
IEEE EMBEDDED SYSTEMS LETTERS, VOL. 12, NO. 3, SEPTEMBER 2020 95

Shared Pattern History Tables in Multicomponent
Branch Predictors With a Dealiasing Cache

Moumita Das, Ansuman Banerjee , Mainak Chaudhuri, and Bhaskar Sardar

Abstract—In this letter, we study the problem of designing
multicomponent branch predictors for low-resource embedded
systems. The highlight of our design is a shared pattern history
table with a tiny dealiasing cache for intercomponent interference
resolution. Experiments on the CBP-5 traces are shown to record
the performance in terms of prediction accuracy. Synthesis results
generated using the Synopsys design compiler with TSMC 90-nm
libraries confirm the area and power benefits of our design.

Index Terms—Branch prediction, history table, interference.

I. INTRODUCTION

CLASSICAL multicomponent hybrid branch predictors
have found wide-spread use in the front-end of the com-

mercial processor pipelines; representative examples include
the Alpha 21264 Tournament predictor [11], the skew branch
predictors such as the 2Bc-gskew branch predictor which
was planned for the Alpha EV8 front-end [15]. The main
motivation driving multicomponent predictors has been the
observation [10] that different dynamic predictors fare differ-
ently on different branches in terms of prediction accuracy,
thereby necessitating the use of multiple predictor compo-
nents for predicting a branch. Multicomponent predictors have
been extensively studied in the literature, with a number of
design strategies, attempting to improve prediction accuracy
and power [2], [5].

A typical and widely popular class of multicomponent
predictors consists of a local and a global predictor compo-
nent and uses a sophisticated tournament prediction scheme
to choose the final prediction between these predictors at
run time. A local history-based predictor uses past outcome
information only about the branch under consideration for its
current prediction, while a global one takes into account the
outcome histories of the preceding branches in addition to
the present while making a prediction for a specific branch.
The local and global components maintain separate pattern

Manuscript received September 9, 2019; accepted November 10, 2019. Date
of publication December 3, 2019; date of current version August 27, 2020.
This manuscript was recommended for publication by Y. Xie. (Corresponding
author: Ansuman Banerjee.)

M. Das is with the Advanced Computing and Microelectronics Unit, Indian
Statistical Institute, Kolkata 700108, India, and also with the Department of
Information Technology, Jadavpur University, Kolkata 700098, India.

A. Banerjee is with the Advanced Computing and Microelectronics
Unit, Indian Statistical Institute, Kolkata 700108, India (e-mail:
ansuman@isical.ac.in).

M. Chaudhuri is with the Department of Computer Science and
Engineering, IIT Kanpur, Kanpur 208016, India.

B. Sardar is with the Department of Information Technology, Jadavpur
University, Kolkata 700098, India.

Digital Object Identifier 10.1109/LES.2019.2957512

history tables (PHTs) to store prediction information as 2-bit
saturating counters [13], which is used for predicting direc-
tions of future instances of branch instructions. This ensures
the predictors can operate in their individual spaces, without
interference.

Implementing multicomponent predictors on low-resource
embedded processors has been a challenge due to the high
area footprint that the separate tables demand. On the other
hand, sophisticated contemporary predictors like the TAgged
GEometric length predictor [14] and its variants also demand
separate history structures for their components to perform
well, and have been shown to be storage-sensitive in terms of
performance [6].

The main highlight of this letter is the design of a shared
single-PHT multicomponent hybrid predictor that can lever-
age the benefits of the local and global histories, while at the
same time, require a low area footprint. In addition to the
shared PHT, we keep a small dealiasing cache to hold history
information for the address entries on which the local and
global components collide, while the operation of the PHT
remains shared between predictors otherwise.

This letter on economizing the pattern history table budget
is applicable to the generic class of multicomponent hybrid
branch predictors that traditionally employ separate PHTs for
individual predictor components. While our proposal can be
successfully applied to a wide variety of hybrid predictors, the
other predictors that do not employ multiple PHTs are beyond
the scope of this letter. There exist proposals that replace
the PHT of two-level branch predictors by a reasonably large
cache to address under-utilization of the PHT entries [8], [9].
In contrast, this letter augments a traditional PHT with a tiny
specialized de-aliasing cache with the sole goal of reducing
destructive interference in the PHT entries. This distinguishes
us from earlier proposals.

Experiments on the CBP-5 [4] traces show that our pro-
posal achieves comparable performance in terms of prediction
accuracy in comparison to the classical non shared implemen-
tation. Further, we present synthesis results using the Synopsys
design compiler (DC) compiler with TSMC 90-nm libraries to
show the energy and area benefits of our design.

