling of FFTK on Cray XC40.

3.4.2 Scaling on Cray XC40

Each node of Cray XC40 has 32 compute cores, with each core having an approximate
rating of 36 Giga FLOP/s. Thus each core of Cray XC40 is approximately 10 times
faster than that of Blue Gene/P. Hence, for given grid size and p, Tcomp for Cray XC40
is much smaller than that for Blue Gene/P. Total number of cores in Cray XC40 is
3× 216.

The Cray XC40 employs dragonfly topology which consists of hierarchy of star
topology that yields bandwidth proportional to the number of interacting nodes. Hence

53

Parallelisation of FFT and its scaling

the bandwidth is
Be ∼ n′, (3.8)

where n′ is the number of interacting nodes. For the pencil decomposition the total
number of nodes n is divided as n = nrow× ncol. Hence n′ = n/nrow for MPI_COMM_COL
communicator and n′ = n/ncol for MPI_COMM_ROW communicator. Note that the data to
be communicated during MPI_Alltoall operation is (N3/n)n′. Hence, the inverse of
the communication time is

T−1
comm ∼

Be

D
≈ n′

(N3/n)n′
∼ n, (3.9)

implying a linear scaling. However, as will be shown later, such a scaling is not ob-
served in practice. For example, Hadri et al. [37] showed that the maximum global
bandwidth between the 18 groups of two cabinets is approximately 57% of the peak
performance, hence we expect suboptimal performance for communications for FFT
due to MPI_Alltoall data exchange.

We executed FFTK scaling on grid sizes 7683 to 61443 using cores ranging from
1536 to 196608 (3× 216). Each node of Shaheen II contains 32 cores. We use all the cores
in a given node for maximum utilization. Both the grid sizes and number of cores are
of the form 3× 2n, since the total number of cores is divisible by 3.

We do the scaling analyses for FFF and SFF basis and present the Tcomp, Tcomm,
and T in Figs. 3.5 and 3.6 for the FFF basis only since SFF basis has similar behavior.
We observe that the total computation time for the process is an order of magnitude
smaller than the total communication time. Hence the efficiency of FFT is dominated
by the MPI_Alltoall communication of the FFT. The figures show that T−1

comp ∼ pγ1 ,
T−1

comm ∼ nγ2 , and T−1 ∼ pγ, with minor deviations from the power law for 7683 grid
with large p’s (p ≥ 98000). Thus the data exhibits a strong scaling nearly up to 196608
cores. We also observe that all the data nearly collapse to a single curve when we plot
T−1 vs. p/N3, hence FFTK exhibits both weak and strong scaling nearly.

We performed scaling tests of our FFT library on a Cray XC40 cluster (Shaheen
II) of KAUST for SFF basis. We divide the cores and data in two different ways:

1. In the first decomposition, SFF I, we vary our grid size from 7683 to 61443, and
the number of cores from 1536 to 196608 (3× 216). For the scaling analysis, both
the grid sizes and number of cores are of the form 3 × 2n since the maximum
number of cores in Cray XC40, 3× 216, is divisible by 3. We observe that Tcomm

does not vary significantly under the variation of pcol, similar to P3DFFT [63].

54

3.4 Scaling of FFTK

FIGURE 3.6: Scaling of FFTK on Cray XC40 for the FFF basis: (a) plots of T−1 vs. p
for 7683, 15363, and 30723 grids. (b) plots of T−1 vs. p/N3 exhibits weak scaling

with an exponent of γ = 0.72± 0.03. Taken from Chatterjee et al. [12].

55

Parallelisation of FFT and its scaling

Here we report our results for pcol = N (where N3 is the grid size) keeping uni-
formity in mind.

2. In the second decomposition, SFF II, we divide the data Nx×Ny×Nz and cores
in such a way that large blocks of data and cores remain within a rack. The total
number of nodes in a Shaheen II rack is either 171 or 172. We choose lower of
the two numbers for our processor division. Since 171 = 19× 9, it is best to take
prow and pcol as multiples of 19 and 9 respectively. Each of the 36 = x2y2 racks
of Shaheen II consists of nodes carrying 32 = x1y1 cores each. Therefore, for effi-
cient and modular decomposition, we take prow = 19x1x2 and pcol = 9y1y2. For
the data decomposition, using Fig. 3.2 we deduce that Nz and Nx are divisible by
prow and pcol respectively, but Ny is divisible by LCM(19x1x2, 9y1y2), where LCM
is the least common multiple. For our efficiency test runs we take x1 = 8, y1 =

4, x2 = (1, 2, 4) and y2 = (1, 3, 9), that yields p = 5472, 10944, 21888, 16416, 32832, 65664,
49248, 98496 and 196992. We choose the grids as G1 = 684× 5472× 288, G2 =

2052× 5472× 576, and G3 = 6156× 5472× 2304.

The exponents for various grids for the FFF, SFF I and SFF II basis are listed in
Table 3.4. We observe that γ1 ≈ 1, except for 7683, thus yielding a linear scaling for
the computation time. The exponent γ2 of the communication time ranges from 0.43
to 0.82 as we increase the grid size from 7683 to 30723, which may be due to increased
efficiency of the network for larger data size. As described above, the total time is
dominated by the communication time, hence γ ≈ γ2. Also, the SFF II basis appears
to be slightly more efficient than the SFF I which is more efficient than the FFF basis.
We however remark that these exponents have significant errors, ranging from 1% to
20%, These errors are due to errors in time measurements, as well as due to lack of data
points.

We compute the effective FLOP rating of the cluster by dividing the total num-
ber of floating operations for a pair of FFT (2× 5N3 log2 N3) with the total time taken.
This operation yields the average rating of each core of Cray XC40 as 0.45 to 0.64 Giga
FLOP/s that translates to 1.3% to 1.8% of the peak performance (36 Giga FLOP/s) (see
Table 3.5). It is important to contrast the efficiencies of the two HPC clusters discussed
in this chapter. The efficiency of Blue Gene/P at approximately 4% (for 4ppn) is higher
than that of Cray XC40 (∼ 1.5%). A node of Cray XC40 comprises of 32 cores, each
with a peak rating of 36 Giga FLOP/s rating. Hence maximum compute power per
node is 1152 Giga FLOP/s. On the other hand, a Blue Gene/P node contains 4 cores
with a peak rating of 4× 3.4 = 13.6 Giga FLOP/s. Thus, each node of Cray XC40 is

56

3.4 Scaling of FFTK

TABLE 3.4: FFTK scaling on Cray XC40 for the FFF and SFF basis: The exponents γ1

for the computation time (Tcomp), γ2 for the communication time (Tcomm), and γ for

the total time (T) [refer to Eq. (3.2) for definition]. Maximum cores used: 196608.

FFF

Grid γ1 γ2 γ

7683 0.79± 0.14 0.43± 0.09 0.43± 0.09

15363 0.93± 0.08 0.52± 0.04 0.55± 0.04

30723 1.08± 0.03 0.60± 0.02 0.64± 0.02

SFF I

Grid γ1 γ2 γ

7683 0.82± 0.13 0.44± 0.03 0.46± 0.04

15363 0.97± 0.07 0.63± 0.02 0.66± 0.01

30723 0.99± 0.04 0.70± 0.05 0.73± 0.05

SFF II

Grid γ1 γ2 γ

684× 5472× 288(G1) 0.88± 0.05 0.55± 0.02 0.58± 0.03

2052× 5472× 576(G2) 0.82± 0.08 0.57± 0.08 0.70± 0.08

6156× 5472× 2304(G3) 0.87± 0.04 0.78± 0.05 0.81± 0.04

57

Parallelisation of FFT and its scaling

TABLE 3.5: FFTK on Cray XC40: Effective FLOP rating in Giga FLOP/s of Cray

XC40 cores for various grid sizes and ppn. The efficiency E is the ratio of the effec-

tive per-core FLOP rating and the peak FLOP rating of each core (approximately 36

Giga FLOP/s).

Grid Size 7683 15363 30723

GFlop/s 0.45 0.53 0.64

E 0.013 0.015 0.018

approximately 100 times faster but with an interconnect of Cray XC40 that is not 100
times faster than the interconnect of Blue Gene/P. Therefore, for data communication
the processors of Cray have to remain idle than those in Blue Gene/P. For the Blue
Gene/P, the relatively slower processors do not have to stay idle as long. This is espe-
cially critical for FFT which is communication intensive. Thus, the faster processor and
relatively slower interconnect of Cray XC40 result in an overall lower efficiency than
the Blue Gene/P. In this sense, the efficiency of hardware depends on the application;
for FFT computation, a faster switch is more important than a faster processor.

3.5 Hybridization

Using threads as well as MPI in a program is called hybrid code in terms of paralleliza-
tion. FFTW supports threaded transforms. In pure threaded transforms in p threads,
the N2 columns are equally divided into p threads. In a hybrid scenario, columns in
each pencil are divided into p threads. GNU C++ supports two kinds of threads, i.e.
OpenMP and pthreads (posix threads). FFTW uses pthreads as it provides finer control
over thread creation and destruction. Moreover there are two kinds of parallelism, 1)
data parallelism and 2) task parallelism. In data parallelism, the total data is equally
distributed among the processor cores. On the other hand, in task parallelism different
task is given to processor cores.

We wrote a hybrid code in which we use data parallelism. Speedup (Figure 3.7(a))
of a parallel program is defined as S = Ts/Tp, where Ts is time taken by serial program
and Tp is the time taken by its parallel counter part. Ideally it should scale as S ∝ p−1.
We get the exponent to be γ = 0.53 ± 0.03. Efficiency (Figure 3.7(b)) of a parallel
code is defined as E = S/p. Ideally it should scale as E = p0. We get the exponent

58

3.6 Summary of the chapter

γ = −0.47± 0.03. The Strong scaling (Figure 3.7(c)) is defined as T−1 = 1/Tp. Ideally
it should scale as T−1 ∝ p1. We get the exponent to be γ = 0.53± 0.06. The Weak
scaling (Figure 3.7(d)) is plotted as p/N3 vs T−1. Ideally all plots should fall into one
line of slope p1. We get the exponent to be γ = 0.94± 0.07.

100 101

p

100

101

S

(a)

100 101

p

10 1

100

E

(b)

100 101

p

10 1

100

101

T
1

(c)

10 1 100 101

p/N3 * 2563

10 1

100

101

102
T

1
(d)

FIGURE 3.7: In these figures, blue circles, green triangles and red squares respec-

tively represent 2563, 5123 and 10243 grids. γ is averaged over three lines except

for weak scaling for which it is averaged over two. (a) Speedup, S = Ts/Tp,

γ = 0.53 ± 0.03, (b) Efficiency E = S/p = Ts/pTp, γ = −0.47 ± 0.03 (c) Total

time inverse, γ = 0.53± 0.06 (d) Weak scaling, γ = 0.94± 0.07

Kindly note that these are preliminary runs. We plan to perform a more detailed
set of hybrid runs.

3.6 Summary of the chapter

In this chapter we describe the features of our FFT library FFTK, and the scaling results
of FFTK. On Blue Gene/P, FFTK scales well up to 81923 grid with core count up to
65536, and on Cray XC40, it scales up to 30723 with core count up to 196608 cores. The
scaling is not linear due to communications involved in MPI_All_to_All operations.

59

Parallelisation of FFT and its scaling

However, the scaling is close to the predicted ones based on bi-sectional widths.

In the next chapter, we describe the scaling of Tarang solvers.

60

Chapter 4

Parallel scaling of Tarang solvers

In Chapter 2 we described the features of Tarang. In this chapter we will describe
the scaling results of some of the solvers of Tarang—hydrodynamic turbulence and
thermal turbulence. We performed scaling tests of Tarang, a pseudospectral code on
Shaheen I, a Blue Gene/P cluster, and Shaheen II, a Cray XC40 cluster, of King Abdul-
lah University of Science and Technology (KAUST). We varied the grid size from 7683

to 40963, and the number of cores up to 65536 on Blue Gene/P, and up to 196608 on
Cray XC40.

The most expensive part of a pseudospectral simulation is the FFT that consumes
approximately 70% to 80% of the total time. In addition, a flow solver involves array
operations such as array multiplication; fortunately this array operation scales linearly
with the number of processors. Also, a large amount of data makes the read and write
operations from the hard disc quite expensive. In Tarang, we employ parallel I/O
using hdf5 library. Due to the diverse set of functions in fluid solvers, it is difficult to
separate the computation and communication times. Hence we report scaling of the
total time for these solvers. The results presented in this Chapter are taken from our journal
paper [12].

4.1 Scaling of fluid solver on HPC systems

We solve equations (1.5, 1.6) using Tarang. A fluid simulation requires 15 arrays each
of size N3 to store three components of the velocity field in real and Fourier spaces, the
force field, the nonlinear terms u · ∇u, and three temporary arrays [93]. We employ the

61

Parallel scaling of Tarang solvers

fourth-order Runge Kutta scheme for time stepping, and dealias the nonlinear terms
using the 2/3-rd rule [6, 9]. Each time step requires 36 FFT operations. Refer to Verma
et al. [93] for further details and validation tests of the fluid solver. We run our efficiency
test runs for 10 to 100 time steps depending on the grid size. The time reported in the
present section is an average over these time steps. The above times do not include
those of I/O operations.

4.1.1 Scaling on Blue Gene/P

We performed fluid efficiency test runs on 20483 and 40963 grids using cores ranging
from 1024 to 65536. In Fig. 4.1(a) we plot the inverse of the total time per solver iteration
vs. p. We observe that T−1 ∼ pγ. The exponents γ listed in Table 4.1 show that γ =

0.95 ± 0.05 and γ = 0.8 ± 0.1 for grid sizes of 20483 and 40963, respectively. This
demonstrates that the fluid solver exhibits a strong scaling.

The above data nearly collapses into a single curve in the plot of T−1 vs. p/N3,
as shown in Fig. 4.1(b). Hence we conclude that our fluid solver also exhibits weak
scaling. The exponent of the weak scaling is γ = 0.97± 0.06.

