
Bandwidth-aware Last-level Caching: Efficiently
Coordinating Off-chip Read and Write Bandwidth

Mainak Chaudhuri
Department of Computer Science and Engineering

Indian Institute of Technology Kanpur
mainakc@cse.iitk.ac.in

Jayesh Gaur Sreenivas Subramoney
Processor Architecture Research Lab

Intel Corporation
jayesh.gaur@intel.com, sreenivas.subramoney@intel.com

Abstract— The last two decades have witnessed a large number
of proposals on the last-level cache (LLC) replacement policy
aiming to minimize the number of LLC read misses. Another
independent large body of work has explored mechanisms to ad-
dress the inefficiencies arising from the DRAM writes introduced
by the LLC replacement policy. These DRAM scheduling propos-
als, however, leave the LLC replacement policy unchanged and,
as a result, miss the opportunity of synergistically shaping and
scheduling the DRAM write bandwidth demand. In this paper,
we argue that DRAM read and write bandwidth demands must
be coordinated carefully from the LLC side and hence, intro-
duce bandwidth-awareness in the LLC policy. Our bandwidth-
aware LLC policy proposal enables long uninterrupted stretches
of DRAM reads while maintaining the efficiency of the last-level
cache and controlling precisely when and for how long writes can
demand DRAM bandwidth. Our proposal comfortably outper-
forms the state-of-the-art eager DRAM write scheduling propos-
als and bridges 75% of the performance gap between the baseline
and a hypothetical system that deploys an unbounded DRAM
write buffer.

Index Terms—DRAM bandwidth, Last-level caching, DRAM
writes

I. INTRODUCTION

The last-level cache (LLC) policies have come a long way pro-
gressively improving the fraction of code and data reuses captured
by the LLC. Driven by the traditional goals of cache design, the LLC
replacement policy selects the victims to minimize the number of
read misses. Dirty victims generate write traffic to the main memory
DRAM. To reduce the impact on read throughput, DRAM writes
are drained periodically in bunches from small write buffers. As a
result, a steady stream of dirty victims periodically interrupts DRAM
reads making it impossible to offer the much-needed long stretches
of exclusive DRAM read bandwidth. DRAM writes introduce three
types of inefficiencies: (i) channel turn-around delay when switching
between reads and writes, (ii) additional delay of precharging DRAM
banks and activating new DRAM rows due to lack of row locality in
the write stream, and (iii) the DRAM bandwidth taken away by the
writes. To reduce channel turn-around delay and improve row locality
of writes, DRAM writes are drained in bunches from a per-channel
write buffer. Proposals focusing specifically on write scheduling fur-
ther improve the DRAM efficiency by identifying row-local groups
of dirty blocks from the LLC [36], [64], [73] and scheduling them
eagerly for writing back to DRAM whenever some DRAM resource
falls idle [37], [64], [73], [75]. Prior research has also explored ways
to overlap reads with writes [6]. All these proposals leave the LLC
replacement policy unaltered and as a result, miss the opportunity of
precisely coordinating the read and write bandwidth demands to the
off-chip DRAM.

In this paper, we quantitatively establish that smart coordination
between off-chip read and write bandwidth demands holds the key to
improving DRAM efficiency. Based on this observation, we present
bandwidth-aware LLC policies that maximize the length of uninter-
rupted exclusive DRAM read bandwidth stretches and control exactly
when the writes can interrupt the read flow. We list our contributions
in the following.
1. We motivate our bandwidth coordination-driven design principles
by establishing quantitatively that data channel turn-arounds and
poor locality of writes have much less performance impact than the
bandwidth taken away by DRAM writes (Section III).
2. We present bandwidth-aware LLC policies that control when
and for how long DRAM bandwidth can be demanded for reading
and writing by learning the run-time read/write characteristics of
workloads (Section IV).
3. Our proposal outperforms a well-tuned eight-core baseline chip-
multiprocessor model (Section VI) by 12% and comes close to
a hypothetical baseline that deploys an unbounded DRAM write
buffer (Section VII).
4. We verify through RTL synthesis that the design additions of our
proposal have low area overhead per LLC bank and that our design
meets the necessary timing constraints to operate at 4 GHz frequency.

II. BACKGROUND

On evicting a dirty block, the multi-banked shared LLC gener-
ates a write request to one of the DRAM channels. If the channel
controller has space to enqueue an arriving write into the channel’s
write buffer, it sends a positive acknowledgment to the sender LLC
bank. A negatively acknowledged write must be retried by the LLC
bank from its local buffer which maintains each of the in-flight writes
sent from the bank until its receipt is positively acknowledged by the
memory/channel controller. If the local buffer of an LLC bank is full,
the bank stops sending read misses to memory.

The DRAM data bits on a channel are organized into a number of
ranks, each having several banks. Figure 1 shows the physical address
mapping used in this study. A DRAM access needs to activate or open
a row in the target bank and move the row contents to a per-bank row
buffer. Subsequently, the appropriate columns can be read out from or
written to the row buffer honoring the row-to-column delay (tRCD).
In this paper, we use the first-ready-first-come-first-serve (FR-FCFS)
DRAM access scheduling algorithm, which schedules accesses to
already open rows first and breaks ties among them by the arrival
order of the accesses. To open a new row in a bank, the bank must
be precharged to a state that allows activation of a new row after the
precharge delay (tRP). In this paper, the write scheduling algorithm
drains writes from the channel’s write buffer when either there are
no pending reads on the channel (will be referred to as opportunistic
minor write draining mode) or the write buffer is full (will be referred
to as major write draining mode) [36], [73]. Minor write draining
terminates when a read arrives on the channel. Major write draining
terminates when the write buffer is empty.

109

2019 IEEE 37th International Conference on Computer Design (ICCD)

978-1-5386-6648-7/19/$31.00 ©2019 IEEE
DOI 10.1109/ICCD46524.2019.00022

000Column−lowChannelColumn−highBankRankRow

Block offset

Lower bits of LLC Tag XOR Bank

LLC Tag

Fig. 1. DRAM address mapping scheme.

III. MOTIVATION

The studies in this section first show that the performance im-
provement achieved by addressing the commonly known DRAM
write overheads, namely channel turn-arounds and lack of row
locality in the write stream, is not a sizable fraction of what is
achievable optimally. Next, a set of studies brings out the necessity
of proactively coordinating the DRAM read and write bandwidth
demands for achieving significantly higher performance benefits. All
studies presented in this section are conducted on a simulated eight-
core chip-multiprocessor having an 8 MB 16-way shared LLC and a
dual-channel DDR3-1600 11-11-11-28 DRAM system.

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1

S
p

e
e

d
u

p

as
ta

r.r
iv

er
s

bzi
p2.

pro
gra

m

bzi
p2.

so
urc

e

gcc
.1

66

hm
m

er
.n

ph3

lb
m

le
sl

ie
3d

lib
quan

tu
m

m
cf

m
ilc

om
net

pp

so
ple

x.
pds−

50

so
ple

x.
re

f

sp
hin

x3 w
rf

G
EO

M
EA

N

NoW

NoTA

NoTA+NoWPRE_ACT

Fig. 2. Perf. impact of turn-around, write locality, and write bandwidth.

Figure 2 quantifies the relative importance of channel turn-around,
write locality, and write bandwidth through comparison of the
speedup achieved by discarding all writes (NoW in the leftmost bar)1,
by nullifying channel turn-around penalty (NoTA in the middle bar),
and by nullifying channel turn-around as well as precharge/activate
penalty during write draining modes (NoTA+NoWPRE ACT in the
rightmost bar). Each group of bars represents an eight-way multipro-
grammed workload consisting of eight copies of the mentioned SPEC
CPU 2006 benchmark application. In this study, each DRAM chan-
nel has a 32-entry write buffer. NoTA and NoTA+NoWPRE ACT
achieve average speedups of 1.4% and 11% respectively, while
NoW achieves 36% average speedup indicating that addressing turn-
around and precharge/activate penalty covers less than one-third of
the potential speedup achievable through write optimization. The
remaining about two-third of the speedup gap arises from DRAM
write bandwidth demand and can be narrowed down through better
coordination between DRAM read and write bandwidth demands.

