
Exploiting Dynamic Reuse Probability to Manage Shared
Last-level Caches in CPU-GPU Heterogeneous Processors

Siddharth Rai
Dept. of Computer Science and Engineering

Indian Institute of Technology, Kanpur
Uttar Pradesh 208016, INDIA

sidrai@cse.iitk.ac.in

Mainak Chaudhuri
Dept. of Computer Science and Engineering

Indian Institute of Technology, Kanpur
Uttar Pradesh 208016, INDIA
mainakc@cse.iitk.ac.in

ABSTRACT
Recent commercial chip-multiprocessors (CMPs) have inte-
grated CPU as well as GPU cores on the same die. In to-
day’s designs, these cores typically share parts of the mem-
ory system resources. However, since the CPU and the GPU
cores have vastly different resource requirements, challeng-
ing resource partitioning problems arise in such heteroge-
neous CMPs. In one class of designs, the CPU and the GPU
cores share the large on-die last-level SRAM cache. In this
paper, we explore mechanisms to dynamically allocate the
shared last-level cache space to the CPU and GPU applica-
tions in such designs. A CPU core executes an instruction
progressively in a pipeline generating memory accesses (for
instruction and data) only in a few pipeline stages. On the
other hand, a GPU can access different data streams having
different semantic meanings and disparate access patterns
throughout the rendering pipeline. Such data streams in-
clude input vertex, pixel depth, pixel color, texture map,
shader instructions, shader data (including shader register
spills and fills), etc.. Without carefully designed last-level
cache management policies, the CPU and the GPU data
streams can interfere with each other leading to significant
loss in CPU and GPU performance accompanied by degra-
dation in GPU-rendered 3D animation quality. Our proposal
dynamically estimates the reuse probabilities of the GPU
streams as well as the CPU data by sampling portions of
the CPU and GPU working sets and storing the sampled
tags in a small working set sample cache. Since the GPU ap-
plication working sets are typically very large, for this work-
ing set sample cache to be effective, it is custom-designed to
have large coverage while requiring few tens of kilobytes of
storage. We use the estimated reuse probabilities to design
shared last-level cache policies for handling hits and misses
to reads and writes from both types of cores. Studies on a
detailed heterogeneous CMP simulator show that compared
to a state-of-the-art baseline with a 16 MB shared last-level
cache, our proposal can improve the performance (frame rate
or execution cycles, as applicable) of eighteen GPU work-
loads spanning DirectX and OpenGL game titles as well as
CUDA applications by 12% on average and up to 51% while
improving the performance of the co-running quad-core CPU
workload mixes by 7% on average and up to 19%.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS ’16, June 01-June 03, 2016, Istanbul, Turkey
c© 2016 ACM. ISBN 978-1-4503-4361-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2925426.2926266

CCS Concepts
•Computer systems organization → Heterogeneous
(hybrid) systems;

Keywords
CPU-GPU integration; shared last-level cache; temporal reuse

1. INTRODUCTION
Recent commercial chip-multiprocessors (CMPs) have in-

tegrated CPU as well as GPU cores on the same die. These
include AMD’s accelerated processing unit (APU) family [2,
30, 65] and Intel’s Sandy Bridge, Ivy Bridge, Haswell, Broad-
well, and Skylake processors [11, 18, 28, 29, 52, 61, 68]. In
these processors, the CPU and the GPU cores share signifi-
cant portions of the memory system resources. For example,
in AMD APU architectures, the CPU and the GPU cores
share everything beyond the on-die cache hierarchy includ-
ing memory controllers and DRAM banks. In the Intel’s
integrated designs, the CPU and the GPU cores share the
large on-die last-level (L3) cache in addition to sharing the
in-package L4 eDRAM cache (available in Haswell, Broad-
well, and Skylake parts), the on-die interconnect, memory
controllers, and the DRAM banks. Such tight integration
of CPU and GPU cores necessitates dynamic partitioning of
the memory system resources so that both types of cores can
be used simultaneously to obtain the best performance from
such systems. In this paper, we squarely focus on the designs
where the last level of the cache hierarchy is shared between
the CPU and the GPU cores and address the problem of dy-
namically allocating the shared cache space to the CPU and
the GPU applications.

The traditional CPU core pipeline needs to access the
memory hierarchy for fetching instructions and data. A typ-
ical graphics processing pipeline accesses the memory hier-
archy for fetching various types of data touched by the fixed
function units as well as the programmable shader cores.
These include polygon vertices, vertex indices, depth buffers
(Z buffers holding pixel depth values), hierarchical depth
buffers (HiZ buffers holding hierarchical depth values to re-
duce Z buffer bandwidth [16]), render targets (holding pixel
color data), texture maps, shader instructions, and shader
data (including shader register spills and fills). While a
3D scene rendering application can generate accesses to all
these different data streams, a general-purpose computing
application running on the GPU (usually referred to as a
GPGPU application) exercises only a portion of the render-
ing pipeline (primarily the shader cores) and does not need
to access all these data types.

Ideally, a heterogeneous CMP makes simultaneous use of
both CPU and GPU cores. As the CPU and the GPU
working sets contend for the last-level cache (LLC) capac-

ity, the destructive interference arising from this contention
can significantly hamper the progress of the tasks being ex-
ecuted by the CPU and the GPU cores. More importantly,
if the integrated GPU is being used to render 3D scenes,
the end-user’s visual experience can suffer from unaccept-
able degradation. To quantify this loss in performance when
both types of cores are active, we conduct an experiment
where we run GPU jobs standalone by keeping the CPU
core(s) free, CPU jobs standalone by keeping the GPU free,
and finally, both types of jobs simultaneously in heteroge-
neous mode. Figure 1 shows the speedup achieved by the
standalone execution over the heterogeneous execution when
the simulated CMP is equipped with a shared 16 MB LLC.1

The top panel shows the results for a single CPU core and
single GPU configuration (1C1G), the middle panel shows
the results for a dual-core CPU and single GPU configura-
tion (2C1G), and the bottom panel shows the results for a
quad-core CPU and single GPU configuration (4C1G). In all
cases, the GPU executes 3D scene rendering jobs drawn from
fourteen DirectX 9 and OpenGL game titles and four general-
purpose CUDA applications. The corresponding eighteen
single-, dual-, and quad-core CPU jobs are prepared by ran-
domly mixing memory-sensitive SPEC 2006 applications. The
heterogeneous workloads are denoted by S1-S18, D1-D18,
and Q1-Q18, respectively for 1C1G, 2C1G, and 4C1G con-
figurations. The set of eighteen GPU workloads is kept fixed
in these configurations. In the first fourteen heterogeneous
mixes, the GPU workloads are 3D scene rendering jobs, while
in the last four heterogeneous mixes, the GPU workloads are
general-purpose CUDA applications. The CPU (GPU) bar
shows the speedup enjoyed by the CPU (GPU) job when
it runs alone compared to when it runs together with a
GPU (CPU) job.

S1 S2 S3 S4 S5 S6 S7 S8 S10 S12 S14 S16 S18
0

0.5

1

1.5

2

2.5

G
M
E
A
N

CPU

GPU

D1 D2 D3 D4 D5 D6 D7 D8 D10 D12 D14 D16 D18
0

0.5

1

1.5

2

2.5

G
M
E
A
N

2.
9

3.
0

CPU

GPU

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q12 Q14 Q16 Q18
0

0.5

1

1.5

2

2.5

S
p
e
e
d
u
p
 o

f
s
ta

n
d
a
lo

n
e
 o

v
e
r

h
e
te

ro
g
e
n
e
o
u
s
 b

a
s
e
lin

e

G
M
E
A
N

3.
3

2.
9

CPU

GPU

Figure 1: Speedup achieved by standalone execution
over heterogeneous execution with a 16 MB LLC.

From these results, we see that for a 1C1G CMP, if only
the CPU is active, the CPU job enjoys an average (geomet-
ric mean) speedup of 35% (see the CPU bar in the GMEAN
group of the top panel) compared to the situation when the
CPU job runs along with a GPU workload. Similarly, if
only the GPU is active, the GPU job experiences an average
speedup of 21% compared to running together with a CPU
job.2 As the number of active CPU cores increases, the inter-
ference experienced by the GPU workloads increases sharply.
For a 2C1G CMP, a standalone GPU job enjoys a 32% aver-

1 Section 3 discusses our simulation environment.
2 The speedup figures experienced by the standalone runs
can also be interpreted as the slowdown suffered by the het-
erogeneous runs.

age speedup compared to when it has a co-running dual-core
CPU workload. A standalone dual-core CPU workload en-
joys a 35% speedup on average compared to when it has a co-
running GPU workload. For a 4C1G CMP, the speedup fig-
ures observed by the standalone GPU and CPU runs are 54%
and 26%, respectively. As expected, with increasing CPU
core count, the GPU workloads suffer more compared to the
CPU workloads in the heterogeneous mode. A prior study
exploring GPU concurrency management in CPU-GPU het-
erogeneous processors also examined similar performance in-
terference between co-running CPU and GPGPU applica-
tions [31].

These results clearly indicate that without a carefully de-
signed LLC management policy, the performance degrada-
tion in both CPU and GPU workloads can be significant in
heterogeneous CMPs. More importantly, the large degra-
dation in graphics frame rates can severely hurt the visual
experience of the end-users. In this work, we attempt to
recover some of this lost performance by designing an LLC
policy that takes into account dynamic reuse probabilities of
different GPU as well as CPU data streams. We motivate
our proposal by quantifying upper bounds on performance
benefits as well as LLC miss savings that the CPU and the
GPU workloads can enjoy through better management of the
shared LLC in heterogeneous CMPs (Section 4). The cen-
tral contribution of our proposal is a novel working set sam-
pling technique that we employ to dynamically estimate the
reuse probabilities of individual data streams coming from
CPU and GPU. The estimated dynamic reuse probabilities
are used to drive algorithms to manage the shared LLC (Sec-
tion 5). Our detailed simulation results show that the pro-
posed algorithm is able to improve the GPU performance by
12% on average (up to 51%) and CPU workload performance
by 7% on average (up to 19%) compared to a state-of-the-art
heterogeneous baseline CMP in the 4C1G configuration (Sec-
tion 6).

2. RELATED WORK
In this section, we discuss the contributions related to the

management of LLCs in general-purpose CPUs, heteroge-
neous CMPs, and discrete GPUs.

2.1 LLC Management in CPUs
Dynamic insertion policy (DIP) adaptively inserts a block

into the LLC at the LRU or the MRU position depending
on the outcome of a set-sampling-based duel between LRU
insertion and MRU insertion policies [53]. On a cache hit, a
block is always upgraded to the MRU position. The replace-
ment policy always victimizes the block at the LRU position.
This algorithm tries to eliminate the single-use blocks from
the LLC as early as possible without disturbing the rest of
the contents of the LLC. A subsequent proposal has shown
how to employ this policy in a shared LLC of a multi-core
processor so that each thread can choose the best insertion
policy [25]. A decision-tree based insertion age inference al-
gorithm has also been proposed [37].

