This brief note should be read in conjunction with the proposal on making replacement and bypass algorithms for last-level caches (LLCs) hierarchy-aware [1]. That proposal introduced cache hierarchy-aware replacement (CHAR) and bypass algorithms. One central parameter of these algorithms is the threshold applied to the reuse probability (or hit rate) in a class of cache blocks to decide if the class of blocks is dead. Such blocks can be replaced early in an inclusive LLC or bypassed in an exclusive LLC. A dynamic algorithm for determining this threshold t is discussed and evaluated in [1].

This algorithm chooses t such that blocks from classes with hit rates below the prevailing baseline hit rate would be identified as dead. An implementable approximate version of this algorithm is discussed in [1] and reproduced in Equation (1) below.

$$t = \begin{cases}
1/16 & \text{if } E_4 \leq N_E/8 \\
1/8 & \text{if } N_E/8 < E_4 \leq N_E/4 \\
1/4 & \text{if } N_E/4 < E_4 \leq N_E/2 \\
1/2 & \text{if } E_4 > N_E/2
\end{cases}$$

(1)

N_E maintains the total number of L2 cache evictions mapping to the LLC sample sets. E_4 maintains the number of L2 cache evictions of blocks belonging to class C_4. It is possible to replace such a dynamic value of t by a static predetermined constant k.

Figure 1 compares the dynamic algorithm with a number of static t values (1/2, 1/4, 1/8, 1/16, and 1/32) for one hundred four-way multi-programmed workloads with hardware prefetcher enabled (see [1] for configuration details). For both inclusive and exclusive LLCs, the baseline is an inclusive LLC implementing the SRRIP replacement policy [2]. As can be seen, the dynamic policy delivers performance better than static $t = 1/2$ but worse than $t = 1/4, 1/8, 1/16, 1/32$ for our choice of workloads. While our dynamic algorithm tries to eliminate blocks from classes with hit rates below the prevailing baseline hit rate, for certain workload classes $t = 1/2$ can be very aggressive, as can be seen from the static $t = 1/2$ results.

One possible tuning technique for the dynamic algorithm would be to choose t such that it eliminates blocks from classes with hit rates below, say, $1/2^k$th of the prevailing baseline hit rate. This would lead to the following approximate algorithm.

$$t = \begin{cases}
1/(16 \times 2^k) & \text{if } E_4 \leq N_E/8 \\
1/(8 \times 2^k) & \text{if } N_E/8 < E_4 \leq N_E/4 \\
1/(4 \times 2^k) & \text{if } N_E/4 < E_4 \leq N_E/2 \\
1/(2 \times 2^k) & \text{if } E_4 > N_E/2
\end{cases}$$

(2)

Therefore, $k = 1$ would result in t values ranging from 1/4 to 1/32, while $k = 2$ would lead to t values in the range 1/8 to 1/64. The value $k = 0$ corresponds to the dynamic algorithm discussed in [1].
Since too small a value of t may lead to lost opportunities and too large a value may lead to loss in performance due to aggressive death prediction, another alternative approach to tuning the dynamic algorithm would involve fixing a minimum and a maximum allowable t value, say, t_{min} and t_{max}, respectively. Next, we take Equation (2) and choose k such that t_{min} equals $1/(16 \times 2^k)$, i.e., the minimum value of t in Equation (2). Finally, we merge all the ranges in Equation (2) that have values of t more than t_{max} with the range that has value t_{max}. As an example, suppose t_{max} is 1/8 and t_{min} is 1/32. This leads to $k = 1$ and the following dynamic algorithm.

$$t = \begin{cases}
1/32 & \text{if } E_4 \leq N_E/8 \\
1/16 & \text{if } N_E/8 < E_4 \leq N_E/4 \\
1/8 & \text{if } E_4 > N_E/4
\end{cases} \quad (3)$$

Similarly, if we set t_{max} to 1/8 and t_{min} to 1/16, we get the following dynamic algorithm.

$$t = \begin{cases}
1/16 & \text{if } E_4 \leq N_E/8 \\
1/8 & \text{if } E_4 > N_E/8
\end{cases} \quad (4)$$

In summary, when choosing a value of t it should be kept in mind that too small a value may lead to performance close to the baseline due to lost opportunities, while too large a value may lead to loss in performance due to aggressive death prediction. In general, we have found that a small conservative static value of t works well e.g., $t = 1/8, 1/16$. However, a well-tuned dynamic algorithm may be desirable so that the CHAR policy can adapt to varying workload characteristics. In this brief note, we have proposed a couple of tuning strategies for choosing a dynamic value of t.

References