II. PROPOSED MULTICOMPONENT PREDICTOR DESIGN

Fig. 1 shows an overview of our architecture, with 2 predic-
tor components, a local and a global operating independently.
The local one uses a branch history table (BHT) to store the
branch-specific history patterns (branch outcomes). The local
branch history register (LBHR) corresponding to a branch

1943-0671 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on January 26,2021 at 10:53:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0220-646X

96 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 12, NO. 3, SEPTEMBER 2020

Fig. 1. Our proposal: Shared PHT with side cache.

stores an n-bit pattern corresponding to the last n outcomes
of the branch. For a given branch, the BHT is indexed by the
last m bits of the branch address or the program counter (PC)
value and the n-bit LBHR value stored at that index is used
to index the PHT. The BHT stores 2m entries, each of size
n, thus occupying a storage of n ∗ 2m bits. The PHT has 2n

entries. Each entry in the PHT stores a 2-bit saturating counter,
the most significant bit of this counter value is the predicted
direction of a branch instance. The global predictor uses the
hash function in [14] with a k-bit global branch history register
(GBHR) and PC to index the PHT

H = PC[0 : n − 1] ⊕ GBHR[0 : n − 1]

⊕ GBHR[k − n : k − 1].

The GBHR stores a running outcome history of the n previous
branch instances. The predictions of the local and the global
predictors are read from the corresponding indices of the PHT.
To select between the local and global predictions for a branch,
a choice predictor using the same hash function H is used to
index into a predictor selection table. Each entry of this table
stores a 2-bit saturating counter whose MSB determines the
best predictor (either global or local) for every branch. If the
counter state is 00 or 01, the prediction from the global pre-
dictor is considered, while the local one is used for 10 or 11.
When the branch outcome gets known, this counter is updated
only if the predictions from the two predictors are different,
based on whose prediction matched the outcome [11]. The
counter state is decremented if the branch outcome matches
that of the global, otherwise, it is incremented. When a branch
retires, the corresponding LBHR, GBHR, and the 2-bit counter
in the shared PHT needs to be updated with the actual out-
come to train the predictors for future prediction. This may
lead to a potential interference if the PHT entry to be updated
is owned by the other component. To enable PHT sharing
and ensure noninterference, we identify and resolve the PHT
interference between the components and allocate side cache
entries. Additionally, we modify the predictor lookup of each
in the fetch stage for incorporating the cache with the PHT,
and augment the retire stage with a cache entry creation step.

Handling Intercomponent Interferences: An interference
occurs when an entry in the PHT which one of the compo-
nents (global or local) uses to keep its 2-bit counter history
information is modified by the other component. To identify
interference, each entry in the shared PHT has an ownership
bit (WHO bit in Fig. 1), which holds the current owner of
the entry, a value 0 indicates that the global component owns
it, while 1 indicates ownership of the local one. A predictor
can modify the prediction information of a PHT entry only

Algorithm 1: Global Prediction at Fetch Cycle

1 T : Shared PHT; S : Side cache; GBHR : Global BHR
2 gindex = index of T using indexing function H
3 Access T[gindex] and find the WHO bit stored in that entry.
4 if WHO = 0 then
5 gpred = MSB of the T[gindex].2BitCounter
6 else
7 sindex = Side cache entry (S) for GBHR
8 if sindex is not NULL and has VALID = 1 then
9 gpred = MSB of S[sindex].2BitCounter

10 else
11 gPred = 00 /* not-taken default prediction */

if it owns the entry or nobody owns it. WHO bits for all
PHT entries are initially set to 0, assigning ownership to the
global. However, this ownership can change. We adopt a first
touch allocation policy [12] to ensure that whoever accesses
the entry first with a valid address becomes the owner and that
disallows the other component from accessing the entry. If an
owned entry is accessed by a nonowning component, a side
cache entry is created for the latter.

Dealiasing Side Cache: The role of the side cache is to
hold the prediction information of all PHT entries for which
interferences occur. Each valid side cache entry is associ-
ated with some PHT entry in which an interference occurs.
Whenever a side cache entry is created, the corresponding
PHT index (GBHR or LBHR) is stored as well. To store the
prediction information, each entry contains a 2-bit counter.
Additionally, each entry contains a valid bit to indicate whether
it contains a valid PHT entry.

Fetch Stage Modification: When a branch instance is
fetched, the two predictors are active and simultaneously
access the shared PHT to retrieve the predictions. The WHO
bit for each entry records which predictor updated this entry
most recently. Based on the current value of the WHO bit, the
prediction is generated. Algorithm 1 shows the detailed steps
for the global component. Initially, all WHO bits are 0 and all
2-bit counters are initialized to 00. Hence, 0 as the WHO bit
for a PHT entry can mean one of the following.

1) No predictor has accessed this PHT entry as yet.
2) The global predictor owns this entry.
If the global component finds the entry with WHO bit 0,

it takes the MSB of the current 2-bit counter value as its
prediction. Since the 2-bit counter is initialized as 00, its MSB
also gives the default prediction as not-taken. The working of
the global component is summarized in Algorithm 1.

A similar activity is carried out for the local predictor as
well, except that in this case, the shared PHT is accessed with
the LBHR and the side cache is looked up when the WHO bit
is 0. If the WHO bit of that entry is 1, it takes the MSB of the
current 2-bit counter value as the local prediction. If the WHO
bit is 0, the side cache is searched with the corresponding
LBHR and the prediction is generated as in Algorithm 1.