The concepts of re-reference prediction value (RRPV) and
re-reference interval prediction (RRIP) are introduced in [24].
The RRPV of a block maintains an inverse relation with
the block’s victimization priority. With an n-bit RRPV,
the static re-reference interval prediction (SRRIP) algorithm
statically assigns an RRPV of 2n − 2 to a block on inser-
tion into the LLC. On a hit, the RRPV of the block is up-
dated to zero. A block with RRPV 2n − 1 is selected as the
victim. The dynamic re-reference interval prediction (DR-
RIP) algorithm dynamically chooses between two insertion
RRPVs, namely, 2n−2 and 2n−1 based on the outcome of a
set-sampling-based duel. Thread-aware DRRIP (TADRRIP)

applies the technique proposed in [25] to allow multiple in-
dependent threads to execute DRRIP in a multi-core shared
LLC. Recent proposals exploit signature-based hit predic-
tion (SHiP) to improve the RRIP policies by using the pro-
gram counters (SHiP-PC), memory addresses (SHiP-mem),
or code path signatures (SHiP-Iseq) of the load/store instruc-
tions [66]. These variants of RRIP differ only in the way they
assign a victimization priority to a block at the time of in-
sertion into the LLC, but they handle hits and replacements
in the same way. Explicit prediction of reuse distance [33],
estimation of approximate next-use distance [48], and esti-
mation of protection distance [13] have also been used to
improve LLC performance.

Algorithms to partition the LLC among the referenced and
non-referenced blocks and grow/shrink these partitions based
on the dynamic demand have been explored [35]. Also, there
have been LLC management proposals designed based on the
observation that the LLC read misses originating from loads
are more critical than those originating from stores [34]. Use
of a small Bloom filter to capture a subset of the recently
evicted blocks and algorithms to offer higher protection to
a subset of such blocks which are accessed soon have been
explored [59].

Another class of LLC management policies attempt to pre-
dict the dead blocks in the cache and victimize them early.
The dead block prediction algorithms correlate the program
counters of the load/store instructions with the death of the
cache blocks that these instructions touch [21, 36, 38, 39,
41, 45]. Probabilistic escape LIFO is a light-weight dead
block prediction technique that does not require the pro-
gram counter signature and relies only on the fill order of
the cache blocks within a cache set [5]. Reuse pattern-based
simple hints from the inner levels of the cache hierarchy in
conjunction with a clever partitioning of the address space
have also been used to effectively identify the dead and live
LLC blocks [4, 15].

Algorithms have been proposed to explicitly partition the
shared LLC among the competing threads of a multi-core
processor. The utility-based cache partitioning (UCP) algo-
rithm carries out a coarse-grain partitioning of the LLC by
dynamically assigning a number of ways to each thread [54].
The promotion/insertion pseudo-partitioning (PIPP) policy
improves UCP by designing smart insertion and promotion
policies for cache blocks within each partition [67]. Subse-
quent proposals such as Vantage [58] and PriSM [47] elimi-
nate the limitations of way-grain partitioning and allow each
thread to have an arbitrary fine-grained partition. A recent
proposal designs dynamic partitioning policies for the LLC
using a model that can predict the application slowdown
caused by the destructive interference in the LLC shared by
multiple CPU cores [62]. Since the existing cache partition-
ing techniques treat the streams or threads as independent,
these techniques cannot be applied directly to the 3D graph-
ics streams, which have significant inter-stream data shar-
ing (e.g., between render target and texture sampler access
streams [14]). Our policy, instead of carrying out an explicit
partitioning, induces implicit fine-grain partitions among the
streams by estimating per-stream dynamic reuse probability
and allocating more space to the streams that are likely to
enjoy more reuses.

2.2 Managing LLC in Heterogeneous CMPs
The TLP-aware policies (TAP) for managing the LLC in a

heterogeneous CMP extend RRIP and UCP policies to take
into account GPU accesses to the shared LLC [43]. Since
these policies only target GPGPU-style scientific computing
workloads running on the GPU, it is enough to understand
how the shader cores react to changing LLC allocations ignor-
ing the performance of the rest of the graphics pipeline. As a

result, these policies (TAP-RRIP and TAP-UCP) sample two
shader cores and allow the accesses coming from these two
cores to follow LRU and MRU insertion policies in the LLC.
Based on the performance difference of these two sampled
cores, the proposal decides if the executing GPU application
is LLC-sensitive. Accordingly, the proposal makes modifica-
tions to the RRIP and UCP policies. To apply this proposal
to 3D scene rendering applications, it is necessary to sam-
ple two rendering pipelines consisting of two distinct slices
of several fixed function units as well as two shader cores.
To observe any difference in performance between the two
sampled rendering pipelines, enough work must be done by
the pipelines; the difference in performance impact due to
LRU and MRU insertions takes time to manifest, particu-
larly in the presence of large reuse distances so that even the
MRU-inserted blocks may get replaced before getting reused.
We observe that this time window is typically equivalent to
processing of a few batches of polygons. However, to sat-
isfy ordering requirements between two consecutive batches,
the processing of a fresh batch cannot begin until the pro-
cessing of the last batch is completed. Due to this implicit
synchronization between the parallel rendering pipelines in-
side the GPU, the performance difference between the sam-
pled pipelines cannot be accumulated across batches. As a
result, sampling different pipelines and observing how they
react to different LLC policies, as TAP does, is not helpful
for 3D scene rendering workloads. In contrast, our proposal
improves the performance of the entire graphics pipeline by
basing the LLC policy decisions on estimated dynamic reuse
probabilities.

Another proposal (HeLM) considers not allocating a frac-
tion of the GPU data (coming from GPGPU-style scientific
computing workloads running on the GPU) in the shared
LLC if it is estimated that the CPU workload is LLC-sensitive
and the GPU workload can tolerate LLC miss latency [50].
The degree of latency tolerance of a GPU workload is deter-
mined by taking into account the number of shader thread
contexts ready to be scheduled at any point in time. A larger
number of ready contexts usually offers bigger latency toler-
ance. The exact relationship between the degree of latency
tolerance and the volume of ready thread contexts is esti-
mated by sampling two shader cores and letting them bypass
their misses at two different rates (one low and one high).
Since the performance difference between two widely different
bypass rates becomes visible much faster than LRU/MRU in-
sertions (as is done in TAP), we find that the HeLM proposal
can be adopted to the rendering pipelines more effectively
even in the presence of the implicit synchronization between
consecutive polygon batches. However, since HeLM relies on
the number of ready shader thread contexts for determining
the degree of latency tolerance, such a technique is expected
to work only for those GPU workloads that exercise only the
shader cores of the GPU and no other parts of the render-
ing pipeline. We study the potential improvements that can
come from LLC bypassing in Section 4 and quantitatively
compare our proposal with HeLM in Section 6.

To the best of our knowledge, ours is the first proposal that
considers optimizations to the shared LLC of a heterogeneous
CMP executing 3D graphics as well as GPGPU workloads in
the presence of co-running CPU workloads.

2.3 LLC Management in Discrete GPUs
The graphics stream-aware probabilistic caching proposal

discusses algorithms for improving the LLC performance in
discrete GPUs [14]. These algorithms exploit semantic in-
formation regarding 3D graphics streams and modulate the
RRPV of a block based on the reuse behavior of the stream it
belongs to. Since the reuse behavior is estimated by observ-
ing a few sampled LLC sets, the estimation is not accurate

and changes depending on the accuracy of the replacement
policies of the sampled LLC sets. In this paper, we estimate
reuse probabilities by working set sampling, which is not af-
fected by the implementation of the LLC.

Large number of proposals have explored policies to im-
prove the efficiency of the internal caches in the discrete
GPUs. These include shader cores’ L1 cache bypass policies
for GPGPU-style scientific computing workloads [8], shader
cores’ L1 cache allocation policies based on a certain pri-
ority assignment to the shader threads executing GPGPU-
style scientific computing workloads [44], and various opti-
mization on the texture cache architecture [9, 10, 17, 22,
23, 64]. Additionally, there have been proposals exploring
shader thread scheduling mechanisms that are shader cores’
L1 cache performance-aware [26, 27, 32, 42, 55] or memory
divergence-aware [56]. DRAM scheduling techniques to min-
imize the main memory access latency variation across the
shader threads within a scheduling group (called a warp in
Nvidia GPUs) have also been proposed [3]. Some of these
memory hierarchy-aware scheduling techniques may help ad-
dress shader thread-induced contention in large LLCs in ap-
plications that make heavy use of the shader cores to pro-
cess large amounts of global data with irregular access pat-
terns. However, in the 3D scene rendering applications, large
volumes of data originate from fixed-function hardware and
the shader threads typically operate on contiguously allo-
cated pixel fragments (during pixel shading) and vertex at-
tributes (during vertex shading) ruling out the possibility of
conflict-induced loss of locality in shader data. Further, in
Section 4, we show that the shader data/instruction streams
offer no opportunity for improving LLC misses in the 3D
scene rendering applications.

3. SIMULATION ENVIRONMENT
We use an in-house modified version of the Multi2Sim sim-

ulator [63] to model the CPU cores of the simulated heteroge-
neous CMP. Each dynamically scheduled out-of-order issue
x86 core is clocked at 4 GHz. Each core has private L1 and
L2 caches. The L1 instruction and data caches are 32 KB
in size and eight-way set-associative. The unified L2 cache
is 256 KB in size and eight-way set-associative. The L1 and
L2 cache lookup latencies are two and three cycles, respec-
tively (determined using CACTI for 22 nm node3). All L1
and L2 caches have a block size of 64 bytes.

We use two GPU simulators, one to execute the 3D scene
rendering jobs and the other to execute the CUDA appli-
cations. The 3D scene rendering GPU is modeled with an
upgraded version of the Attila GPU simulator [51]. The
simulator has enough details to capture all the phases of
the entire rendering pipeline. The simulated GPU uses a
unified shader model where the same set of shader cores is
used to carry out vertex shading as well as pixel (or frag-
ment) shading. The GPU has 64 shader cores clocked at
1 GHz. Each shader core has four ALUs and each ALU is
equipped with a 4-way SIMD vector unit and a scalar unit.
Thus, each shader core has a peak throughput of sixteen sin-
gle precision floating-point operations every cycle leading to
an overall single-precision floating-point throughput of one
tera-FLOPS for the GPU. The GPU has enough register re-
sources to maintain 4096 in-flight shader thread contexts,
where each thread, when scheduled on a shader core, can
issue four 4-way SIMD operations in a cycle.4 The shader
core scheduler executes a round-robin scheduling algorithm

3 We use the CACTI distribution that comes with the Mc-
PAT tool [20].
4 To correspond to the usual terminology, each thread (or
sixteen-way vector thread) here can be seen as a warp or
wavefront issuing sixteen operations in lock-step in a cycle.

among the ready thread contexts. A running thread changes
state to blocked when it issues either a branch instruction or
a texture load instruction. Each shader core is attached to
two texture samplers. Each texture sampler can process one
32-bit texel per cycle giving rise to a peak texture fill rate of
128 GTexels/second. The simulated GPU has sixteen render
output pipeline (ROP) units. The ROP units receive quad-
pixel stamps after they are processed by the shader cores.
Each ROP has a depth test unit, a pixel color blending unit,
and a color writer unit that writes out the final pixel color.
Each of these units can process one quad-pixel stamp every
cycle leading to a peak pixel fill rate of 64 GPixels/second.
The GPU has a three-level non-inclusive texture cache hier-
archy resembling the texture cache hierarchy of Intel’s inte-
grated GPUs (Gen7 onward) [28]. The L0 texture cache is
2 KB fully-associative and private to each sampler. The L1
texture cache is 64 KB 16-way set-associative and shared by
all the samplers. The L2 texture cache is 384 KB 48-way set-
associative and shared by all the samplers. All texture caches
have a block size of 64 bytes. Each ROP unit is equipped
with a 2 KB fully-associative L1 depth cache and a 2 KB
fully-associative L1 color cache with block size of 256 bytes.
The non-inclusive L2 depth and color caches are each 32 KB
32-way set-associative with 64-byte blocks and shared by all
ROP units. Additionally, the simulated GPU has a fully-
associative 16 KB vertex cache, a 16 KB 16-way hierarchical
depth (HiZ) cache, and a 32 KB 8-way shader instruction
cache.

