
Pool Directory: Efficient Coherence Tracking with
Dynamic Directory Allocation in Many-core Systems

Sudhanshu Shukla and Mainak Chaudhuri
Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur 208016, INDIA

{sudhan, mainakc}@cse.iitk.ac.in

Abstract— The coherence directory in a chip-multiprocessor
keeps track of each memory block inside the cache hierarchy
and plays a significant role in offering a scalable shared mem-
ory abstraction in many-core systems. Multi-threaded applications
typically require two types of directory entries, namely, limited
pointer entries tracking a few sharers of a block and bitvector
entries tracking larger number of sharers for widely shared blocks.
Recent proposals aiming to optimize the average number of bits
per directory entry have organized the directory as either a static
mix of these two types of entries or a collection of relatively short
bitvector entries that can encode either a limited number of sharer
pointers or a larger number of sharers hierarchically. In this paper,
we present a directory organization that facilitates allocation of
two different types of directory entries dynamically. Our design
maintains a pool of limited pointer entries, where each entry can
also double as a segment directory entry encoding the sharers in
a cluster of cores. Each tag in the primary sparse directory array
has a pointer that can either represent a sharer or point to an
entry in the pool. When multiple segment directory entries are
needed to encode all the sharers of a block, our pool management
protocol guarantees that all these entries are allocated contiguously
so that maintaining a pointer to the head entry is enough. Such a
design offers significant flexibility in sharer encoding and allows
us to independently size the sparse directory array and the pool.
Detailed simulation results show that our proposal incorporated
in a 128-core system running multi-threaded applications drawn
from scientific, general-purpose, and commercial computing do-
mains can offer, on average, 5% improvement in performance and
20% savings in interconnect traffic compared to the state-of-the-
art scalable coherence directory (SCD) proposal when using a 1

16
×

sparse directory.

Keywords—Many-core coherence, dynamic directory allocation,
directory scalability.

I. INTRODUCTION

Cache coherence protocols are central to the correctness of shared
memory abstractions in distributed parallel environments. An important
storage structure used by these protocols is the coherence directory,
which is responsible for keeping track of the current locations of
the memory blocks in the cache hierarchy. In a single-chip many-
core system, the coherence directory maintains information about the
blocks resident in the private cache hierarchy of each processing core.
As the on-chip cores grow in number, the design of the coherence
directory needs to be space-efficient so that these systems can continue
to support the shared memory abstraction with acceptable directory
storage budget [25].

The sparse directory organization [17], [28] has become popular
due to its simplicity and space-efficiency. The sparse directory orga-
nizes the coherence tracking information in the form of a cache, which
can track only a limited number of blocks at a time. For example, in
a three-level cache hierarchy with the first two levels being private, a

sparse directory could be sized to track a fraction of the blocks that the
last level (L2) of the private cache hierarchy across all the cores can
accommodate. If the last level of the private caches aggregated over all
the cores can accommodate N blocks, a 1

16
× sparse directory would

track at most N/16 unique blocks at a time. A replacement from the
sparse directory invalidates or retrieves (if dirty) the block the replaced
directory entry corresponds to from all the private caches having a copy
of the block. While the sparse directory provides an attractive starting
point for optimizing the number of directory entries, the width of a
sparse directory entry, which is typically a bitvector, still needs to scale
linearly with the core count. In this paper, we focus on the problem
of optimizing the average number of bits devoted to a sparse directory
entry.

The attempts to optimize the width of a sparse directory entry
exploit the observation that at a given point in time, not all blocks need
a full-map bitvector. The degree of sharing varies across blocks [38]
and over time within the same application. The left panel of Figure 1
shows the percentage of the allocated directory entries that experience
a maximum of k sharers where k falls in four possible sharer count
bins: 2 to 4, 5 to 8, 9 to 16, and 17 to 128 (end-points inclusive).
These data are collected on a 128-core system for fourteen multi-
threaded applications spanning the PARSEC suite [5], the SPLASH-
2 suite [39], SPEC JBB, SPEC Web running on the Apache server,
TPC running on the MySQL server, and the SPEC JVM suite. For
these measurements we use a 2x sparse directory so that premature
directory evictions do not hamper the amount of sharing. These data
show that, on average, only 10% directory entries observe any sharing,
while the rest of the allocated directory entries track only private blocks.
Most of the sharing instances are limited to at most four sharers, while
only two applications (swaptions and barnes) show noticeable number
of directory entries experiencing more than sixteen sharers. These data
indicate that, on average, a large number of bits in a full-map directory
entry are wasted due to lack of high volume of sharing. This is further
confirmed in the right panel of Figure 1 which shows the average
percentage of set bits in an allocated directory entry. Across the fourteen
applications, on average, only 2.4% bits in a full-map directory entry
are set. These data clearly indicate the importance of optimizing the
directory entry width.

The proposals aiming to optimize the sparse directory width while
preserving the preciseness of sharing information and not resorting to
broadcast, overflow-induced early invalidations, or software solutions
organize the directory in one of the following three forms: 1) a stati-
cally designed mix of different types of entries [14], 2) a hierarchical
organization of the sharing bitvector by decomposing the system into
a hierarchy of clusters [31], and 3) dynamic allocation of tracking
information [32], [33], [40]. Based on the observation that the private
blocks are often more in number than the shared blocks, it has been
proposed that the sparse directory sets be designed to have a static
mix of pointer and bitvector ways [14]. The pointer ways track private
blocks and have width that grows logarithmically with core count. The
bitvector ways track shared blocks and their width grows linearly with

557978-1-4673-7166-7/15/$31.00 c©2015 IEEE

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

P
er

ce
nt

ag
e

of
 d

ire
ct

or
y

en
tri

es

de
du

p
flu

id
an

im
at

e

sw
ap

tio
ns

ba
rn

es
ff

t S
P

E
C

 J
B

B
S

P
E

C
W

eb
−B

an
ki

ng
S

P
E

C
W

eb
−E

co
m

m
er

ce
S

P
E

C
W

eb
−S

up
po

rt
M

yS
Q

L
TP

C
−C

M
yS

Q
L

TP
C

−E
M

yS
Q

L
TP

C
−H

S
P

E
C

JV
M

−c
om

pi
le

r.
su

nf
lo

w
S

P
E

C
JV

M
−c

ry
pt

o.
ae

s
A

ve
ra

ge

19.3

[17, 128]
[9, 16]
[5, 8]
[2, 4]

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4

P
er

ce
nt

ag
e

of
 d

ire
ct

or
y

en
try

 b
its

 u
se

d

19
.3

de
du

p
flu

id
an

im
at

e

sw
ap

tio
ns

ba
rn

es
ff

t S
P

E
C

 J
B

B
S

P
E

C
W

eb
−B

an
ki

ng
S

P
E

C
W

eb
−E

co
m

m
er

ce
S

P
E

C
W

eb
−S

up
po

rt
M

yS
Q

L
TP

C
−C

M
yS

Q
L

TP
C

−E
M

yS
Q

L
TP

C
−H

S
P

E
C

JV
M

−c
om

pi
le

r.
su

nf
lo

w
S

P
E

C
JV

M
−c

ry
pt

o.
ae

s
A

ve
ra

ge

Fig. 1. Left panel: Distribution of maximum sharer count averaged over all
allocated directory entries in a 2x sparse directory. Right panel: Percentage
of directory entry bits set averaged over all allocated directory entries in a 2x
full-map sparse directory.

core count. Due to static partitioning of each set into two types of
entries (e.g., six pointer ways and two bitvector ways in an eight-way
set-associative sparse directory), such a design cannot react optimally to
the changing sharing degree. We will refer to this design as the Hybrid
directory organization.