One naı̈ve way of achieving bandwidth coordination and long
uninterrupted DRAM read stretches is by having larger per-channel
write buffers. Figure 3 shows that the average speedup progressively
increases with per-channel write buffer capacity. However, since an
incoming read on a channel must search the write buffer for the
youngest matching block address (if any), the write buffer needs
to have an address CAM (content associative memory). Therefore,
practically implementable write buffer sizes are limited to a few tens
of entries. Nonetheless, an analysis of the performance improvement
with larger write buffers can offer useful insight into the dynam-
ics of read/write bandwidth interaction. Larger write buffers offer
better performance due to three reasons: (A) fewer channel turn-
arounds, (B) improved row locality of writes arising from better
write bunching, and (C) long uninterrupted stretches of sustained
high read throughput. Figure 4 isolates the impact of these three

1 Modeled by not sending any write to the simulated DRAM arrays.

when the number of write buffer entries per channel is increased
from 32 in the baseline to 256 (upper panel) and 8192 (lower
panel). The WB256 and WB8K bars are same as the 256-entry
and 8K-entry bars in Figure 3. The middle bar quantifies the com-
bined speedup due to (B) and (C) by nullifying the turn-around
penalty (WBn NoTA) in both baseline and enlarged write buffer
configurations. The rightmost bar quantifies the speedup due to
(C) by nullifying the turn-around penalty as well as precharge and
activation penalty during write draining modes in both baseline and
with enlarged write buffers (WBn NoTA+NoWPRE ACT). Note
that the baseline in the middle bar has zero turn-around penalty and
that in the rightmost bar has zero turn-around penalty as well as zero
precharge and activation penalty during write draining modes, while
the baseline in the leftmost bar has both these penalties enabled. The
speedup due to (A) alone is the gap between the leftmost bar and
the middle bar. The speedup due to (B) alone is the gap between the
middle bar and the rightmost bar. Therefore, the speedup achieved
with 256 write buffer entries arises primarily due to (B), while the
speedup for 8192 write buffer entries arises from a combination
of (B) and (C). The speedup due to (C) is mostly non-existent for
256 entries, but becomes reasonably important across the board for
8192 entries indicating that very large write buffers are needed for
read/write bandwidth coordination and optimization beyond (A) and
(B). Our proposal realizes this coordination with bandwidth-aware
LLC policies.

64 128 256 512 1K 2K 4K 8K
1

1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.1

1.11
1.12
1.13

S
p
e
e
d
u
p

Per channel write buffer entries

Fig. 3. Increasing number of write buffer entries.

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

S
p
e
e
d
u
p

WB256

WB256_NoTA

WB256_NoTA+NoWPRE_ACT

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

S
p
e
e
d
u
p

G
EO

M
EA

N

G
EO

M
EA

N

as
ta

r.r
iv

er
s

bzi
p2.

pro
gra

m

bzi
p2.

so
urc

e

gcc
.1

66

hm
m

er
.n

ph3

lb
m

le
sl

ie
3d

lib
quan

tu
m

m
cf

m
ilc

om
net

pp

so
ple

x.
pds−

50

so
ple

x.
re

f

sp
hin

x3 w
rf

w
rf

sp
hin

x3

so
ple

x.
re

f

so
ple

x.
pds−

50

om
net

pp
m

ilc
m

cf

lib
quan

tu
m

le
sl

ie
3dlb

m

hm
m

er
.n

ph3

gcc
.1

66

bzi
p2.

so
urc

e

bzi
p2.

pro
gra

m

as
ta

r.r
iv

er
s

WB8K

WB8K_NoTA

WB8K_NoTA+NoWPRE_ACT

Fig. 4. Analysis for write buffers with 256 (upper) and 8192 (lower) entries.

Figure 5 studies a configuration with an unbounded write buffer
as the extreme case of configurations with large write buffers. Since
an unbounded write buffer never gets full, writes drain only through
the minor write draining mode when there are no reads (WnoR). The
leftmost bar (Unbounded WnoR) shows an average speedup of 26%
in this case, while the second bar (Unbounded WnoR+DrainAtEnd)
brings down the achievable speedup bound to 13% on average when
the cycles needed to drain the residual buffered writes at the end are

110

included. In the latter case, the percentage of writes drained during
the terminal phase for each workload is also shown on top of the bars.
These writes drained during the terminal phase will be referred to as
terminal writes. High read bandwidth demand throughout offers little
scope for opportunistic write draining leading to high percentages
of terminal writes in lbm, libquantum, milc, soplex.pds-50. For
astar.rivers, bzip2.program, hmmer.nph3, and omnetpp, most writes
can be drained through the minor draining modes alone leaving small
percentages of terminal writes. As the rightmost two bars of Figure 5
shows, these applications, however, perform very poorly when the
unbounded write buffer is replaced by 32-entry (WB32 WnoR) and
8192-entry (WB8K WnoR) write buffers per channel while keeping
only the minor write draining mode enabled. In this configuration,
when the write buffers fill up, the LLC controller eventually stops
sending read misses due to back-pressure and the DRAM controller
is forced to enter a minor write draining mode. However, the minor
draining mode lasts for a short while because as soon as the write
buffers have space, the LLC controller starts sending read misses
again. The results of this configuration indicate that extremely large
write buffers are needed (more than even 8192 entries) for these
workloads to keep buffering the writes between two large consecutive
read bandwidth holes (periods with no read requests). The buffered
writes can then be drained during the read bandwidth holes using the
minor write draining mode.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
p

e
e

d
u

p

G
EO

M
EA

N

as
ta

r.r
iv

er
s

bzi
p2.

pro
gra

m

bzi
p2.

so
urc

e

gcc
.1

66

hm
m

er
.n

ph3

lb
m

le
sl

ie
3d

lib
quan

tu
m

m
cf

m
ilc

om
net

pp

so
ple

x.
pds−

50

so
ple

x.
re

f

sp
hin

x3 w
rf

~0% 0% 22% 44% ~0%

73%

40%
99%

46% 93% 3% 76% 21% 59% 18%

Unbounded_WnoR

Unbounded_WnoR+DrainAtEnd

WB32_WnoR

WB8K_WnoR

Fig. 5. Speedup with unbounded write buffer.

In summary, these studies establish the importance of off-chip
bandwidth coordination. Our proposal discussed next incorporates
such coordination through bandwidth-aware LLC policies.

IV. BANDWIDTH-AWARE LLC POLICIES

Our LLC policy proposal attempts to offer long uninterrupted
stretches of exclusive DRAM bandwidth to the reads as much as
possible. We initially assume the true LRU replacement policy and
later extend our proposal to other more practical LLC replacement
policies. We assume an inclusive LLC. However, our proposal works
seamlessly in non-inclusive and exclusive LLCs as well.

A. Exclusive DRAM Read Bandwidth
Our proposal implements the clean LRU policy to delay replace-

ment of dirty blocks from the LLC and guarantee long uninterrupted
stretches of exclusive DRAM bandwidth to reads. This policy evicts
the clean block closest to the LRU position within the target LLC
set; the LRU block is evicted if the set is completely dirty. The clean
LRU policy has been used for reducing off-chip write traffic [13],
[79] and improving non-volatile memory and cache [14], [25], [48],
but our primary contributions discussed next involve the mechanisms
to maximize the stretch of clean block eviction while bounding the
loss in LLC hits.

B. Dynamic Write Buffering Capacity
The clean LRU policy tends to deviate from the baseline LRU

policy as the number of dirty blocks buffered toward the tail of the

LRU stack of the LLC grows. This deviation may lead to loss in
LLC hits depending on the sensitivity of the workload toward LLC
capacity. The dirty block population toward the tail of the LRU stack
acts as an in-LLC write buffer (Figure 6) holding the dirty blocks.
Bounding the fraction of sacrificed LLC hits requires restricting
the number of LLC ways the in-LLC write buffer can occupy. In
the following, we discuss how the maximum allowable write buffer
width is computed dynamically.

Ways

Sets

n
MRU LRU

Write
Buffer

Fig. 6. Last n ways of the LRU stack are marked as the in-LLC write buffer.

