
Zero Inclusion Victim: Isolating Core Caches from
Inclusive Last-level Cache Evictions

Mainak Chaudhuri
Department of CSE, Indian Institute of Technology Kanpur

mainakc@cse.iitk.ac.in

Abstract—The most widely used last-level cache (LLC) archi-
tecture in the microprocessors has been the inclusive LLC design.
The popularity of the inclusive design stems from the bandwidth
optimization and simplification it offers to the implementation
of the cache coherence protocols. However, inclusive LLCs have
always been associated with the curse of inclusion victims. An
inclusion victim is a block that must be forcefully replaced from
the inner levels of the cache hierarchy when the copy of the block
is replaced from the inclusive LLC. This tight coupling between
the LLC victims and the inner-level cache contents leads to three
major drawbacks. First, live inclusion victims can lead to severe
performance degradation depending on the LLC replacement
policies. Second, a process can victimize the blocks of another
process in an LLC shared by multiple cores and this can be
exploited to leak information through well-known eviction-based
timing side-channels. An inclusive LLC makes these channels
much less noisy due to the presence of inclusion victims which
allow the malicious processes to control the contents of the per-
core private caches through LLC evictions. Third, to reduce the
impact of the aforementioned two drawbacks, the inner-level
caches, particularly the mid-level cache in a three-level inclusive
cache hierarchy, must be kept small even if a larger mid-level
cache could have been beneficial in the absence of inclusion
victims.

We observe that inclusion victims are not fundamental to the
inclusion property, but arise due to the way the contents of an
inclusive LLC are managed. Motivated by this observation, we
introduce a fundamentally new inclusive LLC design named the
Zero Inclusion Victim (ZIV) LLC that guarantees freedom from
inclusion victims while retaining all advantages of an inclusive
LLC. This is the first inclusive LLC design proposal to offer
such a guarantee, thereby completely isolating the core caches
from LLC evictions. We observe that the root cause of inclusion
victims is the constraint that an LLC victim must be chosen
from the set pointed to by the set indexing function. The ZIV
LLC relaxes this constraint only when necessary by efficiently
and minimally enabling a global victim selection scheme in the
inclusive LLC to avoid generation of inclusion victims. Detailed
simulations conducted with a chip-multiprocessor model using
multi-programmed and multi-threaded workloads show that the
ZIV LLC gracefully supports large mid-level caches (e.g., half
the size of the LLC) and delivers performance close to a non-
inclusive LLC for different classes of LLC replacement policies.
We also show that the ZIV LLC comfortably outperforms the
existing related proposals and its performance lead grows with
increasing mid-level cache capacity.

Index Terms—Inclusive cache hierarchy, back-invalidation,
inclusion victim

I. INTRODUCTION

Today’s processors use deep multi-level on-chip cache hierar-
chies to accelerate data delivery to the functional units. In a chip-
multiprocessor (CMP), each processing core has one or two levels

of private caches and the last level of the cache hierarchy is usually
shared across all cores. The relationship between the contents of the
shared last-level cache (LLC) and the private caches is an important
property of the cache hierarchy in a CMP. Perhaps the most popular
and widely deployed such property is the inclusion property [2]. In
the context of a CMP, if the private cache contents are always a
subset of the shared LLC contents, the LLC is said to implement the
inclusion property and the LLC is referred to as an inclusive LLC.
Maintaining the inclusion property requires the LLC to implement
the following two actions.
1. A block fetched from the off-chip memory system on an LLC
miss must be allocated in the LLC in addition to allocating it in the
private caches of the requesting core.
2. When a block is evicted from the LLC, all copies of the block
resident in the private caches must be forcefully invalidated. The
extra interconnect messages sent by the LLC to the private caches
for this purpose are usually referred to as the back-invalidations [17],
[20]. The private cache blocks thus invalidated are referred to as the
inclusion victims [20]. The inclusion victims are not fundamental to
the inclusion property, but arise due to certain choices of replace-
ment victims in an inclusive LLC.

The non-inclusive LLCs do not implement the second action [20],
[63], [64]. A subset of these, referred to as exclusive or mostly
exclusive LLCs, choose not to implement the first action as well,
but may choose to allocate a block in the LLC when the block
gets shared by at least two cores or gets evicted from the private
caches [3], [8], [9], [21], [22], [28], [50], [58], [66]. In this paper,
the non-inclusive LLCs studied for the purpose of comparison with
inclusive LLCs implement the first action, but do not implement the
second action.

In the following, we discuss, in detail, the advantages and disad-
vantages of an inclusive LLC. Through this discussion, we motivate
the need to design an inclusive LLC that guarantees freedom from
inclusion victims. This fundamentally new kind of inclusive LLC
design is the central focus of this paper.

A. Advantages and Shortcomings of Inclusive LLC

The popularity of the inclusive LLC arises from the bandwidth
advantage it offers and the simplification it allows to the cache co-
herence protocol. Before the advent of the CMPs, the cache-coherent
multiprocessors were designed using single-core processors. In such
systems, a processor receiving a coherence request (either forwarded
by the home directory or through a snoop) would try to find out if
the requested block is present in its cache hierarchy. If the LLC is
inclusive and the LLC lookup is a miss, there is no need to forward
the request to the inner levels of the cache hierarchy. This leads to
significant reduction in lookup bandwidth requirement of the inner
levels. This advantage of inclusive LLCs is usually referred to as
snoop filtering. The inclusive LLC’s snoop filtering capability comes
for free due to its inclusion property.

71

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

978-1-6654-3333-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ISCA52012.2021.00015

With the introduction of the CMPs, the snoop filtering advantage
of inclusive shared LLCs can still be enjoyed depending on the
implementation of the intra-chip coherence protocol. Additionally,
the inclusive LLC offers an important simplification to the intra-
chip coherence protocol implementation. We discuss it in the follow-
ing. Scalable CMPs implement directory-based intra-chip coherence
protocols. The coherence directory is necessarily an inclusive struc-
ture in terms of the blocks it keeps track of because its responsibility
is to maintain the coherence status of all blocks that are resident in
the private caches. In such a CMP, an external forwarded request
coming from another CMP (through home directory or snoop) first
looks up the on-chip coherence directory before getting forwarded
to any private cache inside the chip. Thus, the coherence directory
now takes up the job of snoop filtering. Although the inclusive LLC
can continue to offer snoop filtering in such systems, it is no longer
necessary. However, in such a CMP, the inclusive LLC offers a
significant reduction in the intra-chip coherence protocol complexity
compared to the non-inclusive designs as discussed below.

The complexity advantage of an inclusive cache hierarchy arises
from the invariant that a lookup hitting in the on-chip coherence
directory is guaranteed to hit in the inclusive LLC as well. This
is because an entry is present in the directory if and only if the
corresponding block is resident in at least one private cache, which
in turn implies that the block must be present in the inclusive LLC.
In general, there are four possible outcomes when a request looks
up the coherence directory and the LLC depending on hit/miss in
the directory and hit/miss in the LLC. When the LLC is inclusive,
only three of these are possible. The fourth case which is not
possible for an inclusive LLC (i.e., hit in directory and miss in
LLC) requires selecting a special sharer core for generating the
data response of the request leading to new kinds of protocol races
and a new set of transient states in a non-inclusive LLC design. In
fact, according to the reverse-engineered directory structure of the
Skylake-X processor which has a non-inclusive LLC, this processor
has introduced a separate coherence directory to keep track of the
blocks that are present in the private caches, but not in the LLC [61].
Prior studies have also suggested a similar directory organization
having two separate coherence directory structures for non-inclusive
LLCs [64]. Irrespective of whether there are two separate on-chip
coherence directory structures or there is a unified on-chip coherence
directory structure, the coherence protocol for a non-inclusive cache
hierarchy is complicated due to the presence of the fourth case. In
summary, an inclusive LLC simplifies the intra-chip directory-based
coherence protocol significantly in a CMP.

On the other hand, the inclusion victims generated by an inclusive
LLC lead to a number of significant drawbacks. If the inclusion
victims are in active use at the time of victimization, the number of
private cache and LLC misses can increase significantly leading to
performance degradation. Given a fixed LLC capacity, the number of
inclusion victims is a function of the private cache capacity and the
LLC replacement policy. This dependence is captured in Figure 1,
which compares the performance achieved by different inclusive (I)
and non-inclusive (NI) cache hierarchy configurations for two differ-
ent LLC replacement policies, namely LRU and Hawkeye [18]. The
Hawkeye replacement policy dynamically classifies LLC blocks into
cache-friendly and cache-averse by learning from the behavior of the
Belady’s MIN algorithm [4], [34] at run-time. The data in Figure 1
are generated by simulating an eight-core CMP with a three-level
cache hierarchy having an 8 MB 16-way shared LLC, 32 KB 8-way
per-core instruction and data L1 caches, and multiple configurations
of the private per-core L2 cache. The configurations studied for the
per-core L2 cache are 256 KB 8-way, 512 KB 8-way, and 768 KB
12-way with increasing lookup latency. This study uses 72 multi-

programmed workload mixes composed using the SPEC CPU 2017
applications.1

Fig. 1. Performance comparison between inclusive and non-inclusive LLCs.

The speedup numbers in Figure 1 are normalized relative to the
configuration with 256 KB L2 cache and inclusive LLC running the
LRU policy (I-LRU). On top of each bar, we show the speedup
range observed in the workload mixes. We make two important
observations from this figure. First, for a given L2 cache capacity, the
non-inclusive LLC performs better than the inclusive LLC and this
performance gap is much larger in Hawkeye than LRU. The lower
ends of the speedup ranges observed for I-Hawkeye show that some
of the mixes suffer from very large performance degradation. Thus,
the inclusive LLC prevents Hawkeye from realizing its full potential.
Second, with increasing L2 cache capacity, the non-inclusive LLC
performance improves while the inclusive LLC performance slowly
degrades due to gradually increasing volumes of inclusion victims.
Thus, the inclusive LLC rules out the use of large L2 caches.

To substantiate the aforementioned two points, Figure 2 shows
the normalized inclusion victim counts for the inclusive LLC (nor-
malized to 256 KB L2 cache and I-LRU). To understand the trends
in Hawkeye, we have also included the data for an offline implemen-
tation of the MIN replacement policy. The MIN replacement policy
picks LLC victims based on oracle knowledge of the future global
access stream to the L1 cache.2 We observe that for a given L2 cache
capacity, both Hawkeye and MIN policies generate a much larger
number of inclusion victims than LRU. The MIN policy victimizes
the LLC block that has the furthest reuse in the future among all
blocks in a set. In the presence of a circular access pattern, this often
leads to the victimization of a block that is recently filled/used. In a
circular access pattern, a group of blocks {Bi} mapping to the same
LLC set is accessed as (B1, B2, . . . , BN , B1, B2, . . .) withN being
larger than the LLC associativity. As can be seen, the block which
is accessed most recently has the furthest reuse among the blocks
resident in the LLC set. Such recently used LLC victims are highly
likely to be resident in the private caches leading to generation of
inclusion victims. The Hawkeye policy also inherits this behavior
by learning from MIN. In general, any LLC replacement policy
attempting to approach the optimal behavior would generate a large
volume of inclusion victims as can be inferred by observing the
volume of inclusion victims experienced by I-MIN in Figure 2. We
also observe from these data that the volume of inclusion victims
increases with increasing L2 cache capacity, as expected.