The state-of-the-art hierarchical organization, named scalable co-
herence directory (SCD) [31], represents the core count as a product of
two integers (ideally equal) and the larger integer decides the width of
the directory [31]. This organization treats a system with pq cores as
p clusters of q cores each, where q is bigger than or equal to p. Each
directory entry is q bits wide. Multiple directory entries are used to
encode the sharers in a hierarchical fashion. Each bit in the top-level
or root entry represents a cluster and in the worst case p + 1 directory
entries would be needed to encode all the sharers. The non-root entries
will be referred to as the leaf entries. In any case, at least two directory
entries are required and the best case arises when all the sharers are
confined to a single cluster. Additionally, each directory entry can
encode a certain number of sharer pointers (�q/ log2(pq)�) and the
coherence tracking format of a block switches to the hierarchical one
only after the number of sharers of the block exceeds this limited pointer
count that each directory entry can accommodate. While this proposal
is able to achieve a square root factor reduction in the directory width,
multiple directory entries have to be invested to encode the sharers of
a block. This increases the pressure on the directory as the degree of
sharing and the number of shared blocks increase. Since each involved
directory entry carries the tag of the shared block, the tracking overhead
per shared block increases significantly in the worst case. For example,
in a 1024-core system having a 32-bit wide hierarchical directory, 33
directory entries would be needed in the worst case to encode the
sharers of a block. If we assume a 24-bit tag, the worst case tracking
overhead per shared block is 33×(24+32) bits, which far exceeds the
tracking overhead for a full-map bitvector (1024+24 bits). The relative
wastage increases in smaller core-count systems. The observed level
of inefficiency, however, depends on the actual sharing pattern of the
application. An additional inefficiency arises due to a large volume of
private blocks. Each of these blocks needs just one limited pointer and
wastes the remaining pointers in a directory entry.

Dynamic allocation of tracking information has been proposed in
two different forms. The dynamic pointer allocation scheme assigns
a new sharer pointer entry to a block as and when a new sharer is
added [32], [33]. Searching the list of sharers for a specific sharer or
walking the sharer list for sending out invalidations can be costly. A
recent proposal carries out dynamic assignment of a full-map bitevector
to a sparse directory tag whenever the block corresponding to the tag

gets shared by at least two cores [40]. For tracking private blocks,
the proposal uses a single owner pointer attached to the tag. While
this proposal is able to eliminate the directory bit wastage for tracking
private blocks, the space inefficiency is still significant for tracking
shared blocks. This design will be referred to as the Select directory
conveying the fact that only a selected subset of the sparse directory
tags gets dynamically attached to full-map bitvectors as the need arises.

In this paper, we introduce Pool directory, a novel sparse direc-
tory organization that aims at optimizing the average number of bits
per directory entry. Our proposal attaches a pointer with each sparse
directory entry and maintains a separate direct-mapped pool of short
vector entries. Each pool entry can store either a few sharer pointers or
a sharer vector encoding the sharers in a cluster of cores. To encode
all the sharers of a block, multiple pool entries may be needed and
these are allocated dynamically as and when the need arises. Our
pool management protocol ensures that all these pool entries remain
contiguous so that it is sufficient to maintain a pointer to the head
entry. The pointer in each sparse directory entry can either encode a
sharer (particularly useful for tracking private blocks) or point to a head
pool entry. Our proposal enjoys four distinct advantages compared to
the state-of-the-art hierarchical representation. First, the private blocks
never contend for pool entries and can be encoded in the sparse
directory array. Second, exactly one tag is allocated for tracking a block.
Each individual pool entry does not need a separate tag. Third, there is
no need to maintain a root entry in the pool. At most p pool entries are
needed to encode p clusters of q cores each. Fourth, the sharers of a
block can be encoded by optimally mixing the limited pointer and the
sharer vector representations in the pool entries allocated to the block,
thereby offering significant flexibility in encoding the sharers in a space-
efficient manner. The directory storage is dynamically allocated to track
sharers of a block as and when needed by allocating additional pool
entries. Additionally, the decoupled organization of the directory allows
us to independently size the number of entries in the sparse directory
table and the pool table. We present the detailed design of the Pool
directory in Section III. Our simulation results (Sections IV and V) on
a 128-core system show that our proposal outperforms the state-of-the-
art dynamic hierarchical scalable coherence directory (SCD) [31] by
5% while reducing the interconnect traffic by 20% when using a 1

16
×

sparse directory. Additionally, our proposal performs within 2.4% of a
full-map organization while requiring only one-third of the directory
storage of a full-map organization.

II. RELATED WORK

A large body of research on coherence directory store optimization
has followed the first proposal that introduced a bitvector as the direc-
tory element [6]. The early proposals focused on the distributed shared
memory multiprocessor architectures. The proposals for optimizing the
width of the directory include limited pointer schemes with broadcast
on overflow (DiriB), limited pointer schemes with invalidation on
overflow (DiriNB), limited pointer schemes with software handling
on overflow (LimitLESS directory), coarse-vector schemes where each
bit in a vector tracks a cluster of sharers requiring a broadcast inval-
idation within a sharing cluster on a write, and use of gray codes for
achieving better compression in the bitvector [3], [7], [17], [26]. The
scalable coherent interface standard forms a doubly linked list of sharers
with the help of pointers attached to each private cache block, while
the directory maintains a pointer to the head of the list [19]. Although
such a distributed linked list scheme is more scalable than a bitvector
scheme in terms of storage, the protocol operations are significantly
more complex than a bitvector protocol. Some of the proposed limited
pointer schemes use a distributed linked list or a distributed tree to track
the overflown sharers with one of the pointers in the directory entry
serving as the head of the list or the root of the tree [8], [9]. A number
of proposals organize the directory in a hierarchical tree or multi-level
clusters [16], [24], [27], [36]. Although the directory organizations
in these proposals achieve low overhead, the hierarchical coherence

558 2015 33rd IEEE International Conference on Computer Design (ICCD)

protocol makes the overall design complex. Tree-based compression
of tracking information and a two-level directory architecture where
the second-level directory maintains imprecise compressed informa-
tion have also been proposed [1], [2]. The segment directory design
partitions the system into a few clusters and tracks the sharers in a
limited number of clusters [11]. On an overflow, one of the well-known
overflow solutions is invoked.