Let us suppose that the last n positions of the LRU stack in an
LLC set are occupied by dirty blocks. We would like to derive an
upper bound on n. A clean LRU victim in such a set would sacrifice
the read hits that it could have enjoyed in the LRU stack’s last
n positions. To estimate the fraction of sacrificed read hits, each
LLC bank maintains a read hit histogram (RHH) array of length
equal to the associativity, A, of the LLC (Figure 7). The array
index i records the proportion of read hits at LRU stack position i.
Therefore, the fraction of sacrificed read hits in the aforementioned
case is

∑n−1
i=0 RHH(B, i)/Trh(B), where i = 0 represents the LRU

position and Trh(B) is the total number of read hits in LLC bank B.
We bound this fraction by a given design parameter τR. Therefore,
the desired width of the in-LLC write buffer in bank B is the largest
n such that

∑n−1
i=0 RHH(B, i) ≤ τR.Trh(B). We refer to this width

computed periodically based on RHH as nR(B). Every time nR(B)
is computed, the RHH and Trh counters of bank B are halved. In
general, τR should be small. We set τR to 1/16.

The aforementioned clean LRU victim may have a dirty copy in
the inner levels of the cache hierarchy. In an inclusive LLC, the
dirty copy must be evicted to maintain inclusion. The probability
of such dirty inclusion victims (DIVs) must be minimized because
they lead to dirty LLC victims. If the clean victim stayed longer
in the LLC, it would have experienced a write hit because the
dirty copy would have been evicted from the inner levels with
high likelihood. Therefore, the DIV probability can be bounded by
restricting n such that the fraction of write hits experienced by LLC
blocks in the last n LRU stack positions is bounded by a design
parameter τW . Let this new bound on n be nD(B). To estimate
the number of write hits, we maintain a write hit histogram (WHH)
array in each LLC bank (Figure 7). If LLC bank B observes a total
of Twh(B) write hits, nD(B) is the maximum value of n such
that

∑n−1
i=0 WHH(B, i) ≤ τW .Twh(B), where i = 0 is LRU.

Now, the probability of DIV (PDIV) is bounded by the product
of τW and the capacity ratio of the inner cache level(s) to the
LLC (roughly 1/4 to 1/8 in our configurations). We set τW to 1/2
for a PDIV bound of 1/8. In an LLC bank, the WHH and Twh

counters are halved along with the RHH and Trh counters. Finally,
the dynamic width of the write buffer in LLC bank B is set to
n(B) = max(3,min(nR(B), nD(B))) so that it is at least three
ways (decided empirically for a 16-way LLC).

Figure 8 shows the steps involved in updating the RHH and WHH
arrays. Figure 9 shows how nR(B) is computed iteratively. The
RHH index register is initially zero and it contains nR(B) when the
comparator outputs zero at the end of the iterations. A similar piece of

111

Read hit at position k

Write hit at position k

RHH

WHH

increment

increment

LRU (i=0) MRU (i=A−1)

i=k

Fig. 7. The read and write hit histograms.

LLC
Write
Read/

LLC
Way

Hit
LRU State

Array
RHH/WHH

Array +1
RHH/WHH

Index

Fig. 8. Logic for updating RHH/WHH array on an LLC hit.

+1

RHH
Index

RHH
Array

+ REG1
0 1

0

Clock

Read hit threshold

Fig. 9. Logic for computing nR(B). The read hit threshold is set to
Trh(B) >> log2(1/τR), where 1/τR is always a positive power of two.

logic can be used for computing nD(B) in parallel with nR(B). We,
however, note that the logic for computing nD(B) is unnecessary
in non-inclusive and exclusive LLCs because LLC victims in such
configurations do not generate inclusion victims.

C. Adaptive Write Draining Algorithm
In this section, we discuss how the dirty data are periodically

scrubbed out of the LLC so that the in-LLC write buffer width n(B),
as computed above, is maintained.

1) Opportunistic Minor Write Draining: When a DRAM
channel has no pending reads and the channel’s write buffer occu-
pancy is below a fractional threshold τopp (i.e., number of pending
writes < τopp×number of write buffer entries per channel), the
channel controller enters the minor write draining mode by selecting
an LLC bank and requesting it to send dirty data to the channel.
The LLC bank selection is done through a turn register per channel
which records the id of the next round-robin LLC bank to send dirty
data to the channel. During the minor draining mode, the LLC bank
sends writes to only the requesting channel and attempts to keep the
channel’s write buffer only partially filled up to a fraction τopp. This
lowers the chance of accidentally entering a major write draining
mode by filling up the write buffer due to a burst of writes from
the selected LLC bank. Every write acknowledgment coming back
to the LLC bank carries a bit indicating whether the target channel’s
write buffer occupancy has crossed τopp. We set τopp to 1/2. The turn
register is updated when a read arrives on the channel terminating the
minor draining mode.

2) Major Write Draining: Most of the dirty data are scrubbed
through the major write draining mode. Each LLC bank B can
independently force a DRAM channel to enter this mode by sending
a large volume of writes to the channel. The maximum number of
dirty blocks in the write buffer of LLC bank B is N.n(B) where N
is the number of sets in the bank and n(B) is the number of ways
allocated to the write buffer. An LLC set is said to be full if all its
lowest n(B) LRU stack positions are filled with dirty blocks. An
LLC bank B triggers a major draining mode if (i) the bank’s write
buffer has at least τHWM .N.n(B) dirty blocks where τHWM ≤ 1
is a design parameter defining a high watermark, or (ii) the number
of full sets in the bank is at least N.τF and the bank’s write buffer
has at least τLB .N.n(B) dirty blocks (τF ≤ 1, τLB ≤ 1 are design
parameters). Rule (i) triggers on reaching a high watermark, while

Rule (ii) triggers when the number of full sets reaches a threshold
in the bank. Rule (ii) is necessary because the clean LRU policy can
perform very poorly in the presence of too many full sets. In Rule (ii),
the parameter τLB is chosen such that τLB .N.n(B) is at leastN (one
way worth blocks) offering enough flexibility to the scrubber in the
choice of scrub candidates. Since minimum n(B) is three, we set
τLB to 3/8 (less complex to implement than 1/3). We set τHWM to
3/4 (which is double of τLB). A workload with a high LLC read hit
count per fill can trade some LLC read hits for extra write buffering
and hence, can have a large τF . Let FB be the fill counter and Trh(B)
be the read hit counter in LLC bank B. Table I lists the values of τF
used by our design. Each table entry is seven-bit wide (numerator: 3
bits, log of denominator: 4 bits).

TABLE I
LOOK-UP TABLE FOR DECIDING τF

Range of τF Range of τF
Trh(B)/FB Trh(B)/FB

[0, 0.1) 1/256 [0.4, 0.5) 3/8
[0.1, 0.2) 1/128 [0.5, 0.7) 4/8
[0.2, 0.3) 1/8 [0.7, 1.0) 5/8
[0.3, 0.4) 2/8 ≥ 1.0 6/8

Having decided the trigger rules for the write draining modes,
we now turn to discuss the process of scrubbing dirty LLC blocks.
The scrubber takes two passes over the sets in an LLC bank during
a major draining mode and in each pass selects at most one scrub
candidate from each set. In each idle cycle of the LLC bank when
there is no pending read or write requests, the scrubber initiates
a pipelined lookup to a set. To simplify the control over write
bandwidth demand to a channel, all scrub candidates from an LLC
bank map to the same channel. To improve bandwidth coordination,
after sending out every 32 scrubbed writes (size of per-channel write
buffer), the scrubber checks whether the number of pending reads in
the target channel has reached a threshold Kr and if yes, the major
draining mode terminates. Kr is set to the number of miss status
holding registers (MSHRs) per LLC bank times the number of LLC
banks that can send requests to a channel.

Each major write draining mode in an LLC bank B marks the
beginning of a new epoch. Each epoch has the following three phases:
(i) recomputation of the write buffer width n(B) followed by halving
of RHH, WHH, Trh(B), Twh(B), and FB counters, (ii) scrubbing
operations of the major write draining mode, (iii) large read stretches
interleaved with minor opportunistic write stretches.