For complete understanding of the aforementioned trends, Fig-
ure 3 shows the LLC miss counts for different configurations and
LLC replacement policies (normalized to 256 KB L2 cache and I-
LRU). The trends correspond well with the speedup numbers. One

1 Please see Section IV for more details on the simulation environment.
2 Although the Hawkeye policy tries to learn the optimal behavior based on

the portion of the access stream visible locally to the LLC only, it is impossible
to correctly model the behavior of MIN for an inclusive LLC based on the
LLC access stream. This is because the accesses to the inclusion victims may
alter the LLC access stream. Since the global access stream (i.e., the stream
of accesses to the L1 cache) remains unaffected by the choice of LLC victims
at least for a given instruction schedule, we use that as the input to MIN.

72

256KB L2 Cache 512KB L2 Cache 768KB L2 Cache
0

20

40

60

80

N
o

rm
a

liz
e

d
 i
n

c
l.
 v

ic
ti
m

s

I-LRU I-Hawkeye I-MIN

Fig. 2. Normalized count of inclusion victims.

interesting observation is that the numbers of LLC misses in NI-
LRU and NI-Hawkeye decrease slightly with increasing L2 cache
capacity. This is because as the L2 cache increases in size, a subset
of accesses that were missing previously in both L2 cache and
LLC now hit in the L2 cache. Figure 4 shows the normalized L2
cache miss counts for different configurations and LLC replacement
policies (normalized to 256 KB L2 cache and I-LRU). As expected,
the L2 cache miss count is independent of the LLC replacement
policy for non-inclusive LLC. For inclusive LLC, the L2 cache miss
count is more compared to non-inclusive LLC and varies with LLC
replacement policy depending on the volume of inclusion victims.

256KB L2 Cache 512KB L2 Cache 768KB L2 Cache
0.8

0.85
0.9

0.95
1

1.05
1.1

N
o

rm
a

liz
e

d
 L

L
C

 m
is

s
e

s

I-LRU NI-LRU I-Hawkeye NI-Hawkeye

Fig. 3. Normalized LLC miss count.

256KB L2 Cache 512KB L2 Cache 768KB L2 Cache
0.75

0.8
0.85

0.9
0.95

1
1.05

N
o

rm
a

liz
e

d
 L

2
 m

is
s
e

s

I-LRU NI-LRU I-Hawkeye NI-Hawkeye

Fig. 4. Normalized L2 cache miss count.

In summary, this preliminary study indicates that the inclusive
LLC can be a significant performance problem. It increases the LLC
and L2 cache miss counts through generation of inclusion victims.
The LLC replacement policies attempting to approach the optimal
behavior of the MIN policy fail to achieve their full potential due to
a large volume of inclusion victims. The inclusive LLC requires the
private cache capacity to be a reasonably small fraction of the LLC
capacity to keep the inclusion victim count low. We also note that
the inclusion overhead in the LLC arising from replication of blocks
between the LLC and the private caches is influenced by the private
cache capacity. However, this is inherent in the inclusion property
and can be resolved only by making the LLC increasingly exclusive.
In this paper, we focus on the problem of inclusion victims only,
which is not inherent in the inclusion property, but is only an artifact
of how we architect and manage inclusive LLCs.

Apart from the performance problems, inclusion victims can be
used in CMPs to enhance the success probability of LLC eviction-
based cross-core timing side-channel attacks [10], [11], [16], [23],
[29], [30], [38], [39], [44], [51], [54], [62], [65]. An attacker process

P scheduled on core C can, in general, evict any block from the
shared inclusive LLC. It can engineer a certain memory access
pattern that evicts certain blocks belonging to process P ′ scheduled
on core C′. This would lead to invalidation of the copies of these
blocks from the private caches of C′ as inclusion victims. The future
accesses of P ′ to these blocks would miss in the private caches
and the LLC. Thus, these accesses become “visible” to the attacker
process. The attacker process can figure out which blocks have been
accessed by the victim process P ′ if the blocks are shared between
P and P ′; otherwise it can compute the LLC set indices touched
by P ′ by finding out if any of the blocks previously accessed by
P have been evicted from the LLC. Either way, P can decipher the
access pattern of P ′ or parts of the physical addresses touched by P ′

and these can be achieved by P through measurement of the latency
of its accesses. In the absence of the inclusion victims, such attacks
would be noisy and difficult to mount with low likelihood of success.

B. Contributions and Sketch of the Study

The central contribution of this paper is the design of an inclusive
cache hierarchy that is free of inclusion victims. To the best of
our knowledge, this is the first inclusive cache hierarchy design to
offer such a guarantee. The centerpiece of the design is an inclusive
LLC, referred to as the Zero Inclusion Victim (ZIV) LLC, that never
generates any inclusion victim while retaining all the advantages of
the inclusive LLC such as a simpler coherence substrate in a CMP
environment compared to the non-inclusive design alternatives. The
ZIV LLC considers the root cause of inclusion victims to be the
constraint that an LLC victim must be found from the set pointed
to by the set indexing function. The crux of the solution employed
by the ZIV LLC lies in efficiently and minimally enabling a global
LLC replacement policy only when necessary to avoid generation
of inclusion victims (Section III). Our simulation results on multi-
programmed and multi-threaded workloads show that the ZIV LLC
gracefully supports large L2 caches (e.g., half of LLC capacity) and
performs close to a non-inclusive LLC for both LRU and Hawkeye
replacement policies (Sections IV and V). The ZIV LLC also
comfortably outperforms the related proposals and its performance
lead grows with increasing L2 cache capacity. Additionally, by
eliminating inclusion victims, the ZIV LLC achieves the much-
needed isolation between the core caches and the evictions from
an inclusive LLC; inclusive LLC evictions can no longer be used
to control the inner-level cache contents. We, however, leave the
security analysis of the ZIV LLC to future work. We focus only on
the performance aspects of the ZIV LLC in this study.

II. RELATED WORK

The inclusive LLCs have been studied from performance as well
as security viewpoints. The non-inclusive cache with an inclusive
directory (NCID) proposes to make the data array of the LLC
non-inclusive, but maintains an inclusive and over-provisioned tag
array [64]. The tag array is decoupled from the data array and
maintains pointers to associate a tag to the corresponding data block.
This design allows eviction of data blocks from the LLC without
generating inclusion victims because the over-provisioned tag array
can continue to maintain the tag of the evicted block. This design
resembles a non-inclusive LLC equipped with an over-provisioned
coherence directory. Unfortunately, such a design cannot enjoy the
coherence protocol simplifications offered by an inclusive LLC
because it needs to handle the case where a lookup can hit in the
inclusive directory, but miss in the non-inclusive cache as already
discussed in Section I-A. Similar ideas have been proposed for
supporting fill bypass in inclusive LLCs [13]. Specifically, the tags

73

of the bypassed blocks can be maintained in a separate tag directory
to make the overall tag space inclusive.

The temporal locality-aware (TLA) inclusive LLC study is closer
in theme to ours as it keeps the tag as well as data arrays inclu-
sive [20]. TLA proposes three techniques to mitigate the perfor-
mance impact of inclusion victims. The first technique, referred
to as temporal locality hint (TLH), informs the LLC about the
accesses to the private caches so that the LLC may know about
the blocks that have been recently accessed by the cores. This
technique, however, requires very high LLC lookup and interconnect
bandwidth. The second technique, referred to as early core invalida-
tion (ECI), forcefully invalidates the next LRU victim V from the
core caches at the time of replacing the current LRU victim from
an LLC set and observes if V receives LLC hits. This helps protect
such LLC blocks from getting replaced prematurely. This technique
can, however, increase the private cache misses depending on the
application behavior. The third technique, referred to as query-based
selection (QBS), queries the private caches to find out if an LLC
victim candidate is currently resident in the private caches. If yes,
the block is moved to the MRU position within the target LLC
set and the next victim candidate is considered. This technique has
been shown to be the best among the three. Unfortunately, none
of these techniques offer any guarantee regarding freedom from
inclusion victims. If QBS fails to find a victim that is not resident
in the private caches, it victimizes the LRU block in the LLC set,
thereby generating an inclusion victim. We note that while QBS was
originally proposed for LRU only, it can be combined with any other
LLC replacement policy.

The cache hierarchy-aware replacement (CHAR) algorithm
makes the replacement policy of the inclusive LLC aware of the
problem of inclusion victims [7]. When a block is evicted from the
L2 cache, this proposal decides whether it can be prioritized for
victimization in the LLC based on the observed access history of the
L2 cache victims. In effect, this algorithm attempts to attach higher
LLC victimization priority to a subset of blocks already evicted
from the L2 cache, thereby reducing the volume of inclusion victims
while maintaining high quality in the choice of LLC victims. We will
discuss CHAR further in Section III, as its mechanism of inferring
liveness of the blocks evicted from the L2 cache can be used in our
proposal to improve the efficiency of the basic ZIV LLC design.

A recent study has explored, in detail, the joint influence of
inclusion policies and prefetching techniques on LLC management
policies [1]. This study shows that a vast majority of the recently
proposed LLC management policies deliver good performance only
in non-inclusive LLCs and suffer from performance degradation in
inclusive LLCs due to inclusion victims.

As already pointed out, inclusion victims help reduce the noise
and enhance the success rate of eviction-based timing side-channel
attacks in the shared LLC. A large number of proposals has explored
mitigation techniques for security vulnerabilities related to shared
caches [12], [24]–[26], [31], [40]–[43], [55]–[57], [60], [67]. These
proposals improve shared cache security through line locking [25],
[56], static or dynamic way-grain cache partitioning [26], [40], [55],
combination of line locking and partitioning [31], randomized and
dynamic re-mapping of addresses to cache sets [56], [57], dynamic
encryption of cache addresses [42], [43], OS-assisted copy-on-
access [67], prefetching inclusion victims [41], back-filling cross-
core LLC victims into inner-level caches (breaks inclusion and
hence, applicable to non-inclusive LLCs only) [12], and restricting
certain subsets of inclusion victims [24], [60]. The last category of
techniques is closer to our proposal and we discuss these in more
detail here.

The relaxed inclusion cache (RIC) [24] relaxes inclusion and

hence, eliminates inclusion victims for read-only data (covering
read-only cipher data) and thread-private data (covering privately
modified sensitive data). Relaxing inclusion for these data types
does not require additional cache coherence support because these
are either read-only or thread-private. Thread-private modified data
must be flushed out of the private caches when a process migrates
from one core to another. RIC requires custom compiler support
for identifying the read-only and thread-private data. Unfortunately,
these analyses are often very conservative. RIC cannot offer security
for read/write shared critical data.

The secure hierarchy-aware cache replacement
policy (SHARP) [60] proposes to modify the LLC replacement
policy. On an LLC miss, it first tries to evict a block that is not
resident in the private caches. If there is no such block in the target
LLC set, it tries to evict a block that is resident in the requesting
core’s private cache only. If there is no such block in the target LLC
set, it victimizes a random block from the target LLC set. Although
SHARP successfully lowers the volume of inclusion victims arising
from cross-core LLC conflicts (important for plugging cross-core
information leakage), it cannot guarantee freedom from this class of
inclusion victims. In contrast, our proposal rids the inclusive LLC
of inclusion victims altogether.