The GPU model used for executing the CUDA applications
is borrowed from the MacSim simulator [40], which makes use
of the GPUOcelot tool [12] for capturing the CUDA applica-
tion instructions. Since the CUDA applications make use of
the shader cores only, the GPU simulator contains a detailed
model of the shader core island of the GPU. We borrow the
following configuration of this GPU model from the recently
published studies in the same area [43]. The GPU has six
shader cores (similar to the streaming multiprocessors of the
Nvidia GPUs), each clocked at 1.5 GHz and each having re-
sources to maintain a maximum of eighty warp contexts (each
warp has 32 threads). The instruction scheduler of each
shader core selects two ready warps from the pool of eighty
warps every fourth cycle. The peak execution throughput of
each shader core is sixteen single-precision floating-point op-
erations per cycle. Each shader core is equipped with a 4 KB
eight-way instruction cache, a 32 KB 8-way data cache, an
8 KB texture cache, an 8 KB constant cache, and a 16 KB
software-managed shared memory.

Depending on the type of the GPU workload being exe-
cuted, one of the two GPU models gets attached to the rest
of the heterogeneous CMP. The shared LLC of the hetero-
geneous CMP receives requests that miss in the CPU cores’
L2 caches or GPU’s vertex cache, HiZ cache, shader caches,
L2 texture cache, L2 depth cache, or L2 color cache (we con-
sider all requests coming from the shader cores as originating
from the shader cache misses). The LLC is 16 MB 16-way
set-associative with a lookup latency of ten cycles. The LLC
maintains inclusion for all CPU data and instructions. How-
ever, the GPU data are not kept inclusive in the sense that on
an LLC eviction, a back-invalidation is not sent to the GPU’s
internal caches. Such a design decision also keeps open the
option of bypassing the LLC on an LLC read miss for GPU
data.

The simulated heterogeneous CMP is equipped with two
on-die single-channel memory controllers. Each memory con-
troller connects to a 2 GB DRAM module modeled using
DRAMSim2 [57]. Each DRAM module is eight-way banked
single-rank DDR3-2133 with 14-14-14 latency parameters and
burst length eight. The memory controllers implement the
FR-FCFS scheduling algorithm. The CPU cores along with

Table 1: Graphics frame details

Application DirectX/ Frames Resolution Application DirectX/ Frames Resolution
OpenGL OpenGL

3DMark06 GT1 DirectX 670–671 1280×1024 Half Life 2 (HL2) DirectX 25–27 1600×1200
3DMark06 GT2 DirectX 500–501 1280×1024 Left for Dead (L4D) DirectX 601–605 1280×1024
3DMark06 HDR1 DirectX 600–601 1280×1024 Need for Speed (NFS) DirectX 10–12 1280×1024
3DMark06 HDR2 DirectX 550–551 1280×1024 Quake4 OpenGL 300–304 1600×1200
Call of Duty 2 DirectX 208–209 1920×1200 Chronicles of Riddick OpenGL 253–257 1280×1024
(COD2) (COR)
Crysis DirectX 400–401 1920×1200 Unreal Tournament OpenGL 200–204 1600×1200

2004 (UT2004)
DOOM3 OpenGL 300–304 1600×1200 Unreal Tournament 3 (UT3) DirectX 955–957 1280×1024

Table 2: CUDA application details

Application Source // Input // Executed portion // Thread and block configuration

cfd (euler3d) Rodinia 3.0 [6, 7] // fvcorr.comn.097k // First 71 kernel invocations // 759 blocks×128 threads/block
blackscholes CUDA SDK 4.2 // Generated by app. // Full // 480 blocks×128 threads/block
fastwalsh CUDA SDK 4.2 // Generated by app. // First two kernel invocations // 8192 blocks×256 threads/block
reduction CUDA SDK 4.2 // 16K elements // Sixth kernel // 64 blocks×256 threads/block

their private caches, the GPU, the LLC, and the memory
controllers are arranged on a bidirectional ring interconnect
having a single-cycle hop time.

The heterogeneous workloads used in this study are built
by mixing CPU applications drawn from the SPEC 2006 suite
and 3D scene rendering jobs drawn from fourteen popular Di-
rectX 9 and OpenGL game titles as well as four CUDA ap-
plications drawn from publicly available benchmark suites.
The DirectX and OpenGL API traces for the selected 3D
animation frames are obtained from the Attila simulator dis-
tribution and the 3DMark06 suite [69]. The simulated game
regions (i.e., sequences of frames) are selected at random af-
ter skipping over the initial sequence and detailed in Table 1.
The details of the selected CUDA applications are shown in
Table 2. The graphics API traces or the CUDA applica-
tion’s shader instruction traces (as applicable) are replayed
through the GPU simulator, while the selected mixes of the
SPEC 2006 applications are simulated in execution-driven
mode on the CPU cores. Table 3 lists the 1C1G, 2C1G,
and 4C1G workload mixes (S1-S18, D1-D18, and Q1-Q18,
respectively) used in this study. The GPU workload is same
in Sn, Dn, and Qn for a given n. One, two, and four different
memory-sensitive SPEC 2006 applications are drawn at ran-
dom and associated with the GPU workload to complete the
mix Sn, Dn, and Qn, respectively. Each CPU application in
a mix commits at least 250 million representative dynamic
instructions [60] and early-finishing applications continue to
run until each CPU application commits its representative
set of dynamic instructions and the GPU completes render-
ing the set of 3D frames or the portion of the CUDA appli-
cation assigned to it. The performance of the CPU mixes is
measured in terms of average instructions per cycle through-
put. The GPU performance for the 3D scene rendering jobs
is measured in terms of average frame rate and for the CUDA
applications, the number of execution cycles to complete the
job is used.

4. MOTIVATION
In this section, we motivate our proposal by validating

that saving LLC misses can bring performance improvements
in the CPU-GPU heterogeneous system under consideration.
First, we show that there is a significant room left for sav-
ing LLC misses compared to the state-of-the-art proposals.
Second, we quantify the potential improvements in the GPU
performance as the LLC gradually approaches an ideal cache

that only suffers from the compulsory misses. This valida-
tion is necessary before embarking on our proposal because
the GPU is designed to have reasonable latency tolerance
and as a result, LLC miss savings may not always translate
to performance improvements. The same aspect of the GPU
architecture motivates our third study that explores the po-
tential impact on the performance of the CPU and the GPU
when the GPU read misses are forced to selectively bypass
the LLC and not allocate in the LLC.

4.1 Study on LLC Miss Savings
In this section, we evaluate a number of existing proposals

in terms of the LLC read miss count and establish that there
is a significant gap left between these proposals and the offline
optimal policy due to Belady [1, 49]. We first briefly discuss
the evaluated proposals in the following.
Baseline: The baseline LLC follows the originally proposed
SRRIP algorithm [24] when serving read misses, read hits,
and LLC replacements. Additionally, the GPU can generate
writes to blocks that are not resident in the LLC. Such a
situation can arise for three reasons. First, the GPU can al-
locate and write to data in its internal color and depth caches
without notifying the LLC and later it evicts such data from
the internal caches to the LLC. Second, since the LLC does
not maintain inclusion for GPU data, writebacks from GPU’s
internal caches may miss the LLC. Third, the shader cores
bypass the private data caches (in addition to evicting the
target data cache block) when storing to global data to main-
tain coherence. As a result, all the evaluated policies must
handle write misses and hits. Among the GPU data streams
that are written to, color, depth, and shader data are the
most important ones because these data are often reused by
future reads. In both DirectX and OpenGL applications, dy-
namically generated color data can be reused as a texture for
sampling [46]. Such texture data are usually referred to as
dynamic texture data [19]. There are two ways to use color
data as a texture map. First, a render target (containing
color data) can be directly bound as a sampler resource and
used as a texture map in DirectX applications. Second, the
color data can be copied from the renderbuffer (of OpenGL)
or render target (of DirectX) and transformed into a separate
memory region before these data can be sampled as texture.
This operation is known as blitting and the writes coming
from the blitter to the LLC are also important from the view-
point of future read reuses. Additionally, depth buffer con-

Table 3: Heterogeneous workload mixes

GPU workload CPU workload mix (Sn: 1C1G // Dn: 2C1G // Qn: 4C1G)

3DMark06 GT1 S1: wrf // D1: mcf, milc // Q1: gcc.166.i, soplex.pds-50, sphinx3, wrf
3DMark06 GT2 S2: omnetpp // D2: bwaves, milc // Q2: gcc.166.i, mcf, sphinx3, zeusmp
3DMark06 HDR1 S3: lbm // D3: bzip2.source, lbm // Q3: bzip2.source, lbm, leslie3d, soplex.pds-50
3DMark06 HDR2 S4: sphinx3 // D4: lbm, libquantum // Q4: bzip2.source, lbm, libquantum, omnetpp
COD2 S5: lbm // D5: bzip2.source, lbm // Q5: bzip2.source, lbm, leslie3d, soplex.pds-50
Crysis S6: mcf // D6: soplex.pds-50, wrf // Q6: mcf, milc, sphinx3, zeusmp
DOOM3 S7: libquantum // D7: libquantum, omnetpp // Q7: bwaves, libquantum, milc, omnetpp
HL2 S8: gcc.166.i // D8: bwaves, omnetpp // Q8: bwaves, mcf, milc, zeusmp
L4D S9: libquantum // D9: libquantum, omnetpp // Q9: bwaves, libquantum, milc, omnetpp
NFS S10: leslie3D // D10: gcc.166.i, wrf // Q10: bwaves, mcf, milc, omnetpp
Quake4 S11: bwaves // D11: mcf, zeusmp // Q11: bzip2.source, leslie3d, soplex.pds-50, wrf
COR S12: zeusmp // D12: bzip2.source, leslie3D // Q12: gcc.166.i, leslie3d, soplex.pds-50, wrf
UT2004 S13: soplex.pds-50 // D13: sphinx3, zeusmp // Q13: bzip2.source, lbm, leslie3d, libquantum
UT3 S14: zeusmp // D14: bzip2.source, leslie3D // Q14: gcc.166.i, leslie3d, soplex.pds-50, wrf
cfd S15: sphinx3 // D15: lbm, libquantum // Q15: bzip2.source, lbm, libquantum, omnetpp
blackscholes S16: gcc.166.i // D16: libquantum, omnetpp // Q16: bwaves, libquantum, milc, omnetpp
fastwalsh S17: mcf // D17: libquantum, omnetpp // Q17: bwaves, libquantum, milc, omnetpp
reduction S18: libquantum // D18: gcc.166.i, wrf // Q18: bwaves, mcf, milc, omnetpp

tents can also be reused by the texture sampler for rendering
shadow [19].