More recent proposals have focused on directory space optimiza-
tion for chip-multiprocessors. We have already discussed few such
schemes in the last section. One of these mixes two types of directory
entries, namely, pointers and bitvectors to design a sparse directory
set [14] (will be referred to as the Hybrid directory scheme). The
other proposal designs a scalable coherence directory (SCD) by rep-
resenting sharers in two-level hierarchical bitvectors [31]. A directory
architecture that eliminates the duplicate tag overhead of the directory
by maintaining an array of Bloom filters for answering set membership
queries about the sharers has been proposed [42]. This design suffers
from scalability issues, since each directory access involves looking up
C Bloom filters, C being the number of cores. Proposals that track
a small set of sharing patterns and link each active directory entry
to a sharing pattern have been proposed [44], [45]. Limited pointer
representations that use one pointer for counting the sharers on overflow
have been explored [21]. This count is later used to limit the number
of acknowledgment messages needed on a broadcast invalidation. A
recent proposal has used multi-level memristors to compress the size
of the directory entries [43]. In contrast to these, our proposal presents
a design for dynamically allocating directory entries while leaving the
cache coherence protocol unchanged.

Although we focus on optimizing the average number of bits
per directory entry in this study, the number of entries in the sparse
directory is an important design parameter and has a significant impact
on the life time of a block in the private cache hierarchy. A small
number of entries leads to premature invalidations due to directory
eviction. Designs exploring smart hash functions and skew-associative
organizations for the sparse directory have been proposed [15], [31].
Designs that store the evicted directory entries in a memory-resident
hash table and delay invalidations have also been explored [20]. Page-
grain classification between private and shared data has been used to
exclude private blocks from coherence tracking, thereby effectively
increasing the number of available directory entries for tracking shared
data [12]. A recently proposed design does not invalidate private blocks
on directory eviction, but resorts to broadcast when such a block gets
shared after the tracking entry of the block is evicted from the sparse
directory [13]. Recent proposals employing coarse-grain coherence
tracking for privately cached regions can further reduce the required
number of directory entries [4], [14], [41].

Compiler analysis and certain software guarantees have been ex-
ploited to reduce the required directory storage. Compiler-generated
hints about private data have been used to optimize directory alloca-
tion [23]. Data-race-free software, disciplined parallel programming
models, and self-invalidation of shared data at synchronization bound-
aries have been used to significantly reduce the coherence directory size
or completely eliminate the coherence directory [10], [29], [34].

III. POOL DIRECTORY

We discuss the detailed design of the Pool directory in the follow-
ing. Section III-A presents the architecture of the Pool directory and
Section III-B discusses the implementation of the various operations
supported by the Pool directory. In this discussion, we assume a
traditional three-hop MESI cache coherence protocol [22].

A. Directory Organization

The Pool directory architecture consists of two structures, namely,
the sparse directory and a pool of short sharer vectors, as shown in

Figure 2. The sparse directory is a set-associative array with each entry
having a tag and tracking/state information of the block corresponding
to the tag. The major part of the tracking information is taken up by
a pointer (P), which can either encode a sharer or point to an entry
in the sharer vector pool. If the number of cores in the system is C
and the number of entries in the sharer vector pool is N , each pointer
needs to be �log2(max(C,N))� bits wide. The single sharer (S) bit in
a sparse directory entry is set when the corresponding block has a single
sharer (i.e. private), which is directly encoded in the pointer P .

Set Index

Sparse Directory

Tag

Sets

HO

PS

Ways

Sharer Vector

Sharer Vector Pool

1 C1 Cn

0 Segment Pointer Segment Vector

Limited Pointer Format

Segment Vector Format

Fig. 2. General structure of the Pool directory.

The sharer vector pool is a tagless direct-mapped array with each
entry having a sharer vector. The sparse directory entries for blocks
having more than one sharer utilize a collection of consecutive pool
entries to encode the sharers. Each such collection of pool entries can be
logically seen as a linked list with a head pool entry and a tail pool entry.
A sparse directory entry that needs pool entries has its single sharer (S)
bit reset and the pointer (P) points to the head entry of the collection of
pool entries being used. Each pool entry has a head (H) bit indicating
if the entry is a head entry for some sparse directory entry. Each pool
entry also contains an occupied (O) bit and the set index of the sparse
directory entry it is associated with. The occupied bit is set for a pool
entry in use. We will discuss the utility of the occupied bit, the head bit,
and the set index field in Section III-B. We note that the private blocks
do not need any pool entry.

Each sharer vector can encode sharers, either in limited pointer
format or in segment vector format. As shown in Figure 2, the first bit
of each sharer vector identifies the encoding format being used by the
vector. When the first bit is set, the sharer vector is encoded using the
limited pointer format and when the first bit is reset, the sharer vector is
encoded using the segment vector format. The limited pointer format is
useful for efficiently encoding a small number of sharers. In the limited
pointer format, the sharer vector is organized as an array of pointers
and their valid bits. Each pointer can independently point to a sharer
of the corresponding sparse directory entry. Each such pointer needs
�log2(C)� + 1 bits, where C is the number of cores. The segment
vector format was introduced in [11] for efficiently encoding a cluster
of sharers in a segment directory entry. In the segment vector format,
a sharer vector consists of a segment vector and a segment pointer.
The segment vector is a K-bit wide segment of a full-map vector. The
segment pointer is a �log2(C/K)�-bit field maintaining the position of
the segment vector within the full-map vector effectively recording the
id of the cluster the segment represents. The limited pointer format and
the segment vector format permit each sharer vector to independently
encode sharers. This allows a sparse directory entry to simultaneously
utilize both the encoding formats to achieve greater storage efficiency.
In the worst case, �C/K� pool entries would be required for encoding
a full-map vector.

Figure 3 illustrates different sharer vector encoding formats for pool
entries with twenty-bit wide sharer vector in a 128-core system. Each
sharer vector can encode a maximum of two sharers in the limited
pointer format, as a valid bit and a seven-bit wide pointer are required

2015 33rd IEEE International Conference on Computer Design (ICCD) 559

64

0000

Sharer Vectors

Leaf Entry (I + 1)
Segment Vector Format

Head Entry (I)
Limited Pointer Format

0
1b

1
1b

1
1b 7b

1000111
3b

1b
1

7b

0000 0000 0000 0000 00001000 0000 10001000100010000000

80 96 112

1000 10001000
16b

1000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0 16 32 48
Full−map Vector

1010100 1100100

Fig. 3. Pool entries with twenty-bit wide sharer vector in a 128-core system.

for encoding a sharer. When using the segment vector format, sixteen
sharers can be encoded in a sixteen-bit wide segment vector. A three-bit
wide segment pointer is maintained for encoding eight distinct sixteen-
bit wide segments of the full-map vector. In the worst case, eight pool
entries would be required to encode a full-map vector. In Figure 3, a
sparse directory entry for a block is using two consecutive pool entries
I and I + 1 for encoding six sharers of the block. The head entry (I)
is using the limited pointer format for encoding two sharers from the
5th and the 6th segments of the full-map vector. The tail entry (I + 1)
is using the segment vector format for encoding all the sharers from the
7th segment of the full-map vector.