4.1.2 Scaling on Cray XC40

We performed fluid efficiency test runs on grid sizes of 7683, 15363 and 30723 using core
counts ranging from 1536 to 196608. The choice of the aformentioned grid is due to the
fact that the number of cores of Cray XC40 used for our scaling is 3× 216, which is close
to the maximum available on Cray XC40. We employ periodic boundary conditions
along all the walls. As done for Blue Gene/P cluster, we compute the total time taken
for each iteration of the solver.

Fig. 4.2(a) shows that the plots of T−1 ∝ pγ, except for 7683 grid with large p’s
(p ≥ 98000). Thus FFTK exhibits a strong scaling, except for 7683 grid when p is large
(p / 98000). We observe that γ for the 7683, 15363 and 30723 grids are approximately
0.28, 0.44 and 0.68 respectively. The three curves for the three different grids collapse
into a single curve when the x axis is chosen as p/N3 (except for p ≥ 98000). This
result shows a common scaling when the number of cores and data sizes are increased
by an equal factor. Thus our fluid solver exhibits both weak and strong scaling nearly
up to 196608 cores of the Cray XC40.

62

4.1 Scaling of fluid solver on HPC systems

103 104 105

p

10 2

10 1

T
1

(a)

103 104 105

(p/N3) * 20483

10 2

10 1

T
1

(b)

FIGURE 4.1: Scaling of the fluid spectral solver on Blue Gene/P: (a) Plot of T−1 vs. p
for 20483 (red triangle) and 40963 (green square) grids exhibits strong scaling. (b)

Plot of T−1 vs. p/N3 exhibits weak scaling with an exponent of γ = 0.97± 0.06.

Taken from Chatterjee et al. [12].

TABLE 4.1: Scaling exponent of the total time of the fluid solver on Blue Gene/P

and Cray XC40 for various grids (definition: T ∼ p−γ).

Blue Gene/P Cray XC40

Grid size γ Grid size γ

20483 0.95± 0.05 7683 0.28± 0.15

40963 0.8± 0.1 15363 0.44± 0.06

- - 30723 0.68± 0.02

63

Parallel scaling of Tarang solvers

103 104 105

p

10-1

100

101

T
−

1

(a)

7683

15363

30723

102 103 104 105

(p/N3) ∗7683

10-1

100

101

T
−

1

(b)

FIGURE 4.2: Scaling of the fluid spectral solver on Cray XC40: (a) Plot of T−1 vs. p
for 7683, 15363, and 30723 grids exhibits strong scaling. (b) Plot of T−1 vs. p/N3

exhibits weak scaling with an exponent γ = 0.62± 0.07. Taken from Chatterjee et
al. [12].

64

4.2 Scaling of turbulent convection module of Tarang

In the next section, we describe scaling of turbulent convection.

4.2 Scaling of turbulent convection module of Tarang

For Rayleigh Benard Convection (RBC) simulations, we solve Eqs. (1.10, 1.11, 1.12)
using Tarang. A simulation of RBC requires 18 arrays of size N3. We use fourth-
order Runge Kutta scheme for time stepping that needs 52 FFT per time step [93]. For
scaling tests, we run our efficiency test runs for 10 to 100 time-steps. In this section, the
reported time is an average over appropriate number of time steps. The timing data
from our test runs on the Blue Gene/P and Cray XC40 clusters are as follows:

104

p

10-2

10-1

T
−

1

(a)

103 104

(p/N3) ∗20483

10-3

10-2

10-1

T
−

1

(b)

FIGURE 4.3: Scaling of the RBC solver on Blue Gene/P for the FFF basis: (a) Plot

of T−1 vs. p for 20483 (red triangle) and 40963 (green square) grids exhibits strong

scaling. (b) Plot of T−1 vs. p/N3 exhibits weak scaling with an exponent of γ =

0.68± 0.08. Taken from Chatterjee et al. [12].

65

Parallel scaling of Tarang solvers

TABLE 4.2: Scaling exponents of the total time of the RBC solver on Blue Gene/P

and Cray XC40 for various grids for the FFF and SFF basis functions (definition:

T ∼ p−γ).

Blue Gene/P Cray XC40

FFF

Grid Size γ Grid Size γ

20483 0.71± 0.04 7683 0.49± 0.14

40963 0.68± 0.08 15363 0.64± 0.04

- - 30723 0.74± 0.03

SFF

Grid Size γ Grid Size γ

- - 7683 0.62± 0.06

- - 15363 0.74± 0.09

- - 30723 0.80± 0.05

66

4.2 Scaling of turbulent convection module of Tarang

4.2.1 Blue Gene/P

We performed RBC efficiency test runs on 20483 and 40963 grids using cores ranging
from 8192 to 65536. In Fig. 4.3(a,b) we plot T−1 vs. p and T−1 vs. p/N3 respectively.
Here T is the time taken per step, and p is the number of cores. We observe that
T−1 ∼ pγ with the exponent γ = 0.71 and 0.68 for the 20483 and 40963 grids respec-
tively (see Table 4.2). Thus the RBC solver indicates a strong scaling. As exhibited in
Fig. 4.3(b), the data nearly collapses into a single curve when we plot T−1 vs. p/N3,
hence exhibiting a weak scaling as well.

103 104 105 106

p

10-2

10-1

100

101

T
−

1

(a)

7683

15363

30723

102 103 104 105

(p/N3) ∗7683

10-2

10-1

100

101

T
−

1

(b)

FIGURE 4.4: Scaling of the RBC spectral solver for the FFF basis on Cray XC40: (a)

Plot of T−1 vs. p for 7683, 15363, and 30723 grids exhibits strong scaling. (b) Plot

of T−1 vs. p/N3 exhibits weak scaling with an exponent of γ = 0.72± 0.06. Taken

from Chatterjee et al. [12].

67

Parallel scaling of Tarang solvers

103 104 105

p

10-2

10-1

100

101

T
−

1

(a)

101 103 105

(p/N3) ∗7683

10-3

10-1

101

T
−

1

(b)

FIGURE 4.5: Scaling of the RBC spectral solver for the SFF basis on Cray XC40: (a)

Plot of T−1 vs. p for 7683, 15363, and 30723 grids exhibits strong scaling. (b) Plot

of T−1 vs. p/N3 exhibits weak scaling with an exponent of γ = 0.83± 0.03. Taken

from Chatterjee et al. [12].

68

4.3 Summary and discussion

4.2.2 Cray XC40

We simulated RBC on 7683, 15363 and 30723 using cores ranging from 1536 to 168608
for FFF and SFF basis. For 3300 iterations of RBC simulation on 20483 grid, the total
simulation is 1.7 × 105 seconds, thus the time per iteration of RBC on 20483 grid is
approximately 51.5 seconds. The inverse of the total time plotted in Fig. 4.4(a) scales
as T−1 ∼ pγ with γ = 0.49, 0.64 and 0.74 for 7683 (except for p = 196608), 15363 and
30723 grids respectively (also see Table 4.2). The plot indicates a strong scaling for the
RBC solver. In Fig. 4.4(b) we plot T−1 vs. p/N3; here the data collapses into a single
curve (see Fig. 4.4) thus indicating a weak scaling. In Fig. 4.5 we plot T−1 vs. p and
T−1 vs. p/N3 for the SFF basis. The exponents listed in Table 4.2 show that FFF and
SFF scale in a similar manner, with the SFF basis scaling slightly better than the FFF

basis. The plots and the scaling exponents demonstrate that our RBC solver exhibits
both strong and weak scaling up to nearly 196608 cores.

4.3 Summary and discussion

The results discussed in the chapter indicate that Tarang solvers for fluid flows and
thermal convection scale well up to 65536 cores of Blue Gene/P and 196608 cores of
Cray XC40. Note, however, that the scaling is not linear essentially due to the large data
communications during FFT operations. The other functions of a spectral solver that
require parallelization are multiplication of array elements and input/output (I/O).
Multiplication of array elements is trivial to parallelize. Since the data-size involved in
high-resolution turbulence simulation is very large, of the order of several terabytes,
it is more efficient to use parallel I/O. In our spectral code, we use the HDF5 library to
perform parallel I/O.

In Tarang there are functions to compute energy flux, shell-to-shell energy trans-
fers, and ring-to-ring energy transfers. These quantities are computed in spectral space
[88, 59]. In Sec. 6.5, we will briefly describe the computation of the energy flux for RBC.
We also remark that the Object-oriented design of Tarang helps implement new basis
function, or include new communication strategies or add a new force type, etc. We
have used this design to implement FFF, SFF, SSF, SSS basis functions in two and three
dimensions in a single code. We also make use of efficient libraries such as blitz++
and HDF5. These are some of the unique features of FFTK and Tarang.

In the next two chapters we will describe how Tarang solvers are used to compute

69

Parallel scaling of Tarang solvers

energy spectrum and flux of hydrodynamic and thermal turbulence.

70

Chapter 5

High-resolution simulation of hydrody-
namic turbulence

Hydrodynamic turbulence remains an unsolved problem of classical physics. Using
Tarang we attempt to address one of the key issues of hydrodynamic turbulence—
Eu(k) and Πu(k) for large-Re flows in the inertial and dissipative range. This is the
topic of this chapter. We also discuss the shell-to-shell energy transfer in hydrodynamic
turbulence using very-large scale simulation. These results are taken from our journal
paper [97].

5.1 Models of energy spectrum in inertial and dissipative

range

Kolmogorov [42, 43] proposed that for a homogeneous, isotropic, and steady turbu-
lence under the limit of Re→ ∞, the energy spectrum Eu(k) and the energy flux Πu(k)
in the inertial range follow:

Eu(k) = KKoε2/3k−5/3, (5.1)

Πu(k) = const = εu, (5.2)

where εu is the energy dissipation rate, and KKo is Kolmogorov’s constant. The above
functions are universal, i.e., they are independent of forcing, dissipative mechanisms,
fluid properties, etc. Equation (5.1) has been generalised so as to include the dissipative

71

High-resolution simulation of hydrodynamic turbulence

range that includes the dependence on the kinematic viscosity ν, and it is commonly
written as

Eu(k) = KKoε2/3k−5/3 f (k/kd), (5.3)

where f (k/kd) is a universal function, and kd ∼ (ε/ν3)1/4 is the dissipation wavenum-
ber scale, also called Kolmogorov’s wavenumber. Pao [62], Pope [67], and Martínez et
al. [54] proposed models for f (k/kd).

Pao [62] proposed that f (x) ∼ exp(−x4/3), but according to Pope [67]

f (x) ∼ exp
{
[x4 + c4

η]
1/4 − cη

}
, (5.4)

where cη is a constant. Pope’s model [67] is in good agreement with earlier experimen-
tal results (see Saddoogchi and Veeravalli [76] and references therein), which are given
below. Pao [62] argued that his predictions fit well with the experimental results of
Grant et al. [35]. Martínez et al. [54] proposed that

Eu(k) ∼ (k/kd)
α exp[−β(k/kd)], (5.5)

and found good agreement between their predictions and numerical results for mod-
erate Reynolds numbers. We however caution that the above formula are approximate
forms of the energy spectrum, and they cannot be termed as model in the strict sense.
However, these formulas could be useful for modelling turbulent flows.

In the following discussion we will describe Pao’s and Pope’s models.

5.2 Model description

We start with the flow equations In Fourier space [47](
d
dt

+ νk2
)

u(k, t) = −ikp(k, t)− i ∑
k=p+q

k · u(q)u(p) + Fu(k), (5.6)

k · u(k) = 0, (5.7)

where u(k), p(k), and Fu(k) are the Fourier transforms of u(r), p(r), and Fu(r) respec-
tively. We multiply the above equation with u∗(k, t), and add the resulting equation

72

5.2 Model description

to its complex conjugate. This process yields

d
dt

Eu(k) = ∑
p
= [{k · u(q)}{u(p) · u∗(k)}] + Re[Fu(k) · u∗(k)]− 2νk2Eu(k),

where Eu(k) = |u(k)|2/2. We sum the above equation for all the modes in shell k,
i.e., (k− 1 : k). The above equations yield the following equation for one-dimensional
energy spectrum Eu(k) [47]:

∂Eu(k, t)
∂t

= Tu(k, t)− 2νk2Eu(k, t) +F (k, t). (5.8)

Note that the one-dimensional energy spectrum Eu(k) is

Eu(k) = ∑
k−1<k′≤k

1
2
|u(k′)|2, (5.9)

T(k, t) = dΠu(k)/dk is the energy transfer to the wavenumber shell k due to nonlin-
earity, F (k) is the energy feed by the force, and −2νk2Eu(k) is the dissipation spec-
trum [47, 98]. The energy flux Π(k), rate of energy transfer from a wavenumber sphere
of radius k, is computed using the following formula [21, 88]:

Π(k) = ∑
k′>k

∑
p≤k

δk′,p+qIm([k′ · u(q)][u∗(k′) · u(p)]). (5.10)

In Kolmogorov’s model, the force feedF (k) is active at large length scales (for k <

k f , where k f is the forcing wavenumber), and it is absent in the inertial and dissipative
range. Therefore, ∂Eu(k, t)/∂t = 0 during a steady state. Hence, for a steady-state, the
energy flux Πu(k) varies with k as [47, 98]

dΠu(k)
dk

= −2νk2Eu(k). (5.11)

The turbulence models of Pao [62] and Pope [67] are based on the above equation.

It is more convenient to work with non-dimensionalized version of the above
equation. The wavenumber k is non-dimensionalized using the Kolmogorov wavenum-
ber kd, which is defined as

kd =
(ε

ν3

)1/4
. (5.12)

The energy flux Πu(k) is nondimensionalized using ε as its scale. Hence, following

73

High-resolution simulation of hydrodynamic turbulence

Eq. (5.3), we obtain

k̃ =
k
kd

, (5.13)

Π̃(k̃) =
Πu(k)

ε
, (5.14)

Ẽ(k̃) =
Eu(k)

ε2/3k−5/3 = KKo fη(k̃). (5.15)

Substitution of the above variables in Eq. (5.11) yields

dΠ̃(k̃)
dk̃

= −2KKok̃1/3 fη(k̃). (5.16)

In the next subsections, we discuss the models of Pao [62] and Pope [67]. The
energy fluxes and spectra of these models are labelled differently. Variables in Pao’s
model such as the energy spectrum, energy flux, nondimensional dissipative function,
etc. are labelled with superscript (1). Thus they are respectively written as Ẽ(1)(k̃),
Π̃(1)(k̃) and f (1)η (k̃); for Pope’s model [67] we use the superscript (2) for the corre-
sponding quantities.