The color, depth, blitter, and shader write misses are in-
serted into the LLC at RRPV two (similar handling as the
read misses). All other write misses bypass the LLC and
go directly to the memory controllers. We found that for
some heterogeneous mixes, this particular write miss policy
degrades performance because the depth writes are not use-
ful for all GPU applications. So, we further extend the write
miss policy with a selective depth write bypass policy. The
depth write bypass policy uses set dueling to decide if allocat-
ing depth write misses in the LLC is beneficial. It dedicates
a group of LLC sets to always bypass depth write misses and
another group of LLC sets to always allocate the depth write
misses in the LLC. By comparing the relative number of read
misses in these two groups, the depth write bypass decision
is made for every depth write miss to all LLC sets except
these two groups. In our implementation, each of the groups
has eight sampled sets per 1K LLC sets. More details on
sampling-based set dueling can be found elsewhere [24, 25,
53]. Finally, the write hits do not change the RRPV of the
blocks.
NRU: In the single-bit not-recently-used (NRU) replace-
ment policy, each LLC block is provisioned with one replace-
ment state bit. A read access to a block sets the bit. As a
result of an access, if all bits in a set become one, the bits
in all the ways except the currently accessed way are reset.
The way with the lowest id and replacement state bit reset
is the replacement candidate within a set. The write misses
implement the same bypass policy as the baseline. The write
misses that are allocated in the LLC are treated similarly as
read misses. The write hits do not update replacement state.
DRRIP, TADRRIP: The DRRIP [24] and TADRRIP [24]
policies were introduced in Section 2. The TADRRIP pol-
icy treats the CPU cores and the GPU as different indepen-
dent threads and lets each thread choose the best insertion
RRPV (among two and three) for read misses. The write
miss and write hit policies are same as the baseline.
SHiP-mem: The SHiP-mem [66] policy was introduced in
Section 2. As proposed originally, we divide the physical ad-
dress space into contiguous 16 KB regions. For each region,
we learn the count of reuses by hashing a fourteen-bit re-
gion identifier (address bits [27:14]) into a 16K-entry table T
of three-bit saturating counters. On an LLC hit to a block

belonging to a particular region, the corresponding region
counter is incremented by one. If a block gets evicted from
the LLC without experiencing any reuse, the corresponding
region counter is decremented by one. A block suffering a
read miss is filled with an RRPV of three, if the correspond-
ing region counter is zero; otherwise the block is inserted with
an RRPV of two. Recall that the RRPV has an inverse re-
lationship with the chance of future reuse and victimization
priority. The write miss and write hit policies are same as
the baseline.
SHiP-hybrid: We design a new variant of SHiP named
SHiP-hybrid suitable for heterogeneous CMPs. This policy
makes a small change in the SHiP-mem policy. For all CPU
read misses, it executes the SHiP-PC policy [66] for decid-
ing the insertion RRPV of a block. In other words, instead
of using the fourteen-bit memory region identifier to index
the 16K-entry saturating counter table T , it uses the lower
fourteen bits of the program counter (hashed with the CPU
core id) of the CPU load/store instructions that miss in the
LLC. The GPU reads that miss in the LLC continue to use
the fourteen-bit memory region identifier to index into the
same saturating counter table T because it is not possible to
associate program counters with a large number of GPU ac-
cesses that come from the fixed-function hardware (texture

sampler, color blender, depth test unit, etc.).5 In summary,
SHiP-hybrid uses SHiP-PC for CPU reads and SHiP-mem
for GPU reads. The write miss and write hit policies are
same as the baseline.
OPT, OPT+Bypass, Baseline+Bypass: The OPT pol-
icy implements Belady’s MIN replacement algorithm [1, 49]
extended to handle both read and write misses. We also eval-
uate an optimal bypass policy running in conjunction with
OPT and Baseline. In these policies, if the next-use distance
of an incoming new block belonging to the GPU is larger
than the next-use distances of all the blocks in the target
LLC set, the block is not allocated in the LLC. Note that
CPU blocks cannot bypass the LLC because that would vi-
olate inclusion of CPU data. The OPT, OPT+Bypass, and
Baseline+Bypass results cannot be generated online because
they need future information. These results are generated by

5 This is also the reason why it is not possible to have an
effective GPU implementation of the other existing propos-
als (such as SDBP [36]) that rely on the program counters
associated with the LLC accesses.

collecting an LLC access trace for each heterogeneous work-
load mix and running the policies offline on the collected
traces. As a result, the outcomes of these policies are bound
to the specific ordering of the LLC accesses recorded in the
traces.

1C1G 2C1G 4C1G
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o
rm

a
li
z
e
d
 L

L
C

 m
is

s
 c

o
u
n
t

B
a
s
e
li
n
e

N
R
U

D
R
R
IP

T
A
D
R
R
IP

S
H
iP
−
m
e
m

S
H
iP
−
h
y
b
ri
d

O
P
T

O
P
T
+
B
y
p
a
s
s

B
a
s
e
li
n
e
+
B
y
p
a
s
s

GPU

CPU

Figure 2: Normalized average read miss count.

Figure 2 shows the normalized number of LLC read misses
for the LLC policies averaged over the 1C1G, 2C1G, and
4C1G heterogeneous workloads. Each bar within a hetero-
geneous configuration shows the normalized LLC read miss
counts for a policy. Each bar further shows the contribu-
tions coming from the LLC read misses suffered by the CPU
cores and the GPU. All bars in each group are normalized
to the baseline policy (the leftmost bar in each group). In
general, the fraction of LLC misses coming from the GPU
decreases with increasing CPU core count because the pro-
portion of CPU misses increases. We make three important
observations from these results. First, SHiP-hybrid is the
best among the online policies we consider. On average, it
saves 7%, 8%, and 11% LLC read misses compared to the
baseline for the 1C1G, 2C1G, and 4C1G configurations, re-
spectively. Second, there is a large gap between OPT and
SHiP-hybrid indicating that there are significant opportu-
nities for improvement. On average, the OPT policy saves
38%, 34%, and 30% LLC read misses compared to the base-
line for the 1C1G, 2C1G, and 4C1G configurations, respec-
tively. Among the CPU and the GPU read misses, the latter
offers more opportunity for saving LLC read misses. Third,
the bypass policies fail to improve the LLC read miss count
much indicating that for the heterogeneous workload mixes
we consider in this study, an optimal bypass policy for GPU
data from the viewpoint of minimizing the LLC read miss
count is not particularly helpful. OPT+Bypass does not of-
fer any additional benefit over OPT. The Baseline+Bypass
policy fails to beat the SHiP-hybrid policy. We explore more
aggressive GPU read miss bypassing in the later part of this
section.

4.2 GPU Performance with Ideal LLC
To quantify how sensitive the GPU performance is to the

LLC miss count, we gradually make the LLC ideal for the
GPU. We simulate the 1C1G configuration and gradually
convert the GPU LLC misses to hits (except the compulsory
misses). We conduct the following five sets of experiments
for the heterogeneous mixes involving the 3D scene rendering
workloads. First, we convert all non-compulsory color misses
to LLC hits. Second, we treat all non-compulsory color and
texture misses as LLC hits. Third, we treat all color, texture,
and depth accesses to the LLC as hits (except the compulsory
misses). Fourth, all color, texture, depth, and blitter accesses
to the LLC are treated as hits provided they wouldn’t lead to
compulsory misses. Finally, all non-compulsory LLC misses
from the GPU are converted to LLC hits. In all cases, all
other accesses, including the accesses from the CPU core, are
treated according to the baseline policy.

Figure 3 shows the progressive speedup (in terms of frame
rate) observed by the 3D rendering applications as color (C),

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 GM
1

1.25

1.5

1.75

2

2.25

2.5

G
P

U
 s

p
e
e
d
u
p
 o

v
e
r

b
a
s
e
lin

e

C C+T C+T+Z C+T+Z+B All Overall GeoMean

Figure 3: Potential improvement in frame rate.

texture (C+T), depth (C+T+Z), blitter (C+T+Z+B), and
all GPU non-compulsory misses in the LLC are converted to
hits (stacked improvement from bottom to top in each bar).
The overall speedup ranges from 15% (S4) to 145% (S10),
averaging at 63%. Most of the benefits come from making
texture and depth accesses ideal. Making color accesses ideal
improves performance by more than 5% in S4, S5, S6, S12,
S13, and S14, while only S5, S6, and S9 show more than 5%
performance-sensitivity to the blitter access latency. Only
S1, S2, and S8 enjoy more than 5% performance improvement
when the LLC is made to behave ideally for the remaining
GPU streams. This additional improvement results primar-
ily from elimination of the vertex misses. Overall, these re-
sults indicate that the GPU performance has widely varying
sensitivity to the access latency of different data streams,
particularly color, texture, depth, and blitter. Saving the
LLC misses to these data streams can significantly improve
the GPU performance for several workloads.

Table 4: Speedup of CUDA applications with ideal
LLC

S15 S16 S17 S18

1.22 1.12 1.26 2.82

For the 1C1G heterogeneous mixes involving the CUDA
applications, we study the impact on the performance of
these applications when all non-compulsory LLC misses from
the GPU are treated as LLC hits. Table 4 lists the observed
speedup (over the baseline) in these applications. These re-
sults confirm that saving LLC misses can significantly im-
prove the performance of these applications.

4.3 Selective LLC Bypass of GPU Read Misses
We have already shown that an optimal GPU read miss by-

pass policy with the goal of minimizing the overall LLC read
miss counts is not particularly helpful (see Figure 2). In the
following, instead of minimizing the overall LLC read miss
count, we study the performance impact of very aggressive
GPU read miss bypass. This study is motivated by the fact
that the GPU architecture can effectively hide the impact
of a large volume of LLC misses resulting from aggressive
read miss bypass. We conduct four experiments where we
progressively increase the GPU read miss bypass percentage
from 25% to 100%. Figure 4 shows the average speedup rel-
ative to the baseline for the CPU and the GPU workloads
observed in these experiments. The CPU performance does
not show any improvement until the GPU read miss bypass
rate reaches 100%. At this point, the CPU performance im-
proves, on average, by 5% in the 1C1G configuration and by
only 1% in the 2C1G and 4C1G configurations. The CPU
performance improvement drops drastically in the 2C1G and
4C1G configurations due to heavy congestion in the memory
controllers caused by the aggressive GPU read miss bypass.
The GPU performance, as expected, progressively suffers as
the bypass rate increases. At 100% bypass rate (which is the
only bypass rate useful for improving the CPU performance),
the average loss in the GPU performance is 7%, 7%, and 9%
in the 1C1G, 2C1G, and 4C1G configurations, respectively.
In the 4C1G configuration, due to severe shortage of mem-

ory bandwidth resulting from aggressive bypass, the perfor-
mance loss is more compared to the other two configurations.
Overall, these results do not show much promise for an LLC
management policy that relies on aggressive GPU read miss
bypass. We note that this inference is different from what has
been shown in a prior study involving GPGPU applications
only [50]. We attribute this difference to a wider variety of
GPU applications considered in our study.