B. Directory Operations

The coherence directory is looked up in parallel with every L3
cache access. Depending on the outcome of this lookup, different oper-
ations may have to be invoked on the Pool directory. In the following,
we discuss four important operations.

1) Adding a Sharer: On a sparse directory miss, the replacement
process allocates a sparse directory entry for the requested block and
encodes the new sharer directly in the pointer P . At this point, the single
sharer (S) bit in the sparse directory entry is also set. When a second
sharer needs to be added, the sparse directory entry allocates a pool
entry, and encodes the two sharers using the limited pointer format in
the allocated pool entry. The single sharer (S) bit is cleared in the sparse
directory entry and the pointer P is updated to point to the allocated
pool entry. In a general situation, when a new sharer needs to be added
to a block B which has already been allocated a number of pool entries,
the sharer addition logic explores four possible avenues, as discussed
below. Suppose the new sharer falls in segment n of the full-map vector.
Let the collection of pool entries already allocated to B be Q. Note that
the pool entries in Q are all contiguous. First, the collection Q is looked
up to find out if there is an entry already allocated for segment n. If
such a pool entry exists, the new sharer is encoded in it. If no such
entry exists, the collection Q is looked up to locate a pool entry that is
currently using the limited pointer format and has a free pointer. If such
a pool entry exists, the new sharer is encoded in the free pointer. When
no such free pointer is available, it may be possible to add the new
sharer by changing the encoding format of a pool entry. Particularly,
when all the sharers encoded in a pool entry using the limited pointer
format belong to the same segment of the full-map vector, the encoding
of the pool entry is changed to the segment vector format creating new
opportunities for finding a pool entry to encode the new sharer. When all
these three avenues fail, a new pool entry must be added to the collection
Q.

The collection Q can be extended by prepending or appending it
with a new pool entry. Let the entry just before the collection Q begins
be Q− and the entry just after the collection Q ends be Q+. If at least
one of Q− and Q+ is free, the free entry is added to the collection
Q. When both of these entries are occupied, one of them is evicted.
The victim is chosen as follows. Suppose each segment vector is K-bit
wide. Therefore, in the worst case, a block would need �C/K� entries

to encode all its sharers, where C is the number of cores. We divide
the pool into equally-sized chunks such that each chunk has �C/K�
consecutive entries. If Q+ and Q− belong to the same chunk (as Q), we
victimize one of them at random. If Q+ and Q− belong to two different
(adjacent) chunks, we victimize the one that belongs to the chunk which
has the larger share of Q. The rationale for this victimization policy is
that we let Q grow within the chunk which already has a bigger share
of Q so that the interference in the adjacent chunk due to this growth is
minimized. When Q− is used for extending Q, the head (H) bit for the
current head entry in Q is cleared and Q− becomes the new head of the
extended collection. The pointer P in the sparse directory entry is also
updated to point to Q−.

In all cases, the sharer addition logic first looks up the sparse
directory. On a tag hit, if the single sharer (S) bit in the sparse directory
entry is not set, the occupied (O) and the head (H) bits of consecutive
�C/K� pool entries are examined starting from the pool entry pointed
to by the pointer P . The O and H bit arrays are physically kept
separately from the pool array. This examination reveals the number
of pool entries that must be read out. The maximum number of pool
entries that a block can use is �C/K�. We provision the pool with two
read ports so that the required number of access rounds is bounded by
�C/K�/2. For the pool configuration modeled in this study, we verify
using CACTI [18] that this latency is comfortably hidden under the
last-level cache access latency for 22 nm nodes. This latency can be
further improved by internally banking the pool and ensuring that not
all pool entries of a block are allocated in the same bank. The accessed
pool entries are examined and the new sharer is added according to
the aforementioned protocol. The longest critical path, encountered
infrequently, involves reading of the sparse directory, examining the O
and H bit arrays, reading of pool entries, examining the pool entries,
extending the collection of pool entries, and updating the new pool
entry. For the workloads considered in this study, on average, 98.6%
of the allocated sparse directory entries need at most two pool entries
and 99% need at most three pool entries.

2) Removing a Sharer: The coherence protocol modeled by our
system generates replacement hints to the directory when a core evicts
a shared block. This is done to exclude the already evicted blocks from
tracking information so that the information is up-to-date and exact. In
addition, dirty evictions always generate writebacks to the L3 cache.
In both these cases, the sharer must be removed from the directory.
This operation requires looking up the sparse directory followed by
pool entry accesses, if needed, and removal of the sharer leading to
the possible release of a pool entry. When the number of sharers for a
sparse directory entry reduces to one, the sparse directory entry frees its
pool entries. The single sharer is encoded directly in the pointer P of
the sparse directory entry and the single sharer (S) bit is set. The port
requirements are similar to the sharer addition operation.

3) Allocation of the First Pool Entry: A sparse directory entry
needs to allocate its first pool entry when the number of sharers of
the block that the entry is tracking becomes two. This allocation is
treated differently from growing an already allocated collection of pool
entries because appropriate positioning of the first allocated pool entry
is important so that the future growth of the collection does not lead
to pathological conflicts and pool entry evictions. By examining the
vector of occupied (O) bits of the pool entries, a free pool entry can be
identified. To make the implementation efficient, the occupied bitvector
is segmented and one occupied vector is maintained for a segment
of �C/K� consecutive pool entries. Each occupied bitvector is also
accompanied by a �log2(C/K)�-bit wide population counter which
tracks the number of bits set in the occupied bitvector. The population
counter is incremented when an entry in the segment is occupied and
decremented when an entry in the segment is freed. Finally, a free entry
index is maintained for each segment of pool entries, which points to the
next free entry in the segment. By examining the occupied bitvector,
the free entry index can be updated. For our configurations, the pool
size never exceeds 64 entries per last-level cache bank and therefore,

560 2015 33rd IEEE International Conference on Computer Design (ICCD)

we need at most eight such occupied bitvectors, population counters,
and free indices.

To more or less evenly distribute the density of occupied entries
over the entire pool, a round-robin policy is utilized for selecting the
segment with a free pool entry. An index of the segment from which
the last pool entry was allocated is maintained to assist in the selection
of a free pool entry. When a free pool entry cannot be obtained, a tail
entry is randomly selected for eviction from the round-robin segment.
The protocol for evicting a pool entry is discussed next.

4) Pool Entry Eviction: For evicting a pool entry, the sparse
directory entry associated with it needs to be located. Once the sparse
directory entry has been located, the sharers encoded in the evicted pool
entry are back-invalidated. The occupied (O) and the head (H) bits of
the pool entry are cleared. When the sparse directory tag is occupying a
single pool entry (the pool entry being evicted), all but one of the sharers
encoded in the pool entry are back-invalidated. The single sharer that is
not back-invalidated is encoded directly in the pointer P of the sparse
directory entry and the single sharer (S) bit in the sparse directory entry
is set.

