Proofs of the Propositions on Analytical Guarantees of LeakyRand

Yashika Verma, Debadatta Mishra, Mainak Chaudhuri
Indian Institute of Technology Kanpur

The proofs of the propositions stated in the CASES 2025 paper titled “LeakyRand: An Efficient High-fidelity
Covert Channel in Fully Associative Last-level Caches with Random Eviction” are discussed below.

Proposition#1: A fully-associative cache of capacity ¢ blocks exercises random replacement with an eviction
probability of 1 for any block. Any access sequence having n cache misses achieves an expected occupancy of

c—c(1- 7) blocks with variance ¢ (1 — %)n +elc—1)(1-2)"—c2(1- %)271

Proof: Let us number the blocks in the cache from 0 to ¢ — 1. Let X; = 1 if cache block i is occupied by some
block from the occupancy sequence at the end; otherwise X; is 0. Define X = Y _/ ! X;, which is equal to the total
number of cache blocks occupied by the occupancy sequence at the end. So, E[X] ENi, LX) = Yo ! BX;)
by linearity of expectation. Now, E[X;] = P(X; = 1) =1 — P(X; = 0). We observe that X; is 0 if cache block i
remains unoccupied by the occupancy sequence. This is possible only if all n misses replace blocks other than cache
block i. Therefore, P(X; =0) = (“‘1)n assuming the n replacement events to be independent which is usually how

a random replacement policy is expected to be implemented. So, E[X {1 () } =c—c (1 - %)n

The variance of X is given by E[X?] — (E[X])?. Now, X? = Z° 1 X2 —I— QEKJ» X’LX_]' Therefore, by linearity
of expectation, E[X? = ¢ E[X?] + 23", E[XiX;]. Since X; takes values 0 and 1 only, E[X?] = E[X]]
and hence, Y°") E[X?] = Y070 E[X,] = E[X]. We note that E[X;X,] = P(X; = X; = 1) = P(X; = 1) —
PX;=1,X;=0)=1-P(X; =0)— (P(X; =0)—P(X; =0=X;)) =1-2(1-2)" 4+ (1 - 2)". Therefore,
22 BIXX;) =2(5) (1—2(1—*) (1y,

Variance[X] = E[X?]—(E[X])? (J(1—2(1-) +(1- %)n) —(E[X])?. Plugging in the expression
for E[X] and simplifying, we get Vamance c(1-=H"+cle—-1)(1-2)" - (1- %)% O

C

Observation: For a cache with 2 MB capacity and 64-byte blocks, we have ¢ = 32768. For this value of ¢, we
numerically find that the variance attains the maximum value of about 3336 for n = 41170. Thus, the standard
deviation in occupancy for a 2 MB cache remains bounded by 57.76 cache blocks which is only 0.18% of the cache
capacity.

Proposition#2: Let the LLC capacity be ¢ blocks and the Occupancy Set size be |OS|. If k is the number of
blocks other than the Occupancy Set blocks accessed in the while loop starting at the label ProbeAndFlush of
Algorithm 3 (Algorithm for CRProbe Step), the probability that the value of the variable occ is equal to the number

of invalid LLC ways created during this loop is at least (1 — %) (1 — %) (1 — ka (1 — (%)|05|_2) (% + 2))

Proof: In an iteration of the while loop, the value of the occ variable may remain the same (event X) or may
increase by one (event Y), while the number of invalid LLC ways may remain the same (event A), may increase by
one (event B), or may decrease by one or more (event C). Therefore, there are six events to consider in an iteration of
the while loop: (XA), (XB), (XC), (YA), (YB), (YC). These are mutually exclusive and exhaustive. Among these,
the events (XA) and (YB) keep the value of the occ variable and the number of invalid LLC ways equal. Therefore,
we need to bound the probability of the remaining four events. The while loop runs for |OS] iterations. Let us
number the iterations 1,2,...,|OS|. Thus, the n'® iteration corresponds to i= |OS| — n. We note that event (X)
cannot take place in the first iteration because the occ variable is always incremented in that iteration. Also, event
C cannot take place in the first iteration because we assume that initially the LLC has no invalid ways and hence,
the number of invalid LLC ways cannot decrease in the very first iteration. Therefore, the events (XA), (XB), (XC),
(YC) cannot take place in the first iteration.