3) Efficient Selection of Scrub Candidates: We confine the
search for a scrub candidate within a set to the lowest portion
of the LRU stack so that premature scrubs are minimized. More
specifically, let nscrub(B) be the maximum value of k such that∑k−1

i=0 WHH(B, i) ≤ τscrub.Twh(B), where Twh(B) is the total
number of write hits in LLC bank B and τscrub ≤ 1 is a design
parameter. By confining the scrub candidates to the lowest nscrub(B)
ways of the LRU stack, we bound the probability that a scrubbed
block receives a write hit (meaning premature scrub) by τscrub. We
set τscrub to 1/32. A logic similar to the one in Figure 9 computes
nscrub(B) when an epoch starts. Minimum nscrub(B) is set to three
to offer enough flexibility to the scrubber.

We devise a set traversal order for the scrubber to improve DRAM
locality and parallelism among the scrub candidates. The 1024 sets
in an LLC bank are divided into partitions p0, . . . , p7 each having
128 consecutive sets. Each partition is divided into 32 segments
s0, . . . , s31 each having four consecutive sets (set0, . . . , set3). The
scrubber traverses the sets of an LLC bank in the following order (one

112

set at a time in an idle cycle): (p0, s0, set0), ..., (p0, s0, set3), (p1,
s0, set0), ..., (p1, s0, set3), ..., (p7, s0, set0), ..., (p7, s0, set3),
(p0, s1, set0), ..., (p0, s1, set3), and so on. During a minor draining
mode, the traversal starts from where it left off last time. During a
major draining mode, the traversal starts from (p0, s0, set0) and runs
through the traversal order twice unless terminated early due to read
bandwidth demand on target channel. As the scrubber moves from
one partition to another, the chance of bank- and rank-parallelism
increases (please refer to Figure 1). Within the four sets of a segment
of a particular partition, the scrubber tries to improve row locality
using a simple greedy row matching algorithm, in which it looks for
a scrub candidate in the currently visited set having the same (rank,
bank, row) tuple as the last scrub candidate. If no such candidate
is found within the last nscrub(B) LRU positions, it looks for a
candidate having DRAM bank or rank different from the last scrub
candidate to improve bank-/rank-parallelism. If unsuccessful, it picks
the LRU dirty block (if any) from the last nscrub(B) LRU positions.
Our proposed scrubber walk obviates the need for an auxiliary struc-
ture such as the set state vector (SSV) [64] or organizing the dirty
bits separately as in the dirty block index (DBI) [60]. In Section VII,
we show that our scrubber walk is as effective as the SSV.

Table II summarizes all the tunable parameters of our design. The
overall storage overhead of our proposal is slightly over 1Kbits per
LLC bank arising from the RHH and WHH arrays (32 bits × 16
ways each), the Trh, Twh, and FB counters (32 bits each), the full
set counter (10 bits), the dirty block counter for the in-LLC write
buffer (14 bits), and the look-up table for τF (8 entries × 7 bits). The
logic overhead is discussed in Section IV-E.

TABLE II
TUNABLE DESIGN PARAMETERS

Parameter Section Value
τR, τW , minn(B) IV-B 1/16, 1/2, 3

τopp IV-C1 1/2
τLB , τHWM , Kr IV-C2 3/8, 3/4, 64

τF IV-C2 Table I
τscrub, minnscrub(B) IV-C3 1/32, 3
(#partitions, #segments) IV-C3 (8, 32)

D. Application to Non-LRU LLC Policies
We now extend our proposal to not-recently-used (NRU), static

and dynamic re-reference interval prediction (SRRIP and DR-
RIP) [21], and signature-based hit prediction (SHiP) [76] policies.

The NRU policy maintains a reference bit with each block. This
bit is set to one on an access to a block. When all blocks in a set
have this bit equal to one, all but the one accessed most recently are
reset to zero. The replacement policy victimizes the block in a set
that has its reference bit reset. A tie is broken by evicting the victim
candidate with the lowest physical way id. Figure 10 illustrates how
our proposal deterministically orders the ways from MRU to LRU
based on reference bit and way id. The clean NRU policy exercised
by our proposal invokes the baseline NRU policy in the absence of
clean blocks in the target set; otherwise it selects the clean block
closest to the LRU end in the order shown in Figure 10. If an evicted
clean block has reference bit equal to one, the reference bits of the
remaining blocks in the set are made zero to protect the newly filled
clean block.

The SRRIP policy attaches a two-bit re-reference prediction
value (RRPV) with each block. A newly filled block is assigned
RRPV 2. On a hit, the block’s RRPV is upgraded to zero. The
replacement policy increments the RRPVs of all blocks in the target
set until a block is found with RRPV 3. A tie is broken by evicting the

victim candidate with the lowest physical way id. Figure 10 shows
how our proposal deterministically orders the ways from MRU to
LRU based on RRPV and way id. The clean SRRIP policy invokes
the baseline SRRIP policy if there is no clean block in the target
set; otherwise it increments the RRPVs of all blocks in the target
set until a clean block is found with RRPV 3. The thread-aware
DRRIP (TADRRIP) policy dynamically chooses between insertion
RRPVs of 2 and 3 on a per-thread basis.

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

Decreasing way idDecreasing way id

0

MRU end LRU end

Reference bit

Ordering used by our proposal for NRU policy

MRU end LRU endOrdering used by our proposal for SRRIP policy

RRPV

0 0 0 0 0 1 1 1 2 2 2 2 2 3 3 3

Decreasing way id Decreasing way id Decreasing way id Decreasing way id
Victim search order

Fig. 10. Way ordering for NRU and SRRIP.

The SHiP policy uses two-bit RRPV per block and employs the
correlation between program counter (PC) of an LLC fill and reuse
behavior of the filled block to decide the RRPV of a newly filled
block. For use in SHiP, a prefetch fill inherits the PC of the trigger
demand access. We implement SRRIP+SHiP, which employs a set-
duel to choose the best of SHiP and SRRIP dynamically. The clean
replacement policy is same as clean SRRIP.

E. Design Synthesis and Area Estimates
We synthesize three logic blocks needed by our proposal in each

LLC bank: updation of the RHH/WHH array (Figure 8), computation
of nR, nD , nscrub (Figure 9), and the scrubber logic. We use the
45 nm TSMC technology library and assume a 16-way LLC. A three-
stage pipelined implementation of the logic after LLC hit detection
shown in Figure 8 meets the target 4 GHz frequency and has an area
of 0.00453 mm2. A fully combinational implementation of the logic
in Figure 9 requires two cycles at 4 GHz to complete one iteration and
consumes 0.00307 mm2 area. On average, nR computation requires
six iterations. This latency is off the critical path and observed
only when nR is recomputed. The scrubber logic in each LLC
bank implements the greedy row matching algorithm discussed in
Section IV-C3. A fully combinational implementation of this logic
meets the cycle time of the target 4 GHz clock and consumes
0.00244 mm2 area. The total area overhead of one instance of the
logic in Figure 8, three instances (for nR(B), nD(B), nscrub(B)) of
the logic in Figure 9, and one instance of the scrubber logic is only
0.01618 mm2 for an LLC bank B.

The LRU ordering is not explicitly stored for the non-LRU
policies (unlike LRU). Updating the appropriate location of the
RHH/WHH array on an LLC hit in these cases uses the logic shown
in Figure 11 (shown for NRU; support for other policies is similar)
in place of the logic in Figures 8. We synthesize this logic as a three-
stage pipeline for meeting the target 4 GHz frequency. The first stage
uses the combinational functions f0 to f15 to compute the indices
SI[i] of the LLC ways in the shuffled array of ref bits reflecting
the MRU to LRU ordering as shown in Figure 10. SI[i] is the index
of LLC way i in the shuffled array. The LRU end has index zero and
the MRU end has index 15. If ref[i] is zero, SI[i] would be
computed as (i-j) if there are j bits set to one among ref[0]
to ref[i-1]. If ref[i] is one, SI[i] would be computed as
(i+j) if there are j zero bits among ref[i+1] to ref[15]. The
functions f0 to f15 employ small lookup tables. The second stage
(i) selects SI[way] as the RHH/WHH index where way is the way
id of LLC hit and (ii) reads the value v at that index of RHH/WHH.

113

The third stage increments v and writes it to the RHH/WHH index
location (this stage requires a bypass path). The entire pipeline
consumes only 0.00504 mm2 area including the RHH/WHH array.
The logic necessary for supporting two-bit RRIP policies employs
similar design techniques. For example, SI[i] is (i-j+k) if
there are j RRPVs bigger than RRPV[i] among RRPV[0] to
RRPV[i-1] and there are k RRPVs smaller than RRPV[i] among
RRPV[i+1] to RRPV[A-1] where A (=16) is the associativity. A
lookup table-based four-stage pipelined implementation clocked at
4 GHz consumes only 0.00938 mm2 area.