To locate the sparse directory entry associated with the evicted pool
entry, the set index stored in the pool entry is used to read out the entire
sparse directory set. Once the sparse directory set has been read out, the
pointers P stored in all the ways of the sparse directory set are compared
against the index of the pool entry. When the head (H) bit is not set for
the pool entry being evicted, the index of the head of the collection
containing the evicted pool entry is used for comparison. We organize
the sparse directory’s tag and data arrays as two separate direct-mapped
arrays with one row of each array containing the tag and data entries
for a set. This allows us to efficiently read out one entire set. Such a
design is attractive for a set-associative array if the size of the entire set
is small, which is true for Pool directories.

IV. SIMULATION ENVIRONMENT

We use a significantly modified version of the Multi2Sim sim-
ulator [35] to model a chip-multiprocessor having 128 dynamically
scheduled out-of-order issue x86 cores clocked at 2 GHz. Each core has
private L1 and L2 caches with the L2 cache being non-inclusive/non-
exclusive with respect to the L1 instruction and data caches. The L1
instruction and data caches are 32 KB in size and eight-way set-
associative. The unified L2 cache is 128 KB in size and eight-way set-
associative. The L1 and L2 cache lookup latencies are one and two cy-
cles, respectively. The cores along with their private caches are arranged
on a mesh interconnect having a single-cycle hop time. The L3 cache
is shared among all the cores and non-inclusive/non-exclusive with
respect to the L1 and L2 caches. Each mesh switch, in addition to having
a core along with its L1 and L2 caches, has a bank of the shared L3
cache and a slice of the sparse directory. Each L3 cache bank is 256 KB
in size, has sixteen ways, and requires three cycles for lookup. The
sparse directory slice in a switch is responsible for tracking the blocks
mapped to the L3 cache bank in that switch. The associativity of the
directory slice is same as the per-core L2 cache associativity (eight) and
the number of sets in the directory slice is decided relative to the number
of L2 cache sets per core. The ratio of the number of sets in one slice of
a (R)x sparse directory to the number of L2 cache sets per core is R. All
levels of the cache have 64-byte blocks and implement a least-recently-
used (LRU) replacement policy. The sparse directory implements a 1-
bit not-recently-used (NRU) replacement policy. The simulated system
models eight single-channel memory controllers evenly distributed over
the mesh. Each memory controller connects to a 2 GB DRAM module
modeled using DRAMSim2 [30]. Each DRAM module is eight-way
banked single-rank DDR3-2133 with 12-12-12 latency parameters and
burst length eight. The memory controllers implement the FR-FCFS
scheduling algorithm.

The applications for this study are drawn from various sources and
detailed in Table I (ROI refers to the parallel region of interest). The

inputs, configurations, and simulation lengths are chosen to keep the
simulation time within reasonable limits while maintaining fidelity of
the simulation results. The PARSEC and SPLASH-21 applications are
simulated in execution-driven mode, while the rest of the applications
are simulated by replaying an instruction trace collected through the
PIN tool. The PIN trace is collected on a 24-core machine by running
the multi-threaded applications creating at most 128 threads (including
client, server, application, and JVM threads). Before replaying the trace
through the simulated 128-core system, it is pre-processed to expose
maximum possible concurrency across the threads while preserving the
global order at global synchronization boundaries and between load-
store pairs touching the same memory block (64 bytes).

We evaluate five directory organizations in this study. These are
summarized below. We assume a 48-bit physical address.

Scalable coherence directory (SCD) [31]: Sparse directory with 1
16
×

sets i.e., each slice has sixteen sets and eight ways. Each directory way
has a valid bit, a 31-bit tag, 1-bit coherence state (M/E vs. shared), 1-bit
NRU state, two limited-pointer fields and their valid bits (total sixteen
bits, which can also encode the sharers in a sixteen-core cluster in a
hierarchical representation), two bits to encode the type of representa-
tion (limited-pointer, root, leaf), and three bits to encode the cluster id
in a hierarchical representation. Total size is 128 slices × 16 sets × 8
ways × 55 bits i.e., 110 KB.

Hybrid directory [14]: Sparse directory with 1
16
× sets i.e., each slice

has sixteen sets and eight ways. Each way has a valid bit, a 31-bit tag,
1-bit coherence state (M/E vs. shared), and 1-bit NRU state. Out of the
eight ways in a set, two ways can encode full-map sharer vectors and
each is of size 128 bits. The remaining six ways can encode a single
pointer, each of size seven bits. Total size is 142.5 KB.

Select directory [40]: Sparse directory with 1
16
× sets i.e., each slice

has sixteen sets and eight ways. Each way has a valid bit, a 31-bit tag,
1-bit coherence state (M/E vs. shared), 1-bit NRU state, a 7-bit pointer,
and a pointer state bit (single sharer vs. pool pointer). Depending on the
pointer state bit, the 7-bit pointer field stores either the private owner of
a block or the entry id of a dynamically assigned full-map bitvector from
a sixteen-entry fully-associative pool of bitvectors. Each pool entry has
a 128-bit sharer vector, a valid bit, and four bits of back-pointer to
the associated sparse directory set. Total size is 128 slices × 16 sets
× 8 ways × 42 bits + 128 slices × 16 pool entries × 133 bits i.e.,
117.25 KB. The bitvector pool exercises FIFO replacement.

Pool directory: Sparse directory with 1
16
× sets i.e., each slice has

sixteen sets and eight ways. Each way has a valid bit, a 31-bit tag, 1-
bit coherence state (M/E vs. shared), 1-bit NRU state, a 7-bit pointer,
and a pointer state bit (single sharer vs. pool pointer). The pool has 40
entries per slice. Each pool entry has four limited-pointer fields and their
valid bits (total 32 bits, which can also encode the sharers in a 32-core
cluster), one bit to encode the type of representation (limited-pointer,
sharer cluster), one occupied bit, one head bit, two bits to encode the
cluster id in a sharer cluster representation, and four bits of back-pointer
to the sparse directory set. Total size is 128 slices × 16 sets × 8 ways
× 42 bits + 128 slices × 40 pool entries × 41 bits i.e., 109.625 KB.
Note that the SCD, Select, and Pool directories are sized to have similar
storage overhead.

Full-map directory: Sparse directory with 1
16
× sets i.e., each slice has

sixteen sets and eight ways. Each way has a valid bit, a 31-bit tag, 1-bit
coherence state (M/E vs. shared), 1-bit NRU state, and a 128-bit vector.
Total size is 324 KB.