CPU GPU CPU GPU CPU GPU
0.9

0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08
1.1

S
p

e
e

d
u

p
 o

v
e

r
b

a
s
e

lin
e

1C1G 2C1G 4C1G

25% bypass 50% bypass 75% bypass 100% bypass

Figure 4: Performance speedup with random GPU
read miss bypass for a 16 MB LLC.

5. DYNAMIC REUSE PROBABILITY IN
LLC MANAGEMENT

The design of an LLC management policy can be decom-
posed into four distinct sub-policies, namely, read miss pol-
icy, write miss policy, write hit policy, and read hit policy.
We discuss the design of each of these sub-policies in the fol-
lowing. The write miss, write hit, and read hit policies form
the crux of our dynamic reuse probability-based LLC policy
proposal. These sub-policies make use of a working set sam-
ple (WSS) cache, the central contribution of our proposal.
This WSS cache plays a key role in estimating the dynamic
reuse probability of different data streams. We begin our
discussion by introducing the architecture of the WSS cache.
We note that the estimated dynamic reuse probabilities can
be used in many different ways to implement an effective LLC
management proposal. Our design assumes the existence of
two replacement state bits per LLC block. These two bits
can be thought of as age bits and we will refer to them as
the RRPV bits, as in the baseline policy. The sub-policies
modulate the RRPV bits. The victim selection algorithm is
same as SRRIP. Although the discussion of our proposal re-
volves around the most general commercially available CMP
architectures involving both CPU and GPU cores, the gen-
eral idea of the WSS cache can be employed to implement
various types of optimizations in the LLC of discrete GPU
parts as well as multi-core parts involving CPUs only.

5.1 Working Set Sample Cache
Our proposal employs a working set sampling technique to

estimate the read reuse probability of all accesses that come
to the LLC from CPU as well as GPU. For this purpose,
we architect a small working set sample (WSS) cache. The
WSS cache is a traditional set-associative cache. Each entry
of the cache tracks a few selected blocks in a sampled page.
As a result, each WSS cache entry contains a page tag. To
simplify the tracking of the sampled blocks in the sampled
page, our design tracks every kth block of the page where
k is a design parameter. For each tracked block, we main-
tain the stream it belongs to and we consider the following
stream categories: CPU, color, depth, static texture (or sim-
ply texture), dynamic texture, blitter, shader, and the rest
clubbed into one category. The CPU stream is further parti-
tioned based on the originating CPU core. An LLC access is
said to belong to a certain stream if the access originates due
to a miss in an inner-level cache dedicated to that stream.
For example, the shader stream arises from the misses in the
shader cores’ private caches. Additionally, for each tracked

block, there is a valid bit (V) and a write bit (W). The W
bit specifies if the block has been written to, but yet to be
consumed by a subsequent read. A subsequent read reuse to
such a block resets the W bit. Thus, each tracked block needs
just six bits of state: four bits to encode the stream id (for
a 4C1G CMP, we need to encode eleven different streams)
and two bits for the V and W states. Therefore, if a physical
page contains N blocks, each WSS cache entry needs a page
tag, an entry valid bit, and 6(N/k) bits to track the sampled
blocks. Figure 5 shows a typical WSS cache entry.

V TAG V0 W0 SID0 V3 W3 SID3

Figure 5: A WSS cache entry for N = 64 and k = 16.
V is the entry valid bit, while V0-V3 are the valid
bits for the four tracked blocks in the page. W0-W3
are the write bits of the tracked blocks and SID0-
SID3 are the stream ids of the tracked blocks. TAG
is the page tag of the entry.

On every LLC access, the WSS cache is looked up in par-
allel. On a WSS cache miss, an invalid WSS cache entry is
allocated. If there is no invalid WSS cache entry in the target
WSS cache set, the access bypasses the WSS cache. Since the
purpose of the WSS cache is to estimate reuse probabilities, it
is important to retain a sampled entry for a significantly large
time-window so that the far-flung reuses can be captured. As
a result, WSS cache replacements are usually disabled. Only
if the accessing stream is found to have low representation in
the WSS cache, a random replacement policy is invoked. For
this study, we allow WSS cache replacement if the accessing
stream has less than 32 WSS cache entries. An entry is as-
sumed to belong to the stream of the first valid tracked block
in the entry. On a WSS cache hit, two situations may arise.
If the accessing block turns out to be a tracked block (i.e.,

one of the kth blocks in the page) and its entry is invalid, the
entry is now marked valid and the appropriate state bits are
updated. If the accessing block entry is valid and the access
is a read, a reuse has been identified by the WSS cache. In
this case, we increment a reuse counter to record this event.

Our design maintains two different arrays of reuse coun-
ters. The first array tracks, for each stream type, the count
of write-to-read reuses captured by the WSS cache. We will
refer to this array as the WR reuse counter array. The second
array, referred to as the RR reuse counter array, is used to
track read-to-read reuse counts for the streams. Our design
also keeps track of the maximum among all reuse counters in-
dicating the maximum reuse enjoyed by any stream during a
phase of execution. We will refer to this as MAX REUSE.
In addition to the reuse counter arrays, our design also main-
tains a write access (WA) counter for each stream. This
counter tracks, for each stream, the number of LLC writes
captured by the WSS cache and is used to calculate the write-
to-read reuse probability of a stream (which is the ratio of the
WR counter of a stream to the WA counter of the stream).
The static and dynamic texture streams do not need the
WA counters because these are read-only streams. Figure 6
shows the flow for looking up the WSS cache on an access
from stream S for a block which is the mth tracked block in
a page with tag P .

We define a WSS cache epoch to be a time-window over
which the LLC receives 512K read accesses. At the end of
each epoch, the WSS cache is invalidated and all the reuse
and access counters are halved so that we can capture phase
changes. Next, we present the proposed sub-policies.

5.2 Read Miss Policy
The responsibility of the read miss policy is to decide the

RRPV of the block being filled in the LLC. We synthesize our

E.Vm 1
E.SIDm S

WRITE
ACCESS?

E.Wm 1
WA[S]++

Y

N

E.Vm==1?
ENTRY E

Y

N

WRITE
ACCESS?

Y E.Wm 1
WA[S]++
E.SIDm S

Y

E.Wm==1?

N
RR[E.SIDm]++
E.SIDm S

NY

AND ((E.SIDm==Color)
((S==TEXTURE)

OR (E.SIDm==Blitter)
OR (E.SIDm==Depth)))?

E.SIDm DYNAMIC TEXTUREY

SE.SIDm
N

E.TAG P
E.V 1
E.Vm 1
E.SIDm SENTRY EAVAILABLE?

INVALID WAY Y
ACCESS?
WRITE E.Wm 1

WA[S]++
Y

N

S HAS LESS THAN
32 ENTRIES IN WSS CACHE?

N

N

REPLACE
RANDOM WAY E

Y

WSS CACHE
TAG HIT?

N

DO NOT ALLOCATE IN WSS CACHE

E.Wm 0

WR[E.SIDm]++
E.Wm 0

E.Wm 0

START

Figure 6: Access/Update protocol flow for the WSS
cache and the accompanying reuse and access coun-
ters. Vm, Wm, and SIDm correspond respectively
to the V, W, and stream id of the mth tracked block.
The MAX REUSE register is not shown.

read miss policy by borrowing from the vast body of existing
research that deals with LLC insertion policies on read misses
discussed in Section 2 and evaluated in Section 4. While
SHiP-hybrid is an attractive design option, we observe that
the large memory footprints of the GPU applications cause
interference in the saturating counter table T while execut-
ing SHiP-mem for GPU read misses. As a result, our read
miss policy does not use the SHiP-mem component of the
SHiP-hybrid policy. For CPU read misses, we continue to
use the SHiP-PC policy for deciding the insertion RRPV.
For GPU read misses, we use the simpler DRRIP policy [24],
which employs a set-sampling-based duel to decide among
insertion RRPV of two and three. It is important to note
that we adopt only the insertion policy component of DR-
RIP and invoke it on GPU read misses. Our read hit policy
proposal is discussed in the later part of this section. Since
the saturating counter table T is not required by the GPU
read misses, it is exclusively used by the SHiP-PC policy ex-
ercised by the CPU read misses. This read miss policy is seen
to outperform SHiP-hybrid for the workloads where the GPU
application has large memory footprint. Figure 7 presents a
high-level depiction of the proposed read miss policy.

READ MISS STREAMS?
INVOKE SHIP−PC
INSERTION POLICY

INVOKE DRRIP
INSERTION POLICY

Y

N

FROM CPU

Figure 7: Read miss policy.

5.3 Write Miss Policy
The write miss policy is important only for the GPU be-

cause all CPU writes hit in the LLC due to inclusion of CPU
data in the cache hierarchy. Recall that the baseline pol-
icy bypasses all GPU write misses except from color, depth,
blitter, and shader streams and employs a selective bypass
mechanism for depth write misses. The write miss policy
must decide the insertion RRPV for the blocks that are al-
located in the LLC on write misses.

The write-to-read reuse probability of a stream can be cal-
culated as the ratio between the corresponding WR reuse
counter and the WA counter. On a write miss, if the deci-

sion is to allocate the block in the LLC, our design assigns
an RRPV of zero if the block belongs to a high WR reuse
stream. A high WR reuse stream is defined to be one that
enjoys at least MAX REUSE/3 reuses or has a write-to-
read reuse probability of at least 1/8. If the WR reuse count
enjoyed by the stream exceeds MAX REUSE/2 or has a
write-to-read reuse probability of at least 1/8, the write miss
policy identifies the block to be an important one and rec-
ommends that the block be pinned in the LLC. However,
whether such a block will be finally pinned or not is decided
by a per-stream set dueling because pinning write insertions
does not always help and can hurt performance under heavy
cache contention. The set dueling mechanism ear-marks two
disjoint groups of sample sets for each stream (except static
and dynamic texture because these streams are read-only).
One group always follows the pinning recommendation, while
the other group always ignores the pinning recommendation.
Both the groups follow the remaining components of the pol-
icy unchanged. Based on the relative volume of read misses
experienced by the two groups for a stream, the winning pol-
icy is decided for that stream and the rest of the sets follow
the winning policy. In our implementation, each group for
each stream has eight sampled sets per 1K LLC sets. We
need four such disjoint group pairs representing the color,
blitter, depth, and shader streams. A pinned block gets in-
serted into the LLC with RRPV zero. The RRPV of a pinned
block is updated just like a normal block. When the RRPV
of a pinned block reaches three, it is unpinned and its RRPV
is reset to zero. Also, a pinned LLC block gets unpinned
when it receives a read reuse. In summary, pinned blocks get
to spend more time in the LLC compared to a normal block.