���
�

���
�

���
�

���
�

��	
	

�
�

��

���
�

���
�

���
�

���
�

44

16 bits

f0 f15

16 16

Reference bit array (ref[0] to ref[15])

SI[15]SI[0]

way id
LLC hit

4

index
RHH/WHH

RHH/WHH
Array

4

+1Clock

16−to−1 MUX

Fig. 11. RHH/WHH update logic for NRU policy.

V. RELATED WORK

The existing LLC policy proposals optimize the number of read
misses [2]–[5], [7]–[9], [12], [15], [20]–[24], [26]–[33], [38]–[40],
[43], [49]–[54], [58], [59], [61], [68]–[70], [72], [76], [77]. DRAM
rank-aware LLC policies have been proposed for optimizing DRAM
energy [1]. The clean LRU policy and policies with higher replace-
ment priority for clean blocks have been used in the LLC to reduce
the volume of writes to the next-level non-volatile memory [13], [14],
[79]. The clean LRU policy has also been used in non-volatile caches
to improve intra-set wear-leveling [25] and to improve page cache
replacement in systems with FLASH memory [48]. The enhanced
second-chance page replacement algorithm also prioritizes clean
page eviction [63]. LLC policies that offer additional protection to
dirty blocks with write reuses have been explored with the goal of
reducing write traffic to the next-level non-volatile memory [74],
[78]. LLC policies to balance write traffic to the write queues of
non-volatile memory [81] and LLC writeback-aware techniques to
partition non-volatile memory bandwidth among applications [82]
have been explored. Although our proposal relies on the clean LRU
policy in the LLC, the primary novelty of our proposal arises from
the mechanisms that maximize the DRAM read bandwidth stretches
while controlling write bandwidth.

Majority of the DRAM access scheduling proposals focus on read
scheduling [10], [11], [16], [18], [19], [34], [35], [42], [44]–[47],
[55], [56], [65]–[67]. These proposals drain writes based on high
and low watermarks on the channels’ write buffer occupancy. Among
the proposals on write scheduling, eager writeback generates writes
from the LLC whenever some DRAM resource falls idle [37]. Since
the write scheduler’s visibility is limited to the small write buffers
of the memory controllers, write locality is poor as in the baseline. A
subsequent proposal has employed prediction mechanisms to identify
and use large idle periods of a rank for sending writes from the
LLC [75]. Eager writeback in the context of non-volatile memory
has also been explored [80].

Virtual write queue (VWQ) expands the visibility of the write
scheduler by using the last two ways of the LRU stack of the LLC
as a statically sized write buffer [64]. It cleans the dirty blocks
from the write buffer based on static pre-defined high and low

watermarks or during idle periods of DRAM resources. It takes help
of a structure called set state vector (SSV) to improve write locality.
However, VWQ continues to use LRU replacement policy offering no
guarantee of long stretches of exclusive DRAM read bandwidth. Our
proposal also employs an in-LLC write buffer, but sizes this buffer
dynamically based on run-time behavior. Dynamic sizing of this
buffer enables maximization of the DRAM read stretches. DRAM-
aware writeback (DAWB) proposal writes back dirty LLC blocks
in row-local groups improving write locality while employing eager
writeback and opportunistic scheduling [36]. Dirty block index (DBI)
further eases the search for row-local groups of dirty blocks and
can be combined with aggressive writeback (AWB) that employs
eager and opportunistic write scheduling [60]. Last write prediction-
guided (LWPG) writeback proposal removes the reliance of VWQ
on LRU policy and employs a last-write predictor to identify the
LLC blocks that are eligible to be written back to DRAM [73]. In
Section VII, we present a quantitative comparison of our proposal
against VWQ, DAWB, LWPG writeback, and DBI+AWB proposals
for different LLC policies. The MRU to LRU ordering technique
discussed in Section IV-D is used to expand the scope of VWQ to
the non-LRU policies.

VI. SIMULATION ENVIRONMENT

We use the Multi2Sim infrastructure [71] to model eight dynami-
cally scheduled out-of-order-issue x86 cores clocked at 4 GHz. Each
core has private L1 instruction and data caches, a unified L2 cache,
and a highly tuned prefetcher. Each L1 cache is 32 KB 8-way with
two-cycle access latency. The L2 cache is 256 KB 8-way with five-
cycle access latency. The shared LLC is 8 MB 16-way associative and
8-way banked with seven-cycle bank access latency. We also consider
a 16 MB 16-way LLC with 8 banks and eight-cycle bank access
latency. Each LLC bank has 16 MSHRs supporting 16 outstanding
read misses from a bank. An LLC bank’s local write buffer has 32
entries.

The dual-channel DDR3-1600 11-11-11-28 DRAM system is
modeled using DRAMSim2 [57]. The DRAM system has 64-bit
channels, burst length of 8, two ranks per channel, 8 banks per rank,
and uses x8 chips with 1 KB row buffer per bank per chip. Each
channel controller has a 32-entry write buffer.

The fifty eight-way multiprogrammed workloads used in this
study are prepared by mixing fifteen SPEC CPU 2006 applications
that were shown in Figure 2. These fifteen applications are chosen
to represent a wide range of DRAM reads per kilo instructions (2.2
to 35.8) and DRAM writes per kilo instructions (1.2 to 18.5) in
the eight-way rate mode. Out of the fifty workloads, fifteen are
homogeneous, each of which has eight copies of the same applica-
tion. The remaining 35 heterogeneous workloads are prepared by
evenly mixing all the fifteen applications. Each application in a
mix retires 500M representative dynamic instructions chosen using
SimPoint [62]. Early finishing applications continue to run until all
applications retire the representative segment of instructions. Only
the representative segment is used for reporting speedup.

VII. SIMULATION RESULTS

We first analyze the performance of our proposal in detail on
the fifteen homogeneous workload mixes (Section VII-A). Next, we
discuss the results for all the fifty mixes (Section VII-B).

A. Performance of Homogeneous Mixes
Figure 12 quantifies the speedup of our bandwidth-aware

LLC (BALLC) policy proposal relative to the baseline. For each

114

workload, the leftmost bar shows the speedup of our proposal. The
speedup ranges from 2% (libquantum and wrf) to 48% (astar.rivers)
with an average of 11%. Several workloads enjoy more than 10%
speedup: lbm (22%), mcf (12%), milc (12%), omnetpp (11%),
soplex.pds-50 (14%), and sphinx3 (18%). For each workload, the
middle bar shows the effect of replacing our scrubber walk or-
der (Section IV-C3) by the SSV [64]. Our proposed scrubber walk
order achieves nearly the same performance as the SSV. The right-
most bar shows the effect of replacing clean LRU by the baseline
LRU policy in our proposal; the average speedup declines to only 3%.
This large loss in performance arises from the disturbance caused
by the dirty LLC victims. Subsequent analyses will discuss this
further. These results clearly bring out the sources of performance
improvement in BALLC: the clean LRU policy enabled by adaptive
in-LLC write buffering and intelligent periodic scrubbing of LLC
dirty blocks. The end-result is long uninterrupted stretches of DRAM
reads leading to significantly accelerated execution.

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

1.45
1.5

S
p

e
e

d
u

p

G
EO

M
EA

N

as
ta

r.r
iv

er
s

bzi
p2.

pro
gra

m

bzi
p2.

so
urc

e

gcc
.1

66

hm
m

er
.n

ph3

lb
m

le
sl

ie
3d

lib
quan

tu
m

m
cf

m
ilc

om
net

pp

so
ple

x.
pds−

50

so
ple

x.
re

f

sp
hin

x3 w
rf

BALLC

BALLC with SSV

BALLC with LRU

Fig. 12. Performance analysis of our proposal.
Figure 13 presents the DRAM read and write counts of our

proposal normalized to the baseline. These counts remain unchanged
for almost all workloads. Therefore, our proposal does not generate
any extra LLC misses and nor does it scrub prematurely. This is
expected because the LLC capacity lost to write buffering and the
scrub width are both bounded analytically. Interestingly, astar.rivers
and sphinx3 enjoy large savings in reads and writes. These two
workloads benefit from significant volumes of read and write reuses
of dirty blocks captured by our in-LLC write buffer. Such behavior
has been exploited in LLC optimization studies [28]. On top of each
group of bars, we show the percentage of DRAM writes that arise
from dirty LLC victims or dirty inclusion victims in our proposal.
Ideally, this percentage should be zero because our proposal uses the
clean LRU policy. However, occasionally it may victimize a dirty
block due to absence of clean blocks in the target LLC set or presence
of a dirty inclusion victim. At most 11% and on average only 3%
of DRAM writes arise due to such circumstances establishing our
proposal’s success in controlling DRAM write bandwidth.