III. DESIGN OF THE ZIV LLC
We present the detailed design of the ZIV LLC in this section.

We start with a discussion of the baseline cache hierarchy (Sec-
tion III-A). Section III-B presents a high-level description of the
design proposal. Sections III-C, III-D, and III-E discuss the three
primary components of the ZIV LLC in detail.

A. Baseline CMP Cache Hierarchy
The baseline on-chip cache hierarchy is assumed to have a shared

inclusive LLC and per-core private caches. The LLC is banked and
the banks are distributed over the on-chip interconnect, the exact
topology of which is not important for the discussion. The private
caches are kept coherent using a directory-based MESI coherence
protocol. For space-efficiency, the coherence directory structure is
decoupled from the LLC as in a sparse directory [14], [27]. The
sparse directory is organized as a tagged set-associative structure.
Each entry of the sparse directory keeps track of one privately
cached block. To minimize sparse directory eviction, it is sized to
have double the number of entries as the number of tags in the last-
level private caches (e.g., L2 cache for private L1 and L2 caches)
aggregated over all cores. This is referred to as a 2× sparse directory.
To improve sparse directory bandwidth, the sparse directory is sliced
and a slice of the directory is associated with each LLC bank. The
sparse directory slice associated with an LLC bank is responsible
for keeping track of all privately cached blocks that map to that
LLC bank; the LLC bank is referred to as the home bank of these
blocks. A request coming from the private cache hierarchy looks up
the home LLC bank and the home sparse directory slice in parallel.
Depending on the outcomes of these lookups, the subsequent co-
herence actions are decided. To keep the sparse directory up-to-date
and to avoid extraneous invalidations triggered by coherent writes, a
private cache eviction is always notified to the home sparse directory
slice [33], [37]. The eviction notices are dataless messages except
when a dirty block is evicted generating a traditional writeback
to the home LLC bank. Keeping the sparse directory up-to-date
can significantly simplify the previous related proposals such as
QBS [20] and SHARP [60] because a sparse directory lookup can
reveal whether an LLC block is resident in the private caches. A
sparse directory entry is freed (i.e., invalidated) when all copies of
the block it is tracking are evicted from the private caches.

74

B. Overview of the ZIV LLC Design

The inclusion victims are generated at the time of LLC re-
placements due to the way set-associative caches are architected
and managed. When filling a block B in the LLC, a replacement
candidate must be picked from the LLC setB maps to. This restricts
the choice of replacement candidates. The ZIV LLC design exploits
the observation that in an inclusive LLC, there is at least one block
which is not present in the private caches. This observation follows
from the fact that the aggregate private cache capacity must be less
than the LLC capacity for an inclusive LLC configuration so that
the LLC is left with some space outside the inclusion overhead. As
a result, if a global replacement policy could be enabled to replace
an LLC block that is not present in the private caches, the cache
hierarchy could be made free of inclusion victims. Such a policy
needs to be invoked only when the baseline replacement policy
selects a victim that is resident in the private caches. The ZIV LLC
incorporates enough support into the cache hierarchy to enable a
minimal global replacement policy that can be implemented effi-
ciently and invoked selectively. The ZIV design leaves the coherence
protocol and the basic architecture of the LLC unaltered.

Figure 5 walks through the functional flow of the ZIV LLC at
a high level. An LLC fill to address A1 looks up the home LLC
bank and the home sparse directory slice. A new directory entry E1
is allocated in the target sparse directory set. The LLC block with
address A2 is replaced from the LLC set to make room for A1.
This completes the baseline sparse directory and LLC allocation
flow. Next, the sparse directory entry of A2 is looked up, as is
done in the baseline, to determine if copies of the evicted block
are resident in the private caches. If there is no copy in the private
caches (indicated by a sparse directory miss when looked up with
address A2), nothing more needs to be done. If there are copies of
A2 in the private caches, the baseline would have generated back-
invalidations at this time. Instead, the ZIV LLC relocates A2 to a
different LLC set. To do this, a relocation set (RS) is found out
such that RS contains at least one block that is not resident in
the private caches. Such a set is guaranteed to exist. Once such a
set is identified, the ZIV design replaces a block, say A3, which
is not resident in the private caches and inserts A2 in its place
in the relocation set. The ZIV LLC leverages the sparse directory
entry E2 of A2 to record the new location of A2. The supports for
finding a relocation set, relocating a block to a different LLC set,
and replacing an appropriate block from the relocation set are the
three primary components of the ZIV LLC design. We discuss the
architectural support needed to relocate a block from one LLC set to
another in Section III-C. In Section III-D, we focus on how to find a
“good” relocation set efficiently. Section III-E presents the support
needed to implement an appropriate replacement algorithm in the
relocation set for inserting a relocated block.

In this context, we note that the Z-cache [46], which uses a skew-
associative cache structure [47], employs block relocation. However,
the purpose of block relocation in Z-cache is entirely different from
ours. Z-cache needs relocation to support a multi-level replacement
policy, thereby improving upon the basic replacement decision of
the skew-associative caches.

C. Support for Block Relocation

Throughout this section, let us suppose that an LLC block B
is relocated from its original location of way W1 in set S1 of
bank K to way W2 in set S2 of bank K. The relocation process
involves reading the block out from the source and writing it at the
destination. To distinguish a relocated block from the non-relocated
ones within an LLC set, a new Relocated state is added to each

SLICE
SPARSE DIR.

LLC BANK

E1

A2

in Private Caches?
Is A2 Resident

RS

Find Relocation
Set for A2

Yes

No

Baseline Flow

A3

Replace A3

& Insert A2
E2

Update Loc(A2)

LLC Fill
(Addr. A1) Replace A2

& Insert A1

Fig. 5. Overview of the functional flow in the ZIV LLC.

LLC block. As already mentioned, the sparse directory entry EB

of B records the new location of B. In general, it is possible to
relocate a block from its home LLC bank to another LLC bank. As a
result, each sparse directory entry is extended with a newRelocated
state along with the space to hold the tuple <bank id, set id, way
id>, which for block B would be < K,S2,W2 > after relocation.
Subsequently, blockB may observe the following three events while
in the Relocated state: (i) an access from a core arising from a
private cache miss, (ii) eviction of a copy of it from a private cache,
and (iii) its replacement from set S2 causing another relocation. In
the following, we discuss how the ZIV LLC design handles these
three events.

1) Handling Private Cache Misses: A private cache miss
request looks up the sparse directory and the LLC in parallel. For
an access to the aforementioned relocated block B, the LLC lookup
will be to its original pre-relocation set S1. The lookup considers
only the blocks with the Relocated state off. For B, the lookup
misses in LLC set S1, but hits in the sparse directory. The sparse
directory entry EB has Relocated state on and emits the current
location of B. Next, B is looked up directly in the LLC data array
by computing its location using (S2,W2). In the background, the
replacement states of set S2 are updated appropriately due to this
access. Importantly, the critical path of an access to a relocated block
has latency equal to max(LLC tag array latency, sparse directory
array latency)+LLC data array latency. This is longer compared
to the sequential tag and data array latency of an LLC lookup to
a non-relocated block only if the sparse directory array latency is
bigger than the LLC tag array latency within a bank. With the help
of CACTI [15] we find that for a 2× sparse directory and a 1 MB
16-way LLC bank implemented using 22 nm technology nodes, the
critical path of an access to a relocated block is lengthened by 1,
2, and 3 cycles respectively for the configurations with 256 KB,
512 KB, and 768 KB L2 caches. This additional delay is a very small
fraction of the total round-trip LLC access latency. Also, an access
to a relocated block can come to the LLC from only a new sharer
core for the block because the existing sharers can access the block
from their private caches. Therefore, this latency impact is restricted
to only those relocated blocks that get shared by at least two cores.

We note that the latency difference between the accesses to
relocated and non-relocated blocks can be observed by a process to
infer whether a particular block has suffered an LLC conflict. This,
in turn, can be exploited to set up timing side-channels or covert
channels. However, in this case, the latency delta is so small that it
will be impossible to distinguish it from the latency fluctuations that
happen due to various non-deterministic latency components (such
as queuing delays) on the round-trip path between the cores and the
LLC banks.

75

2) Handling Private Cache Evictions: When a private cache
eviction message reaches the home LLC bank, the sparse directory
is looked up and the evicting core is removed from the directory
entry. At this point, if the directory entry indicates that there is no
more copy of the block left in the private caches, the directory entry
should be invalidated. If the directory entry state is Relocated, the
corresponding LLC block is also invalidated, thereby ending the life
of a relocated block. Thus, for the aforementioned relocated block
B, this would invalidate the tag at LLC way W2 in set S2. It is
evident that a relocated block that is never shared between two cores
and is accessed by only one core C would never receive an access
request in the LLC; this is because when C evicts the copy of the
block from its private caches, the relocated block is invalidated from
the LLC. So, the next access to the block will miss in the LLC.
Note that this does not pose a performance problem in the ZIV
LLC because the baseline would have evicted this block from the
LLC generating inclusion victims, which the ZIV LLC avoids by
relocating the block.

If the eviction message from the private cache carries a dirty block
back to the LLC (the traditional writeback), the usual action would
be to update the LLC block. For relocated blocks, the writeback is
directly sent to the memory controller, since the relocated block is
being invalidated. On the other hand, if the eviction message from
the private cache does not carry any data (i.e., a dataless eviction
notification) and the relocated block is being invalidated and is dirty,
a writeback is sent to the memory controller.

3) Relocating a Relocated Block: If an LLC block in the
Relocated state is replaced, it must be relocated again to a different
set because a relocated block is guaranteed to generate inclusion
victim(s) on victimization and this must be avoided. The same
relocation protocol is followed. However, one added complication
related to updating the relocated block’s sparse directory entry needs
to be addressed. Let us suppose that the aforementioned relocated
block B is evicted from set S2 and needs to be relocated again. The
new location of B needs to be updated in sparse directory entry EB .
However, there is no way to access EB because we cannot generate
the original address of B which is needed to look up the sparse
directory. We only have the tag of B, but not the remaining bits
of its block address. Provisioning each LLC block with the space to
maintain these remaining bits would require a prohibitive amount of
storage. We, however, observe that the tag part of a relocated LLC
block, in fact, has no use because an access to a relocated block is
always initiated through a lookup to the sparse directory, which has
its own tag array. Therefore, we can use the tag part of a relocated
LLC block to record the location of its sparse directory entry i.e., the
tuple<home bank id, set id of EB , way id of EB> for the relocated
block B. For a 48-bit physical address and an 8 MB 16-way LLC
with 64-byte blocks, the LLC tag length is 29 bits assuming simple
hash functions for set indexing. LLCs with complex hash functions
may require more bits for tags. Now, assuming eight LLC banks,
we have up to 26 bits to encode the total number of entries in a
sparse directory slice (i.e., set id and way id of a directory entry).
Even with 128 LLC banks, we have 22 bits for this purpose. This is
far more than what is needed for a practically sized sparse directory
slice. For example, our 2× sparse directory has 8192 (1024 sets ×
8 ways), 16384 (2048 sets × 8 ways), and 24576 (2048 sets × 12
ways) entries per slice respectively for 256 KB, 512 KB, and 768 KB
L2 cache configurations. Therefore, we can comfortably encode the
location of the sparse directory entry EB for a relocated block B
using the LLC tag space. When B is relocated again, we can locate
EB using the tag of B and update EB to record the new location of
B.