Event (XB) may take place during the n'! iteration (n > 1) in two situations: (a) load(OccupancySet [i]) suffers
an LLC miss AND there is no invalid LLC way at the time of filling OccupancySet [1] in LLC AND OccupancySet [i]
does not get replaced from LLC between the load and the c1flush, (b) load(OccupancySet[i]) experiences an

LLC hit which is inferred as an LLC miss because the code block containing rdtsc suffers an LLC miss AND
OccupancySet[i] does not get replaced from the LLLC between the load and the clflush. Cleary, the first
situation is dependent on the absence of any invalid LLC way up to the n'" iteration. The second situation is also
dependent on the same condition because for the code block containing rdtsc to get replaced by an LLC miss,
there cannot be any invalid way in the LLC. Now, absence of an invalid LLC way in the n'® iteration implies that
all iterations up to that point failed to create an invalid LLC way. This is possible only if OccupancySet[j] got
replaced from the LLC between load(OccupancySet[i]) and clflush(OccupancySet[i]) for all iterations i up
to that point and this replacement happens because one of the k blocks not belonging to the Occupancy Set suffers
an LLC miss. Since the probability that an LLC miss replaces OccupancySet [j] is 1, the probability that any of

c?
the k& non-Occupancy Set blocks replaces OccupancySet[i] for all n — 1 iterations is at most (%)nil. Thus, the
probability of event (XB) in the n'! iteration is at most 2 (%)n_l for n > 1.

Event (XC) can happen in the n'! iteration if at least one non-Occupancy Set block B suffers a miss and fills up
an existing invalid LLC way. This is possible only if B is replaced in the (n — 1)*" iteration before any invalid LLC
way is created, an invalid LLC way then gets created in the (n — 1)'" iteration, and finally B is accessed in the n'!
iteration which fills up the invalid LLC way. Therefore, the probability of event (XC) is at most the probability that

no invalid LLC way is created up to (n — 2)*® iteration. This probability is at most (%)n_Q for n > 2, as already
discussed above. The event (XC) can happen also for iteration n = 2. In this case, an invalid LLC way is created
in iteration n = 1 which is filled up in iteration n = 2 by the block B which was replaced in iteration n = 1. The
probability of an LLC miss replacing B in iteration n = 1 is at most % as B can be any of the k non-Occupancy Set
blocks.

Event (YA) takes place in the first iteration (n = 1) if OccupancySet[0] is replaced from the LLC between
load(OccupancySet [0]) and clflush(OccupancySet[0]). It can also happen in the n'" iteration for n > 1 if
load(OccupancySet[i]) is a hit AND OccupancySet[i] gets replaced from the LLC between the load and the
clflush. As already discussed, such a replacement would happen only due to the absence of an invalid LLC way
in the cache in the n*! iteration. Thus, the probability of event (YA) is at most (%)nfl in iteration n > 1. The
probability of event (YA) in iteration n = 1 is at most % because any of the k blocks can replace OccupancySet [0]
in that iteration.

Event (YC) takes place in the n'® iteration if load (OccupancySet [i]) is a hit AND at least one non-Occupancy
Set block suffers an LLC miss and fills up an existing hole. The calculation of the probability of event (YC) follows
the same argument as that of event (XC). Thus, the probability of event (YC) is at most (%)Th2 in iteration n > 2
and % in iteration n = 2.

The probability that at least one of the events (XB), (XC), (YA), and (YC) takes place in iteration n > 2 is at
most 3 (%)n_l +2 (%)n—2. The probability that at least one of these events takes place in iteration n = 2 is at
most 5%. The probability that at least one of these events takes place in iteration n = 1 is at most % (only event
(YA) can take place in iteration n = 1). Therefore, the probability that none of these events takes place in any of
|OS| iterations is at least P = (1 — %) (1 — 5%) HLOZSQ (1 -3 (%)nil —2 (E)n72>, Now, the difference between the

c

value of the occ variable (say, V) and the number of invalid LLC ways (say, W) starts off at zero. It remains zero
if none of the events (XB), (XC), (YA), and (YC) takes place in any of the iterations or they take place according
to certain patterns so that V' — W remains zero (e.g., positive and negative differences in V' — W are equal). Thus,
the probability that V' — W is zero is at least as large as the probability that none of the events (XB), (XC), (YA),
and (YC) takes place in any of the iterations, which is at least P. Next, we will simplify the expression for P and
obtain a slightly less tighter bound which is easier to evaluate, but sufficiently tight to serve our purpose.