0

0.2

0.4

0.6

0.8

1

1.2

D
R

A
M

 a
c
c
e

s
s
e

s

as
ta

r.r
iv

er
s

9% 11% 2% 1% ~0% 1% 3% 1% 7% 1% 6% 4% 1% 3% 2% 3%

bzi
p2.

pro
gra

m

bzi
p2.

so
urc

e

gcc
.1

66

hm
m

er
.n

ph3

lb
m

le
sl

ie
3d

lib
quan

tu
m

m
cf

m
ilc

om
net

pp

so
ple

x.
pds−

50

so
ple

x.
re

f

sp
hin

x3 w
rf

A
ve

ra
ge

Reads Writes

Fig. 13. Volume of DRAM reads and writes.

0.5

1

1.5

2

2.5

3

3.5

N
o

rm
.

a
vg

.
re

a
d

 s
tr

e
tc

h

5.9 7.5

A
ve

ra
ge

w
rf

sp
hin

x3

so
ple

x.
re

f

so
ple

x.
pds−

50

om
net

pp
m

ilc
m

cf

lib
quan

tu
m

le
sl

ie
3dlb

m

hm
m

er
.n

ph3

gcc
.1

66

bzi
p2.

so
urc

e

bzi
p2.

pro
gra

m

as
ta

r.r
iv

er
s

BALLC

BALLC with LRU

Fig. 14. Normalized read stretch length.

The primary goal of our proposal is to offer long uninterrupted
DRAM read stretches. Figure 14 shows the average length of

the DRAM read stretches normalized to the baseline for our pro-
posal (BALLC) and when our proposal is executed with the baseline
LRU policy (BALLC with LRU) as opposed to the clean LRU
policy. The length of a DRAM read stretch is measured as the
number of reads performed between two consecutive write stretches.
Our proposal improves the average read stretch length by about
2.4× (144%). Interestingly, for libquantum, the average read stretch
length improves by 5.9×, but performance improvement is only
2% (Figure 12). For libquantum, the read bandwidth demand is
very high throughout the execution. Our proposal offers long read
stretches and delays reads when doing major write draining. This
is only slightly better than regular relatively shorter read and write
stretches of the baseline for libquantum. BALLC executed with
LRU policy improves the average read stretch length by only 10%
establishing the importance of clean LRU.

In Figure 2 of Section III, we showed an 11% improve-
ment by eliminating the penalty of channel turn-arounds and
precharge/activate operations for writes in the baseline. Figure 15
shows the potential speedup when our proposal is executed with zero
channel turn-around (NoTA) and zero precharge/activate penalty for
writes (NoWPRE ACT). Elimination of turn-arounds improves the
average speedup of our proposal from 11% to 12%. Removal of
precharge and activate penalty during write draining further improves
the average speedup to 14%. Sphinx3 loses performance compared
to BALLC as the overheads are eliminated. This application benefits
from hits to the retained LLC dirty blocks in BALLC. However, when
the turn-around and precharge/activate penalty for writes is nullified,
writes complete faster and LLC residency of dirty blocks decreases
eliminating some of the LLC hits enjoyed by BALLC. Across the
board, overall gains are marginal indicating that our proposal is
near-ideal in terms of channel turn-around and precharge/activate
overheads of writes.

1

1.1

1.2

1.3

1.4

1.5

1.6

S
p

e
e

d
u

p

G
EO

M
EA

N

w
rf

sp
hin

x3

so
ple

x.
re

f

so
ple

x.
pds−

50

om
net

pp

m
ilc

m
cf

lib
quan

tu
m

le
sl

ie
3dlb

m

hm
m

er
.n

ph3

gcc
.1

66

bzi
p2.

so
urc

e

bzi
p2.

pro
gra

m

as
ta

r.r
iv

er
s

BALLC

BALLC+NoTA

BALLC+NoTA+NoWPRE_ACT

Fig. 15. Influence of channel turn-arounds and write locality in our proposal.

Sensitivity to LLC Capacity. All the results presented so far assume
an 8 MB LLC. Figure 16 shows speedup on a 16 MB LLC normalized
to the baseline with 8 MB LLC. The left bar shows that the baseline,
on average, improves by 15%. Due to increased LLC access latency,
lbm suffers from a small performance loss. The right bar shows that
our proposal improves performance by 23%, on average (i.e., 8%
average speedup over the 16 MB baseline).

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

S
p
e
e
d
u
p

2.6

G
EO

M
EA

N

w
rf

sp
hin

x3

so
ple

x.
re

f

so
ple

x.
pds−

50

om
net

pp

m
ilc

m
cf

lib
quan

tu
m

le
sl

ie
3dlb

m

hm
m

er
.n

ph3

gcc
.1

66

bzi
p2.

so
urc

e

bzi
p2.

pro
gra

m

as
ta

r.r
iv

er
s

Baseline 16 MB

BALLC 16 MB

Fig. 16. Performance with 16 MB LLC.

Sensitivity to DRAM Bandwidth. Figure 17 evaluates our proposal
on a DDR3-2133 DRAM system. The speedup figures are relative
to the baseline with DDR3-1600 DRAM. The DRAM latencies of
the two configurations are nearly same. The leftmost bar shows
that the baseline improves by 17% on average when moving from
DDR3-1600 to DDR3-2133. The middle bar shows that our proposal
improves by 30% on average. The rightmost bar reproduces the
performance of our proposal with DDR3-1600.

115

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

S
p
e
e
d
u
p

G
EO

M
EA

N

w
rf

sp
hin

x3

so
ple

x.
re

f

so
ple

x.
pds−

50

om
net

pp
m

ilc
m

cf

lib
quan

tu
m

le
sl

ie
3dlb

m

hm
m

er
.n

ph3

gcc
.1

66

bzi
p2.

so
urc

e

bzi
p2.

pro
gra

m

as
ta

r.r
iv

er
s

Base DDR3−2133 14−14−14−35

BALLC DDR3−2133 14−14−14−35

BALLC DDR3−1600 11−11−11−28

Fig. 17. Impact of DDR3-2133 DRAM.

0.9

1

1.1

1.2

1.3

1.4

S
p

e
e

d
u

p

1.651.56

G
EO

M
EA

N

w
rf

sp
hin

x3

so
ple

x.
re

f

so
ple

x.
pds−

50

om
net

pp

m
ilc

m
cf

lib
quan

tu
m

le
sl

ie
3d

lb
m

hm
m

er
.n

ph3

gcc
.1

66

bzi
p2.

so
urc

e

bzi
p2.

pro
gra

m

as
ta

r.r
iv

er
s

Base NRU

BALLC CNRU

Base SRRIP

BALLC CSRRIP

Fig. 18. Performance with an 8 MB LLC exercising NRU and SRRIP policies.

Application to Non-LRU Policies. Figure 18 quantifies the perfor-
mance of our proposal for an 8 MB LLC exercising NRU or SRRIP
policy normalized to the baseline 8 MB LLC with LRU policy. On
average, the baseline loses performance by 1% when switching to
NRU (Baseline NRU bar) and improves by 3% when switching to
SRRIP (Baseline SRRIP bar). Our proposal exercising the clean
NRU policy enjoys an average speedup of 9% (BALLC CNRU bar).
With clean SRRIP, our proposal experiences a 12% speedup on
average (BALLC CSRRIP bar).

Our evaluation with the TADRRIP and SRRIP+SHiP policies
shows that the baseline enjoys an average 4.3% and 6% improve-
ment, respectively. Our proposal achieves an average 12.4% and 13%
improvement in performance when using clean TADRRIP and clean
SRRIP+SHiP, respectively.