4) Metadata Overhead: The metadata overhead for supporting
block relocation has two components. First, each LLC block needs
a new Relocated state, which can be implemented using 2 KB of
additional storage for a 1 MB LLC bank with 64-byte blocks. This
state can also be implemented with the help of the unused state
<Valid=0, Dirty=1>. Second, each sparse directory entry needs a
new Relocated state along with bits to store the location of an LLC
block. For an 8 MB LLC with 64-byte blocks, this amounts to 18
additional bits per directory entry. The baseline sparse directory
entry for an 8-core CMP has a bitvector of size 8 bits and 2 or 3
state bits depending on the cache coherence protocol used (MESI,
MOESI, etc.). Therefore, each sparse directory entry gets expanded
from 10/11 bits to 28/29 bits. Using CACTI [15] we have verified
that a lookup to the expanded sparse directory can be comfortably
hidden under the parallel LLC access. In our simulated CMP, each
sparse directory slice has 8192, 16384, or 24576 entries when the
per-core L2 cache size is 256 KB, 512 KB, or 768 KB respectively.
Thus, per LLC bank we need additional 18 KB, 36 KB, or 54 KB
of storage for the sparse directory. Adding 2 KB for maintaining
the Relocated state per LLC block, we see that the total storage
overhead per 1 MB LLC bank ranges from 20 KB to 56 KB, which
is less than 6% of the LLC bank capacity.

D. Finding Relocation Sets
A relocation set must satisfy the property that it has at least

one block that is not resident in private caches. We will refer to
this property as NotInPrC. Satisfying this property alone may
not, however, make an LLC set a “good” relocation set because a
block that is not in any private cache may still have an imminent
access. Replacing such a block may hurt performance compared
to the baseline. Therefore, it may be desirable to augment this
property with more locality-centric properties such as the LRU block
in the set is not resident in private caches if the LLC implements
LRU policy. We will refer to this property as LRUNotInPrC. If
the LLC implements the Hawkeye policy, an equivalent property
would be that the set has a cache-averse block that is not resident
in private caches. The Hawkeye policy uses a three-bit re-reference
prediction value (RRPV) [19] to distinguish between the cache-
averse (RRPV=7) and cache-friendly (RRPV<7) blocks. Among the
cache-friendly blocks, a higher RRPV indicates a higher age (i.e.,
less recently used). So, this property can be stated as: the set has
a block with maximum RRPV that is not resident in private caches.
This property, referred to as MaxRRPVNotInPrC, can also be used
with other LLC replacement policies that employ RRPVs to grade
the blocks in a set [19], [59]. The most general desirable property of
a relocation set would be that the set has a block that is likely to be
dead and not resident in private caches. We will refer to this property
as LikelyDeadNotInPrC. In the following, we first discuss the
general architectural support needed to find a relocation set having a
certain property. We note that if the original LLC set can satisfy the
target relocation property, there is no need for a relocation. In that
case, the replacement policy of the relocation set is invoked directly
on the original LLC set to find a different LLC victim.

1) General Architectural Support: Each LLC set is aug-
mented with a bit called the property bit. The property bit of a set is
turned on if the set satisfies a property. If multiple properties need
to be tracked, each property would need one bit associated with
each LLC set. Corresponding to a particular property P, the property
bits of all sets in an LLC bank together constitute the property
vector (PV) for property P. This arrangement is shown in Figure 6.
If the PV has no bit turned on, that is recorded in a separate bit called
emptyPV . This bit is used to avoid unnecessary PV scans. This bit
is computed through a two-level OR logic where the first level has

76

N k-bit OR gates and the second level has one N -bit OR gate. For
an LLC bank with 1024 sets, both N and k could be 32. This logic
is triggered when a bit in PV flips from 1 to 0. When a bit in PV flips
from 0 to 1, emptyPV is also set to 1.

LLC BANK

LLC
SETS

PV

Fig. 6. Property vector (PV) corresponding to a particular property.

For each PV, there is a nextRS register which points to the next
round-robin bit location in the PV that is 1. This register effectively
holds the index of the next relocation set to be used. A round-robin
selection is important to uniformly distribute the relocation load
across all eligible LLC sets. Algorithm 1 shows how the decoded
nextRS is computed based on the PV and the decoded current RS.
Decoded nextRS is a one-hot vector that has a 1 at bit position
pointed to by nextRS and 0 in all other positions (for example, a
decoded nextRS equal to 00 . . . 01000 implies a nextRS value of
3). Algorithm 1 relies on the fact that the least significant set bit
in a binary string x is at the same position as the only set bit in
the binary string obtained by ANDing x with its 2’s complement.
This logic is used in lines 4 and 5 in Algorithm 1 to isolate
the next set bit in the PV relative to the position of the current
RS. Algorithm 1 is triggered whenever a new relocation operation
starts or when emptyPV flips from 0 to 1. The algorithm, when
triggered, precomputes the decoded nextRS for each PV (there
could be multiple PVs corresponding to different properties) given
the decoded RS that is last/currently used.

The average repeat interval of relocation operations in an LLC
bank as observed in our evaluation is much higher than the latency
to execute Algorithm 1 (we discuss detailed synthesis results later
in this section). However, there are phases of frequent relocations
when the relocation intervals are observed to be smaller than the
latency to execute this algorithm. To handle situations where the
decoded nextRS is not ready and a new relocation request has
arrived at an LLC bank, we maintain an eight-entry FIFO buffer
in each LLC bank to hold the blocks waiting to be relocated. This
buffer also decouples the actual relocation datapath from the rest of
the relocation logic and makes the interface modular. Each buffer
entry holds a full LLC block including the address, data, and states.
With 64-byte blocks, the total storage needed for this FIFO buffer is
slightly over 512 bytes per LLC bank.

To carry out a relocation, the logic associated with the FIFO
buffer arbitrates for the LLC bank’s write port and contends with the
LLC fill logic for LLC write bandwidth. LLC fills are always given
higher priority than a pending relocation. To avoid complicating
the coherence protocol, we mark the directory entry busy for a
block waiting to be relocated. A private cache miss request to such
a block is negatively acknowledged. The directory entry comes
out of the busy state after the relocation completes. In very rare
occasions, the relocation FIFO may fill up (never observed in our
evaluation). In such a situation, the LLC controller stops handling
the private cache miss requests. We note that stalling private cache
miss requests cannot lead to a deadlock because the progress of
pending relocations does not depend on the progress of private cache
miss requests.

In extremely rare situations, it may happen that all blocks in an
LLC bank are resident in private caches. This situation may arise
if there is an extremely uneven distribution of active blocks across

Algorithm 1: Computation of decoded nextRS

Input: PV and decoded RS
Output: decoded nextRS
/* Generate mask = 11...100...0 with

the cross-over from 0 to 1
happening right after the current
RS position */

1 mask ← ((∼ decoded RS) + 1) & (∼ decoded RS)
/* Extract upper and lower portions

of PV split right after the
current RS position */

2 upperPV ← PV & mask
3 lowerPV ← PV & ∼ mask
/* Find the next set bit position in

upperPV */
4 decoded nextRS upper ←

upperPV & ((∼ upperPV) + 1)
/* Find the next set bit position in

lowerPV */
5 decoded nextRS lower ←

lowerPV & ((∼ lowerPV) + 1)
/* Compute the final output */

6 if decoded nextRS upper == 0 then
7 decoded nextRS ← decoded nextRS lower

8 else
9 decoded nextRS ← decoded nextRS upper

LLC banks. While we have not encountered this in our evaluation,
this situation is handled by relocating a block from one LLC bank to
another. The home LLC bank may query its one-hop neighbor LLC
banks first to find a relocation set. If no relocation set is found, it
can query randomly picked LLC banks. Once the destination LLC
bank is found, the relocation in that bank proceeds according to the
aforementioned intra-bank relocation protocol. We note that relo-
cations to non-home banks increase the latency difference between
the accesses to the relocated and non-relocated blocks. If such a
relocation is due to a cross-core conflict in the LLC, it can be decided
whether the newly filled LLC block or the LLC victim should be
relocated. Such a decision allows us to balance the volume of non-
home relocations across all cores. Another alternative could be to
choose the relocation candidate (from among the newly filled LLC
block and the LLC victim) randomly following a certain probability
distribution.

Having discussed the general relocation protocols, we now turn
to discuss the additional support needed for implementing specific
relocation set properties.

2) Support for Invalid: The Invalid property bit of an
LLC set is turned on if the set has an invalid way. The Invalid PV
is always consulted first at the time of deciding a relocation set. The
metadata overhead is 1024 bits for the PV per 1 MB 16-way LLC
bank.

3) Support for NotInPrC: Each LLC block is provisioned
with a NotInPrC state bit to record if the block is resident in
private caches or not. When a private cache eviction notice or a
writeback comes to the home sparse directory slice and the directory
entry indicates that no other copy of the block is resident in the
private caches, the NotInPrC bit of the LLC block is set to 1. On

77

an access from a core to an LLC block, the NotInPrC bit of the
block is reset. An LLC set’s NotInPrC property bit is set to 1 if
at least one LLC block in the set has NotInPrC bit set to 1. The
metadata overhead per 1 MB 16-way LLC bank is 2 KB for the
per-block NotInPrC state bit and 1024 bits for the PV. The ZIV
LLC design implementing the NotInPrC property for identifying
relocation sets also needs to have the Invalid PV adding another
1024 bits per LLC bank to the metadata overhead. The nextRS
of the NotInPrC PV is used for relocation if the Invalid PV
is empty; otherwise the nextRS of the Invalid PV is used for
relocation.

4) Support for LRUNotInPrC: Three PVs need to be
maintained: one for Invalid, one for NotInPrC, and one for
LRUNotInPrC. Each LLC block also needs the NotInPrC state
bit. On an access to an LLC set or on a replacement from an LLC
set, if the block entering the LRU position has the NotInPrC
state bit set to 1, the LLC set’s property bit for LRUNotInPrC
is set to 1; otherwise the property bit is set to 0. When updating
the NotInPrC state bit of an LLC block, if the block is in the
LRU position, the LLC set’s property bit for LRUNotInPrC is also
updated accordingly.

When selecting a relocation set, the first priority is given to the
set pointed to by nextRS of Invalid; if the Invalid PV is
empty, the nextRS of LRUNotInPrC gets the next higher priority.
If the PV for LRUNotInPrC is also empty, the set pointed to by
nextRS of the NotInPrC PV is picked as the relocation target. At
each of the three priority levels, the original source LLC set is first
checked to see if it satisfies the corresponding relocation set property
of that priority level (i.e., Invalid first, LRUNotInPrC next, and
then NotInPrC); if yes, no relocation is required and the relocation
set’s victim selection algorithm is executed in the original LLC set
to pick a different LLC victim. Thus, the relocation set selection
order is as follows: original LLC set satisfying Invalid (this
check is done anyway as part of the baseline LLC replacement
policy), global LLC set satisfying Invalid, original LLC set satis-
fying LRUNotInPrC, global LLC set satisfying LRUNotInPrC,
original LLC set satisfying NotInPrC, global LLC set satisfying
NotInPrC. The metadata overhead per 1 MB 16-way LLC bank is
2 KB for the per-block NotInPrC state bit and 3072 bits for the
three PVs.