5.2.1 Pao’s model of turbulent flow

In Eq. (5.16), Π̃(k̃) and fη(k̃) are two unknown functions. Hence, to close the equation,
Pao [62] assumed that Eu(k)/Πu(k) is independent of ν, and depends only on ε and k,
or

Eu(k)
Πu(k)

∼ ε−1/3k−5/3. (5.17)

Hence, Eq. (5.15) implies that

Π̃(1)(k̃) =
1

KKo
Ẽ(1)(k̃) = fη(k̃). (5.18)

In other words, the dissipative spectrum for both Eu(k) and Πu(k) should be of the
same form. Thus Πu(k) = ε fη(k) and Eu(k) = KKoε2/3k−5/3 fη(k), substitution of

74

5.2 Model description

which in Eq. (5.16) yields

f (1)η (k̃) = exp
(
−3

2
KKok̃4/3

)
, (5.19)

Π̃(1)(k̃) = exp
(
−3

2
KKok̃4/3

)
, (5.20)

Ẽ(1)(k̃) = KKo exp
(
−3

2
KKok̃4/3

)
. (5.21)

We can rewrite Eq. (5.11) as

dΠu(k)
dk

= −2νKKok2k−5/3[ε]2/3 fη(k)

= −2νKKok2k−5/3[ε fη(k)]2/3[fη(k)]1/3

= −2νKKok2k−5/3[Πu(k)]2/3[fη(k)]1/3. (5.22)

In the above equation Πu(k) can be interpreted as a variable energy flux. Verma [89, 99]
utilised this interpretation to compute energy spectrum and flux for the two-dimensional
flows with Ekman friction, and for quasi-static MHD turbulence.

In the next subsection we discuss Pope’s model for turbulent flow.

5.2.2 Pope’s model of turbulent flow

Another popular model for the turbulent flow is by Pope [67]. For this model, we
denote the energy spectrum, flux, nondimensional dissipative function fη(k̃) as Ẽ(2)(k̃),
Π̃(2)(k̃) and f (2)η (k̃) respectively. Pope [67] proposed that

E(2)(k) = KKoε2/3k−5/3 fL(kL) f (2)η (k/kd) (5.23)

with the functions fL(kL) and fη(kη) specifying the large-scale and dissipative-scale
components, respectively:

fL(kL) =

(
kL

[(kL)2 + cL]1/2

)5/3+p0

, (5.24)

f (2)η (k̃) = exp
[
−β

{
[k̃4 + c4

η]
1/4 − cη

}]
, (5.25)

where the cL, cη, p0, β are constants. Since we focus on the inertial and dissipative
ranges, we set fL(kL) = 1. In the high Reynolds number limit, cη ≈ 0.47β1/3/KKo [67].
We refer to Pope [67] for the detailed derivation of above relation. We keep β = 5.2

75

High-resolution simulation of hydrodynamic turbulence

as prescribed by Pope [67]. Substitution of Ẽ(2)(k̃) and Π̃(2)(k̃) in Eq. (5.16) yields the
following solution

Π̃(2)(k̃) = Π̃(2)(k̃0)− 2KKo

∫ k̃

k̃o
k̃
′1/3 f (2)η (k̃′)dk̃′, (5.26)

which is solved numerically given f (2)η (k̃) of Eq. (5.25). We set Π̃(2)(k̃0) = 1 at small k0.

In the next section, we will compare the predictions of the above two models with
those from direct numerical simulation.

5.3 Numerical Validation of the Models

We solve Eqs. (1.5, 1.6) using Tarang. We carry out the simulations on 5123, 10243, and
40963 grids and employ periodic boundary conditions on all sides of a cubical box of
size 2π× 2π× 2π. We use the fourth-order Runge-Kutta scheme for time advancement
with variable ∆t, which is chosen using the CFL condition. We dealiase using the 2/3
rule.

X
Y

Z

FIGURE 5.1: Isosurface of the contours of constant vorticity |∇ × u| (30% of the

maximum value). The figure indicates regions of strong vorticity in the flow.

To obtain a steady turbulent flow, we apply random forcing [69] in the wavenum-
ber band 2 ≤ k ≤ 4 for 10243 and 20483 grids, but in the band 1 ≤ k ≤ 3 for 5123 grid.
We choose random initial conditions for the 5123-grid simulation. The steady-state
data of 5123 was used as an initial condition for the 10243-grid run, whose steady-state

76

5.3 Numerical Validation of the Models

data is used for 40963-grid simulation. In all the three cases, the small scales are well re-
solved as kmaxη is always greater than 1.5, where kmax is the highest wavenumber rep-
resented by the grid points, and η ∼ 1/kd is the Kolmogorov’s length. The Reynolds
numbers for the 5123, 10243, and 40963 grid simulations are 5.7× 103, 1.4× 104, and
6.8× 104 respectively. We observe that the energy flux in the inertial range, the energy
supply rate, and the energy supply rate by the forcing match with each other within 2-
3%. Also note that ε ≈ u3

rms/L, where L is the box size. The parameters of our runs for
turbulent flows are described in Table 5.1. We compute the energy spectra and fluxes
of all the simulations at steady state.

TABLE 5.1: Parameters of our direct numerical simulations (DNS) for turbulent

flow: grid resolution; kinematic viscosity ν, Reynolds number Re, Kolmogorov con-

stant KKo, Kolmogorov wavenumber kd, kmaxη, and ε/(u3
rms/L). For all our runs the

energy supply rate is 0.1, and the energy dissipation rate ε ≈ 0.1 with 2-3% error.

In the Table, we report the value of ε/(u3
rms/L) which is approximately unity for

all three simulations.

Grid ν Re Reλ KKo kd kmaxη ε/(u3
rms/L)

5123 10−3 5.7× 103 106 2.2± 0.3 4.1× 101 2.5 0.9
10243 4× 10−4 1.4× 104 139 2.2± 0.4 9.5× 101 2.4 1.0
40963 8× 10−5 6.8× 104 374 1.8± 0.2 3.2× 102 3.1 1.0

Fig. 5.1 exhibits an isosurface of the contours of constant magnitudes of the vor-
ticity under steady state. The intense region in the figure indicate regions where the
vorticity is strong.

Figure 5.2(a, b, c) shows the normalized spectrum Ẽ(k̃)/KKo for the 5123, 10243,
and 40963 grid simulations. Note that the gray shaded region in the figure represents
the forcing band. The figure shows that the DNS results are consistent with the predic-
tions of both Pao and Pope. We also compute the Kolmogorov’s constant KKo using

KKo =
Eu(k)k5/3

ε2/3 (5.27)

in the inertial range. As shown in Table 5.1, the values of KKo varies from 2.2 to 1.8 with
errors in the range of 11% to 18%. This value is in the same range as other numerical
values of KKo reported earlier [81, 106, 34, 56, 27]. The estimate of KKo in DNS appears
to be slightly larger than its theoretical estimate, which is approximately 1.5 [44, 101].
Note that for model predictions by Pao and Pope, we take KKo = 2.2 for 5123 and 10243

77

High-resolution simulation of hydrodynamic turbulence

simulations, and KKo = 1.8 for 40963 simulation.

In Table 5.1 we see that as the grid size increases, we are able to reach higher Re.
The maximum Re one can reach for a given grid size scales as Re ≈ N4/3 and Re for
10243 scales exactly according to this. The Reynolds number of 40963 is around 5 times
larger than that for 10243, which is somewhat consistent with this formula. Note that
kmaxη = 3.1 for 40963 grid. Hence, we could increase our Re to possibly double the
present value.

A careful examination of the normalized spectrum indicates a hump in Ẽ(k̃)/KKo

near the transition region between the inertial range and dissipation range (0.04 . k̃ .

0.2), which is due to the bottleneck effect [76, 31, 50, 106, 24, 94, 27]. The predicted
values of Ẽ(k̃)/KKo by the models of Pao and Pope always decrease with k̃; hence they
do not capture the above hump.

In Fig. 5.2(d, e, f) we plot the non-dimensionalized energy flux Π̃(k̃) computed
using the DNS data. We observe that Π̃(k̃) is approximately constant in the inertial
range, consistent with the Kolmogorov’s theory [43]. In the same plot, we present the
energy fluxes computed using the Pao’s and Pope’s models [Eqs. (5.20, 5.26)]. In the
inertial range, the predictions of both the models are in good agreement with the DNS
results. In the dissipation range, the predictions of Pao’s model is slightly larger than
the numerical values of Π̃(k̃), but the predictions of Pope’s model is lower than the
numerical value. Thus, the models have some deficiencies, especially for predicting
the energy flux.

Thus, we see that Pao’s [62] and Pope’s [67] model are in good agreement with the
numerical results of high-resolution DNS. However, in the dissipation range, there are
small differences between the model predictions and numerical values of the energy
flux.

The energy transfers, according to Kolmogorov, among the inertial-range wavenum-
ber shells are forward and local [25, 108, 92]. That is, a wavenumber shell (say m)
transfers maximal energy to its nearest forward neighbour (m + 1) and receives maxi-
mal energy from its previous neighbour (m− 1). This phenomenon has been verified
using various numerical simulations. However, there is only a handful of shell-to-shell
energy transfer computation for the dissipative regime [25, 102]. In this thesis, we carry
forward this work to a very large resolution simulation. In the following discussion,
we show that the shell-to-shell energy transfers in the inertial and dissipative regimes
of a turbulent flow are forward and local.

78

5.3 Numerical Validation of the Models

1
kd

10−1 100 kmax

kd

k̃

10−4

10−2

100

Ẽ
(k̃

)/
K

K
o

(a) 5123

DNS

Pao

Pope

2
kd

10−1 100

k̃

10−2

10−1

100

Π̃
(k̃

)

(d)

DNS

Pao

Pope

1
kd

10−2 10−1 100 kmax

kd

k̃

10−4

10−2

100

Ẽ
(k̃

)/
K

K
o

(b) 10243

2
kd

10−1 100

k̃

10−2

10−1

100

Π̃
(k̃

)

(e)

1
kd

10−2 10−1 100 kmax

kd

k̃

10−4

10−2

100

Ẽ
(k̃

)/
K

K
o

(c) 40963

2
kd

10−2 10−1 100

k̃

10−2

10−1

100

Π̃
(k̃

)

(f)

FIGURE 5.2: For the grid resolutions of 5123, 10243, and 40963: (a,b,c) plots of the

normalized energy spectrum Ẽ(k̃)/KKo vs. k̃; (d,e,f) plots of normalized energy flux

Π̃(k̃) vs. k̃. See Eqs. (5.14) and Eq. (5.15) for definitions. The plots include the

spectra and fluxes computed using numerical data (thick solid line), and the model

prediction of Pao (thin solid line) and Pope (dashed line). Taken from [97].

79

High-resolution simulation of hydrodynamic turbulence

1 20 40

n

1

20

40

m

(a)

27 33 40

n

27

33

40

m

(b)

2

0

2

×10 2

1

0

1

×10 2

FIGURE 5.3: For the turbulent simulation on 40963 grid: the shell-to-shell energy

transfer rate (a) for the whole wavenumber range, (b) for the dissipative range cor-

responding to the boxed region of subfigure (a). Here m denotes the giver shell,

while n denotes the receiver shell. Our results indicate forward and local energy

transfers in the inertial as well as in the dissipative wavenumber range. Taken from

[97].

We study the properties of shell-to-shell energy transfers for the numerical data
of 40963 grid. For the same, we divide the Fourier space into 40 shells, whose centers
are at the origin k = (0, 0, 0). The inner and outer radii of the shells are kn−1 and kn

respectively, where kn = {0, 2, 4, 8, 8× 2s(n−3), ..., 2048}, with s = (7/35). The shells
are logarithmically binned [23]. Note that the 27th shell, whose wavenumber range is
194 ≤ k ≤ 223, separates the dissipative range from the inertial range. In Fig. 5.3(a), we
exhibit the shell-to-shell energy transfers for the whole range, while Fig. 5.3(b) shows
these transfers for the dissipative range only. As expected, shell m gives energy dom-
inantly to shell m + 1, and it receives energy from shell m − 1 in the inertial regime,
hence, the shell-to-shell energy transfers are forward and local [25, 108, 92]. Inter-
estingly, similar behaviour is observed for the wavenumber shells in the dissipative
regime as well. This is essentially because the correlations induced by forcing at small
wavenumbers is lost deep inside the inertial and dissipative wavenumbers. As a re-
sult, the energy transfer is the function of neighbouring Fourier modes, and hence are
local.

80

5.4 Summary

5.4 Summary

We performed large-resolution DNS of hydrodynamic turbulence using Tarang. Using
numerical data we compute Eu(k) and Πu(k). The inertial range Eu(k) is described
by Kolmogorov’s theory, but Eu(k) for the dissipation range is somewhat uncertain.
Our simulation results show that Pao’s model with k−5/3 exp(−k4/3) describes Eu(k)
in the inertial and dissipation ranges quite well. Also, we verify that the shell-to-shell
energy transfer is local and forward. These results are important for hydrodynamic
turbulence.

81

Chapter 6

Simulation of turbulent thermal convec-
tion

Turbulent convection is observed in the interiors and atmosphere of stars and plan-
ets, and hence its understanding is critical for modeling such systems. The complexity
arising due to buoyancy and boundary conditions have challenged scientists and en-
gineers for more than a century. Fortunately, modern supercomputers have enabled
us to decipher the physics of turbulent convection in a significant way. Using a state-
of-the-art pseudospectral code on one of the fastest supercomputers of modern times,
we deduce that turbulent convection has a behavior similar to fluid turbulence, i.e., it
exhibits k−5/3 energy spectrum with a constant energy flux. Also, the shell-to-shell en-
ergy transfer is local and forward, and the energy distribution is nearly isotropic as in
fluid turbulence. This is the topic of the present chapter. Parts of the results presented
here are taken from [45, 12]. For completeness, we have included works on spectral
properties of turbulent thermal convection [98].