V. SIMULATION RESULTS

In this section, we quantitatively compare the SCD, Hybrid direc-
tory, Select directory, Pool directory, and full-map directory in terms

1 The SPLASH-2 applications are drawn from the SPLASH2X extension
of the PARSEC distribution.

2015 33rd IEEE International Conference on Computer Design (ICCD) 561

TABLE I. SIMULATED APPLICATIONS

Suite Applications Input/Configuration Simulation length

PARSEC dedup, fluidanimate, swaptions sim-medium, sim-medium, sim-small Complete ROI

SPLASH-2 barnes 32K particles Complete ROI
fft 4M complex doubles Complete ROI

SPEC JBB SPEC JBB 82 warehouses, single JVM instance Six billion instructions

TPC MySQL TPC-C 10 GB database, 2 GB buffer pool, 100 warehouses, 100 clients 500 transactions
MySQL TPC-E 10 GB database, 2 GB buffer pool, 100 clients Five billion instructions
MySQL TPC-H 2 GB database, 1 GB buffer pool, 100 clients, zero think time, Five billion instructions

even distribution of Q6, Q8, Q11, Q13, Q16, Q20 across client threads

SPEC Web Apache HTTP server v2.2 running Worker thread model, 128 simultaneous sessions, mod php module Five billion instructions
Banking, Ecommerce, Support

SPEC JVM compiler.sunflow, crypto.aes Five operations Five billion instructions in ROI

of interconnect traffic, volume of private cache misses, the number of
sparse directory fills, and overall application performance.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 m
es

sa
ge

 c
ou

nt

 Back−inv and ack
Processor req and resp
Coherence

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 m
es

sa
ge

 c
ou

nt

S
C

D
H

yb
ri

d
S

el
ec

t
P

oo
l

Fu
ll−

m
ap

ded
up

flu
idan

im
ate

sw
ap

tio
ns

bar
nes fft

SPEC JB
B

SPECW
eb

Ban

kin
g

SPECW
eb

 E
co

mmer
ce

SPECW
eb

Support

MyS
QL

 TPC−C
MyS

QL

 T
PC−E

MyS
QL

 T
PC−H

SPECJV
M

co
mpile

r

SPECJV
M

 cr
yp

to
.ae

s

Ave
ra

ge

Fig. 4. Interconnect message count normalized to SCD.

Figure 4 shows a comparison of interconnect message count.
Each group of bars corresponds to an application and the rightmost
group in the bottom panel shows the average. The bars in a group
correspond to SCD, Hybrid, Select, Pool, and full-map organizations
from left to right. Each bar is divided into three segments repre-
senting three different types of messages. The forwarded requests,
their responses, invalidations due to writes, and their acknowledgments
constitute the coherence messages. The private cache misses, their
responses, writebacks, and writeback acknowledgments constitute the
processor requests and responses. Back-invalidations induced by sharer
evictions from the directory and their acknowledgments constitute the
third category of messages. We exclude the messages between the L3
cache banks and the memory controllers from these results because,
as expected, the volume of these messages is not affected by changes
in the directory organization. For each application, the message counts
are normalized with respect to SCD. Across the board, we observe that
the Pool directory organization is able to save a significant volume of
interconnect messages. While the coherence message count remains
largely constant across the different directory organizations, the primary
savings achieved by the Pool directory arise from reduction in private
cache misses and back-invalidations. Since the Pool directory manages
the directory space more efficiently, the pressure on the directory goes
down significantly leading to a less number of back-invalidations. The
harmful subset of the back-invalidations causes an increase in the
volume of the private cache misses. The savings achieved by the Pool
directory are particularly impressive for fluidanimate (11% reduction),
barnes (18% reduction), SPEC JBB (13% reduction), SPECWeb (35%
to 43% reduction), TPC-E (12% reduction), TPC-H (20% reduction),
and the SPEC JVM applications (25% to 36% reduction). In these ap-
plications, SCD suffers from high directory pressure because it requires
multiple directory entries to encode more than two sharers. This leads
to premature invalidation of directory entries tracking active blocks
causing an increased volume of private cache misses. On average, the
Pool directory organization achieves a 19% reduction in interconnect

message count and is able to bridge a big portion of the wide gap
between SCD and full-map organizations (see the Average group of
bars). The Hybrid and Select organizations suffer from respectively
9% and 10% average increase in interconnect message count compared
to SCD. The Hybrid organization’s static partitioning of the directory
space among the two types of directory entries fails to match the
dynamic demand of directory entries over time and across applications.
The Select organization, on the other hand, fails to track all the active
shared blocks with the few wide sharer vectors. Figure 5 further shows
the interconnect traffic (total message size) normalized to SCD. The
trends are similar to those shown in Figure 4. On average, compared to
SCD, the Hybrid and Select organizations experience respectively 6%
and 7% more interconnect traffic and the Pool directory organization
enjoys a 20% reduction in interconnect traffic.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
N

or
m

al
iz

ed
 in

te
rc

on
ne

ct
 tr

af
fic

ded
up

flu
id

an
im

at
e

sw
ap

tio
ns

bar
nes fft

SPEC JB
B

W
eb

−Ban
kin

g

W
eb

−Eco
m

m
er

ce

W
eb

−Support

MyS
QL T

PC−C

MyS
QL T

PC−E

MyS
QL T

PC−H

co
m

pile
r.s

unflo
w

cr
yp

to
.ae

s

Ave
ra

ge

Hybrid
Select
Pool
Full−map

Fig. 5. Interconnect traffic normalized to SCD.

To further understand the directory pressure in SCD, Figure 6
quantifies the number of sparse directory entry allocations (not to be
confused with pool entry allocations in the Pool and Select directory
organizations) normalized to SCD. Across the board, we see that the
SCD organization experiences a high volume of directory allocations
indicating a significant amount of directory conflicts. The rest of the
organizations all have almost equal number of sparse directory entry
allocations, as expected. Only SCD requires multiple directory entries
for encoding the sharers of a single block in a hierarchical manner. On
average, SCD suffers from almost double the number of directory entry
allocations compared to the other four organizations. The applications
that enjoy significant savings in message count and traffic with Pool
directory are also the ones that experience relatively higher volume of
sparse directory allocations in SCD (e.g., fluidanimate, barnes, SPEC
JBB, SPECWeb, TPC-E, TPC-H, and the SPEC JVM applications).
Even though the Hybrid, Select, Pool, and full-map organizations have
nearly the same number of tag allocations in the sparse directory, their
differences in the message traffic arise due to the eviction of sharer
tracking information from the tags and not due to eviction of tags from
the sparse directory (e.g., eviction of a pool entry in the Pool directory
or a swap between bitvector and pointer ways in the Hybrid directory).

Figure 7 presents the volume of private cache misses normalized
to SCD. We also show the breakdown of private cache misses into
code and data misses. These results closely correlate with the processor
request and response message count data shown in Figure 4. The
Pool directory organization, on average, enjoys 19% less private cache
misses compared to SCD, while the Hybrid and Select organizations
suffer from respectively 9% and 10% increase in the volume of private

562 2015 33rd IEEE International Conference on Computer Design (ICCD)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
N

or
m

al
iz

ed
 d

ire
ct

or
y

fil
l c

ou
nt

ded
up

flu
id

an
im

at
e

sw
ap

tio
ns

bar
nes fft

SPEC JB
B

W
eb

−Ban
kin

g

W
eb

−Eco
m

m
er

ce

W
eb

−Support

MyS
QL T

PC−C

MyS
QL T

PC−E

MyS
QL T

PC−H

co
m

pile
r.s

unflo
w

cr
yp

to
.ae

s

Ave
ra

ge

Hybrid
Select
Pool
Full−map

Fig. 6. Sparse directory fill count normalized to SCD.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

N
or

m
al

iz
ed

 p
riv

at
e

ca
ch

e
m

is
s

co
un

t

S
C

D
H

yb
ri

d
S

el
ec

t
P

oo
l

Fu
ll−

m
ap

ded
up

flu
idan

im
ate

sw
ap

tio
ns

bar
nes fft

SPEC JB
B

SPECW
eb

Ban

kin
g

SPECW
eb

 E
co

mmer
ce

SPECW
eb

Support
MyS

QL

 T
PC−C

MyS
QL

 TPC−E
MyS

QL

TPC−H

SPECJV
M

co
mpile

r

SPECJV
M

cr
yp

to
.ae

s

Ave
ra

ge

Data
Code

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Fig. 7. Private cache miss count normalized to SCD.

cache misses. The Pool directory is able to save both code and data
misses, while the Hybrid and Select organizations suffer primarily due
to increased volumes of code misses compared to SCD. Since the code
blocks experience good amount of sharing, these results indicate that
the Hybrid and Select organizations are unable to track all the actively
shared code blocks with their resources for tracking shared blocks.