5) Support for MaxRRPVNotInPrC: The support for this
property is similar to LRUNotInPrC. The PV for LRUNotInPrC
is replaced by the PV for MaxRRPVNotInPrC. In the opera-
tions discussed for LRUNotInPrC, if we replace the LRU po-
sition by maximum RRPV, we obtain the operations to be done
for MaxRRPVNotInPrC. The metadata overhead is same as
LRUNotInPrC.

6) Support for LikelyDeadNotInPrC: In this case also,
we need three PVs: one for Invalid, one for NotInPrC, and one
for LikelyDeadNotInPrC. Each LLC block is provisioned with
a LikelyDead state bit and aNotInPrC state bit. If an LLC set has
at least one block with both LikelyDead and NotInPrC state bits
set to 1, the LLC set’s property bit for LikelyDeadNotInPrC
is set to 1. When selecting a relocation set, the set pointed to by
nextRS of the LikelyDeadNotInPrC PV is picked provided
the Invalid PV is empty; if the LikelyDeadNotInPrC PV
is empty, the set pointed to by nextRS of the NotInPrC PV
is picked. At each priority level, the original source LLC set is
first checked to see if it satisfies the corresponding relocation set
property of that priority level; if yes, no relocation is required and the
relocation set’s victim selection algorithm is executed in the original
LLC set to pick a different LLC victim.

We have already discussed how the NotInPrC state of an LLC
block is operated on. To update the LikelyDead state of an LLC
block, we need to identify the likely dead LLC blocks. A large body
of work has explored ways to identify likely dead blocks in the
LLC; we would like to reuse one of these proposals. However, to
suite our purpose, we would like to identify the likely dead blocks
only from among the blocks that are not resident in the private
caches. There is no use of identifying other dead blocks because
we cannot replace them from the LLC. The cache hierarchy-aware
replacement (CHAR) proposal [7] comes closest to this requirement.
This proposal attempts to infer likely death of a block from LLC’s
viewpoint when it is evicted from the private cache of a core. The in-
ferred dead blocks are prioritized for replacement in the LLC. In our
proposal, however, the LLC does not exercise the dead block-based
replacement as the baseline policy. Instead, it needs to identify just
enough likely dead blocks in the LLC to support relocation because
the LLC sets satisfying the LikelyDeadNotInPrC property
are important for supporting relocation only and serve no other
purpose. Therefore, our adaptation of CHAR can use a dynamically
adjusted confidence level for dead block inference depending on the
relocation demand. We discuss our design in the following.

When a block is evicted from the L2 cache, if it is not present
in the L1 caches3, an eviction notice or a writeback is sent to the
home LLC bank as in the baseline. At this time, we invoke CHAR’s
death inference mechanism and if the block is inferred dead, one bit
in the header of the eviction notice or writeback message is used
to convey this information to the LLC bank. When an LLC bank
receives a private cache eviction notice or a writeback message,
it checks the dead inference bit in the message and accordingly
sets the LikelyDead state of the corresponding LLC block and the
LikelyDeadNotInPrC property bit of the LLC set provided the
block is not shared (a shared block is not inferred dead). When an
LLC block is accessed due to a private cache miss, its LikelyDead
state is reset to 0.

CHAR categorizes a block evicted from the L2 cache into a
number of groups based on attributes such as (i) whether the block
was brought to the private caches through a prefetch or a demand
request, (ii) whether the block was filled into the private caches
through an LLC hit or miss, (iii) the number of L2 cache demand
reuses experienced by the block, and (iv) whether the block is dirty.
For each group, CHAR collects the number of L2 cache evictions
and the number of recalls from the LLC using two counters. If the
ratio of the recall counter to the eviction counter of a group is below
a threshold τ , that means the blocks in that group are rarely recalled
from the LLC and hence, are likely to be dead. Thus, if a block
evicted from the L2 cache is classified to be in that group, it is
inferred dead.

Our adaptation of CHAR adjusts the death inference threshold
τ dynamically. We restrict τ to the values of the form 1

2d
so

that the comparison RecallCount/EvictionCount < τ can be
implemented as (RecallCount << d) < EvictionCount. We
initialize d to six in all L2 cache controllers and LLC banks.
When a relocation request in an LLC bank finds that the PV
for LikelyDeadNotInPrC is empty and d > 1, this event is
recorded in a threshold request bitvector (TRBV) of length equal to
the number of cores; all bit positions of TRBV are set to 1. The
LLC bank also decrements d by one. After this, when the LLC
bank receives a private cache eviction notice or a writeback from
a core i and if TRBV[i] is 1, it piggybacks the new value of d in
the acknowledgment message for the eviction notice or writeback.
At this time, TRBV[i] is reset to 0.

3 The private L1 and L2 caches are non-inclusive in our CMP model.

78

When an L2 cache controller receives a new value of d, it
overwrites its own value of d with this new value provided the new
value is less than its own value. Thus, d can only decrease starting
from six down to one. Since different LLC banks can have different
d values at run-time, this check is needed for correct dynamics in
threshold setting. An LLC bank maintains a sufficiently long interval
between two consecutive decrements in d to make sure that the
effect of the new threshold value has been taken into account before
requesting another change. In our design, this interval is set to 4096
private cache eviction notices. Overall, if the number of relocations
is low, the dead block inference operates with a small threshold τ
and is likely to be more accurate. It is necessary to periodically reset
d back to six in all LLC banks and L2 caches to take care of phase
changes. The high-level flow is summarized in Figure 7.

CHAR requires two state bits per L2 cache block for carrying out
the classification of the blocks into groups [7]. So, the primary over-
head of supporting the LikelyDeadNotInPrC property stems
from the following: (i) two additional state bits in each L2 cache
block (2 KB overhead per core for 512 KB L2 cache), (ii) two
additional state bits in each LLC block (4 KB overhead for each
1 MB LLC bank), (iii) three PVs (3072 bits per LLC bank),
(iv) one additional header bit in private cache eviction notice and
writeback messages for conveying dead inference outcome, (v) three
bits in eviction notice and writeback acknowledgment messages for
updating d, and (vi) one bit in private cache miss response to convey
LLC hit/miss needed for the block classification algorithm used by
CHAR. Total storage overhead per LLC bank and per core taken
together is 6.375 KB.

CACHE
L2

LLC BANK

ADDITIONAL
STATE BITS

Eviction Ack.

(d)

(Dead inference)
Eviction notice, WB

Miss response

(LLC hit/miss)

PVs

Fig. 7. High-level flow in our adaptation of CHAR. The additional storage
is shown in grey. The additional pieces of information piggybacked in the
messages are shown within parentheses.

7) Support for MaxRRPVLikelyDeadNotInPrC: We
implement the property MaxRRPVLikelyDeadNotInPrC so
that we can combine the inferences of Hawkeye and CHAR. Hawk-
eye is based on LLC access stream only, but uses optimal behavior
for training the inference mechanism. On the other hand, CHAR
takes into account L2 cache reuses, but employs a rudimentary in-
ference mechanism. Implementing this property requires four PVs:
Invalid, MaxRRPVNotInPrC, LikelyDeadNotInPrC, and
NotInPrC. In relocation set selection, the nextRS of Invalid
is given the highest priority, the nextRS of MaxRRPVNotInPrC
is given the next priority (this choice attempts to replace one
of the cache-averse blocks ear-marked by Hawkeye provided it
is not privately cached) if the Invalid PV is empty; nextRS
of LikelyDeadNotInPrC is given the next priority if the
MaxRRPVNotInPrC PV is empty; nextRS of NotInPrC is
picked if all other PVs are empty. At each priority level, the source
original LLC set is first checked to see if it satisfies the correspond-
ing relocation set property of that priority level (i.e., Invalid,
MaxRRPVNotInPrC, LikelyDeadNotInPrC, NotInPrC in
that order) before looking for a global relocation set for that level.
The overhead of implementing this property includes all the over-
head of implementing the LikelyDeadNotInPrC property. It
requires one additional PV (1024 bits per LLC bank).

8) Critical Path and Area Estimates: We synthesize the
module that updates emptyPV and PV, and computes the de-
coded nextRS for the ZIV LLC design. We use a 45 nm
TSMC process and the Synopsys Design Compiler in the ultra-
optimization mode (uses compile_ultra command). The criti-
cal path through a purely combinational implementation of the logic
meets the timing target of three cycles at 4 GHz clock frequency. The
NotInPrC set property needs two PVs and the associated logic to
update emptyPV and decoded nextRS for each PV. Its total area
overhead per 1 MB LLC bank is 0.045 mm2. The LRUNotInPrC
and the LikelyDeadNotInPrC set properties need three PVs;
its total area overhead per 1 MB LLC bank is 0.078 mm2. The
MaxRRPVLikelyDeadNotInPrC set property needs four PVs
and its total area overhead per 1 MB LLC bank is 0.099 mm2.

E. Replacement Policy in Relocation Sets

Once a relocation set is selected, an appropriate block needs to be
replaced from this set to make room for the relocated block. Since
the relocation set is selected based on a certain underlying priority
order among the implemented LLC set properties, the same priority
order is used within the relocation set to evict a block. For all cases,
an invalid block, if available, is evicted first from the relocation set
honoring the highest priority of the Invalid set property. If there
is no invalid way in the relocation set, the next lower priority level
dictates the replacement policy within the relocation set as discussed
below.

If the LLC implements the NotInPrC or LRUNotInPrC set
property, the replacement policy in the relocation set would vic-
timize the NotInPrC block closest to the LRU position. On
the other hand, if the LLC implements the MaxRRPVNotInPrC
set property, the replacement policy in the relocation set would
victimize the NotInPrC block with as high an RRPV as pos-
sible. When the LLC implements the LikelyDeadNotInPrC
set property and the baseline LLC policy is LRU, the replacement
policy in the relocation set would victimize the LikelyDead block
closest to the LRU position; if there is no LikelyDead block in
the set, it would victimize the NotInPrC block closest to the
LRU position. If, on the other hand, the LLC implements the
MaxRRPVLikelyDeadNotInPrC set property, the replacement
policy in the relocation set would first attempt to victimize the
NotInPrC block with RRPV=7 (corresponds to one of the cache
averse blocks identified by Hawkeye provided it is not privately
cached); if there is no such block in the set, it would victimize the
LikelyDead block with as high an RRPV as possible; if there is
no LikelyDead block in the set, it would victimize the NotInPrC
block with as high an RRPV as possible. The LLC controller needs
to have support for executing two different replacement algorithms:
one for baseline replacement invoked in the case of traditional LLC
fills and another for filling relocated blocks into the relocation sets.

F. Handling Sparse Directory Eviction

The ZIV LLC design relies on the sparse directory structure for
storing the location of a relocated LLC block. Since the sparse
directory is a set-associative tagged structure, it may have to replace
valid entries if needed. The traditional protocol for handling a sparse
directory eviction back-invalidates the privately cached copies of the
block that the evicted directory entry is tracking. Additionally, in the
ZIV LLC design, if the evicted sparse directory entry is tracking a
relocated block, the relocated block must also be invalidated from
the LLC. This invalidation is necessary because there would be no
space to track the location of the relocated block after the directory
entry is evicted.

79

The recently proposed Zero Directory Eviction Victim (Ze-
roDEV) protocol shows how to eliminate the back-invalidations
when a sparse directory entry is evicted [6]. It accommodates the
evicted directory entries in the LLC. When a directory entry is
evicted from the LLC, it avoids generation of back-invalidations
by incorporating novel extensions to the baseline cache coherence
protocol. The ZIV LLC design seamlessly integrates with the Ze-
roDEV protocol. In Section V, we show that this integrated design
maintains its performance leads even in the configurations with
under-provisioned sparse directory structures.