We start our discussion with the equations of Rayleigh-Bénard convection (RBC).

83

Simulation of turbulent thermal convection

6.1 Governing equations of Rayleigh-Bénard convection

We solve the following nondimensionalized Navier Stokes equation for Rayleigh-Bénard
convection (RBC) using direct numerical simulation (DNS):

∂u
∂t

+ (u · ∇)u = −∇σ + θz +

√
Pr
Ra
∇2u, (6.1)

∂θ

∂t
+ (u · ∇)θ = uz +

1√
RaPr

∇2θ, (6.2)

∇ · u = 0 (6.3)

where θ is the temperature fluctuation from the steady conduction state (temperature
T = Tc + θ with Tc as the conduction temperature profile), σ is the pressure fluctuation,
and z is the buoyancy direction. Here the two important nondimensional parameters
are the Rayleigh number

Ra = αg∆d3/νκ, (6.4)

and the Prandtl number
Pr = ν/κ, (6.5)

where ∆ is the temperature difference between the two plates separated by a distance
d, and ν, κ, α are the fluid’s kinematic viscosity, thermal diffusivity, and thermal expan-
sion coefficient respectively, and g is the acceleration due to gravity.

We solve the following nondimensionalized RBC equations (6.1-6.3) using direct
numerical simulation:(

∂t +

√
Pr
Ra

k2

)
uj(k, t) = −ikluluj(k, t)

−ik j p(k, t) + θ(k)δjz, (6.6)(
∂t +

√
1

RaPr
k2

)
θ(k, t) = −iklulθ(k, t) + uz(k), (6.7)

k juj(k) = 0, (6.8)

where i =
√
−1. These equations are time advanced using a time stepping method,

e.g., Runge Kutta scheme. The nonlinear terms uluj and ulθ transform to convolutions
in spectral space.

We solve the above equations using the following boundary condition. For the
velocity field, the free-slip boundary condition at the top and bottom plates, and pe-

84

6.2 Phenomenology of turbulent convection

riodic boundary condition at the side walls. For the temperature field, we use con-
ducting boundary condition at the top and bottom plates, and the periodic boundary
condition at the side walls.

The above nonlinear terms yield energy and entropy transfers from one scale
to another leading to energy and entropy fluxes. One of the important problems of
turbulent convection is the nature of energy and entropy spectrum and their respective
fluxes, which will be discussed in the next section.

6.2 Phenomenology of turbulent convection

Following the same procedure as in Sec. 5.2, we derive the time-evolution equation for
Eu(k) for RBC [98]

∂Eu(k)
∂t

= Tu(k) + FB(k) + Fext(k)− D(k), (6.9)

where Tu(k) is the energy transfer rate to the shell k due to nonlinear interaction, and
FB(k) and Fext(k) are the energy supply rates to the shell from the buoyancy and exter-
nal forcing Fu respectively, i.e.,

FB(k) = − ∑
|k|=k

αgRe〈uz(k)θ∗(k)〉, (6.10)

Fext(k) = ∑
|k|=k

Re〈u(k) · Fu
∗(k)〉. (6.11)

For ease in calculation, we set ρm = 1. In Eq. (6.9), D(k) is the viscous dissipation rate
defined by

D(k) = ∑
|k|=k

2νk2Eu(k). (6.12)

The kinetic energy flux (Πu(k0)), defined as the kinetic energy (KE) leaving a
wavenumber sphere of radius k0 due to nonlinear interactions, is related to the nonlin-
ear interaction term Tu(k) as

Πu(k) = −
∫ k

0
Tu(k)dk. (6.13)

85

Simulation of turbulent thermal convection

In steady state (∂Eu(k)/∂t = 0), using Eqs. (6.9) and (6.13), we deduce that

d
dk

Πu(k) = FB(k) + Fext(k)− D(k) (6.14)

or
Πu(k + ∆k) = Πu(k) + [FB(k) + Fext(k)− D(k)]∆k. (6.15)

Computer simulations of the KE flux Πu(k0) is computed by using the formula
of Eq. (5.10). Similarly, the entropy flux Πθ(k0) is computed as the entropy leaving a
wavenumber sphere of radius k0, i.e.

Πθ(k0) = ∑
k>k0

∑
p≤k0

δk,p+q=([k · u(q)][θ∗(k)θ(p)]). (6.16)

One of the most interesting problems in the field of buoyancy driven turbulence
is the scaling of energy spectrum and flux [51, 71]. In the next section, we will review
some of the theoretical results obtained for the aforementioned topic.

6.2.1 Classical Bolgiano-Obukhov scaling for stably-stratified turbu-

lence (SST):

Kolmogorov [42, 43] first proposed a phenomenology for the inertial range of isotropic
hydrodynamic turbulence, according to which the energy spectrum in the inertial range
is independent of the fluid properties and nature of large-scale forcing. He showed that
the one-dimensional energy spectrum E(k) = KKoΠ2/3

u k−5/3 in the inertial range of
wavenumbers, where Πu(k) is the constant energy flux, and KKo is the Kolmogorov’s
constant.

Note that Kolmogorov’s theory may not work for the buoyancy-driven turbulence
because buoyant force acts at all scales. In this section we show that the buoyancy
affects the energy spectra and fluxes of the buoyancy-driven flows. For stable strati-
fication, Bolgiano [4] and Obukhov [60] argued that the KE flux Πu(k) is depleted at
different length scales due to the conversion of KE to PE via buoyancy (uzαgθ). Sub-
sequently, Πu(k) decreases with k, and Eu(k) is steeper than that predicted by Kol-
mogorov’s theory; we refer to the above as BO phenomenology or scaling. According to
this phenomenology, for LB � l � L, buoyancy is important and the buoyancy term is
balanced by the nonlinear term [αgθ ≈ (u · ∇)u]. Here LB is the Bolgiano scale [4] and
L is the large length scale or the box size. The force balance at wavenumber k = 1/l

86

6.2 Phenomenology of turbulent convection

yields
αθkg ≈ ku2

k. (6.17)

According to BO phenomenology, PE has a constant flux, i.e., Πρ ≈ kukρ2
k ≈ εθ. Hence,

uk ≈ ε1/5
θ (αg)2/5k−3/5, (6.18)

ρk ≈ ε2/5
θ (αg)−1/5k−1/5. (6.19)

Therefore, the KE spectrum Eu(k) ≈ u2
k/k, PE spectrum Eρ(k) ≈ ρ2

k/k, and Πu(k) ≈
u3

kk are

Eu(k) = c1ε2/5
θ (αg)4/5k−11/5, (6.20)

Eρ(k) = c2ε4/5
θ (αg)−2/5k−7/5, (6.21)

Πu(k) = c3ε3/5
θ (αg)6/5k−4/5, (6.22)

Πθ(k) = εθ, (6.23)

where ci’s are constants. At smaller length scales (k > kB), where kB = 1/LB is the
Bolgiano wavenumber, Bolgiano [4] and Obukhov [60] argued that the buoyancy is
relatively weak, hence Kolmogorov-Obukhov (KO) scaling is valid in this regime, i.e.,

Eu(k) = KKoε2/3
u k−5/3, (6.24)

Eρ(k) = KBaε−1/3
u εθk−5/3, (6.25)

Πu(k) = εu, (6.26)

Πθ(k) = εθ, (6.27)

where KBa is the Batchelor’s constant. A comparison of Πu(k) of Eq. (6.22) with that of
Eq. (6.26) yields the crossover wavenumber kB as

kB ≈ (αg)3/2ε−5/4
u ε3/4

θ . (6.28)

The associated length, the Bolgiano length, is LB = (2π)/kB.

The BO phenomenology implicitly assumes isotropy in Fourier space, which is
a tricky assumption. For BO scaling in stably-stratified turbulence, the gravity must
be strong enough to compete with the nonlinear term u · ∇u, but not too strong to
make the flow quasi two-dimensional (quasi-2D). This is achieved when Froude num-
ber Fr ≈ 1 regime. Kumar et al. [45] verified this scaling using a detailed DNS. We
also remark that a large number of earlier explorations in SST [49, 7, 1] have been for

87

Simulation of turbulent thermal convection

Fr � 1 regime quasi-2D flow, and not BO scaling. These topics are beyond the scope
of this thesis

6.2.2 Generalization of Bolgiano-Obukhov scaling to RBC:

Procaccia and Zeitak [68], L’vov [52], and L’vov and Falkovich [53] employed mean
field theory and deduced that the Bolgiano-Obukhov scaling is applicable to convec-
tive turbulence. They argued that the kinetic energy is converted to the potential en-
ergy and therefore favored BO scaling. Rubinstein [75] employed renormalization
group analysis to RBC and observed that the renormalized viscosity ν(k) ∼ k−8/5,
Eu(k) ∼ k−11/5, and Eρ(k) ∼ k−7/5, thus claiming BO scaling for RBC.

The aforementioned theories made a major impact in the field of turbulent con-
vection, and a large number of analytical, experimental, and numerical works attempted
to verify these ideas. Lohse and Xia [51] reviewed whether BO scaling is indeed present
in RBC; they studied the experimental, theoretical, and numerical results and argued
that it is difficult to conclude the applicability of BO scaling in RBC. Recently Kumar et
al. [45] and Verma et al. [98] showed that the BO scaling does not describe RBC turbu-
lence since the energy supply by buoyancy in RBC is very different from that in stably
stratified flow. We will provide these arguments below.

6.2.3 A phenomenological argument based on kinetic energy flux:

Kumar et al. [45] and Verma et al. [96, 95, 98] constructed a phenomenological argument
based on the KE flux to derive a spectral theory of buoyancy-driven turbulence. Equa-
tion (6.15) provides important clues on the energy spectrum and flux of the buoyancy-
driven flows. Here we list three possibilities for the inertial range (k f < k < kd), where
k f is the forcing wavenumber, and kd is the dissipation wavenumber:

1. For hydrodynamic turbulence, in the inertial range, FB(k) = 0 and D(k) → 0,
therefore Πu(k + ∆k) ≈ Πu(k) and Eu(k) ∼ k−5/3, consistent with the Kol-
mogorov’s theory [43]. Note that Fext(k) = 0 in the inertial range. This is de-
scribed in Chapter 5.

2. For the stably stratified flows, as argued by Bolgiano [4] and Obukhov [60], in
the k f < k < kB wavenumber band, buoyancy converts the kinetic energy of the
flow to the potential energy, i.e., FB(k) < 0. Hence, Eq. (6.15) predicts that Πu(k)

88

6.2 Phenomenology of turbulent convection

Random Force

(a)

(b)

Stably Stratified
 system

Convective system

FIGURE 6.1: Schematic diagrams of the kinetic energy flux Πu(k) for the stably

stratified system and convective system. (a) In stably stratified flows, Πu(k) de-

creases with k due to the negative energy supply rate FB(k). (b) In convective sys-

tem, FB(k) > 0, hence Πu(k) first increases for k < kt where FB(k) > D(k), then

Πu(k) ≈ constant for kt < k < kd where FB(k) ≈ D(k); Πu(k) decreases for k > kd

where FB(k) < D(k). From Kumar et al. [45].

89

Simulation of turbulent thermal convection

decreases with k, as shown in Fig. 6.1(a). In the wavenumber range, kB < k < kd,
buoyancy becomes weaker, hence Πu(k) ≈ constant.

3. For RBC in three dimensions, buoyancy feeds the kinetic energy, hence FB(k) > 0.
Therefore the KE flux Πu(k) increases with k. Numerical simulation of Kumar
et al. [45] and Verma et al. [98] show that the energy supplied by buoyancy is
dissipated by the viscous force, i.e., FB(k) ≈ D(k). Hence Πu(k) ≈ constant
and they are much less than the average strength of |∇σ|. This is the reason
for the Kolmogorov’s spectrum for RBC in 3D. Note that L’vov [52] argued that
FB(k) < 0, which is not the case in 3D RBC with Pr ≈ 1.

6.3 Structure functions of turbulent convection

The scaling relations are also presented using the variables δu‖(l) and δθ(l), which are
defined as

δu‖(l) = [u(x + l)− u(x)] · l
l
, (6.29)

δθ(l) = θ(x + l)− θ(x), (6.30)

and the structure function for the velocity and temperature fluctuations, which are
defined as

Su
q (l) = 〈[δu‖(l)]

q〉, (6.31)

Sθ
q(l) = 〈[δθ(l)]q〉, (6.32)

where 〈.〉 represent the ensemble average. Using scaling analysis similar to that given
in Sec. 6.2.1, it can be derived that [14]

Su
q (l) = 〈εθ〉q/5(αg)2q/5l3q/5, (6.33)

Sθ
q(l) = 〈εθ〉2q/5(αg)−q/5lq/5 (6.34)

for l > LB, and

Su
q (l) = 〈εu〉q/3lq/3, (6.35)

Sθ
q(l) = 〈εu〉−q/6〈εθ〉q/2lq/3 (6.36)

for l < LB. Note that l correspond to 1/k, and δu‖(l)→ uk.

90

6.4 Past work of Convective Turbulence Phenomenology

The above arguments indicate that the structure functions for the fluctuations of
RBC in 3D for Pr ≈ 1 may follow the following scaling relations:

Su
q (l) = 〈εu〉q/3lq/3, (6.37)

Sθ
q(l) = 〈εu〉−q/6〈εθ〉q/2lq/3. (6.38)

The above relations need to be tested using numerical simulation and experiments.
Ching [13, 14] and Ching et al. [15] studied the structure functions for the velocity
and temperature fluctuations of turbulent convection, and claimed consistency with
Bolgiano-Obukhov scaling. Ching et al. [15] computed the anomalous scaling for the
turbulent RBC.

In the next section, we briefly describe past numerical works on turbulent thermal
convection.

6.4 Past work of Convective Turbulence Phenomenology

We review some of the past numerical work on convective turbulence. Kerr [41] sim-
ulated RBC with no-slip boundary conditions using Chebyshev-based pseudospectral
method for Pr = 1 fluid and observed Kolmogorov’s spectrum. Note however that the
grid spacing in Chebyshev-based pseudospectral method is nonuniform, that makes
computation of energy spectrum difficult.