Finally, if the stream that is having a write miss fails to
qualify as a high WR reuse stream and has a write-to-read
reuse count of zero with write access count of at least 128K,
the block is inserted at RRPV three. All other write miss
insertions happen at RRPV two. Figure 8 summarizes our
write miss policy proposal.

DO NOT ALLOCATE IN LLC

WRITE MISS BYPASS? OR (WR[S]>=WA[S]/8))?
((WR[S]>=MAX_REUSE/3)

PINNING FAVORABLE
FOR STREAM S?

B.PIN 1

B.PIN 0

AND (WA[S]>=128K))?((WR[S]==0)B.RRPV 3
B.PIN 0

B.RRPV 2
B.PIN 0

Y
N

N

N

Y

Y

N

N
Y OR (WR[S]>=WA[S]/8))?

((WR[S]>MAX_REUSE/2)

B.RRPV 0Y

Figure 8: Write miss policy for a block B coming
from stream S.

5.4 Write Hit Policy
The write hit policy is similar to the write miss policy

in the sense that it attempts to give extra protection to
the block receiving the hit if the block belongs to a high
WR reuse stream. Also, all such high WR reuse stream
blocks are recommended for pinning on a write hit. The
goal of such a recommendation is to save write bandwidth
at the memory controllers. For this purpose, we define a
high WR reuse stream to be one which has received at least
MAX REUSE/2 reuses or its write-to-read reuse probabil-
ity is at least 1/16. A write hit to a block belonging to
such a stream promotes the block to RRPV zero and pins
the block; otherwise the block’s RRPV is left unchanged and
the pin state of the block is cleared. Again, we note that
pinning is only a recommendation from the write hit policy
and the final pinning decision comes from a set duel already
discussed. Since write hits can be experienced by the CPU
streams as well, we need additional four pairs of set sample
groups for deciding the favorability of pinning for the CPU

cores in a 4C1G configuration. This write hit policy, which
is congestion-oblivious, hurts performance if the set receiving
the write hit is congested.

We find that for a congested set, a block belonging to a high
WR reuse stream fails to enjoy most of the far-flung write-
to-read reuses inferred by the WSS cache. As a result, to
guarantee that such a block can enjoy at least the near-term
write-to-read reuses without increasing the set congestion, it
is enough to give the block extra protection only if its current
RRPV is three (i.e., currently a candidate for victimization).
Our congestion-aware write hit policy sets the RRPV of a
block receiving a write hit to two if the block’s current RRPV
is three and it belongs to a high WR reuse stream. The
RRPV of any other block is left unchanged.

On a write hit, the congestion-oblivious or the congestion-
aware write hit policy is executed based on a set duel. This
set duel employs two groups of sampled sets shared by all
streams, each group having eight sets per 1K LLC sets. One
group always executes the congestion-oblivious write hit pol-
icy, while the other group always executes the congestion-
aware write hit policy. Based on the relative volume of the
read misses experienced by the groups, the winning policy
is decided and the rest of the sets follow the winning policy.
While the write miss policy can improve the performance of
the GPU applications only, the write hit policy can be benefi-
cial to both CPU and GPU applications. Figure 9 shows the
congestion-oblivious and congestion-aware write hit policies.

NO CHANGE TO RRPV
B.PIN 0

FOR STREAM S?
PINNING FAVORABLE

OR (WR[S]>=WA[S]/16))?
((WR[S]>=MAX_REUSE/2)WRITE HIT B.RRPV 0

B.PIN 0

B.PIN 1

N
Y

Y

N

(((WR[S]>=MAX_REUSE/2)
 OR (WR[S]>=WA[S]/16))
AND (B.RRPV==3))?

NO CHANGE TO RRPV

B.RRPV
B.PINWRITE HIT

0B.PIN

2
0

(a) CONGESTION−OBLIVIOUS WRITE HIT POLICY

Y

N

(b) CONGESTION−AWARE WRITE HIT POLICY

Figure 9: Write hit policies for a block B coming
from stream S.

5.5 Read Hit Policy
Our read hit policy promotes the block receiving the hit

to RRPV zero with one exception. We have observed that a
large fraction of the dynamic texture blocks receive only one
read access (the first texture sampler access to a block written
to by color/blit/depth stream). Keeping such blocks longer
in the LLC wastes space. We keep two counters to estimate
the probability of the event that a dynamic texture block
sampled by the WSS cache receives any reuse beyond the first
access. If this probability is below 1/64, the dynamic texture
block is demoted to RRPV three on its first read hit. If this
probability is between 1/64 and half, the RRPV is set to two.
In all other cases, the block is promoted to RRPV zero. To
be able to implement this policy, the WSS cache entry needs
to be extended by one bit for each sampled block to track
the number of read reuses (only need to distinguish between
zero or more reuses). Therefore, we need seven state bits per
tracked block in a WSS cache entry. Figure 10 summarizes
our read hit policy proposal.

5.6 Storage Overhead
The primary storage overheads in our policy arise from

the WSS cache, the extra state bits needed with each LLC
block, and the saturating counter table T used in SHiP-PC.
Our simulated system uses a page size of 4 KB and 48-bit

((S==TEXTURE) AND
B.PIN 0

READ HIT
0B.RRPV

N 3B.RRPV

Y

N

P[MORE READ REUSE] IN [1/64, 1/2)?

0B.RRPV
N

Y2B.RRPV

FIRST ACCESS TO A DIRTY BLOCK
WRITTEN TO BY COLOR/BLIT/DEPTH)?

P[MORE READ REUSE]<1/64?Y

Figure 10: Read hit policy for a block B coming from
stream S. P[E] denotes the probability of event E.

physical addresses. Our design uses a 2K-entry WSS cache
organized to have 128 sets and 16 ways. Therefore, the page
tag of each WSS cache entry is 29 bits wide. We sample
every eighth block in a sampled page. Therefore, each WSS
cache entry tracks eight blocks leading to a total entry size
of 86 bits (one valid bit, 29-bit tag, eight blocks×seven state
bits/block). Thus, the WSS cache overhead is about 22 KB.
Each LLC block, in addition to the RRPV bits, needs a
pin bit. Two more bits per LLC block track the following
four states: color/blit/depth write state (necessary to iden-
tify the dynamic texture blocks which consume data written
to by the color, blitter, or depth stream), dynamic texture
blocks with zero reuse count, dynamic texture blocks with at
least one reuse count, and none of these. Thus, three extra
bits are needed per LLC block leading to a total overhead
of 96 KB (on top of the existing RRPV bits) for a 16 MB
LLC. The saturating counter table T has 16K entries with
each entry being a three-bit counter. Thus, T is of size 6 KB.
In addition to these, the reuse and access counters and the
fill PC signature (needed by SHiP-PC) stored with the LLC
blocks in a few sampled sets (32 per 1K LLC sets) add negli-
gible overhead. Overall, our policy requires 124 KB of extra
storage which is less than a percentage of the bits in the data
array of the 16 MB LLC.

6. SIMULATION RESULTS
In this section, we evaluate our dynamic reuse probabil-

ity (DRP)-aware policy proposal in terms of performance im-
provement and LLC miss savings for a 16 MB LLC. We begin
the discussion by presenting the average (geometric mean)
speedup achieved by our proposal and the SHiP-hybrid pol-
icy, which we have designed to represent a version of the
SHiP proposal suitable for a CPU-GPU heterogeneous en-
vironment. This comparison is shown in Figure 11. The
speedup averages are shown separately for the CPU and the
GPU workloads, the average being computed over all eigh-
teen heterogeneous mixes. For the 1C1G configuration, our
DRP-aware policy improves average GPU performance by
8%, while SHiP-hybrid achieves an average improvement of
only 3%. None of the policies, however, is able to improve
the CPU performance much (less than 2% improvement). For
the 2C1G configuration, the DRP-aware policy improves av-
erage GPU performance by 9%, while SHiP-hybrid exhibits
an average speedup of 5%. The improvement in the aver-
age CPU performance is 3% and 4%, respectively for the
SHiP-hybrid policy and the DRP-aware policy. For the 4C1G
configuration, the DRP-aware policy improves average GPU
performance by 12% and SHiP-hybrid is able to improve the
GPU performance by 7%, on average. For this configuration,
our proposal lags a couple of percentages behind the SHiP-
hybrid policy for the CPU performance (7% improvement
in our proposal compared to 9% in SHiP-hybrid); our pro-
posal sacrifices some CPU hits to improve GPU performance
significantly for the 4C1G configuration. In general, as the
CPU core count increases, both the policies offer better im-
provements compared to the baseline with our DRP-aware
proposal staying reasonably ahead of the SHiP-hybrid policy
for GPU performance.

1C1G 2C1G 4C1G
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14
S

p
e

e
d

u
p

 o
v
e

r
b

a
s
e

lin
e

SHiP−hybrid−GPU

DRP−GPU

SHiP−hybrid−CPU

DRP−CPU

Figure 11: Average speedup comparison.

S1 S2 S3 S4 S5 S6 S7 S8 S10 S12 S14 S16 S18
0.9

1

1.1

1.2

1.3

1.4

CPU

GPU

D1 D2 D3 D4 D5 D6 D7 D8 D10 D12 D14 D16 D18
0.9

1

1.1

1.2

1.3

1.4

CPU

GPU

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q12 Q14 Q16 Q18
0.9

1

1.1

1.2

1.3

1.4S
p
e
e
d
u
p
 o

v
e
r

b
a
s
e
lin

e

 1.
51

CPU

GPU

Figure 12: Speedup achieved by the DRP-aware
proposal for the mixes.

Figure 12 presents the performance speedup achieved by
our DRP-aware policy for each of the heterogeneous mixes.
For each mix, we show the GPU and CPU speedup sepa-
rately. The top, middle, and bottom panels show the results
for the 1C1G, 2C1G, and 4C1G configurations, respectively.
Across the board, the GPU performance improves signifi-
cantly. Several workloads enjoy at least 10% improvement
in GPU performance, the maximum gain being 51% expe-
rienced by Q9. The improvement in CPU performance is
much less, particularly for the 1C1G and 2C1G configura-
tions. However, for the 4C1G configuration, several mixes
enjoy more than 5% CPU performance improvement, the
maximum gain being 19% experienced by Q9. In the 1C1G
configuration, the CPU performance suffers a slowdown in
some mixes because of back-invalidations induced by prema-
ture LLC replacement of CPU blocks.

S1 S2 S3 S4 S5 S6 S7 S8 S10 S12 S14 S16 S18
0

0.2
0.4
0.6
0.8

1
1.2

Baseline DRPCPU GPU

D1 D2 D3 D4 D5 D6 D7 D8 D10 D12 D14 D16 D18
0

0.2
0.4
0.6
0.8

1
1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q12 Q14 Q16 Q18
0

0.2
0.4
0.6
0.8

1
1.2

N
o

rm
a

li
z
e

d
 L

L
C

 r
e

a
d

 m
is

s
 c

o
u

n
t

Figure 13: Normalized read miss count of the mixes.