0.7
0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

S
pe

ed
up

 o
ve

r S
C

D

ded
up

flu
id

an
im

at
e

sw
ap

tio
ns

bar
nes fft

SPEC JB
B

W
eb

−Ban
kin

g

W
eb

−Eco
m

m
er

ce

W
eb

−Support

MyS
QL T

PC−C

MyS
QL T

PC−E

MyS
QL T

PC−H

co
m

pile
r.s

unflo
w

cr
yp

to
.ae

s

GMEAN

Hybrid
Select
Pool
Full−map

Fig. 8. Speedup over SCD.

Figure 8 summarizes the performance speedup achieved by the
Hybrid, Select, Pool, and full-map directory organizations over SCD.
The performance improvement achieved by the Pool directory orga-
nization is 5%, on average; significant gainers are fluidanimate (8%),
barnes (16%), SPECWeb (5% to 7%), TPC-H (5%), and SPEC JVM
compiler.sunflow (20%). Most importantly, while using only one-third
of the directory space of a full-map organization, the average per-
formance of the Pool directory organization comes within 2.4% of
the full-map directory organization. The Hybrid and Select directory
organizations, on average, perform respectively 2% and 4% worse than
the SCD organization.

For a budget-constrained sparse directory such as 1
16
×, the direc-

tory organization and the directory replacement policy may play an
important role in determining the end-performance. In the following,
we evaluate a sparse directory design that uses a four-way skew-
associative organization with the timestamp-based three-level least-

TABLE II. POOL DIRECTORY RESULTS RELATIVE TO SCD FOR
1
16

×
DIRECTORY

Organization Traffic Speedup Dynamic energy

Set-assoc., NRU 0.80 1.05 0.15

Z-cache 0.84 1.04 0.18

recently-used Z-cache replacement protocol (52 replacement candi-
dates) [31]. Table II summarizes the interconnect traffic, speedup, and
dynamic energy expended by the directory structures (using 22 nm
nodes) for the Pool directory design. The results are averaged over
all the applications and normalized to SCD. The results are shown for
two different organizations of the 1

16
× sparse directory, namely, eight-

way set-associative exercising NRU replacement (this is the design
we have been discussing so far) and four-way Z-cache. While the Z-
cache organization reduces the performance gap between SCD and
Pool directory, the latter continues to save 16% interconnect traffic, on
average. The Pool directory saves 85% dynamic energy in the coherence
directory reads and writes compared to SCD in the set-associative
organization. There are two primary reasons for this large saving. First,
the Pool directory-based design enjoys 19% less private cache misses
leading to a significantly reduced volume of directory accesses. Second,
due to the hierarchical encoding, the SCD design may require multiple
set-associative lookups into the sparse directory array to complete one
private cache miss request. Although the Pool directory may also need
multiple lookups into the pool, the expended energy is significantly
less due to the tagless direct-mapped design of the pool. For the Z-
cache organization, the Pool directory continues to save 82% energy
compared to SCD, on average.

VI. SUMMARY

We have presented a novel coherence directory organization that
has a set-associative sparse directory and a direct-mapped pool, each
entry of which can act as a limited-pointer entry as well as a short sharer
vector entry encoding the sharers in a cluster of cores. A dynamically
allocated collection of such pool entries can efficiently track all the
sharers of a block. Each sparse directory entry has a pointer, which can
either encode a sharer (useful for tracking private blocks) or point to a
pool entry. The pool entries allocated to a shared block are contiguously
placed in the pool so that maintaining a pointer to the head entry is
enough. Simulation results on a 128-core chip-multiprocessor show that
our proposal performs 5% better than the state-of-the-art dynamic hier-
archical directory organization while reducing the interconnect traffic
by 20%. Our proposal delivers performance within 2.4% of a full-map
organization while consuming only one-third of the directory space of
a full-map organization.

REFERENCES

[1] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. A New Scalable
Directory Architecture for Large-scale Multiprocessors. In Proceedings
of the 7th International Symposium on High-Performance Computer
Architecture, pages 97–106, January 2001.

[2] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. A Two-Level
Directory Architecture for Highly Scalable cc-NUMA Multiprocessors.
In IEEE Transactions on Parallel and Distributed Systems, 16(1): 67–
79, January 2005.

[3] A. Agarwal, R. Simoni, J. L. Hennessy, and M. Horowitz. An Evaluation
of Directory Schemes for Cache Coherence. In Proceedings of the 15th
International Symposium on Computer Architecture, pages 280–289,
May/June 1988.

[4] M. Alisafaee. Spatiotemporal Coherence Tracking. In Proceedings of
the 45th IEEE/ACM International Symposium on Microarchitecture,
pages 341–350, December 2012.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, pages 72–81, September 2008.

[6] L. M. Censier and P. Feautrier. A New Solution to Coherence Prob-
lems in Multicache Systems. In IEEE Transactions on Computers, C-
27(12):1112–1118, December 1978.

2015 33rd IEEE International Conference on Computer Design (ICCD) 563

[7] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS Directories:
A Scalable Cache Coherence Scheme. In Proceedings of the 4th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 224–234, April 1991.

[8] Y. Chang and L. Bhuyan. An Efficient Hybrid Cache Coherence
Protocol for Shared Memory Multiprocessors. In Proceedings of the
International Conference on Parallel Processing, pages 172–179, Au-
gust 1996.

[9] G. Chen. SLiD – A Cost-effective and Scalable Limited-directory
Scheme for Cache Coherence. In Proceedings of the 5th International
Conference on Parallel Architectures and Languages Europe, pages
341–352, June 1993.

[10] B. Choi et al. DeNovo: Rethinking the Memory Hierarchy for Disci-
plined Parallelism. In Proceedings of the 20th International Conference
on Parallel Architectures and Compilation Techniques, pages 155–166,
October 2011.

[11] J. H. Choi and K. H. Park. Segment Directory Enhancing the Limited
Directory Cache Coherence Schemes. In Proceedings of the 13th
International Parallel and Distributed Processing Symposium, pages
258–267, April 1999.