G. Summary of the ZIV LLC Design
The ZIV design rids the inclusive LLC of inclusion victims

by relocating the LLC victims that have copies resident in the
private caches. We have proposed several design options of varying
complexity for choosing a “good” LLC set where such a victim
can be relocated to. The relocation set properties are the primary
performance determinants of the ZIV LLC design because otherwise
all ZIV design variants are free of inclusion victims. The relocation
set properties determine the quality of the LLC victim in the case a
relocation is needed. The ZIV LLC leverages the on-chip coherence
directory for maintaining the new location of the relocated LLC
blocks. The metadata and logic area overheads of the ZIV LLC
design are small.

IV. SIMULATION ENVIRONMENT

We use the Multi2Sim simulation infrastructure [52] to evaluate
our proposal. Table I lists the parameters of the simulated CMP.
We use CACTI [15] to determine the lookup latency of the cache
arrays shown in Table I; the round-trip latency for LLC lookup is
a few tens of cycles as it additionally includes interconnect latency,
waiting time at interface queues, etc.. To evaluate the scalability of
our proposal, we also model a 128-core system having a 32 MB
16-way shared LLC, 128 KB 8-way per-core L2 cache and 32 KB
8-way per-core instruction and data L1 caches. We use this model to
evaluate a server application.

TABLE I
BASELINE SIMULATION ENVIRONMENT

CPU core (eight in number, dynamically scheduled, x86, 4 GHz)
224-entry ROB, 128-entry LSQ, iL1 & dL1 cache: 32 KB/8-way/LRU,
L2 cache: 256 KB/8-way/LRU/4 cycles, 512 KB/8-way/LRU/5 cycles,

768 KB/12-way/LRU/6 cycles
Shared LLC, sparse directory, interconnect

LLC: 8 MB/16-way/8 banks/LRU or Hawkeye/2-cycle tag lookup/
5-cycle data access/64-byte block. Sparse dir.: 2×, 8-way, 1-bit NRU.
Interconnect: 2D mesh, 1 ns routing delay, 0.5 ns link latency.

Main memory (modeled using DRAMSim2 [45])
Two single-channel DDR3-2133 controllers, 64-bit channel, BL=8,
two ranks per channel, x8 DRAM devices, eight banks,
1 KB row buffer per bank, latency parameters: 14-14-14-35

We evaluate five ZIV LLC designs implemented using different
relocation set properties discussed in Section III-D. The properties
NotInPrC, LRUNotInPrC, and LikelyDeadNotInPrC are
evaluated in the context of the LRU policy, while the properties
MaxRRPVNotInPrC and MaxRRPVLikelyDeadNotInPrC
are evaluated in the context of the Hawkeye policy. We compare our
proposals to QBS [20] and SHARP [60] implemented on top of LRU
and Hawkeye policies. For both, the baseline policy determines the
order of search for the victims in each step (e.g., LRU to MRU or
maximum RRPV to minimum RRPV).

We conduct our evaluations on multi-programmed as well
as multi-threaded applications. For homogeneous multi-
programming (multiple copies of the same application run on

the CMP), we select all 36 application-input pairs from the SPEC
CPU 2017 suite and they use the ref inputs. For heterogeneous
multi-programming, we create 36 random workload mixes by
drawing eight different application-input pairs at a time. We ensure
that each application-input pair is represented an equal number
of times in the heterogeneous workload mixes to avoid any bias
toward any particular application. Each application is run for a
representative segment of 500M dynamic instructions selected using
SimPoint [49]. The early-finishing applications continue to run until
each application completes its representative segment. Statistics are
reported by considering only the representative segment of each
application. A small set of multi-threaded applications is selected
with varying performance-sensitivity to inclusion victims. We draw
canneal, facesim, vips from the PARSEC suite [5] and 316.applu
from the the SPEC OMP 2001 suite. We also evaluate TPC-E on
MySQL configured with a 10 GB database, 2 GB buffer pool, 100
clients and run on a 128-core system for five billion instructions.
The TPC-E simulation is done by replaying an instruction trace of
the MySQL server collected using Pin [32].

V. SIMULATION RESULTS

We analyze the performance of the multi-programmed and multi-
threaded workloads in Sections V-A and V-B, respectively. Sec-
tion V-C characterizes the frequency of block relocation and its
energy expense.

A. Performance Analysis of Multi-programmed Workloads
All results presented in this section are normalized to the con-

figuration having 256 KB L2 cache and an inclusive LLC with
LRU policy. This allows us to easily compare different sets of
results along different dimensions. We first discuss the results when
the baseline LLC policy is LRU. Figure 8 shows the performance
results. For each L2 cache capacity, the leftmost two bars correspond
to the baseline inclusive and non-inclusive LLCs. The next two
bars show the performance of QBS and SHARP running with
an inclusive LLC. The last three bars are ZIV LLC designs (we
have shortened LikelyDeadNotInPrC to LikelyDead). With
a 256 KB L2 cache, QBS and SHARP deliver performance close
to the non-inclusive LLC, but fail to scale their performance up
as the L2 cache capacity increases. This is because the number of
LLC blocks not resident in the private caches drops rapidly with
increasing L2 cache capacity and as a result, it becomes increasingly
important to select the appropriate LLC victims from this small set
of LLC blocks that are not resident in the private caches. The ZIV
LLC designs implementing the NotInPrC and LRUNotInPrC
relocation properties perform close to QBS and SHARP. However,
NotInPrC and LRUNotInPrC guarantee freedom from inclusion
victims, while QBS and SHARP do not offer any such guarantee.

B
a

se
 I

n
cl

u
si

ve
N

o
n

-i
n

cl
u

si
ve

Q
B

S
S

H
A

R
P

N
o

tI
n

P
rC

L
R

U
N

o
tI

n
P

rC
L

ik
e

ly
D

e
a

d

256KB L2 Cache 512KB L2 Cache 768KB L2 Cache
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05
1.06

S
p

e
e

d
u

p

Fig. 8. Performance of multi-programmed workloads with LRU as the
baseline LLC policy.

The ZIV LLC design implementing the LikelyDead property
performs the best across the board. Surprisingly, this design even
outperforms the non-inclusive LLC for 256 KB and 512 KB L2
cache capacity points. To understand this, we note that there are

80

three reasons for performance improvement in any ZIV LLC design
compared to the baseline inclusive LLC design: (i) elimination of
inclusion victims, (ii) good selection of LLC victims from relocation
sets, and (iii) bigger set of choices in LLC victim selection at
the time of relocation due to the global nature of relocation set
selection. Any additional performance improvement compared to
non-inclusive LLC arises from (ii) and (iii). On the other hand,
to achieve (i), the ZIV LLC design would sometimes be forced
to choose LLC victims that are poorer in quality compared to the
baseline LLC policy. This effect is visible in the performance of
NotInPrC and LRUNotInPrC for the 512 KB and 768 KB L2
cache capacity points and would be more prominent when we dis-
cuss the results for the Hawkeye policy. To separate the contributions
of (ii) and (iii), we found that when we let the non-inclusive LLC
change its replacement policy from LRU to the LikelyDead
policy without any relocation (replaces the LikelyDead block
closest to the LRU position), it bridged roughly half of the gap
between non-inclusive LLC and the ZIV LLC design exercising
the LikelyDead property for the 256 KB and 512 KB L2 cache
capacity points. The remaining performance gap can be attributed
to (iii). Overall, the ZIV LLC with the LikelyDead property
scales gracefully all the way to 768 KB L2 cache capacity either
meeting or surpassing the performance of a non-inclusive LLC.
However, since its performance with a 768 KB L2 cache is worse
than that with a 512 KB L2 cache, these results do not justify
supporting a 768 KB L2 cache with a ZIV inclusive LLC.

An interesting comparison point is the inclusive LLC design
that selects a LikelyDead block (e.g., the one closest to the LRU
position) inferred by CHAR as the victim in the target LLC set if
the victim picked by the baseline policy has privately cached copies;
if there is no LikelyDead block in the target set or if the baseline
victim has no privately cached copies, the baseline LLC policy is
used. While this policy reduces the volume of inclusion victims
significantly compared to the baseline, it is not free of inclusion
victims. We refer to this policy as CHARonBase; this policy can be
implemented on top of any baseline LLC policy. We find that across
the board, CHARonBase performs better than QBS, SHARP, and the
ZIV LLC designs exercising the NotInPrC and LRUNotInPrC
properties. However, this policy falls significantly short of the ZIV
LLC design exercising the LikelyDead property for the config-
urations with 512 KB and 768 KB L2 cache. The performance of
CHARonBase suffers due to the fact that the baseline policy is used
if there is no LikelyDead block in the target set, even though there
may be LikelyDead blocks in other LLC sets. This result further
underscores the importance of choosing a good global victim in the
ZIV LLC design as the L2 cache capacity grows.

Figure 9 shows the detailed speedup achieved by the ZIV LLC
design exercising the LikelyDead property for the configuration
with 512 KB L2 cache. For the homogeneous mixes, we also note
the top few applications. The average speedup and the speedup
range for each type of mix is also noted. The heterogeneous mixes
tend to benefit more because the memory-intensive applications in
a mix can generate a lot of inclusion victims for all the applications
in the mix, thereby significantly degrading the performance of the
applications that fit in their private caches. We note that 12% of LLC
misses, on average, require relocation with the maximum being 33%
across all these mixes.

Figure 10 shows the normalized LLC misses (upper panel) and
the L2 cache misses (lower panel) averaged across the multi-
programmed workloads. The LLC miss data closely follow the per-
formance trend: the ZIV LLC design exercising the LikelyDead
property saves more LLC misses than the non-inclusive LLC for the
256 KB and 512 KB L2 cache capacity points. The L2 cache miss

gcc.ref32
xalancbmkxz.cld
omnetpp

GEOMEAN=1.06
RANGE=[1.03, 1.13]

GEOMEAN=1.02
RANGE=[1, 1.17]

Homogeneous mixes Heterogeneous mixes
0.96

1
1.04
1.08
1.12
1.16

1.2

S
p

e
e

d
u

p

Fig. 9. Performance of the ZIV LLC design exercising the LikelyDead
property for the configuration with 512 KB L2 cache.

data show that QBS, SHARP, and the ZIV LLC designs all save
nearly the same number of L2 cache misses as the non-inclusive
design across all three L2 cache capacity points. These results
indicate that both QBS and SHARP successfully eliminate most of
the inclusion victims, although they cannot guarantee freedom from
inclusion victims. As already pointed out, these two proposals suffer
in terms of performance due to their choice of LLC victims.

Fig. 10. Normalized LLC and L2 cache misses for the multi-programmed
workloads with LRU as the baseline LLC policy.