It is easy to prove by induction on m that I’ (1 — x;) > 1 — X% ,x; for 1 > x; > 0. Therefore, P >

(=5 -2 (-2 (3(5)" " +2(4)"7)). substituting X2 ()" = ()" 25 (1-(5)777) ana
D) = (1= ()) oweget P2 (1-5) (1= %) (1- K (1-(H)T7) (2 +2). O

Proposition#3. Consider communicating n bits with each bit equally likely to be 0 or 1. If the Occupancy Blocks
fill up a fraction f of the LLC, the expected 1 bit to 0 bit error rates for Disturbance Set sizes one and two are

. 1 i 1+£\" 1 f(f+2) 2ar (1£\" £2 1472\
respectively 3 — 2= [1 - (T) } and 5 — 5=y + ooy (T) T n(—r) (2) .

Proof: For a Disturbance Set of size one, a 1 bit to 0 bit error occurs when the sender evicts a block that is not
an Occupancy Block. Let us suppose that it happens when transmitting the bit at position k. This means that the

value of the bit at position £ must be 1. Since all subsequent 1 bits will be transmitted as 0 bits, there would be
exactly m+ 1 errors if there are m 1 bits in the remaining n — k bits. The probability that there are m 1 bits in n—k
bits is (”;lk) 2,%,6 If we refer to the probability of evicting a block that is not an Occupancy Block when transmitting

the &*® bit as P(k), then the probability of exactly m + 1 errors is $7_, P(k) (nfk) L. So, the expected number

m) 2n—Fk*
of errors is T7Y (m + 1)S7_ P(k) ("7 F) 5ok = Sp_ 502K (m+ 1) P(R) ("F) i = Sp_ 2B sk (1) ("0F).
Differentiating the expansion of x(142)"~* with respect to and putting z = 1, we obtain ;(f,z Zz_jo(er 1) (";Lk) =
P(k)+1(n—k)P(k). So, the expected number of errors is ©_, (P(k)+1(n—k)P(k)). The probability that an invalid
LLC way gets created in the region of the LLC not occupied by the Occupancy Blocks when transmitting a bit is
equal to the product of the probabilities that the bit is 1 and that the sender evicts a block from the (1 — f) fraction

k—1
of the LLC. So, this probability is % Therefore, P(k) = (1 — #)kfl% = <%) % Thus, the expected

1 2 2 2

For a Disturbance Set of size two, a 1 bit to 0 bit error occurs when the sender evicts two blocks that are
not Occupancy Blocks leading to the creation of two invalid LLC ways. This can happen when transmitting the
k*™h bit (k > 1) if (i) both invalid ways are created when transmitting this bit, or (ii) one invalid way is created
when transmitting this bit and another is created when transmitting an earlier bit. The probability of the first
of these two events is (% + % fQ)kfl % The second event can be constructed by creating the first invalid

way when transmitting the m*™ bit (m < k) and then creating the second invalid way when transmitting the
k™ bit. The probability of this event is S574 (L +1f2)" o1 — f) (34 1£) 717 1L which simplifies to
21,:_{ [(1+ f)F=1— (14 f2)k1]. So, the probability that two invalid LLC ways are created outside the region occupied

by the Occupancy Blocks when transmitting the k*® bit is P(k) = o= [(1+f)F 1 — (1+f2)k_1]+(1;7,f)2(1+f2)k_1 =
k—1 k—1

(1-1 (%) — <%) (1§f2> . After two invalid LLC ways are created, all subsequent 1 bits will be

transmitted as 0 bits. So, there will be exactly m + 1 errors if there are m 1 bits in the subsequent transmission

of n — k bits. The probability that there are m 1 bits in n — k bits is (";Lk)zn%k As we have already shown,

the expected number of errors is £7_,(P(k) + 3(n — k)P(k)). Substituting P(k) and simplifying, we obtain the

n n
expected number of errors = 5 — 42 % (M) - (#) . Hence, the expected bit error rate is

n n
number of errors simplifies to Z — % 1— (&L . Hence, the expected bit error rate is 1 — % 1— (&L .
2 f n(1-J)

1—f2 2 1—f2
1 fU+2) of (£ _ 2 (12"
5 n(17f2)+n(17f)(2) n(17f2)<)) : =