[12] B. A. Cuesta, A. Ros, M. E. Gomez, A. Robles, and J. Duato. Increasing
the Effectiveness of Directory Caches by Deactivating Coherence for
Private Memory Blocks. In Proceedings of the 38th International
Symposium on Computer Architecture, pages 93–104, June 2011.

[13] S. Demetriades and S. Cho. Stash Directory: A Scalable Directory for
Many-core Coherence. In Proceedings of the 20th IEEE International
Symposium on High Performance Computer Architecture, pages 177–
188, February 2014.

[14] L. Fang, P. Liu, Q. Hu, M. C. Huang, and G. Jiang. Building Expres-
sive, Area-efficient Coherence Directories. In Proceedings of the 22nd
International Conference on Parallel Architectures and Compilation
Techniques, pages 299–308, September 2013.

[15] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. Cuckoo Di-
rectory: A Scalable Directory for Many-core Systems. In Proceedings
of the 17th International Conference on High-Performance Computer
Architecture, pages 169–180, February 2011.

[16] S. Guo, H. Wang, Y. Xue, D. Li, and D. Wang. Hierarchical Cache
Directory for CMP. In Journal of Computer Science and Technology,
25(2): 246–256, March 2010.

[17] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic
Requirements for Scalable Directory-based Cache Coherence Schemes.
In Proceedings of the International Conference on Parallel Processing,
pages 312–321, August 1990.

[18] HP Labs. CACTI: An Integrated Cache and Memory Access Time,
Cycle Time, Area, Leakage, and Dynamic Power Model. Available at
http://www.hpl.hp.com/research/cacti/.

[19] D. James, A. Laundrie, S. Gjessing, and G. Sohi. Distributed Directory
Scheme: Scalable Coherent Interface. In IEEE Computer, 23(6): 74–77,
June 1990.

[20] J. H. Kelm, M. R. Johnson, S. S. Lumetta, and S. J. Patel. WAYPOINT:
Scaling Coherence to Thousand-core Architectures. In Proceedings
of the 19th International Conference on Parallel Architectures and
Compilation Techniques, pages 99–110, September 2010.

[21] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L.
C. Kimerling, and A. Agarwal. ATAC: A 1000-core Cache-coherent
Processor with On-chip Optical Network. In Proceedings of the 19th
International Conference on Parallel Architectures and Compilation
Techniques, pages 477–488, September 2010.

[22] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. In Proceedings of the 24th International Symposium
on Computer Architecture, pages 241–251, June 1997.

[23] Y. Li, R. G. Melhem, and A. K. Jones. Practically Private: Enabling
High Performance CMPs through Compiler-assisted Data Classifica-
tion. In Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, pages 231–240, September
2012.

[24] Y. Maa, D. Pradhan, and D. Thiebaut. Two Economical Directory
Schemes for Large-scale Cache Coherent Multiprocessors. In ACM
SIGARCH Computer Architecture News, 19(5): 10–18, September 1991.

[25] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why On-chip Cache
Coherence is Here to Stay. In Communications of the ACM, 55(7):78–
89, July 2012.

[26] S. S. Mukherjee and M. D. Hill. An Evaluation of Directory Protocols
for Medium-scale Shared Memory Multiprocessors. In Proceedings of
the International Conference on Supercomputing, pages 64–74, July
1994.

[27] H. Nilsson and P. Stenstrom. The Scalable Tree Protocol – A Cache
Coherence Approach for Large-scale Multiprocessors. In Proceedings
of the International Parallel and Distributed Processing Symposium,
pages 498–506, April 1992.

[28] B. O’Krafka and A. Newton. An Empirical Evaluation of Two Memory-
efficient Directory Methods. In Proceedings of the 17th International
Symposium on Computer Architecture, pages 138–147, May 1990.

[29] A. Ros and S. Kaxiras. Complexity-effective Multicore Coherence. In
Proceedings of the 21st International Conference on Parallel Architec-
tures and Compilation Techniques, pages 241–252, September 2012.

[30] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle
Accurate Memory System Simulator. In IEEE Computer Architecture
Letters, 10(1): 16–19, January-June 2011.

[31] D. Sanchez and C. Kozyrakis. SCD: A Scalable Coherence Directory
with Flexible Sharer Set Encoding. In Proceedings of the 18th Interna-
tional Symposium on High-Performance Computer Architecture, pages
129–140, February 2012.

[32] R. Simoni and M. Horowitz. Dynamic Pointer Allocation for Scalable
Cache Coherence Directories. In Proc. of the International Symposium
on Shared Memory Multiprocessing, pages 72–81, April 1991.

[33] R. T. Simoni, Jr. Cache Coherence Directories for Scalable Multipro-
cessors. PhD dissertation, Stanford University, 1992.

[34] H. Sung, R. Komuravelli, and S. V. Adve. DeNovoND: Efficient Hard-
ware Support for Disciplined Non-determinism. In Proc. of the 18th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 13–26, March 2013.

[35] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2Sim: A
Simulation Framework for CPU-GPU Computing. In Proceedings of the
21st International Conference on Parallel Architecture and Compilation
Techniques, pages 335–344, September 2012.

[36] D. Wallach. PHD: A Hierarchical Cache Coherent Protocol. Ph.D.
dissertation, MIT, September 1992.

[37] W.-D. Weber. Scalable Directories for Cache-coherent Shared-memory
Multiprocessors. Ph.D. dissertations, Stanford University, January 1993.

[38] W.-D. Weber and A. Gupta. Analysis of Cache Invalidation Patterns
in Multiprocessors. In Proceedings of the 3rd International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 243–256, April 1989.

[39] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-
2 Programs: Characterization and Methodological Considerations. In
Proceedings of the 22nd International Symposium on Computer Archi-
tecture, pages 24–36, June 1995.

[40] Y. Yao, G. Wang, Z. Ge, T. Mitra, W. Chen, and N. Zhang. Select-
Directory: A Selective Directory for Cache Coherence in Many-core
Architectures. In Design, Automation, and Test in Europe, March 2015.

[41] J. Zebchuk, B. Falsafi, and A. Moshovos. Multi-grain Coherence
Directories. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 359–370, December 2013.

[42] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos. A
Tagless Coherence Directory. In Proceedings of the 42nd International
Symposium on Microarchitecture, pages 423–434, December 2009.

[43] L. Zhang, D. Strukov, H. Saadeldeen, D. Fan, M. Zhang, and D.
Franklin. SpongeDirectory: Flexible Sparse Directories Utilizing Multi-
Level Memristors. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation Techniques, August 2014.

[44] H. Zhao, A. Shriraman, S. Dwarkadas, and V. Srinivasan. SPATL:
Honey, I Shrunk the Coherence Directory. In Proceedings of the 20th
International Conference on Parallel Architectures and Compilation
Techniques, pages 33–44, October 2011.

[45] H. Zhao, A. Shriraman, and S. Dwarkadas. SPACE: Sharing Pattern-
based Directory Coherence for Multicore Scalability. In Proceedings
of the 19th International Conference on Parallel Architectures and
Compilation Techniques, pages 135–146, September 2010.

564 2015 33rd IEEE International Conference on Computer Design (ICCD)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