The free-slip basis function that is based on sin and cos functions along the ver-
tical direction does not suffer from the above difficulty. We can compute the shell
spectrum based on wavenumber (k2

x + k2
y + k2

z)
1/2 similar to fluid turbulence in a pe-

riodic box. Therefore, uniform Fourier basis helps us compute the energy flux as well
as shell-to-shell and ring-to-ring energy transfers. These are some of the advantages of
the RBC simulations with the free-slip boundary condition, which is what we employ
in Tarang.

In 2006, Rincon [72] performed a numerical simulation using higher order finite-
difference scheme for Ra = 106 and Pr = 1 with free-slip boundary conditions, but
they could not differentiate between the spectral indices 5/3 and 11/5. Mishra and
Verma [58] showed that convective turbulence for zero and small Prandtl numbers
follows Kolmogorov’s spectrum, but their results were inconclusive for unit and larger
Prandtl numbers. Recently, Kumar et al. [45] and Verma et al. [98] simulated convective
turbulence for Pr = 1 and proved using flux and energetics argument that the flow

91

Simulation of turbulent thermal convection

shows Kolmogorov’s k−5/3 spectrum. However, the range of the spectrum over which
the −5/3 scaling was observed was rather small to be conclusive.

Scheel and Schumacher [77] simulated RBC for Ra = 1011 using a spectral-element
code Nek5000 with 2,374,400 elements and 11th order polynomials within each ele-
ment. Scheel and Schumacher [78] and Schumacher et al. [79] simulated low Prandtl
number RBC (Pr = 0.021 and Pr = 0.005) with 6.27 million spectral elements and 13th
order polynomials within each element. They computed for Ra upto 4 × 108 and
reached Re = 4.6× 104, where Re is the Reynolds number based on large scale velocity.
Stevens et al. [82] simulated the flow using a finite-difference code on 1081× 301× 2049
grid for Rayleigh number of 2 × 1012. Van der Poel et al. [84] simulated RBC for
Ra = 1012, Pr = 0.7 in a 1536 × 512 × 2048 grid. However these works did not ex-
amine the energy spectrum.

In the next section we report our numerical results on 40963 grid performed using
65536 cores of a Cray XC40. Our RBC computations have employed the largest grid
employed till date in order to achieve the largest Rayleigh number Ra = 1.1 × 1011

among spectral simulations. Using these data we compute the energy flux, the shell-
to-shell and ring-to-ring energy transfers, and the ring spectrum.

6.5 Deducing physics of convective turbulence using very

high-resolution simulations

We perform a high-resolution DNS to study convective turbulence on a 40963 grid for
Prandtl number Pr = 1 and the Rayleigh number Ra = 1.1× 1011 using 196608 cores
of Cray XC40. For the velocity field, we employ free-slip boundary condition at the
top and bottom plates, and the periodic boundary condition at the vertical side walls
(see Fig. 6.2). For the temperature field, we use conducting boundary conditions at the
top and bottom walls, and periodic boundary conditions for the side walls. The box
size of our simulation is unity. We use the Runge-Kutta fourth order for time-stepping
and dealias using 2/3 rule [6, 10]. We use the exponential trick to absorb the diffusive
terms in ∂u/∂t to overcome the stiffness of the governing equations. To reach 40963

grid, first, we perform an RBC simulation on a 5123 grid until the system reaches a
statistically steady state. The final state of the 5123 grid simulation is used as an initial
condition for 10243 grid simulation. We repeat this process with higher grids until we
reach statistically stable 40963 grid. We compute all the diagnostics like energy and

92

6.5 Deducing physics of convective turbulence using very high-resolution simulations

ring spectra, as well as the energy transfer rates using this data of 40963 grid.

X
Y

Z

Hot Plate

Cold Plate

Periodic

Periodic

FIGURE 6.2: Isocontours of two constant temperatures. The hot and cold structures

of the flow are represented by the red and blue colors respectively.

I remark that several members of our group, mainly Mahendra Verma and Abhishek Ku-
mar, have used the aforementioned numerical data to understand physics of convective tur-
bulence. I have contributed towards the development and optimisation of Tarang, as well as
towards the data analysis. Here I present the results of thermal convection as a member of the
group, not as an individual. However, I have taken a lead role in scaling of Tarang, as well as
on the energy spectrum computation.

In Fig. 6.2 we illustrate two isocontours of constant temperatures of our simu-
lation data at an instant during the steady state. The hot plumes (red colour) ascend
from the hot plate at the bottom, while the cold plumes (blue colour) descend from the
cold plate at the top.

We computed the spectra and fluxes of the KE using the steady state data. Fig-
ure 6.3(a) exhibits the KE spectra normalized with k11/5 and k5/3. The plots indicate
that in the wavenumber band 15 < k < 600 (inertial range), the shaded region of the
figure, the KO scaling fits better than the BO scaling.

The energy spectrum of RBC is modelled using Pao’s model [62] for fluid turbu-
lence that includes Kolmogorov’s spectrum in the inertial range and a stretched expo-

93

Simulation of turbulent thermal convection

FIGURE 6.3: For the RBC simulation with Pr = 1 and Ra = 1.1× 1011 on 40963 grid:

(a) plots of normalized KE spectra for Bolgiano-Obukhov (BO) and Kolmogorov-

Obukhov (KO) scaling; KO scaling fits better with the data than BO scaling. (b) KE

flux Πu(k) and entropy flux Πθ(k). The shaded region exhibits the inertial range.

Taken from Verma et al. [98].

94

6.5 Deducing physics of convective turbulence using very high-resolution simulations

10-4

10-2

100

102

Ẽ
(k̃

)/
C

(a)

DNS Model

10-2 10-1 100 101

k̃

10-4

10-2

100

102

Π̃
(k̃

)

(b)

DNS Model

FIGURE 6.4: For RBC simulation on 40963 grid for Pr = 1 and Ra = 1.1× 1011: (a)

Plots of the normalised kinetic energy spectra E(k)k5/3/(KKoε2/3) and exp (−k̃4/3)

where k̃ = k/kd. (b) Plot of kinetic energy flux Π(k) and exp (−k̃4/3). These curves

demonstrate that Kolmogorov’s theory of fluid turbulence describes the energy

spectrum and flux of RBC quite well.

95

Simulation of turbulent thermal convection

nential in the dissipation range (see Sec. 5.2.1):

E(k) = KKoε2/3k−5/3 exp (−k̃4/3), (6.39)

Π(k) = ε exp (−k̃4/3), (6.40)

where E(k) is the energy spectrum, Π(k) is the energy flux, KKo is the Kolmogorov’s
constant, ε is the dissipation rate, and k̃ = k/kd with kd as the Kolmogorov’s wavenum-
ber:

kd =
[ε

ν3

]1/4
. (6.41)

From Eqs. (6.39, 6.40) we deduce that

E(k)k5/3

KKoε2/3 =
Π(k)

ε
= exp (−3

2
KKok̃4/3). (6.42)

Using our numerical data, we deduce that KKo ≈ 1.4, which is quite close to the Kol-
mogorov’s constant for fluid turbulence.

We exhibit the KE and entropy fluxes in Fig 6.3(b). It is observed that the kinetic
energy flux Πu(k) remains constant in the inertial range, a band where Eu(k) ∼ k−5/3.
We, thus, claim that the convective turbulence exhibits Kolmogorov’s power law in the
inertial range.

We compare the numerical results of Eu(k) and Πu(k) with those predicted by
Pao’s model. In Fig. 6.4(a,b) we show the compensated energy spectrum E(k)k5/3/
(KKoε2/3) and Π(k)/ε, respectively, along with exp (−k̃4/3). The numerical curve
matches quite well with the model curves in the inertial range. Therefore we claim that
convective turbulence follows Kolmogorov’s model of fluid turbulence. The hump in
E(k) near the dissipation range is attributed to the bottleneck effect [76]. The above
result is significant as it opens doors for accurate modelling of turbulent convection.
For example, we can employ sub-grid models of fluid turbulence to model convective
turbulence.

Verma et al. [98] computed FB(k), Πu(k), and dΠu(k)/dk as further tests. Ac-
cording to Fig. 6.5(a) FB(k) > 0 in the inertial range, consistent with the discussion of
Sec. 6.2.3 and Fig. 6.1(b), and it approximately balances D(k). Therefore, dΠu(k)/dk ≈
0 or Πu(k) ≈ constant [see Eq. (6.14)]. The constancy of Πu(k) yields Eu(k) ∼ k−5/3,
consistent with the energy spectrum plots of Fig. 6.3(a). Fig. 6.5(b) shows that [dΠu(k)/dk]/
Πu(k) � 1 in the inertial range consistent with the constant Πu(k). Interestingly,
D(k) = 2νk2Eu(k) ∼ k1/3, consistent with Eu(k) ∼ k−5/3. Also, FB(k) ∼ k−5/3, thus

96

6.5 Deducing physics of convective turbulence using very high-resolution simulations

indicating strong forcing at low wavenumbers, similar to that in hydrodynamic turbu-
lence. In addition, the entropy flux Πθ(k) is constant, and Πu(k) ≈ Πθ(k) in dimen-
sionless units.

101 102 103 104

k

10-10

10-8

10-6

10-4
F
B
(k
),
 D
(k
) k−5/3

k1/3

(a)

FB (k) D(k)

15 100 600

k

-10-1

-10-3

0

10-3

10-1

d
Π
u
(k
)/
d
k

Π
u
(k
)

(b)

FIGURE 6.5: For the RBC simulation with Pr = 1 and Ra = 1.1× 1011: (a) plots of

FB(k) and D(k). (b) plots of [dΠu(k)/dk]/Πu(k) in the inertial range 15 < k < 600.

Taken from Verma et al. [98].

Using the steady-state data of Tarang, Verma et al. [98] computed the shell-to-
shell energy transfers [Eq. (2.15)] and showed that they are local and forward. For
this analysis they divided the Fourier space into 40 concentric shells. The radii of the
inertial-range shells are binned logarithmically due to the power law physics of RBC
in the inertial range. In Fig. 6.6 we exhibit the shell-to-shell energy transfers in which
the indices of the x, y axes represent the receiver and giver shells respectively. The plot
indicates that mth shell gives energy to (m + 1)th shell, and it receives energy from the

97

Simulation of turbulent thermal convection

30 4020100
0

10

20

30

40

n

m

0

-3

3
 x10-4

FIGURE 6.6: For RBC simulation on 40963 grid for Pr = 1 and Ra = 1.1× 1011, the

plot of the shell-to-shell energy transfers Tm
n of Eq. (2.15). The plot demonstrates

local and forward energy transfers, similar to fluid turbulence. Taken from Verma

et al. [98].

98

6.5 Deducing physics of convective turbulence using very high-resolution simulations

(m− 1)th shell [88]. Thus the energy transfer in RBC is local and forward, similar to
hydrodynamic turbulence. This result is consistent with the energy spectrum and flux
studies described earlier.

FIGURE 6.7: For RBC simulation on 40963 grid for Pr = 1 and Ra = 1.1× 1011: Plot

of the ring spectrum E(k, β) demonstrates near isotropy in the Fourier space. Taken

from Verma et al. [98].

Convective flows are expected to be anisotropic due to buoyancy; hence it is im-
portant to quantify anisotropy using the quantities that are dependent on the polar
angle, the angle between z and k. For the same, we divide a wavenumber shell into
rings [59]. The energy contents of the rings are called ring spectrum E(k, β), where β

represents the sector index for the polar angles (for details see Nath et al. [59]). Also re-
fer to Fig. 2.4 for illustration of rings. Using the numerical data, Nath et al. [59] studied
the anisotropy in turbulent thermal convection. For the same, they computed the ring
spectrum E(k, β). As shown in Fig. 6.7(a), E(k, β) is close to isotropic which is again
similar to fluid turbulence. These results clearly confirm that the turbulent convection
for Pr = 1 has a very similar behaviour as fluid turbulence.

Mishra and Verma [58] and Verma et al. [98] reported that the temperature fluctu-
ation of turbulent RBC exhibits a unique behaviour. They observed dual branches for
the entropy spectrum (Eθ(k)). See Fig. 6.8 for an illustration. The upper branch varies
as k−2 as θ(0, 0, kz) ≈ −1/(πk) The lower branch however shows neither KO (k−5/3)

99

Simulation of turbulent thermal convection

101 102 103 104

k

10-11

10-8

10-5

10-2

E
θ(
k
)

k−2
Eθ(k)

k−7/5

k−5/3

FIGURE 6.8: For RBC simulation with Pr = 1 and Ra = 1.1 × 1011, plot of the

entropy spectrum that exhibits dual branches. The upper branch matches with k−2

quite well, while the lower part is fluctuating. Taken from Verma et al. [98].

nor BO (k−7/5) spectrum. Note that both the branches of entropy spectrum generate a
constant entropy flux Πθ(k) (see Fig. 6.3(b)), and the modes θ(0, 0, kz) also participate
in energy transfers.

With this, we close our discussion on turbulent thermal convection. We sum-
marise in the next section.

6.6 Summary of the results

In this chapter we report our numerical results of turbulent convection for the Rayleigh
number Ra = 1.1× 1011 and the Prandtl number Pr = 1 on 40963 grid with 65536 cores
of a Cray XC40. Our numerical results provide definitive demonstration that convec-
tive turbulence is described by Kolmogorov’s theory of turbulence. For analysis we
also compute energy transfer diagnostics and show that the energy flux is constant
in the inertial range, the shell-to-shell energy transfer is local and forward, and the
ring-to-ring energy transfers are nearly isotropic. The ring spectrum also exhibits a
near-isotropic behaviour. The extreme resolution of our simulation made these conclu-
sions possible. We remark that the grid resolution of our simulation is highest in the
field. Also, we achieved the largest Rayleigh number among spectral codes.

100

6.6 Summary of the results

Our result that thermally-driven turbulence has behaviour similar to fluid turbu-
lence is very important. Now we can model the convective turbulence in a better and
more accurate way. For example, we can use fluid turbulence models of large-eddy
simulation (LES) to convective turbulence also [85].