Next, we discuss the performance results when the LLC exer-
cises Hawkeye as the baseline policy. Figure 11 shows the per-
formance results. As already mentioned, these results are also
normalized to the configuration having 256 KB L2 cache and
inclusive LLC with LRU policy. For each L2 cache capac-
ity, the rightmost two bars present the performance of the ZIV
LLC designs implementing the MaxRRPVNotInPrC (shortened
to MRNotInPrC) and MaxRRPVLikelyDeadNotInPrC (short-
ened to MRLikelyDead) properties. The general performance
trends are similar to what we have seen with the LRU base-
line. Across the board, the ZIV LLC design implementing the
MRLikelyDead property offers the best performance coming
close to the non-inclusive LLC performance for the 256 KB and
512 KB L2 cache capacity points. This property combines the
likely dead inference of CHAR with the cache-friendly/cache-averse
classification of Hawkeye and offers roughly a percentage more
performance on average compared to the ZIV LLC design exercising
the MRNotInPrC property that relies only on the classification
done by Hawkeye.

We also observe that the MRLikelyDead property cannot out-
perform the non-inclusive LLC design for any L2 cache capacity
point. This is unlike what we have seen when the baseline policy
was LRU. This is because the MRLikelyDead property is not
sufficiently good to compensate the performance loss arising from
the occasional poor choice of LLC victims needed to eliminate the
inclusion victims; the cost of these low-quality victims is very high
in this case because the baseline Hawkeye policy is significantly
better than LRU. The results at the 768 KB L2 cache capacity
point show that we need much smarter relocation properties to

81

justify this L2 cache capacity. Overall, the ZIV LLC design with the
MRLikelyDead property scales well in terms of performance up to
512 KB L2 cache capacity. Figure 12 shows the detailed speedup for
the ZIV LLC design implementing the MRLikelyDead property
for the configuration with 512 KB L2 cache.

Fig. 11. Performance of multi-programmed workloads with Hawkeye as the
baseline LLC policy.

Figure 13 shows the normalized LLC misses (upper panel) and
L2 cache misses (lower panel) for the multi-programmed workloads
when the baseline policy is Hawkeye. The trends in the LLC miss
count follow the performance trend closely. The L2 cache miss
trends are same as what we saw when the baseline LLC policy was
LRU.

GEOMEAN=1.09
RANGE=[1.03,1.14]

xalancbmk
imagickxz.cld

cam4
GEOMEAN=1.05
RANGE=[1,1.16]

Homogeneous mixes Heterogeneous mixes
0.96

1
1.04
1.08
1.12
1.16

1.2

S
p

e
e

d
u

p

Fig. 12. Performance of the ZIV LLC design implementing the
MRLikelyDead property for the configuration with 512 KB L2 cache.

Fig. 13. Normalized LLC and L2 cache misses for the multi-programmed
workloads with Hawkeye as the baseline LLC policy.

Sensitivity to LLC Capacity: The results discussed so far have
used an 8 MB LLC for an 8-core CMP. Figure 14 summarizes
the average performance of the multi-programmed workloads for a
configuration with a 16 MB LLC and per-core 1 MB L2 cache. The
results are normalized with respect to the same baseline used so far,
namely the configuration with an 8 MB inclusive LLC exercising
the LRU policy and 256 KB L2 cache per core. The group of bars
on the left shows the results when the 16 MB LLC’s replacement
policy is LRU, while the group of bars on the right corresponds to the
Hawkeye policy. For the LRU policy, the ZIV LLC design exercising
the LikelyDead property continues to surpass the non-inclusive
design in performance as we observed for an 8 MB LLC. For the
Hawkeye policy, the ZIV LLC designs exercising the MRNotInPrC
and MRLikelyDead properties perform close to the non-inclusive
design.

B
a
s
e
 I
n
c
l.

N
o
n
-i
n
c
l.

L
ik

e
ly

D
e
a
d

B
a
s
e
 I
n
c
l.

N
o
n
-i
n
c
l.

M
R
N
ot

In
PrC

M
R
Li
ke

ly
D
ea

d

LRU Hawkeye
1

1.04
1.08
1.12
1.16

S
p
e
e
d
u
p

Fig. 14. Performance of the multi-programmed workloads for a configuration
with a 16 MB LLC shared among 8 cores and per-core 1 MB L2 cache.

Sensitivity to Sparse Directory Size: Figure 15 shows the perfor-
mance of the multi-programmed workloads as the sparse directory
size is varied from 2× to 1

4× for the configuration with 8 MB LLC,
Hawkeye as the baseline LLC policy, and 256 KB per-core L2 cache.
The left half shows the performance variation when using the tradi-
tional MESI coherence protocol. The baseline inclusive LLC, non-
inclusive LLC, and the ZIV LLC design with the MRLikelyDead
property suffer from performance degradation as the sparse directory
size is reduced; as expected, the non-inclusive LLC gradually loses
its performance advantage over the baseline inclusive LLC due to
the back-invalidations arising from the sparse directory evictions.
However, the ZIV LLC design continues to closely follow the
performance of the non-inclusive LLC. The right half of the figure
shows that the ZeroDEV coherence protocol [6] succeeds in making
the performance nearly invariant of the sparse directory size. It
achieves this by eliminating the back-invalidations that arise from
sparse directory evictions. These results confirm that the ZIV LLC
design integrates seamlessly with the ZeroDEV protocol.

Fig. 15. Sensitivity to sparse directory size for the multi-programmed
workloads with Hawkeye as the baseline LLC policy and 256 KB L2 cache.

B. Performance Analysis of Multi-threaded Workloads
Figures 16 and 17 present the performance results for the multi-

threaded applications for the LRU and Hawkeye baselines, respec-
tively. The results for canneal, facesim, vips, and 316.applu corre-
spond to the configuration with 8 MB LLC and per-core 512 KB L2
cache. The results for TPC-E also correspond to a configuration with
per-core L2 cache capacity being half of per-core LLC capacity, but
since it is run on a 128-core system, it has a 32 MB shared LLC
and 128 KB per-core L2 cache. The results in both the figures are
normalized to the LRU baseline. For the LRU baseline (Figure 16),
canneal, facesim, and vips show very little performance-sensitivity
to inclusion victims. For 316.applu and TPC-E, the ZIV design with
the LikelyDead property performs better than the non-inclusive
LLC design.

With the Hawkeye baseline (Figure 17), both the ZIV LLC
designs (the rightmost two bars for each application) perform close
to the non-inclusive LLC design. We observe that for facesim
and vips the QBS and SHARP proposals perform worse than
the inclusive LLC design. These two applications show small
performance-sensitivity toward inclusion victims (shown by the
small performance difference between baseline inclusive and non-
inclusive LLCs) because the inclusion victims are mostly harmless
from performance viewpoint for these two applications. However,
these applications have a lot of LLC reuses in the baseline inclusive
LLC. QBS and SHARP sacrifice a lot of these LLC hits to save

82

inclusion victims leading to large performance losses. The TPC-
E results validate the scalability of our proposal to larger core-
counts. We also observe that the additional LLC latency incurred for
accessing the shared relocated blocks in the ZIV LLC designs (see
Section III-C1) has very little performance impact as nullifying this
additional latency affects performance by a negligible amount.

B
a
s
e
 I
n
c
lu

s
iv

e
N

o
n
-i
n
c
lu

s
iv

e
Q

B
S

S
H

A
R

P
N

o
tI
n
P

rC
L
R

U
N

o
tI
n
P

rC
L
ik

e
ly

D
e
a
d

canneal facesim vips 316.applu TPC-E
0.99

1
1.01
1.02
1.03
1.04
1.05

S
p
e
e
d
u
p

Fig. 16. Performance of multi-threaded workloads with LRU as the baseline
LLC policy.

M
R

N
o
tI
n
P

rC
S

H
A

R
P

Q
B

S
N

o
n
-i
n
c
l.

B
a
s
e
 I
n
c
lu

s
iv

e

M
R
Li
ke

ly
D
ea

d

canneal facesim vips 316.applu TPC-E
0.92
0.96

1
1.04
1.08
1.12
1.16

S
p
e
e
d

u
p

Fig. 17. Performance of multi-threaded workloads with Hawkeye as the
baseline LLC policy.

C. Relocation Statistics and Energy Expense
Figure 18 shows the cumulative distribution of the interval lengths

(in CPU cycles) between consecutive relocations in an LLC bank
observed across all LLC banks for all multi-programmed and multi-
threaded workloads in the configuration with 512 KB per-core L2
cache and 8 MB LLC (for TPC-E, 128 KB per-core L2 cache and
32 MB LLC). The log of relocation interval length is shown on the x-
axis. The distributions are shown for three ZIV LLC designs (from
left to right) exercising the (i) LikelyDead property (operating
with LRU baseline), (ii) MRNotInPrC property (operating with
Hawkeye baseline), (iii) MRLikelyDead property (operating with
Hawkeye baseline). We make two important observations from
these data. First, for all three designs, the fraction of relocation
intervals that are less than five cycles is extremely small. Recall
that the combinational logic that computes the decoded nextRS
has a latency of three cycles. Therefore, for a vast majority of
cases, the decoded nextRS would be ready long before the need
for the next relocation arises. Second, for the MRNotInPrC and
MRLikelyDead designs, the knee of the distribution shifts signif-
icantly to the left compared to the LikelyDead design indicating
that the Hawkeye baseline needs more frequent relocations and has,
in general, a bigger fraction of smaller relocation intervals. This is
expected given the much higher volume of inclusion victims in the
Hawkeye baseline.

0123456789

log
10

(d)

0
0.2
0.4
0.6
0.8

1

In
te

rv
a
l
C

D
F LikelyDead

0123456789

log
10

(d)

0
0.2
0.4
0.6
0.8

1

In
te

rv
a
l
C

D
F MRNotInPrC

0123456789

log
10

(d)

0
0.2
0.4
0.6
0.8

1

In
te

rv
a
l
C

D
F MRLikelyDead

Fig. 18. Cumulative distribution of relocation intervals (in CPU cycles) in
the configuration with 512 KB L2 cache.

Figure 19 shows the energy expense of relocation as an addition to
energy per instruction (EPI) for the multi-programmed workloads.
The primary energy expense of the ZIV LLC arises from block
relocation and the additional dynamic and leakage energy expended
in the widened sparse directory. Block relocation involves reading

a block out of the LLC and writing it to the relocation set. Using
CACTI we estimate the energy expense assuming 22 nm technology
nodes. Figure 19 shows that as the L2 cache capacity increases,
the EPI contribution also increases due to an increased number of
relocations needed to keep the cache hierarchy free of inclusion
victims. Across all configurations, the contribution to EPI is at
most 12 pJ for the multi-programmed workloads; for the multi-
threaded applications, it is at most 8 pJ (details not shown). These
increments in EPI are small fractions of typical EPI numbers that
range from several tens of pico-Joules to nano-Joules as seen in
different types of instructions across different processors [35], [48],
[53]. Using CACTI and Micron DDR3 power calculator [36], we
further compare this EPI addition against the average EPI saved in
the L2 caches, LLC, and DRAM as a result of fewer L2 cache and
LLC misses and reduced execution time. For the configuration with
512 KB L2 cache, the ZIV LLC exercising the MRLikelyDead
property saves average EPI of 0.5 pJ in the L2 cache and the LLC
and 14.6 pJ in DRAM for the multi-programmed workloads. Since
this configuration expends about 12 pJ of additional EPI in the ZIV
LLC design, our proposal enjoys an overall advantage of at least
about 3 pJ EPI over the inclusive baseline. We expect additional EPI
saving in other system components due to reduced execution time.

Fig. 19. Contribution to average EPI for the multi-programmed workloads.