B. Performance of All Mixes
Figure 19 shows the speedup of our proposal on an 8 MB LLC

relative to the baseline. The homogeneous and heterogeneous mixes
are sorted by speedup. Averaged over fifty workload mixes, our
proposal enjoys a speedup of 12%. Our proposal makes use of about
five LLC ways (equivalent to 40K blocks or 2.5 MB) as the write
buffer capacity averaged across all epochs of all the LLC banks
and all the fifty mixes. In our proposal, the average DRAM read
latency (from the arrival of a read request at the memory controller
to the departure of the fill) decreases by 17% and DRAM write
draining throughput improves by 50% on average compared to the
baseline. The row hit rate for DRAM writes improves from 35% in
the baseline to 40% in our proposal, averaged over the fifty mixes.
The improvements in write throughput and write row hit rate stem
from our proposal’s intelligent scrub walk algorithm. Uninterrupted
read stretches reduce waiting time and latency of the reads.

1 15 16 50
1

1.1

1.2

1.3

1.4

1.5

S
p

e
e

d
u

p

Workload mixes

Homogeneous Heterogeneous

G
E

O
M

E
A

N

Fig. 19. Speedup of our proposal.

Comparison to Related Proposals. Figure 20 compares our pro-
posal against VWQ [64], DAWB [36], LWPG writeback [73], and
DBI+AWB [60]. These proposals were discussed in Section V. Each
group of bars shows the speedup comparison (averaged over fifty
mixes) for a different LLC policy on an 8 MB LLC. Our proposal
uses the clean versions of these policies. All speedup figures are
relative to the baseline 8 MB LLC using the LRU policy. For
each LLC policy, VWQ, DAWB, LWPG writeback, and DBI+AWB

LRU NRU SRRIP TADRRIP SRRIP+SHiP
0.98

1
1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16

S
p
e
e
d
u
p

Baseline

VWQ

DAWB

LWPG Writeback

DBI+AWB

BALLC

Fig. 20. Comparison to related proposals.

enjoy gradual improvement in performance. However, our proposal
clearly stands out by a sizable margin of additional performance.
With the SRRIP+SHiP policy, which is the best-performing LLC
policy among the ones evaluated, the baseline speeds up by 8%.
VWQ, DAWB, LWPG writeback, and DBI+AWB achieve 10%,
10.5%, 11%, and 11.5% speedup respectively, while our proposal
enjoys a 15% speedup. The primary benefit of our proposal stems
from long read stretches enabled by clean LRU policy and run-time
adaptive write buffering in LLC. VWQ is the only proposal among
the evaluated ones that uses an in-LLC write buffer (statically sized
though). We quantify its difference with our proposal as follows: our
proposal operating with the LRU policy (as opposed to clean LRU)
performs close to VWQ with LRU policy indicating that the gains
of our proposal come from the clean LRU policy and the associated
enabling mechanisms of in-LLC adaptive write buffering.
Approaching Unbounded Write Buffer Performance. Figure 21
evaluates the baseline and our proposal on 8 MB LLC configurations
with different sizes of DRAM channel’s write buffer. The speedup
figures are averaged over fifty mixes and are relative to the baseline
with 32-entry write buffer per channel. The leftmost four bars show
the baseline performance for 1024-entry, 2048-entry, 4096-entry,
and infinite write buffer per channel. The configuration with infinite
write buffer is same as Unbounded WnoR+DrainAtEnd discussed in
Section III. The next three bars show the speedup of our proposal
with 32-entry, 8-entry, and 4-entry write buffer per channel. We
make three important observations. First, our proposal with a 32-
entry write buffer delivers the same performance as the baseline
with a 1024-entry write buffer. Second, the unbounded write buffer
speedup is 16%, while our proposal comes close achieving a speedup
of 12%. Third, our proposal with an 8-entry write buffer outperforms
the baseline with a 32-entry write buffer opening up opportunities to
reduce the complexity of the write buffer design.

0.95

1

1.05

1.1

1.15

1.2

S
p
e
e
d
u
p

B
as

eW
B
1K

B
as

eW
B
2K

B
as

eW
B
4K

B
as

eW
B
In

f

B
A
LLC

_W
B
32

B
A
LLC

_W
B
8

B
A
LLC

_W
B
4

Fig. 21. Impact of DRAM write buffer size.

VIII. SUMMARY

We have presented a bandwidth-aware LLC policy that intelli-
gently controls the DRAM read and write bandwidth demands. The
proposed policy offers long stretches of exclusive DRAM bandwidth
to reads by forcing the LLC replacement decisions not to evict dirty
blocks. This is enabled by a dynamically computed population bound
on LLC dirty blocks within the lower portion of the LRU stack. When
this population is reached, the LLC scrubs out a certain fraction of
dirty blocks following a DRAM-aware scrub walk of the LLC sets to
improve locality, bank-parallelism, and rank-parallelism of DRAM
writes. Averaged over fifty eight-way multiprogrammed workloads,
the bandwidth-aware LLC policy proposal improves performance
by 12%. This performance comes close to the performance of a
configuration that has unbounded DRAM write buffers.

116

REFERENCES

[1] A. M. Amin and Z. Chishti. Rank-aware Cache Replacement and Write
Buffering to Improve DRAM Energy Efficiency. In ISLPED 2010.

[2] A. Arunkumar and C.-J. Wu. ReMAP: Reuse and Memory Access Cost-
aware Eviction Policy for Last-level Cache Management. In ICCD 2014.

[3] A. Basu, et al. Scavenger: A New Last Level Cache Architecture with
Global Block Priority. In MICRO 2007.

[4] N. Beckmann and D. Sanchez. Maximizing Cache Performance Under
Uncertainty. In HPCA 2017.

[5] N. Beckmann and D. Sanchez. Talus: A Simple Way to Remove Cliffs
in Cache Performance. In HPCA 2015.

[6] N. Chatterjee, et al. Staged Reads: Mitigating the impact of DRAM
writes on DRAM reads. In HPCA 2012.

[7] M. Chaudhuri, et al. Introducing Hierarchy-awareness in Replacement
and Bypass Algorithms for Last-level Caches. In PACT 2012.

[8] M. Chaudhuri. Pseudo-LIFO: The Foundation of a New Family of
Replacement Policies for Last-level Caches. In MICRO 2009.

[9] N. Doung, et al. Improving Cache Management Policies Using Dynamic
Reuse Distances. In MICRO 2012.

[10] E. Ebrahimi, et al. Fairness via Source Throttling: A Configurable and
High-performance Fairness Substrate for Multi-core Memory Systems.
In ASPLOS 2010.

[11] E. Ebrahimi, et al. Parallel Application Memory Scheduling. In MICRO
2011.

[12] P. Faldu and B. Grot. Leeway: Addressing Variability in Dead-Block
Prediction for Last-Level Caches. In PACT 2017.

[13] V. V. Fedorov, et al. ARI: Adaptive LLC-memory Traffic Management.
In ACM TACO, 10(4), Article 46, 2013.

[14] A. P. Ferreira, et al. Increasing PCM Main Memory Lifetime. In DATE
2010.

[15] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and Insertion
Algorithms for Exclusive Last-level Caches. In ISCA 2011.

[16] S. Ghose, H. Lee, and J. F. Martinez. Improving Memory Scheduling
via Processor-side Load Criticality Information. In ISCA 2013.

[17] HP Labs. CACTI. Available at http://www.hpl.hp.com/research/cacti/.
[18] I. Hur and C. Lin. Memory Scheduling for Modern Microprocessors. In

ACM TOCS, 25(4): 10, 2007.
[19] E. Ipek, et al. Self-Optimizing Memory Controllers: A Reinforcement

Learning Approach. In ISCA 2008.
[20] A. Jain and C. Lin. Back to the Future: Leveraging Belady’s Algorithm

for Improved Cache Replacement. In ISCA 2016.
[21] A. Jaleel, et al. High Performance Cache Replacement using Re-

reference Interval Prediction (RRIP). In ISCA 2010.
[22] A. Jaleel, et al. Adaptive Insertion Policies for Managing Shared Caches.