Our analysis open ways for future work on energy transfers in various forms
of fluid flows such as fluid and magnetohydrodynamic turbulence, convective and
stratified flows, rotating and channel flow, etc. These tools help us understand the
physics of complex flows that are unsolved for a century. Also, the rapid development
of hardware and software targeting exascale will enable us to simulate more complex
flows and model them accurately.

101

Chapter 7

Conclusion

In this thesis we describe some of the salient features of spectral code Tarang. It is an
object-oriented general purpose spectral solver that can simulate hydrodynamic and
magnetohydrodynamic flows, thermal convection, stably-stratified flows. liquid metal
flows, rotating flows, etc. As a developer of the code, I wrote the FFT library, FFTK,
and the I/O library, H5SI. In addition, I have contributed to writing various parts of the
code. We also remark that FFTK is as efficient as P3DFFT, but it has more features than
P3DFFT. For example, we have implemented free-slip basis functions in FFTK and in
Tarang. In 3D, the free-slip basis could be along one/two/three directions. We exploit
this feature to simulate thermal convection with free-slip walls. We plan to employ
these basis functions for rotating flows, and rotating convection.

In this concluding chapter, we summarise the scaling results, and the results of
very-large resolution hydrodynamic turbulence and turbulent thermal convection.

7.1 Summary of hydrodynamic turbulence

We have performed scaling studies of FFTK library and Tarang on two different HPC
clusters—Blue Gene/P (Shaheen I) and Cray XC40 (Shaheen II) of KAUST. The grid
resolution was varied from 7683 to 81923 on cores ranging from 1024 to 196608 [12].
The number of cores used for FFTK and Tarang are one of the largest in this area of
research. The main results on scaling are as follows:

1. We analyse the computation and communication times for FFTK. We observe

103

Conclusion

that the computation time Tcomp ∼ p−1 where p is the number of cores, while the
communication time Tcomm ∼ n−γ2 where n is the number of nodes. For Blue
Gene/P, γ2 ranges from 0.7 to 0.9 depending the grid size. The corresponding
variation for Cray XC40 is 0.40 to 0.70. The total time scales as T ∼ p−γ with γ

ranging from 0.76 to 0.96 for Blue Gene/P. For Cray XC40, γ lies between 0.43 to
0.73.

2. Cray XC40 exhibits lower efficiency (∼ 1.5%) than Blue Gene/P (∼ 4 − 10%).
This is because the ratio of the per-node compute power of Cray XC40 and Blue
Gene/P is approximately 1000, but the corresponding ratio for the interconnect
is not that large. The relatively lower efficiency of Cray XC40 is due to the above
reasons. Thus, the performance of a HPC system depends on the application. A
faster switch is very critical for FFT computation.

3. The fluid solver of Tarang exhibits weak and strong scaling on both the cluster.
The exponent γ for Blue Gene/P varies from 0.8 to 0.95, but it ranges from 0.28
to 0.68 for Cray XC40.

4. The solver for Rayleigh-Bénard convection also shows weak and strong scaling
on both the clusters. The corresponding γ for Blue Gene/P ranges from 0.68 to
0.71, but it lies between 0.49 to 0.80 for Cray XC40.

5. The scaling of different basis functions (e.g., FFF and SFF) are similar. However
the performance in the SFF basis is slightly better than that in the FFF basis.

Thus, FFTK and Tarang scale nearly up to 196608 cores. Thus these codes are
capable of simulating turbulence at very high-resolution. FFTK would also be useful
for other applications, e.g., image processing, density functional theory, etc.

7.2 Summary of DNS results on hydrodynamic turbulence

Using Tarang we performed spectral simulation of hydrodynamic turbulence on 40963

grid using 65536 cores of Cray XC40. The numerical data was used to demonstrate
that Pao’s model [62]—Eu(k) ∼ k−5/3 exp(−k4/3)—describes the energy spectrum in
the inertial and dissipative ranges quite well. We also show that the energy flux com-
puted using numerical simulation matches with the predictions of Pao. However, the
numerical results, specially the energy flux, differ from the predictions of Pope [67].
These results are described in Verma et al. [97].

104

7.3 Summary of DNS results on turbulent thermal convection

Using simulation data, we also compute the shell-to-shell energy transfers. We
report that the shell-to-shell energy transfers are forward and local, in both, the inertial
range and in the dissipation range.

7.3 Summary of DNS results on turbulent thermal con-

vection

Using Tarang we simulated turbulent thermal convection on 40963 grid using 65536
cores of Cray XC40. We chose Pr = 1 and Ra = 1.1× 1011. Using numerical data we
compute the energy and entropy spectra, their respective fluxes, ring spectrum, shell-
to-shell and ring-to-ring energy transfers1. Some of the key results obtained using
numerical simulations are

1. The kinetic energy spectrum Eu(k) ∼ k−5/3, and the kinetic energy flux Πu(k) ∼
constant. In addition, the shell-to-shell kinetic energy transfer is local and for-
ward, and the ring spectrum is quite isotropic. Hence we conclude that physics
of turbulent thermal convection is very similar to hydrodynamic turbulence [98].

2. The entropy flux Πθ(k) is constant in the inertial range. But the entropy exhibits
bi-spectrum [98].

7.4 Implications and future directions

A well-designed code like Tarang is very useful for DNS of turbulent flows. Main-
taining a single code for many applications saves time and manpower. We could also
optimise the code once, and it reflects on many other applications.

Though we have been successfully ran Tarang for many applications and shown
its good scaling up to 196608 processors, many features need to be added to Tarang in
future. They are

1. Inclusion of no-slip basis function using Chebyshev polynomials. Chebyshev
polynomials are much more complex than sin/cos functions. But algorithm for
this is well laid out [6] that could be implemented with care

[1] These analysis were performed by various members of the group [98]. My significant participation
was towards the energy and entropy spectra and flux computations.

105

Conclusion

2. Enable Tarang for hybrid parallelisation with OpenMP and MPI. For multicore
architecture with many cores (> 20), hybrid parallelisation could yield better effi-
ciency. This is again a tedious task considering the size of the code.

3. Detailed profiling of the code. We need to identify the critical bottlenecks in the
code. Then we need to speedup these segments of the code for a better effi-
ciency. This is a laborious exercise. We plan to employ softwares like ITUNE and
SCALASCA for this exercise.

4. User-friendly GUI-based reading of parameter and post-processing. Such fea-
tures helps the users.

5. Inclusion of more solvers such as magnetoconvection, etc. These features will
make the code richer, and it will attract more users. This exercise is somewhat
easy due to Object-oriented design of Tarang.

Code development is an open-ended process. We hope to make Tarang even
richer by addressing the above issues in near future.

106

Appendices

107

Appendix A

Transpose-free Fast Fourier Transform

In this appendix we describe how we avoid local transpose in FFTK to save communi-
cation time. The results presented here are taken from [12]. For simplicity we illustrate
this procedure using slab decomposition with complex data of size n0 × n1 × (n2/2 +
1). The corresponding real space data is of the size n0 × n1 × n2.

(a) (b)

FIGURE A.1: Data division for FFT with transpose: (a) Complex data of size

n0 × n1 × (n2/2 + 1) in Fourier space. (b) Real data of size n1 × n0 × n2 in real

space. Note that the axes n0 and n1 are exchanged during the transpose. Taken

from Chatterjee et al.. [12].

The usual FFT implementation involving transpose is illustrated below. The
complex data is divided along n0. If there are p processors, then each processor has
(n0/p)× n1 × (n2/2 + 1) complex data. See Fig. A.1(a) for an illustration. A typical

109

Transpose-free Fast Fourier Transform

inverse transform involves three steps:

1. Perform two-dimensional inverse transforms (complex-to-real c2r) on n0/p planes
each having data of size n1 × (n2/2 + 1).

2. Perform transpose on the array along n0-n1 axis. This operation involves local
transpose and MPI_Alltoall operations (to be described below).

3. After the data transfer, the data along the n0 axis resides in the respective pro-
cessors. Now in each processor, we perform one-dimensional real-to-real (r2r)
inverse transforms on (n1/p)× n2 column each having data of size n0.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

In
ter-p

rocess

C
om

m
u
n
ication

Local

transpose

1 5 3 7

2 6 4 8

9 13 11 15

10 14 12 16

1 5 9 13

2 6 10 14

3 7 11 15

 4 8 12 16

Local

rearrangement

(a) (b)

(c) (d)

FIGURE A.2: The standard transpose procedure in during a FFT. It involves two

local transposes and a MPI_Alltoall. Taken from Chatterjee et al. [12].

In Fig. A.2, we illustrate this transpose operation using a simple example involving 16
data points and 2 processors. In the first step, the local data is transposed, as illustrated
in Fig. A.2(a,b). In the example, in process P0, the data [[1,2,3,4],[5,6,7,9]] gets trans-
formed to [[1,5],[2,6],[3,7],[4,8]]. After the local transpose, chunks of data are trans-
ferred among the processors using MPI_Alltoall function (Fig. A.2(b) to Fig. A.2(c)).

110

In this process, the blocks [[3,7],[4,8]] and [[9,13],[10,14]] are exchanged between P0

and P1. After this data transfer, there is another local transpose that transforms the
data from Fig. A.2(c) to Fig. A.2(d).

This complete operation is called “transpose" because it is similar to matrix trans-
pose. After transpose, we are ready for FFT operations along the n0 axis. Note that the
data along the rows of Fig. A.2(d) are consecutive, that makes it convenient for the FFT
operation. We remark that the popular FFTW library employs the above procedure
involving transpose.

An advantage of the above scheme is that the FFT is performed on consecutive
data sets that minimises cache misses. However, the aforementioned FFT involves two
local transposes, which are quite expensive. To avoid this, we have devised a FFT
which is based on transpose-free data transfer. This process is described below.

In the transpose-free procedure, we replace the transpose operations (item 2 in the
above list) with transpose-free inter-processor communication. We employ MPI_Type

_vector and MPI_Type_create_resized to select strided data to be exchanged among
the processors. We illustrate the communication process in Fig. A.3. Before commu-
nication, the processor P0 contains data [[1,2,3,4],[5,6,7,9]], while the processor P1 con-
tains [[9, 10, 11, 12], [13, 14, 15, 16]]. During the communication, the data block [[3, 4],
[7, 8]] is to be transferred from P0 to P1, and the data block [[9, 10], [13, 14]] is to be trans-
ferred from P1 to P0. Note that the data to be transferred are not consecutive, hence we
need the MPI functions such as MPI_Type_vector and MPI_Type_create_resized to
create strided-data sets. After the corresponding data has been transferred, P0 contains
[[1,2],[5,6],[9,10], [13,14]], while P1 contains [[3,4], [7,8], [11,12], [15,16]], as desired. For
these operations, special MPI functions MPI_Type_vector and MPI_Type_create_resized

come quite handy.

The data structure before and after the interprocess communication are shown in
Fig. A.4(a,b) respectively. Here the data axes are not exchanged, however the columnar
data along the n0 axis are not contiguous. For example, the data of column [1,5,9,13] of
Fig. A.3(b) are staggered by 1. As a result, FFT along the n1 axis involves consecutive
data, but not along n0. The latter FFT however can be performed using strided FFTW
functions.

Now let us briefly compare the performances of the two methods. The transpose-
free scheme avoids local transpose, hence it saves some communication time compared
to the usual FFT. A flip side of the transpose-free scheme is that it needs strided FFT
that is prone to cache misses because the data are not contagious. Note, however,

111

Transpose-free Fast Fourier Transform

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Inter-process

communication

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) (b)

FIGURE A.3: Transpose using strided MPI_Isend/MPI_Recv that does not require a

local transpose. This is employed in the transpose-free FFT. Taken from Chatterjee

et al. [12].

(a) (b)

FIGURE A.4: Data division for a transpose-free FFT: (a) Complex data of size n0 ×
n1 × (n2/2 + 1) in Fourier space. (b) Real data of size n0 × n1 × n2 in real space.

Note that there is no exchange of axes here. Compare it with Fig. A.1. Taken from

Chatterjee et al. [12].

112

200 400 600 800 1000
0

1

2

3

4

5
ti

m
e/

st
ep

(s
)

(a) : 10243

FFTW

TF-FFT

500 1000 1500 2000
p

5

10

15

20

ti
m

e/
st

ep
(s

)

(b) : 20483

FFTW

TF-FFT

FIGURE A.5: Comparison between FFTs with transpose and without transpose for

(a) 10243 grid, and (b) 20483 grid. Transpose-free FFT is marginally superior than

the one with transpose. Taken from Chatterjee et al. [12].

113

Transpose-free Fast Fourier Transform

that intelligent cache prefetch algorithms [2] could helps in efficient implementation of
strided FFT.

To compare the efficiencies of the aforementioned FFT schemes, we performed
FFTs using both the schemes. Since FFTW involves local transposes, we use this as
one of the benchmark programs. We wrote a transpose-free FFT function as the other
benchmark program. The tests were performed on IBM BlueGene/P (Shaheen I) of
KAUST for a pair of forward and inverse transforms on 10243 and 20483 grids.

In Fig. A.5(a,b) we present the results for the 10243 and 20483 grids. In the figure
the time taken by FFTW and transpose-free FFT are shown by red circle and black
diamonds respectively. We observe that the transpose-free FFT is 10% to 16% more
efficient for 10243 data, and 5% to 14% more efficient for 20483 data. The gain by the
transpose-free FFT decreases as the number of processors are increased. The difference
in time is a sum of two factors: (a) gain by avoidance of local transpose, and (b) loss due
to strided FFT. We need a more detailed diagnostics to analyse the two algorithms. For
example, we need to separately compute the computation and communication time.
Also, it will be useful to estimate the time for the collection of the strided data, as well
as that of the strided FFT. These works will be performed in future.

The FFT operations in FFTK, which has pencil decomposition, in transpose-free.
The only difference between the slab-based FFT described in this appendix and the
pencil-based FFT is that the data exchange in pencil-based FFT takes place among the
respective communicators. For example, among the MPI_COM_ROW and MPI_COM_COL

communicators of Fig. 3.2.