VI. SUMMARY

We have presented the Zero Inclusion Victim (ZIV) LLC design
that enables for the first time an inclusive LLC with a guarantee
of freedom from inclusion victims. The crux of the design involves
invoking a block relocation protocol whenever the baseline LLC
policy selects a victim that could generate inclusion victims. We
have presented a set of different block relocation policies with
varying complexity and performance goals. The policies differ pri-
marily in terms of the properties satisfied by the target relocation set
where an offending LLC victim is relocated to. The best ZIV LLC
design allows integration of reasonably large private caches (e.g.,
half the LLC capacity) while delivering performance close to a non-
inclusive LLC for different LLC replacement policies as shown by
our evaluation on multi-programmed and multi-threaded workloads.

Our evaluation has shown that as the baseline LLC policy gets
better, it becomes more challenging to design good relocation set
properties that can help the inclusive LLC perform close to the
non-inclusive LLC. Further, as the private cache capacity increases,
this gets even more challenging. While the current study has laid
the foundation for designing ZIV LLCs, an important future work
would be to explore the design of better relocation set properties.
One can compute the optimal relocation victim from among the
LLC blocks that are not resident in the private caches for a given
private cache capacity. Future work needs to explore how close one
can get to this oracle-assisted optimal selection. Another important
future work would be to analyze the security guarantees of the ZIV
LLC design, given that such a design has enabled the much-needed
isolation between the private caches and the inclusive LLC evictions.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers for all
the feedback.

83

REFERENCES

[1] L. Backes and D. A. Jimenez. The Impact of Cache Inclusion Policies
on Cache Management Techniques. In MEMSYS, 2019.

[2] J-L. Baer and W-H. Wang. On the Inclusion Properties for Multi-Level
Cache Hierarchies. In ISCA, 1988.

[3] L. A. Barroso, K. Gharachorloo, and A. Nowatzyk. Method and System
for Exclusive Two-level Caching in a Chip-multiprocessor. US Patent
6725334B2, granted April 2004.

[4] L. A. Belady. A Study of Replacement Algorithms for a Virtual-storage
Computer. In IBM Systems Journal, 5(2): 78–101, 1966.

[5] C. Bienia, et al. The PARSEC Benchmark Suite: Characterization and
Architectural Implications. In PACT , 2008.

[6] M. Chaudhuri. Zero Directory Eviction Victim: Unbounded Coherence
Directory and Core Cache Isolation. In HPCA, 2021.

[7] M. Chaudhuri, et al. Introducing Hierarchy-awareness in Replacement
and Bypass Algorithms for Last-level Caches. In PACT , 2012.

[8] P. Conway, et al. Cache Hierarchy and Memory Subsystem of the AMD
Opteron Processor. In IEEE Micro, 30(2):16–29, March/April 2010.

[9] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and Insertion
Algorithms for Exclusive Last-level Caches. In ISCA, 2011.

[10] D. Gruss, et al. Cache Template Attacks: Automating Attacks on
Inclusive Last-level Caches. In USENIX Security, 2015.

[11] D. Gullasch, at al. Cache Games — Bringing Access-based Cache
Attacks on AES to Practice. In Security & Privacy, 2011.

[12] V. Gupta, et al. Seclusive Cache Hierarchy for Mitigating Cross-Core
Cache and Coherence Directory Attacks. In DATE, 2021.

[13] S. Gupta, H. Gao, H. Zhou. Adaptive Cache Bypassing for Inclusive
Last Level Caches. In IPDPS, 2013.

[14] A. Gupta, et al. Reducing Memory and Traffic Requirements for Scalable
Directory-based Cache Coherence Schemes. In ICPP, 1990.

[15] HP Labs. CACTI: An Integrated Cache and Memory Access Time,
Cycle Time, Area, Leakage, and Dynamic Power Model. Available at
http://www.hpl.hp.com/research/cacti/.

[16] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared Cache Attack
that Works Across Cores and Defies VM Sandboxing — and its
Application to AES. In Security & Privacy, 2015.

[17] R. Iyer. On Modeling and Analyzing Cache Hierarchies using CASPER.
In MASCOTS, 2003.

[18] A. Jain and C. Lin. Back to the Future: Leveraging Belady’s Algorithm
for Improved Cache Replacement. In ISCA, 2016.

[19] A. Jaleel, et al. High Performance Cache Replacement using Re-
reference Interval Prediction (RRIP). In ISCA, 2010.

[20] A. Jaleel, et al. Achieving Non-Inclusive Cache Performance with
Inclusive Caches: Temporal Locality Aware (TLA) Cache Management
Policies. In MICRO, 2010.

[21] A. Jaleel, et al. High Performing Cache Hierarchies for Server Work-
loads: Relaxing Inclusion to Capture the Latency Benefits of Exclusive
Caches. In HPCA, 2015.

[22] N. P. Jouppi and S. J. E. Wilton. Tradeoffs in Two-Level On-Chip
Caching. In ISCA, 1994.

[23] M. Kayaalp, et al. A High-resolution Side-channel Attack on Last-level
Cache. In DAC, 2016.

[24] M. Kayaalp, et al. RIC: Relaxed Inclusion Caches for Mitigating LLC
Side-Channel Attacks. In DAC, 2017.

[25] T. Kim, M. Peinado, and G. Mainar-Ruiz. STEALTHMEM: System-
level Protection Against Cache-based Side Channel Attacks in the Cloud.
In USENIX Security, 2012.

[26] V. Kiriansky, et al. DAWG: A Defense Against Cache Timing Attacks
in Speculative Execution Processors. In MICRO, 2018.

[27] B. O’Krafka and A. Newton. An Empirical Evaluation of Two Memory-
efficient Directory Methods. In ISCA, 1990.

[28] K. M. Lepak and R. D. Isaac. Mostly Exclusive Shared Cache Manage-
ment Policies. US Patent 7640399B1, granted December 2009.

[29] M. Lipp, et al. ARMageddon: Last-level Cache Attacks on Mobile
Devices. In USENIX Security, 2016.

[30] F. Liu, et al. Last-level Cache Side-Channel Attacks are Practical. In
Security & Privacy, 2015.

[31] F. Liu, et al. CATalyst: Defeating Last-level Cache Side Channel Attacks
in Cloud Computing. In HPCA, 2016.

[32] C. Luk, et al. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In PLDI, 2005.

[33] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why On-chip Cache
Coherence is Here to Stay. In CACM, 55(7):78–89, July 2012.

[34] R. L. Mattson, et al. Evaluation Techniques for Storage Hierarchies. In
IBM Systems Journal, 9(2): 78–117, 1970.

[35] M. McKeown, et al. Power and Energy Characterization of an Open
Source 25-Core Manycore Processor. In HPCA, 2018.

[36] Micron Technology, Inc.. Calculating Memory System Power for DDR3.
Micron Technical Note TN-41-01, 2007.

[37] V. Nagarajan, et al. “A Primer on Memory Consistency and Cache
Coherence”. Synthesis Lectures in Computer Architecture, Morgan &
Claypool Publishers, February 2020.

[38] Y. Oren, et al. The Spy in the Sandbox: Practical Cache Attacks in
JavaScript and their Implications. In CCS, 2015.

[39] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermea-
sures: The Case of AES. In Proceedings of the Cryptographers’ Track
at the RSA Conference on Topics in Cryptology, 2006.

[40] D. Page. Partitioned Cache Architecture as a Side-channel Defence
Mechanism. In IACR Eprint archive, 2005.

[41] B. Panda. Fooling the Sense of Cross-Core Last-Level Cache Eviction
Based Attacker by Prefetching Common Sense. In PACT , 2019.

[42] M. K. Qureshi. CEASER: Mitigating Conflict-Based Cache Attacks via
Encrypted-Address and Remapping. In MICRO, 2018.

[43] M. K. Qureshi. New Attacks and Defense for Encrypted-address Cache.
In ISCA, 2019.

[44] T. Ristenpart, et al. Hey, You, Get Off of My Cloud: Exploring
Information Leakage in Third-party Compute Clouds. In CCS, 2009.

[45] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle
Accurate Memory System Simulator. In IEEE Computer Architecture
Letters, 10(1): 16–19, January-June 2011.

[46] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling Ways and
Associativity. In MICRO, 2010.

[47] A. Seznec. A Case for Two-Way Skewed-Associative Caches. In ISCA,
1993.

[48] Y. S. Shao and D. M. Brooks. Energy Characterization and Instruction-
level Energy Model of Intel’s Xeon Phi Processor. In ISLPED, 2013.

[49] T. Sherwood, et al. Automatically Characterizing Large Scale Program
Behavior. In ASPLOS, 2002.

[50] J. Sim, et al. FLEXclusion: Balancing Cache Capacity and On-chip
Bandwidth via Flexible Exclusion. In ISCA, 2012.

[51] W. Song and P. Liu. Dynamically Finding Minimal Eviction Sets Can
Be Quicker Than You Think for Side-Channel Attacks against the LLC.
In USENIX RAID, 2019.

[52] R. Ubal, et al. Multi2Sim: A Simulation Framework for CPU-GPU
Computing. In PACT , 2012.

[53] E. Vasilakis. “An Instruction Level Energy Characterization of ARM
Processors”. Technical Report FORTH-ICS, TR-450, March 2015.

[54] P. Vila, B. Kopf, and J. F. Morales. Theory and Practice of Finding
Eviction Sets. In Security & Privacy, 2019.

[55] Y. Wang, et al. SecDCP: Secure Dynamic Cache Partitioning for
Efficient Timing Channel Protection. In DAC, 2016.

[56] Z. Wang and R. B. Lee. New Cache Designs for Thwarting Software
Cache-based Side Channel Attacks. In ISCA, 2007.

[57] Z. Wang and R. B. Lee. A Novel Cache Architecture with Enhanced
Performance and Security. In MICRO, 2008.

[58] J. Wang, et al. Reducing Data Movement and Energy in Multilevel Cache
Hierarchies without Losing Performance: Can you have it all? In PACT ,
2019.

[59] C-J. Wu, et al. SHiP: Signature-Based Hit Predictor for High Perfor-
mance Caching. In MICRO, 2011.

[60] M. Yan, et al. Secure Hierarchy-Aware Cache Replacement Pol-
icy (SHARP): Defending Against Cache-Based Side Channel Attacks.
In ISCA, 2017.

[61] M. Yan, et al. Attack Directories, Not Caches: Side Channel Attacks in
a Non-inclusive World. In Security & Privacy, 2019.

[62] Y. Yarom and K. Falkner. FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-channel Attack. In USENIX Security, 2014.

[63] M. Zahran, K. Albayraktaroglu, and M. Franklin. Non-Inclusion Prop-
erty in Multi-level Caches Revisited. In IJCA, 14(2), June 2007.

[64] L. Zhao, et al. NCID: A Non-inclusive Cache, Inclusive Directory
Architecture for Flexible and Efficient Cache Hierarchies. In CF, 2010.

[65] Y. Zhang, et al. Cross-tenant Side-channel Attacks in PaaS Clouds. In
CCS, 2014.

[66] Y. Zheng, B. T. Davis, and M. Jordan. Performance Evaluation of
Exclusive Cache Hierarchies. In ISPASS, 2004.

[67] Z. Zhou, M. K. Reiter, and Y. Zhang. A Software Approach to Defeating
Side Channels in Last-level Caches. In CCS, 2016.

84