In PACT 2008.
[23] D. A. Jimènez. Insertion and Promotion for Tree-based PseudoLRU

Last-level Caches. In MICRO 2013.
[24] D. A. Jimènez and E. Teran. Multiperspective Reuse Prediction. In

MICRO 2017.
[25] M. R. Jokar, M. Arjomand, and H. Sarbazi-Azad. Sequoia: A High-

endurance NVM-based Cache Architecture. In IEEE TVLSI, 24(3): 954–
967, 2016.

[26] J. Kim, et al. Kill the Program Counter: Reconstructing Program
Behavior in the Processor Cache Hierarchy. In ASPLOS 2017.

[27] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache Replacement Based
on Reuse Distance Prediction. In ICCD 2007.

[28] S. M. Khan, et al. Improving Cache Performance by Exploiting Read-
Write Disparity. In HPCA 2014.

[29] S. M. Khan, Z. Wang, and D. A. Jimènez. Decoupled Dynamic Cache
Segmentation. In HPCA 2012.

[30] S. M. Khan, Y. Tian, and D. A. Jimènez. Dead Block Replacement and
Bypass with a Sampling Predictor. In MICRO 2010.

[31] S. M. Khan and D. A. Jimènez. Insertion Policy Selection Using
Decision Tree Analysis. In ICCD 2010.

[32] S. M. Khan, et al. Using Dead Blocks as a Virtual Victim Cache. In
PACT 2010.

[33] M. Kharbutli and Y. Solihin. Counter-based Cache Replacement and
Bypassing Algorithms. In IEEE TC, 57(4): 433–447, 2008.

[34] Y. Kim, et al. ATLAS: A Scalable and High-performance Scheduling
Algorithm for Multiple Memory Controllers. In HPCA 2010.

[35] Y. Kim, et al. Thread Cluster Memory Scheduling: Exploiting Differ-
ences in Memory Access Behavior. In MICRO 2010.

[36] C. J. Lee, et al. DRAM-aware Last-level Cache Writeback: Reducing
Write-caused Interference in Memory System. Technical Report TR-
HPS-2010-002, The University of Texas at Austin, 2010.

[37] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager Writeback – A
Technique for Improving Bandwidth Utilization. In MICRO 2000.

[38] H. Liu, et al. Cache Bursts: A New Approach for Eliminating Dead
Blocks and Increasing Cache Efficiency. In MICRO 2008.

[39] R. Manikantan, K. Rajan, and R. Govindarajan. Probabilistic Shared
Cache Management (PriSM). In ISCA 2012.

[40] R. Manikantan, K. Rajan, and R. Govindarajan. NUcache: An Efficient
Multicore Cache Organization Based on Next-Use Distance. In HPCA
2011.

[41] Micron Technology Inc.. DDR3 SDRAM
System-Power Calculator. Available at
http://www.micron.com/∼/media/documents/products/power-
calculator/ddr3 power calc.xlsm.

[42] T. Moscibroda and O. Mutlu. Distributed Order Scheduling and its
Application to Multi-core DRAM Controllers. In PODC 2008.

[43] A. Mukkara, N. Beckmann, and D. Sanchez. Whirlpool: Improving
Dynamic Cache Management with Static Data Classification. In ASPLOS
2016.

[44] J. Mukundan and J. F. Martinez. MORSE: Multi-objective Reconfig-
urable Self-optimizing Memory Scheduler. In HPCA 2012.

[45] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Schedul-
ing for Chip Multiprocessors. In MICRO 2007.

[46] O. Mutlu and T. Moscibroda. Parallelism-aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems.
In ISCA 2008.

[47] K. J. Nesbit, et al. Fair Queuing Memory Systems. In MICRO 2006.
[48] S-Y. Park, et al. CFLRU: A Replacement Algorithm for Flash Memory.

In CASES 2006.
[49] M. K. Qureshi, et al. Adaptive Insertion Policies for High Performance

Caching. In ISCA 2007.
[50] M. K. Qureshi, et al. A Case for MLP-Aware Cache Replacement. In

ISCA 2006.
[51] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A Low-

Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In MICRO 2006.

[52] M. K. Qureshi, M. A. Suleman, and Y. N. Patt. Line Distillation:
Increasing Cache Capacity by Filtering Unused Words in Cache Lines.
In HPCA 2007.

[53] M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-Way Cache:
Demand-based Associativity via Global Replacement. In ISCA 2005.

[54] K. Rajan and R. Govindarajan. Emulating Optimal Replacement with a
Shepherd Cache. In MICRO 2007.

[55] S. Rixner. Memory Controller Optimizations for Web Servers. In MICRO
2004.

[56] S. Rixner, et al. Memory Access Scheduling. In ISCA 2000.
[57] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle

Accurate Memory System Simulator. In IEEE CAL, 10(1): 16–19, 2011.
[58] D. Sanchez and C. Kozyrakis. The ZCache: Decoupling Ways and

Associativity. In MICRO 2010.
[59] D. Sanchez and C. Kozyrakis. Vantage: Scalable and Efficient Fine-grain

Cache Partitioning. In ISCA 2011.
[60] V. Seshadri, et al. The Dirty-Block Index. In ISCA 2014.
[61] V. Seshadri, et al. The Evicted-address Filter: A Unified Mechanism to

Address Both Cache Pollution and Thrashing. In PACT 2012.
[62] T. Sherwood, et al. Automatically Characterizing Large Scale Program

Behavior. In ASPLOS 2002.
[63] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts.

10th Edition, Wiley, 2018.
[64] J. Stuecheli, et al. The Virtual Write Queue: Coordinating DRAM and

Last-level Cache Policies. In ISCA 2010.
[65] L. Subramanian, et al. The Blacklisting Memory Scheduler: Achieving

High Performance and Fairness at Low Cost. In ICCD 2014.
[66] L. Subramanian, et al. The Application Slowdown Model: Quantifying

and Controlling the Impact of Inter-Application Interference at Shared
Caches and Main Memory. In MICRO 2015.

[67] L. Subramanian, et al. MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems. In HPCA 2013.

[68] E. Teran, et al. Minimal Disturbance Placement and Promotion. In HPCA
2016.

[69] E. Teran, Z. Wang, and D. A. Jimènez. Perceptron Learning for Reuse
Prediction. In MICRO 2016.

117

[70] Y. Tian, S. M. Khan, and D. A. Jimènez. Temporal-based Multilevel
Correlating Inclusive Cache Replacement. In ACM TACO, 10(4), article
33, 2013.

[71] R. Ubal, et al. Multi2Sim: A Simulation Framework for CPU-GPU
Computing. In PACT 2012.

[72] X. Wang, et al. SWAP: Effective Fine-Grain Management of Shared
Last-Level Caches with Minimum Hardware Support. In HPCA 2017.

[73] Z. Wang, S. M. Khan, and D. A. Jimènez. Improving Writeback
Efficiency with Decoupled Last-write Prediction. In ISCA 2012.

[74] Z. Wang, et al. WADE: Writeback-aware Dynamic Cache Management
for NVM-based Main Memory System. In ACM TACO, 10(4), Article
51, 2013.

[75] Z. Wang, S. M. Khan, and D. A. Jimènez. Rank Idle Time Prediction
Driven Last-level Cache Writeback. In MSPC 2012.

[76] C-J. Wu, et al. SHiP: Signature-Based Hit Predictor for High Perfor-
mance Caching. In MICRO 2011.

[77] Y. Xie and G. H. Loh. PIPP: Promotion/Insertion Pseudo-partitioning of
Multi-core Shared Caches. In ISCA 2009.

[78] X. Zhang, et al. A Read-Write Aware Replacement Policy for Phase
Change Memory. In APPT 2011.

[79] D. Zhang, et al. Write-back-aware Shared Last-level Cache Management
for Hybrid Main Memory. In DAC, Article No. 172, 2016.

[80] L. Zhang, et al. Mellow Writes: Extending Lifetime in Resistive Mem-
ories through Selective Slow Write Backs. In ISCA 2016.

[81] M. Zhou, et al. Writeback-aware Partitioning and Replacement for Last-
level Caches in Phase Change Main Memory Systems. In ACM TACO,
8(4): 53:1-53:21, 2012.

[82] M. Zhou, et al. Writeback-aware Bandwidth Partitioning for Multi-core
Systems with PCM. In PACT 2013.

118