114

Appendix B

Datatypes for the H5SI library

The following datatypes are available for the H5SI library:

">f32" Big endian 32 bit floating point number

"<f32" Little endian 32 bit floating point number

">f64" Big endian 64 bit floating point number

"<f64" Little endian 64 bit floating point number

">i8" Big endian 8 bit integer number

"<i8" Little endian 8 bit integer number

">i16" Big endian 16 bit integer number

"<i16" Little endian 16 bit integer number

">i32" Big endian 32 bit integer number

"<i32" Little endian 32 bit integer number

">i64" Big endian 64 bit integer number

"<i64" Little endian 64 bit integer number

">u8" Big endian 8 bit unsigned integer number

"<u8" Little endian 8 bit unsigned integer number

">u16" Big endian 16 bit unsigned integer number

"<u16" Little endian 16 bit unsigned integer number

115

Datatypes for the H5SI library

">u32" Big endian 32 bit unsigned integer number

"<u32" Little endian 32 bit unsigned integer number

">u64" Big endian 64 bit unsigned integer number

"<u64" Little endian 64 bit unsigned integer number

">b8" Big endian 8 bit boolean

"<b8" Little endian 8 bit boolean

">b16" Big endian 16 bit boolean

"<b16" Little endian 16 bit boolean

">b32" Big endian 32 bit boolean

"<b32" Little endian 32 bit boolean

">b64" Big endian 64 bit boolean

"<b64" Little endian 64 bit boolean

"S" String

"a" String

"char" Native character

"schar" Native short character

"uchar" Native unsigned character

"short" Native short integer

"ushort" Native unsigned short integer

"int" Native integer

"uint" Native unsigned integer

"long" Native long integer

"ulong" Native unsigned long integer

"llong" Native long long integer

"ullong" Native unsigned long long integer

"float" Native float

"double" Native double

"ldouble" Native long double

116

"b8" Native 8 bit boolean

"b16" Native 16 bit boolean

"b32" Native 32 bit boolean

"b64" Native 64 bit boolean

"cfloat" Pair of native float

"cdouble" forward Pair of native double

117

Bibliography

[1] BARTELLO, P., AND TOBIAS, S. M. Sensitivity of stratified turbulence to the
buoyancy Reynolds number. J. Fluid Mech. 725 (June 2013), 1–22.

[2] BERG, S. G. Cache prefetching. Technical Report, UW-CSE (Feb 2004).

[3] BIFERALE, L., BONACCORSO, F., MAZZITELLI, I. M., VAN HINSBERG, M. A. T.,
LANOTTE, A. S., MUSACCHIO, S., PERLEKAR, P., AND TOSCHI, F. Coherent
Structures and Extreme Events in Rotating Multiphase Turbulent Flows. Phys.
Rev. X 6 (Nov. 2016), 041036.

[4] BOLGIANO, R. Turbulent spectra in a stably stratified atmosphere. J. Geophys.
Res. 64, 12 (1959), 2226–2229.

[5] BORUE, V., AND ORSZAG, S. A. Turbulent convection driven by a constant tem-
perature gradient. J. Sci. Comput. 12, 3 (1997), 305–351.

[6] BOYD, J. P. Chebyshev and Fourier Spectral Methods, 2nd revised ed. Dover Publi-
cations, New York, 2003.

[7] BRETHOUWER, G., BILLANT, P., BILLANT, P., LINDBORG, E., AND CHOMAZ, J.-
M. Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid
Mech. 585 (Aug. 2007), 343–368.

[8] CAMUSSI, R., AND VERZICCO, R. Temporal statistics in high rayleigh number
convective turbulence. Eur. J. Mech. B. Fluids 23 (Jan. 2004), 427–442.

[9] CANUTO, C., HUSSAINI, M. Y., QUARTERONI, A., AND ZANG, T. A. Spectral
Methods in Fluid Dynamics. Springer-Verlag, Berlin Heidelberg, 1988.

119

BIBLIOGRAPHY

[10] CANUTO, C., HUSSAINI, M. Y., QUARTERONI, A., AND ZANG, T. A. Spectral
methods: Fundamentals in Single Domains. Scientific computation. Springer-Verlag,
Berlin, 2006.

[11] CHAN, A., BALAJI, P., GROPP, W., AND THAKUR, R. Communication analysis
of parallel 3d fft for flat cartesian meshes on large blue gene systems. In High
Performance Computing - HiPC 2008 (Berlin, Heidelberg, 2008), Springer Berlin
Heidelberg, pp. 350–364.

[12] CHATTERJEE, A. G., VERMA, M. K., KUMAR, A., SAMTANEY, R., HADRI, B.,
AND KHURRAM, R. Scaling of a Fast Fourier Transform and a pseudo-spectral
fluid solver up to 196608 cores. J. Parallel Distrib. Comput. 113 (Mar. 2018), 77–91.

[13] CHING, E. S. C. Scaling laws in the central region of confined turbulent thermal
convection. Phys. Rev. E 75, 5 (May 2007), 056302.

[14] CHING, E. S. C. Statistics and Scaling in Turbulent Rayleigh-Bénard Convection.
Springer, Berlin, 2013.

[15] CHING, E. S. C., AND CHENG, W. C. Anomalous scaling and refined similarity
of an active scalar in a shell model of homogeneous turbulent convection. Phys.
Rev. E 77, 1 (Jan. 2008), 015303.

[16] CLAY, M., BUARIA, D., YEUNG, P., AND GOTOH, T. Gpu acceleration of a petas-
cale application for turbulent mixing at high schmidt number using openmp 4.5.
Computer Physics Communications (2018).

[17] COOLEY, J. W., AND TUKEY, J. W. An algorithm for the machine calculation of
complex fourier series. Mathematics of computation 19, 90 (1965), 297–301.

[18] CZECHOWSKI, K., BATTAGLINO, C., MCCLANAHAN, C., IYER, K., YEUNG, P.-
K., AND VUDUC, R. On the communication complexity of 3d ffts and its im-
plications for exascale. In Proceedings of the 26th ACM International Conference on
Supercomputing (New York, NY, USA, 2012), ICS ’12, ACM, pp. 205–214.

[19] CZECHOWSKI, K., BATTAGLINO, C., MCCLANAHAN, C., IYER, K., YEUNG,
P. K., AND VUDUC, R. On the communication complexity of 3D FFTs and its
implications for Exascale. In Proceedings of the 26th ACM international conference
on Supercomputing (New York, New York, USA, June 2012), ACM, pp. 205–214.

[20] DALLAS, V., FAUVE, S., AND ALEXAKIS, A. Statistical Equilibria of Large Scales
in Dissipative Hydrodynamic Turbulence. Phys. Rev. Lett. 115, 20 (Nov. 2015),
204501.

120

BIBLIOGRAPHY

[21] DAR, G., VERMA, M. K., AND ESWARAN, V. Energy transfer in two-dimensional
magnetohydrodynamic turbulence: formalism and numerical results. Physica D
157, 3 (Jan. 2001), 207–225.

[22] DAVIDSON, P. A. Turbulence: An Introduction for Scientists and Engineers. Oxford
University Press, Oxford, 2004.

[23] DEBLIQUY, O., VERMA, M. K., AND CARATI, D. Energy fluxes and shell-
to-shell transfers in three-dimensional decaying magnetohydrodynamic turbu-
lence. Phys. Plasmas 12, 4 (Apr. 2005), 042309.

[24] DOBLER, W., HAUGEN, N. E. L., YOUSEF, T. A., AND BRANDENBURG, A. Bot-
tleneck effect in three-dimensional turbulence simulations. Phys. Rev. E 68, 2
(Aug. 2003), 026304.

[25] DOMARADZKI, J. A., AND ROGALLO, R. S. Local Energy Transfer and Nonlo-
cal Interactions in Homogeneous, Isotropic Turbulence. Phys. Fluids A 2, 3 (Jan.
1990), 414–426.

[26] DONZIS, D. A., AND SREENIVASAN, K. R. Short-term forecasts and scaling of
intense events in turbulence. J. Fluid Mech. 647 (2010), 13–26.

[27] DONZIS, D. A., AND SREENIVASAN, K. R. The bottleneck effect and the Kol-
mogorov constant in isotropic turbulence. J. Fluid Mech. 657 (June 2010), 171–188.

[28] DONZIS, D. A., SREENIVASAN, K. R., AND YEUNG, P. K. The Batchelor Spec-
trum for Mixing of Passive Scalars in Isotropic Turbulence. Flow Turbul. Combust.
85, 3-4 (July 2010), 549–566.

[29] DONZIS, D. A., YEUNG, P. K., AND PEKUROVSKY, D. Turbulence simulations
on O(104) processors. In Proc TeraGrid (2008).

[30] DONZIS, D. A., YEUNG, P. K., AND SREENIVASAN, K. R. Dissipation and en-
strophy in isotropic turbulence: Resolution effects and scaling in direct numeri-
cal simulations. Phys. Fluids 20, 4 (Apr. 2008), 045108.

[31] FALKOVICH, G. Bottleneck phenomenon in developed turbulence. Phys. Fluids
6, 4 (1994), 1411–1414.

[32] FRIGO, M., AND JOHNSON, S. G. The Design and Implementation of FFTW3.
Proceedings of the IEEE 93, 2 (Feb. 2005), 216–231.

121

BIBLIOGRAPHY

[33] FRISCH, U. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University
Press, Cambridge, 1995.

[34] GOTOH, T., FUKAYAMA, D., AND NAKANO, T. Velocity field statistics in ho-
mogeneous steady turbulence obtained using a high-resolution direct numerical
simulation. Phys. Fluids 14, 3 (2002), 1065–1081.

[35] GRANT, H. L., STEWART, R. W., AND MOILLIET, A. Turbulence spectra from a
tidal channel. J. Fluid Mech. 12, 02 (1962), 241–268.

[36] GROSSMANN, S., AND LOHSE, D. Fourier-Weierstrass mode analysis for ther-
mally driven turbulence. Phys. Rev. Lett. 67, 4 (1991), 445–448.

[37] HADRI, B., KORTAS, S., FEKI, S., KHURRAM, R., AND NEWBY, G. Overview of
the KAUST’s Cray X40 System–Shaheen II. In CUG2015 Proceedings (2015).

[38] ISHIHARA, T., YOKOKAWA, M., ITAKURA, K., AND UNO, A. Energy dissipa-
tion rate and energy spectrum in high resolution direct numerical simulations of
turbulence in a periodic box. Phys. Fluids 15, 2 (Feb. 2003), L21.

[39] ISHIHARA, T., YOKOKAWA, M., ITAKURA, K., AND UNO, A. Energy Spectrum
in the Near Dissipation Range of High Resolution Direct Numerical Simulation
of Turbulence. J. Phys. Soc. Jpn. 74, 5 (May 2005), 1464–1471.

[40] KACZOROWSKI, M., AND XIA, K.-Q. Turbulent flow in the bulk of
Rayleigh–Bénard convection: small-scale properties in a cubic cell. J. Fluid Mech.
722 (2013), 596–617.

[41] KERR, R. M. Rayleigh number scaling in numerical convection. J. Fluid Mech.
310 (Jan. 1996), 139–179.

[42] KOLMOGOROV, A. N. Dissipation of Energy in Locally Isotropic Turbulence.
Dokl Acad Nauk SSSR 32, 1 (1941), 16–18.

[43] KOLMOGOROV, A. N. The local structure of turbulence in incompressible vis-
cous fluid for very large Reynolds numbers. Dokl Acad Nauk SSSR 30, 4 (1941),
301–305.

[44] KRAICHNAN, R. H. Inertial-range transfer in two-and three-dimensional turbu-
lence. J. Fluid Mech. 47 (1971), 525–535.

[45] KUMAR, A., CHATTERJEE, A. G., AND VERMA, M. K. Energy spectrum of
buoyancy-driven turbulence. Phys. Rev. E 90, 2 (Aug. 2014), 023016.

122

BIBLIOGRAPHY

[46] KUMAR, A. AND VERMA, M. K. Applicability of Taylor’s hypothesis in ther-
mally driven turbulence. R. Soc. open sci. 5, (2018) 172152.

[47] LESIEUR, M. Turbulence in Fluids. Springer-Verlag, Dordrecht, 2008.

[48] LESLIE, D. C. Developments in the theory of turbulence. Clarendon Press, Oxford,
1973.

[49] LINDBORG, E. The energy cascade in a strongly stratified fluid. J. Fluid Mech.
550 (Mar. 2006), 207–242.

[50] LOHSE, D., AND MÜLLER-GROELING, A. Bottleneck effects in turbulence: Scal-
ing phenomena in r versus p space. Phys. Rev. Lett. 74, 10 (Mar. 1995), 1747–1750.

[51] LOHSE, D., AND XIA, K.-Q. Small-scale properties of turbulent
Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 1 (2010), 335–364.

[52] L’VOV, V. S. Spectra of velocity and temperature-fluctuations with constant en-
tropy flux of fully-developed free-convective turbulence. Phys. Rev. Lett. 67, 6
(Jan. 1991), 687–690.

[53] L’VOV, V. S., AND FALKOVICH, G. Conservation laws and two-flux spectra of
hydrodynamic convective turbulence. Physica D 57 (Jan. 1992), 85–95.

[54] MARTÍNEZ, D. O., CHEN, S., DOOLEN, G. D., KRAICHNAN, R. H., WANG, L.-
P., AND ZHOU, Y. Energy spectrum in the dissipation range of fluid turbulence.
J. Plasma Phys. 57, 1 (Jan. 1997), 195–201.

[55] MCCOMB, W. D. The physics of fluid turbulence. Clarendon Press, Oxford, 1990.

[56] MININNI, P. D., ALEXAKIS, A., AND POUQUET, A. Nonlocal interactions in
hydrodynamic turbulence at high Reynolds numbers: The slow emergence of
scaling laws. Phys. Rev. E 77, 3 (Mar. 2008), 036306.

[57] MININNI, P. D., ROSENBERG, D. L., REDDY, R., AND POUQUET, A. G. A hy-
brid MPI-OpenMP scheme for scalable parallel pseudospectral computations for
fluid turbulence. Parallel Computing 37, 6-7 (July 2011), 316–326.

[58] MISHRA, P. K., AND VERMA, M. K. Energy spectra and fluxes for Rayleigh-
Bénard convection. Phys. Rev. E 81, 5 (May 2010), 056316.