To understand the source of the performance improve-
ments, Figure 13 shows the normalized LLC read miss count
for the baseline and our DRP-aware proposal. The results
are normalized to the baseline policy. The top, middle, and
bottom panels show the results for the 1C1G, 2C1G, and
4C1G configurations, respectively. Across the board, we see
impressive LLC read miss savings achieved by the DRP pol-
icy. For the 1C1G and 2C1G configurations, the volume
of CPU misses remains mostly unaffected, except for a few
cases, most notably D17, which enjoys a significant improve-
ment in the volume of CPU misses. Additionally, D4 and
D9 show some improvement in the volume of CPU misses.
Among the workloads that show more than 5% improvement
in the CPU performance with DRP in the 1C1G and 2C1G
configurations, S9, S15, S16, S18, and D16 do not show any
noticeable improvement in the CPU read miss volume. The
CPU workloads of these mixes benefit from an overall reduc-
tion in the LLC read miss count leading to lowered congestion
and queuing delays in the memory controllers resulting in an
improvement in the LLC miss latency. Each of these work-
loads enjoys at least 20% reduction in the total LLC read
miss count. For the 4C1G configuration, the CPU read miss
counts improve significantly across the board (exceptions are
Q3, Q5, Q16, and Q18). However, Q16 and Q18 experience
significant improvement in the CPU workload performance
due to reduced queuing delays in the memory controllers.
Each of these two mixes enjoys at least 20% reduction in
the total LLC read miss count. Turning to the GPU read
misses, we observe that the DRP proposal is able to improve
the volume of these misses across the board. Overall, in all
the configurations, a significant number of workloads enjoy
at least 10% saving in the total LLC read miss count.

1C1G 2C1G 4C1G
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
z
e

d
 L

L
C

 r
e

a
d

 m
is

s
 c

o
u

n
t

B
a

s
e

li
n

e

S
H

iP
−

h
y

b
ri

d

R
e

a
d

 m
is

s

R
e

a
d

 m
is

s
+

R
e

a
d

 h
it

A
ll

 s
u

b
−

p
o

li
c

ie
s

CPU GPU

Figure 14: Normalized average read miss count.

The DRP proposal exercises four sub-policies, namely, the
read miss policy, the read hit policy, the write miss policy,
and the write hit policy. In the following, we quantify the
contribution of these sub-policies toward saving LLC read
misses. Figure 14 summarizes the average savings in LLC
read misses (averaged over eighteen mixes) for the 1C1G,
2C1G, and 4C1G configurations. In each configuration, the
two leftmost bars correspond to the baseline and the SHiP-
hybrid policies. The next three bars quantify the gradual
savings in the LLC read misses as we enable different sub-
policies of our DRP proposal. The “Read miss” bar shows
the effect of enabling the read miss sub-policy. The “Read
miss+Read hit” bar shows the effect of enabling both read
miss and read hit sub-policies. The last bar in each group
shows the effect of enabling all the sub-policies i.e., this bar
quantifies the average normalized LLC read miss count of
our DRP proposal. Since the write miss and the write hit
sub-policies are similar in nature, we do not show their ben-
efits separately. The combined benefit offered by these two
sub-policies can be seen in the difference between the right-
most bar and the “Read miss+Read hit” bar in each of the
configurations. In the 1C1G and 2C1G configurations, on av-
erage, the volume of CPU misses remains almost unaffected.

However, in the 4C1G configuration, there is a significant
improvement in the volume of CPU misses compared to the
baseline. Our DRP proposal, on average, saves 13%, 12%,
and 13% LLC read misses in the 1C1G, 2C1G, and 4C1G
configurations, respectively. It achieves significant savings
in the GPU misses across the board. All the sub-policies
exhibit important contributions to the overall LLC miss sav-
ings. We note that the Read miss sub-policy is slightly better
than the SHiP-hybrid policy in the 1C1G and 2C1G config-
urations. The SHiP-hybrid policy, on average, enjoys 7%,
8%, and 11% LLC miss savings in the 1C1G, 2C1G, and
4C1G configurations, respectively. For the 4C1G configura-
tion, our DRP proposal saves 7% LLC read misses on average
compared to the SHiP-hybrid policy if we consider only the
GPU misses. These savings offer a significant advantage in
GPU performance to the DRP-aware policy compared to the
SHiP-hybrid policy for the 4C1G configuration, as already
shown in Figure 11.

6.1 Comparison to Related Proposals
There have been two proposals, namely, TAP [43] and

HeLM [50], for managing the shared LLC in heterogeneous
CMPs. These proposals were briefly introduced in Section 2.
We also pointed out that due to an implicit synchronization
between the processing of consecutive batches of polygons in
the 3D scene rendering applications, the TAP proposal loses
its effectiveness in these applications. On the other hand,
HeLM relies on aggressive bypassing of GPU read misses
if the GPU application shows latency-tolerance through the
presence of a good number of ready shader thread contexts.

1C1G 2C1G 4C1G 1C1G 2C1G 4C1G
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

S
p

e
e

d
u

p
 o

ve
r

b
a

se
lin

e

Average of CUDA MixesAverage of All Mixes

HeLM−GPU

DRP−GPU

HeLM−CPU

DRP−CPU

Figure 15: Speedup of HeLM and DRP.

Figure 15 shows the average speedup (over the baseline)
of our DRP-aware proposal and HeLM. For each configura-
tion, we show the average speedup achieved by the CPU and
the GPU workloads separately. The left half of the results
shows the average over all eighteen mixes, while the right half
shows the average over only the mixes having CUDA appli-
cations. The left half shows that HeLM is not particularly
effective for this set of applications (as already pointed out in
Section 4). Only for the 4C1G configuration, it is able to im-
prove the CPU performance by 6% while sacrificing slightly
over 2% GPU performance. The average speedup for the
CUDA mixes, however, confirms that HeLM can be effective
for the GPU applications that make use of only the shader
cores. This was the original scenario for which the HeLM
policies were designed. HeLM identifies a GPU application
as latency-tolerant by looking at the number of ready shader
thread contexts. Such a mechanism is expected to work only
for those GPU applications that exercise primarily the shader
cores. On the other hand, the 3D scene rendering workloads
exercise several fixed function units in addition to the shader
cores. As a result, determining latency-tolerance of such ap-
plications requires more involved techniques. Nonetheless,
our DRP-aware proposal still outperforms HeLM in all cases
even for the CUDA mixes except for the GPU performance
in the 1C1G configuration, where HeLM enjoys a nearly 9%
speedup as compared to nearly 7% speedup achieved by DRP.

With the increasing CPU core count, the bypass-induced con-
gestion in the memory controllers begins to affect the benefits
of HeLM for the CUDA mixes.

7. SUMMARY
We have presented a novel LLC management policy for

the emerging heterogeneous CMPs. Our proposal estimates
the reuse probabilities of different access streams seen by
the LLC and exploits these estimates to manage the blocks
in the LLC. At the heart of our dynamic reuse probability
estimation technique is a small working set sample cache,
which retains a few blocks in a few sampled pages to learn
the near-term and far-flung reuse probabilities. Our proposal
saves 13% LLC read misses on average, improves the GPU
workload performance by 12% on average, and improves the
CPU workload performance by 7% on average in a CMP with
four CPU cores and one GPU.

8. REFERENCES
[1] L. A. Belady. A Study of Replacement Algorithms for

a Virtual-storage Computer. In IBM Systems Journal ,
5(2): 78–101, 1966.

[2] D. Bouvier, B. Cohen, W. Fry, S. Godey, and M.
Mantor. Kabini: An AMD Accelerated Processing Unit
System on a Chip. In IEEE Micro, 34(2):22–33,
March/April 2014.

[3] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena,
and R. Balasubramonian. Managing DRAM Latency
Divergence in Irregular GPGPU Applications. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, pages 128–139, November 2014.

[4] M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney,
and J. Nuzman. Introducing Hierarchy-awareness in
Replacement and Bypass Algorithms for Last-level
Caches. In Proceedings of the 21st International
Conference on Parallel Architecture and Compilation
Techniques, pages 293–304, September 2012.

[5] M. Chaudhuri. Pseudo-LIFO: The Foundation of a New
Family of Replacement Policies for Last-level Caches.
In Proceedings of the 42nd International Symposium
on Microarchitecture, pages 401–412, December 2009.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron. Rodinia: A Benchmark
Suite for Heterogeneous Computing. In Proceedings of
the IEEE International Symposium on Workload
Characterization, pages 44–54, October 2009.

[7] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L.
Wang, and K. Skadron. A Characterization of the
Rodinia Benchmark Suite with Comparison to
Contemporary CMP Workloads. In Proceedings of the
IEEE International Symposium on Workload
Characterization, pages 1–11, December 2010.

[8] X. Chen, L-W. Chang, C. I. Rodrigues, J. Lv, Z.
Wang, and W-M. Hwu. Adaptive Cache Management
for Energy-efficient GPU Computing. In Proceedings of
the 47th International Symposium on
Microarchitecture, pages 343–355, December 2014.

[9] C. J. Choi, G. H. Park, J. H. Lee, W. C. Park, and T.
D. Han. Performance Comparison of Various Cache
Systems for Texture Mapping. In Proceedings of the
4th International Conference on High Performance
Computing in Asia-Pacific Region, pages 374–379,
May 2000.

[10] M. Cox, N. Bhandari, and M. Shantz. Multi-level
Texture Caching for 3D Graphics Hardware. In
Proceedings of the 25th International Symposium on
Computer Architecture, pages 86–97, June/July 1998.

[11] M. Demler. Iris Pro Takes On Discrete GPUs. In
Microprocessor Report , September 9, 2013.

[12] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N.
Clark. Ocelot: A Dynamic Optimization Framework
for Bulk-synchronous Applications in Heterogeneous
Systems. In Proceedings of the 19th International
Conference on Parallel Architecture and Compilation
Techniques, pages 353–364, September 2010.

[13] N. Doung, D. Zhao, T. Kim, R. Cammarato, M.
Valero, and A. V. Veidenbaum. Improving Cache
Management Policies Using Dynamic Reuse Distances.
In Proceedings of the 45th International Symposium on
Microarchitecture, pages 389–400, December 2012.

[14] J. Gaur, R. Srinivasan, S. Subramoney, and M.
Chaudhuri. Efficient Management of Last-level Caches
in Graphics Processors for 3D Scene Rendering
Workloads. In Proceedings of the 46th International
Symposium on Microarchitecture, pages 395–407,
December 2013.

[15] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass
and Insertion Algorithms for Exclusive Last-level
Caches. In Proceedings of the 38th International
Symposium on Computer Architecture, pages 81–92,
June 2011.

[16] N. Greene, M. Kass, and G. Miller. Hierarchical
Z-buffer Visibility. In Proceedings of the 20th
SIGGRAPH Annual Conference on Computer
Graphics and Interactive Techniques, pages 231–238,
August 1993.