[59] NATH, D., PANDEY, A., KUMAR, A., AND VERMA, M. K. Near isotropic behav-
ior of turbulent thermal convection. Phys. Rev. Fluids 1 (Oct. 2016), 064302.

123

BIBLIOGRAPHY

[60] OBUKHOV, A. M. On influence of buoyancy forces on the structure of tempera-
ture field in a turbulent flow. Dokl Acad Nauk SSSR 125 (1959), 1246.

[61] ORSZAG, S. A. Comparison of pseudospectral and spectral approximation. Stud-
ies in Applied Mathematics 51, 3 (1972), 253–259.

[62] PAO, Y.-H. Structure of Turbulent Velocity and Scalar Fields at Large Wavenum-
bers. Phys. Fluids 8, 6 (1965), 1063–1075.

[63] PEKUROVSKY, D. P3DFFT: A Framework for Parallel Computations of Fourier
Transforms in Three Dimensions. Siam J. Sci. Comput. 34, 4 (Jan. 2012), C192–
C209.

[64] PEKUROVSKY, D. P3dfft: A framework for parallel computations of fourier trans-
forms in three dimensions. SIAM Journal on Scientific Computing 34, 4 (Aug. 2012),
C192–C209.

[65] PIPPIG, M., AND POTTS, D. Scaling parallel fast fourier transform on blue-
gene/p. In Jülich BlueGeneP Scaling Workshop (2010), Jülich BlueGene/P Scaling
Workshop.

[66] PIPPIG, M., AND POTTS, D. Scaling parallel fast fourier transform on blue-
gene/p. In Jülich BlueGene/P Scaling Workshop (2010), pp. 27–30.

[67] POPE, S. B. Turbulent Flows. Cambridge University Press, Cambridge, 2000.

[68] PROCACCIA, I., AND ZEITAK, R. Scaling exponents in nonisotropic convective
turbulence. Phys. Rev. Lett. 62, 18 (1989), 2128–2131.

[69] REDDY, K. S., AND VERMA, M. K. Strong anisotropy in quasi-static magnetohy-
drodynamic turbulence for high interaction parameters. Phys. Fluids 26 (2014),
025109.

[70] RICHARDS, D. F., GLOSLI, J. N., CHAN, B., DORR, M. R., DRAEGER, E. W.,
FATTEBERT, J.-L., KRAUSS, W. D., SPELCE, T., STREITZ, F. H., SURH, M. P.,
AND GUNNELS, J. A. Beyond homogeneous decomposition: Scaling long-range
forces on massively parallel systems. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (New York, NY, USA,
2009), SC ’09, ACM, pp. 60:1–60:12.

[71] RILEY, J. J., AND LINDBORG, E. Recent progress in stratified turbulence. In Ten
Chapters in Turbulence. Cambridge University Press, 2010.

124

BIBLIOGRAPHY

[72] RINCON, F. Anisotropy, inhomogeneity and inertial-range scalings in turbulent
convection. J. Fluid Mech. 563 (Jan. 2006), 43–69.

[73] RORAI, C., MININNI, P. D., AND POUQUET, A. G. Stably stratified turbulence
in the presence of large-scale forcing. Phys. Rev. E 92, 1 (2015), 013003.

[74] ROSENBERG, D. L., POUQUET, A. G., MARINO, R., AND MININNI, P. D. Evi-
dence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-
resolution direct numerical simulations. Phys. Fluids 27, 5 (May 2015), 055105.

[75] RUBINSTEIN, R. Renormalization group theory of Bolgiano scaling in Boussinesq
turbulence. Tech. Rep. ICOM-94-8; CMOTT-94-2, 1994.

[76] SADDOUGHI, S. G., AND VEERAVALLI, S. V. Local isotropy in turbulent bound-
ary layers at high Reynolds number. J. Fluid Mech. 268 (1994), 333–372.

[77] SCHEEL, J. D., AND SCHUMACHER, J. Local boundary layer scales in turbulent
Rayleigh–Bénard convection. J. Fluid Mech. 758 (Oct. 2014), 344–373.

[78] SCHEEL, J. D., AND SCHUMACHER, J. Predicting transition ranges to fully tur-
bulent viscous boundary layers in low prandtl number convection flows. Phys.
Rev. Fluids 2 (Dec 2017), 123501.

[79] SCHUMACHER, J., BANDARU, V., PANDEY, A., AND SCHEEL, J. D. Transitional
boundary layers in low-Prandtl-number convection. Phys. Rev. Fluids 1, 8 (Dec.
2016), 084402.

[80] ŠKANDERA, D., BUSSE, A., AND MÜLLER, W.-C. Scaling properties of convec-
tive turbulence. In High Performance Computing in Science and Engineering, Garch-
ing/Munich 2007 (Berlin, Heidelberg, 2009), S. Wagner, M. Steinmetz, A. Bode,
and M. Brehm, Eds., Springer Berlin Heidelberg, pp. 387–396.

[81] SREENIVASAN, K. R. On the universality of the Kolmogorov constant. Phys.
Fluids 7, 11 (Nov. 1995), 2778–2784.

[82] STEVENS, R. J. A. M., LOHSE, D., AND VERZICCO, R. Prandtl and Rayleigh
number dependence of heat transport in high Rayleigh number thermal convec-
tion. J. Fluid Mech. 688 (2011), 31–43.

[83] TEACA, B., VERMA, M. K., KNAEPEN, B., AND CARATI, D. Energy transfer
in anisotropic magnetohydrodynamic turbulence. Phys. Rev. E 79, 4 (Apr. 2009),
046312.

125

BIBLIOGRAPHY

[84] VAN DER POEL, E. P., VERZICCO, R., GROSSMANN, S., AND LOHSE, D. Plume
emission statistics in turbulent rayleighâĂŞbÃl’nard convection. Journal of Fluid
Mechanics 772 (Jun 2015), 5âĂŞ15.

[85] VASHISHTHA, S., CHATTERJEE, A., KUMAR, A., AND VERMA, M. K. Large
eddy simulations using recursive renormalization-group based eddy viscosity.
ArXiv:1712.03170 (Dec. 2017).

[86] VELDHUIZEN, T. Blitz++ user guide: A c++ class library for scientific computing.
Tech. rep., Tech. rep., available at: http://blitz.sourceforge.net/resources/blitz-
0.9.pdf (last access: Nov. 2017), 2006.

[87] VAN DER POEL, E. P., OSTILLA-MÓNICO, R., DONNERS, J., AND VERZICCO, R..
A pencil distributed finite difference code for strongly turbulent wall-bounded
flows. Computers & Fluids 116, (2015), 10–16.

[88] VERMA, M. K. Statistical theory of magnetohydrodynamic turbulence: recent
results. Phys. Rep. 401, 5 (Nov. 2004), 229–380.

[89] VERMA, M. K. Variable enstrophy flux and energy spectrum in two-dimensional
turbulence with Ekman friction. EPL 98 (2012), 14003.

[90] VERMA, M. K. Anisotropy in Quasi-Static Magnetohydrodynamic Turbulence.
Rep. Prog. Phys. 80, 8 (May 2017), 087001.

[91] VERMA, M. K. Physics of Buoyant Flows: From Instabilities to Turbulence, World
Scientific, Singapore, 2018.

[92] VERMA, M. K., AYYER, A., DEBLIQUY, O., KUMAR, S., AND CHANDRA, A. V.
Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence.
Pramana-J. Phys. 65, 2 (Jan. 2005), 297–310.

[93] VERMA, M. K., CHATTERJEE, A. G., YADAV, R. K., PAUL, S., CHANDRA, M.,
AND SAMTANEY, R. Benchmarking and scaling studies of pseudospectral code
Tarang for turbulence simulations. Pramana-J. Phys. 81, 4 (Sept. 2013), 617–629.

[94] VERMA, M. K., AND DONZIS, D. A. Energy transfer and bottleneck effect in
turbulence. J. Phys. A: Math. Theor. 40, 16 (Mar. 2007), 4401–4412.

[95] VERMA, M. K., KUMAR, A., AND CHATTERJEE, A. G. Energy Spectrum and
Flux of Buoyancy-Driven Turbulence . Phys. Focus 25 (Feb. 2015), 45.

126

BIBLIOGRAPHY

[96] VERMA, M. K., KUMAR, A., AND CHATTERJEE, A. G. Energy Spectrum and
Flux of Buoyancy-Driven Turbulence. In Proceedings of the Advances in Computa-
tion, Modeling and Control of Transitional and Turbulent Flows (2015), T. K. Sengupta,
S. K. Lele, K. R. Sreenivasan, and P. A. Davidson, Eds., pp. 442–451.

[97] VERMA, M. K., KUMAR, A., KUMAR, P., BARMAN, S., CHATTERJEE, A. G.,
AND SAMTANEY, R. Energy fluxes and spectra for turbulent and laminar flows.
arXiv:1705.04917 (May 2017).

[98] VERMA, M. K., KUMAR, A., AND PANDEY, A. Phenomenology of buoyancy-
driven turbulence: recent results. New J. Phys. 19 (2017), 025012.

[99] VERMA, M. K., AND REDDY, K. S. Modeling quasi-static magnetohydrodynamic
turbulence with variable energy flux. Phys. Fluids 27, 2 (Feb. 2015), 025114.

[100] VERZICCO, R., AND CAMUSSI, R. Numerical experiments on strongly turbulent
thermal convection in a slender cylindrical cell. J. Fluid Mech. 477 (Jan. 2003),
19–49.

[101] YAKHOT, V., AND ORSZAG, S. A. Renormalization group analysis of turbulence.
I. Basic theory. J. Sci. Comput. 1, (Mar. 1986), 3–51.

[102] YEUNG, P. K., AND BRASSEUR, J. G. The response of isotropic turbulence to
isotropic and anisotropic forcing at the large scales. Phys. Fluids A 3, (1991), 884.

[103] YEUNG, P. K., DONZIS, D. A., AND SREENIVASAN, K. R. High-Reynolds-
number simulation of turbulent mixing. Phys. Fluids 17, (Aug. 2005), 081703.

[104] YEUNG, P. K., AND SREENIVASAN, K. R. Spectrum of passive scalars of high
molecular diffusivity in turbulent mixing. Journal of Fluid Mechanics 716 (2013),
R14.

[105] YEUNG, P. K., ZHAI, X. M., AND SREENIVASAN, K. R. Extreme events in com-
putational turbulence. PNAS 112, 41 (Oct. 2015), 12633.

[106] YEUNG, P. K., AND ZHOU, Y. Universality of the Kolmogorov constant in nu-
merical simulations of turbulence. Phys. Rev. E 56, 2 (Aug. 1997), 1746–1752.

[107] YOKOKAWA, M., ITAKURA, K., UNO, A., AND ISHIHARA, T. 16.4-Tflops Direct
Numerical Simulation of Turbulence by a Fourier Spectral Method on the Earth
Simulator. In ACM/IEEE 2002 Conference (2002), IEEE.

127

BIBLIOGRAPHY

[108] ZHOU, Y. Degrees of locality of energy transfer in the inertial range. Phys. Fluids
5 (1993), 1092–1094.

128

	Thesis Synopsis
	Acknowledgements
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Fast Fourier Transform
	1.2 Spectral Solver
	1.3 Complexity of turbulence simulations
	1.4 Parallel Fourier Transforms: present status
	1.5 Large-scale parallel spectral flows solvers: present status
	1.6 Structured spectral solver: Tarang
	1.7 Hydrodynamic simulation using Tarang
	1.8 Simulation of thermal convection using Tarang

	2 Implementation of a pseudospectral code as general PDE solver
	2.1 Spectral method for solving turbulent flows
	2.2 Design and implementation issues of Tarang
	2.2.1 Basis functions

	2.3 Classes of Tarang
	2.3.1 Fluid Incompressible Classes

	2.4 Solvers of Tarang
	2.5 External libraries
	2.6 The H5SI Library
	2.6.1 Group
	2.6.2 Dataset

	2.7 Energy transfers in turbulent flows
	2.7.1 Class EnergyTr

	2.8 Summary

	3 Parallelisation of FFT and its scaling
	3.1 Parallelization Strategy
	3.2 The FFTK Library
	3.2.1 void Init(string basis, int Nx, int Ny, int Nz, int num_p_rows)
	3.2.2 Forward_transform
	3.2.3 Inverse_transform

	3.3 About the HPC systems
	3.3.1 Blue Gene/P
	3.3.2 Cray XC40

	3.4 Scaling of FFTK
	3.4.1 Scaling on Blue Gene/P
	3.4.2 Scaling on Cray XC40

	3.5 Hybridization
	3.6 Summary of the chapter

	4 Parallel scaling of Tarang solvers
	4.1 Scaling of fluid solver on HPC systems
	4.1.1 Scaling on Blue Gene/P
	4.1.2 Scaling on Cray XC40

	4.2 Scaling of turbulent convection module of Tarang
	4.2.1 Blue Gene/P
	4.2.2 Cray XC40

	4.3 Summary and discussion

	5 High-resolution simulation of hydrodynamic turbulence
	5.1 Models of energy spectrum in inertial and dissipative range
	5.2 Model description
	5.2.1 Pao's model of turbulent flow
	5.2.2 Pope's model of turbulent flow

	5.3 Numerical Validation of the Models
	5.4 Summary

	6 Simulation of turbulent thermal convection
	6.1 Governing equations of Rayleigh-Bénard convection
	6.2 Phenomenology of turbulent convection
	6.2.1 Classical Bolgiano-Obukhov scaling for stably-stratified turbulence (SST):
	6.2.2 Generalization of Bolgiano-Obukhov scaling to RBC:
	6.2.3 A phenomenological argument based on kinetic energy flux:

	6.3 Structure functions of turbulent convection
	6.4 Past work of Convective Turbulence Phenomenology
	6.5 Deducing physics of convective turbulence using very high-resolution simulations
	6.6 Summary of the results

	7 Conclusion
	7.1 Summary of hydrodynamic turbulence
	7.2 Summary of DNS results on hydrodynamic turbulence
	7.3 Summary of DNS results on turbulent thermal convection
	7.4 Implications and future directions

	Appendices
	A Transpose-free Fast Fourier Transform
	B Datatypes for the H5SI library