[17] Z. S. Hakura and A. Gupta. The Design and Analysis
of a Cache Architecture for Texture Mapping. In
Proceedings of the 24th International Symposium on
Computer Architecture, pages 108–120, May 1997.

[18] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L.
Hill, E. Hallnor, J. Hong, M. Dixon, M. Derr, M.
Hunsaker, R. Kumar, R. B. Osborne, R. Rajwar, R.
Singhal, R. D’Sa, R. Chappell, S. Kaushik, S.
Chennupaty, S. Jourdan, S. Gunther, T. Piazza, and T.
Burton. Haswell: The Fourth Generation Intel Core
Processor. In IEEE Micro, 34(2):6–20, March/April
2014.

[19] M. Harris. Dynamic Texturing. Available at
http://developer.download.nvidia.com/assets/gamedev/
docs/ DynamicTexturing.pdf.

[20] HP Labs. McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and
Manycore Architectures. Available at
http://www.hpl.hp.com/research/mcpat/.

[21] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in
the Memory System: Predicting and Optimizing
Memory Behavior. In Proceedings of the 29th
International Symposium on Computer Architecture,
pages 209–220, May 2002.

[22] H. Igehy, M. Eldridge, and P. Hanrahan. Parallel
Texture Caching. In Proceedings of the
SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware, pages 95–106, August 1999.

[23] H. Igehy, M. Eldridge, and K. Proudfoot. Prefetching
in a Texture Cache Architecture. In Proceedings of the
SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware, pages 133–142, August/September
1998.

[24] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J.
Emer. High Performance Cache Replacement using
Re-reference Interval Prediction (RRIP). In
Proceedings of the 37th International Symposium on
Computer Architecture, pages 60–71, June 2010.

[25] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S.
Steely Jr., and J. Emer. Adaptive Insertion Policies for
Managing Shared Caches. In Proceedings of the 17th
International Conference on Parallel Architecture and
Compilation Techniques, pages 208–219, October 2008.

[26] W. Jia, K. A. Shaw, and M. Martonosi. MRPB:
Memory Request Prioritization for Massively Parallel
Processors. In Proceedings of the 20th International
Symposium on High Performance Computer
Architecture, pages 272–283, February 2014.

[27] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra,
M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das.
OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance. In
Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 395–406, March 2013.

[28] D. Kanter. Intel’s Ivy Bridge Graphics Architecture.
April 2012. Available at
http://www.realworldtech.com/ivy-bridge-gpu/.

[29] D. Kanter. Intel’s Sandy Bridge Graphics Architecture.
August 2011. Available at
http://www.realworldtech.com/sandy-bridge-gpu/.

[30] D. Kanter. AMD Fusion Architecture and Llano. June
2011. Available at
http://www.realworldtech.com/fusion-llano/.

[31] O. Kayiran, N. C. Nachiappan, A. Jog, R.
Ausavarungnirun, M. T. Kandemir, G. H. Loh, O.
Mutlu, and C. R. Das. Managing GPU Concurrency in
Heterogeneous Architectures. In Proceedings of the
47th International Symposium on Microarchitecture,
pages 114–126, December 2014.

[32] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das.
Neither More nor Less: Optimizing Thread-level
Parallelism for GPGPUs. In Proceedings of the 22nd
International Conference on Parallel Architectures and
Compilation Techniques, pages 157–166, September
2013.

[33] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache
Replacement Based on Reuse Distance Prediction. In
Proceedings of the 25th International Conference on
Computer Design, pages 245–250, October 2007.

[34] S. Khan, A. Alameldeen, C. Wilkerson, O. Mutlu, and
D. A. Jimènez. Improving Cache Performance by
Exploiting Read-Write Disparity. In Proceedings of the
20th International Symposium on High Performance
Computer Architecture, pages 452–463, February 2014.

[35] S. Khan, Z. Wang, and D. A. Jimènez. Decoupled
Dynamic Cache Segmentation. In Proceedings of the
18th International Symposium on High Performance
Computer Architecture, pages 235–246, February 2012.

[36] S. Khan, Y. Tian, and D. A. Jimènez. Dead Block
Replacement and Bypass with a Sampling Predictor.
In Proceedings of the 43rd International Symposium on
Microarchitecture, pages 175–186, December 2010.

[37] S. Khan and D. A. Jimènez. Insertion Policy Selection
Using Decision Tree Analysis. In Proceedings of the
28th International Conference of Computer Design,
pages 106–111, October 2010.

[38] S. Khan, D. A. Jimènez, D. Burger, and B. Falsafi.
Using Dead Blocks as a Virtual Victim Cache. In
Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques,
pages 489–500, September 2010.

[39] M. Kharbutli and Y. Solihin. Counter-based Cache
Replacement and Bypassing Algorithms. In IEEE
Transactions on Computers, 57(4): 433–447, April
2008.

[40] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J.
Lim, and T. Pho. MacSim: A CPU-GPU
Heterogeneous Simulation Framework. February 2012.
Available at https://code.google.com/p/macsim/.

[41] A-C. Lai, C. Fide, and B. Falsafi. Dead-block
Prediction & Dead-block Correlating Prefetchers. In
Proceedings of the 28th International Symposium on
Computer Architecture, pages 144–154, June/July
2001.

[42] S-Y. Lee, A. Arunkumar, and C-J. Wu. CAWA:
Coordinated Warp Scheduling and Cache Prioritization
for Critical Warp Acceleration of GPGPU Workloads.
In Proceedings of the 42nd International Symposium
on Computer Architecture, pages 515–527, June 2015.

[43] J. Lee and H. Kim. TAP: A TLP-aware Cache
Management Policy for a CPU-GPU Heterogeneous
Architecture. In Proceedings of the 18th International
Symposium on High Performance Computer
Architecture, pages 91–102, February 2012.

[44] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez,
D. Burger, D. S. Fussell, and S. W. Redder.
Priority-based Cache Allocation in Throughput
Processors. In Proceedings of the 21st IEEE
International Symposium on High Performance
Computer Architecture, pages 89–100, February 2015.

[45] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache
Bursts: A New Approach for Eliminating Dead Blocks
and Increasing Cache Efficiency. In Proceedings of the
41st International Symposium on Microarchitecture,
pages 222–233, November 2008.

[46] F. D. Luna. Introduction to 3D Game Programming
with DirectX 10 . Wordware Publishing Inc..

[47] R. Manikantan, K. Rajan, and R. Govindarajan.
Probabilistic Shared Cache Management (PriSM). In
Proceedings of the 39th International Symposium on
Computer Architecture, pages 428–439, June 2012.

[48] R. Manikantan, K. Rajan, and R. Govindarajan.
NUcache: An Efficient Multicore Cache Organization
Based on Next-Use Distance. In Proceedings of the 17th
IEEE International Symposium on High-performance
Computer Architecture, pages 243–253, February 2011.

[49] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger. Evaluation Techniques for Storage Hierarchies.
In IBM Systems Journal , 9(2): 78–117, 1970.

[50] V. Mekkat, A. Holey, P-C. Yew, and A. Zhai. Managing
Shared Last-level Cache in a Heterogeneous Multicore
Processor. In Proceedings of the 22nd International
Conference on Parallel Architectures and Compilation
Techniques, pages 225–234, September 2013.

[51] V. Moya, C. Gonzalez, J. Roca, A. Fernandez, and R.
Espasa. ATTILA: A Cycle-Level Execution-Driven
Simulator for Modern GPU Architectures. In
Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, pages
231–241, March 2006. Source and traces available at
http://attila.ac.upc.edu/wiki/index.php/Main Page.

[52] T. Piazza. Intel Processor Graphics. In Symposium on
High-Performance Graphics, August 2012.

[53] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive Insertion Policies for High
Performance Caching. In Proceedings of the 34th
International Symposium on Computer Architecture,
pages 381–391, June 2007.

[54] M. K. Qureshi and Y. N. Patt. Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance,
Runtime Mechanism to Partition Shared Caches. In
Proceedings of the 39th International Symposium on
Microarchitecture, pages 423–432, December 2006.

[55] T. G. Rogers, M. O’Connor, and T. M. Aamodt.
Cache-Conscious Wavefront Scheduling. In Proceedings
of the 45th International Symposium on
Microarchitecture, pages 72–83, December 2012.

[56] T. G. Rogers, M. O’Connor, and T. M. Aamodt.
Divergence-aware Warp Scheduling. In Proceedings of
the 46th International Symposium on
Microarchitecture, pages 99–110, December 2013.

[57] P. Rosenfeld, E. Cooper-Balis, and B. Jacob.
DRAMSim2: A Cycle Accurate Memory System
Simulator. In IEEE Computer Architecture Letters,
10(1): 16–19, January-June 2011.

[58] D. Sanchez and C. Kozyrakis. Vantage: Scalable and
Efficient Fine-grain Cache Partitioning. In Proceedings
of the 38th International Symposium on Computer
Architecture, pages 57–68, June 2011.

[59] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C.
Mowry. The Evicted-address Filter: A Unified
Mechanism to Address Both Cache Pollution and
Thrashing. In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, pages 355–366, September 2012.

[60] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program
Behavior. In Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 45–57,
October 2002.

[61] A. L. Shimpi. Intel Iris Pro 5200 Graphics Review:
Core i7-4950HQ Tested. June 2013. Available at
http://www.anandtech.com/show/6993/intel-iris-pro-
5200-graphics-review-core-i74950hq-tested.

[62] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and
O. Mutlu. The Application Slowdown Model:
Quantifying and Controlling the Impact of
Inter-Application Interference at Shared Caches and
Main Memory. In Proceedings of the 48th International
Symposium on Microarchitecture, pages 62–75,
December 2015.

[63] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli.
Multi2Sim: A Simulation Framework for CPU-GPU
Computing. In Proceedings of the 21st International
Conference on Parallel Architecture and Compilation
Techniques, pages 335–344, September 2012.

[64] A. Vartanian, J-L. Bechennec, and N. Drach-Temam.
Evaluation of High Performance Multicache Parallel
Texture Mapping. In Proceedings of the 12th
International Conference on Supercomputing, pages
289–296, July 1998.

[65] J. Walton. The AMD Trinity Review (A10-4600M): A
New Hope. May 2012. Available at
http://www.anandtech.com/show/5831/amd-trinity-
review-a10-4600m-a-new-hope/.

[66] C-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S.
C. Steely Jr., and J. Emer. SHiP: Signature-Based Hit
Predictor for High Performance Caching. In
Proceedings of the 44th International Symposium on
Microarchitecture, pages 430–441, December 2011.

[67] Y. Xie and G. H. Loh. PIPP: Promotion/Insertion
Pseudo-partitioning of Multi-core Shared Caches. In
Proceedings of the 36th International Symposium on
Computer Architecture, pages 174–183, June 2009.

[68] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts.
A Fully Integrated Multi-CPU, GPU, and Memory
Controller 32 nm Processor. In Proceedings of the
International Solid-State Circuits Conference, pages
264–266, February 2011.

[69] 3D Mark Benchmark. http://www.3dmark.com/.