Branch Retire and Update Stage Modification: Creation
of an entry in the side cache and updation of prediction
information occur at the branch retire stage, when the out-
come of the branch is known. The predictions from the
global prediction gpred and local predictor lpred are known
previously from the fetch stage. The state of the choice counter

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on January 26,2021 at 10:53:27 UTC from IEEE Xplore. Restrictions apply.

DAS et al.: SHARED PHTs IN MULTICOMPONENT BRANCH PREDICTORS WITH DEALIASING CACHE 97

Algorithm 2: Retire Stage for Global Component

1 begin
2 Find PHT entry e = T[gindex]
3 if WHO bit of e is 0 then
4 Update 2-bit counter of PHT entry with actual outcome
5 else
6 if a valid side cache entry S available for GBHR then
7 Update 2-bit counter of S with the actual outcome
8 else
9 /*side cache entry not present, insert new entry */

10 if an empty entry E is found in the cache then
11 Set VALID of E as 1
12 else
13 Replace an entry E using LRU replacement

14 Insert GBHR at E, Initialize 2-bit counter of E as
00

15 Update 2-bit counter of E with the actual outcome

16 GBHR is updated according to the actual branch outcome

stored in the choice predictor indicates the predictor chosen for
the final prediction in the corresponding fetch stage. If the state
is 00 or 01, the global predictor gave the final prediction, oth-
erwise the local predictor gave the final prediction. However,
update methods are invoked for both the predictors. The state
of the choice counter is updated if and only if the predictions
provided by the two predictors are different, decremented if
the actual branch outcome is the same as gpred, and incre-
mented if it is same as lpred. We describe in Algorithm 2 the
steps to update the shared PHT/cache entry associated with
the global predictor. A similar activity is done for the local
component, with the following changes.

1) The PHT is indexed with the LBHR.
2) The side cache creation or update is done when the

WHO bit of the PHT entry is 0.
3) Both the GBHR and the LBHR are updated with the

actual outcome when a branch retires.
Additionally, if the local component finds that the WHO bit
of the PHT entry is 0 and the prediction stored therein is 00
(either due to initialization or as stored by the global compo-
nent), we transfer ownership to the local component by setting
the WHO bit of the PHT entry as 1. This does not harm the
global component even though it might have stored 00 in this
PHT entry, since when it reaccesses with the same PHT entry
and finds the WHO bit set, it will not get a side cache entry
and hence, restart with the prediction as 00.

The methodology above creates a cache entry whenever an
interference occurs in a PHT entry, thereby eliminating all
PHT interferences. We now describe a further optimization.

III. PHT OPTIMIZATION

We classify interpredictor interference into two different
classes: positive interference and negative interference. An
instance of positive interference for a shared PHT entry occurs
when the prediction given by the current predictor and the
state of the 2-bit counter stored at that shared PHT entry by
the other component owning the entry are aligned in the same
direction (either both taken or both not taken). In such a case,
we can avoid the creation of an additional side cache entry
and allow both the components to operate on the same PHT

TABLE I
CASES FOR INTERFERENCE

entry. An instance of negative interference occurs when they
are not aligned in the same direction. The different scenar-
ios for positive and negative interference are summarized in
Table I.

In the previous method, we disallow any interference, hence
the benefit of positive interference is lost as well. We now
propose another methodology that eliminates only negative
interferences and allows the components to work on the same
PHT entry as long as their predictions match. In such a case,
a smaller number of cache allocations is expected to happen.
We now describe the modifications needed in the fetch and
retire stages to incorporate this enhancement.

Fetch Stage Modification: In the fetch stage, for the global
predictor, if the WHO bit of the corresponding PHT entry is 1,
the side cache is looked up. If a valid side cache entry is avail-
able for that PHT index, the MSB of the 2-bit counter there
gives the prediction. If no valid side cache entry is available for
that PHT index, it indicates either no interference occurred till
that point or only instances of positive interference occurred
between the components for that entry. At the time of pos-
itive interference, the 2-bit counter of the PHT index was
updated. Hence, to get the benefit of the positive interference,
the MSB of the 2-bit counter stored in that PHT index is taken
as the global prediction. A similar action follows for the local
component as well.

Branch Retire and Update Stage: The methodologies
for creating an entry in the side cache and corresponding
prediction information update for a branch instance are now
different for both the components. We explain the action taken
for the global component in the retire stage. As earlier, if the
WHO bit of the corresponding entry is 0, the shared PHT
is looked up, and the action is exactly as outlined in the first
case. However, if the WHO bit is 1, it indicates that the global
component does not own the entry and there is an interference.
This interference can be positive or negative. We first check
for a valid side cache entry for the GBHR. If found, we update
the 2-bit counter of that entry according to the actual branch
outcome. If the side cache entry for this GBHR is not avail-
able, we check for the interference type. We create a new side
cache entry only if the interference is negative. For the local
component, the methodology is similar.

IV. IMPLEMENTATION AND RESULTS

We compare the prediction accuracy of our design with 3
others, as summarized in Table II as (a), (b), (c), Design-1, and
Design-2. The choice predictor in each case has 4096 × 2 bits.
For iso-storage comparison, we scale up the PHT in (b) to
obtain (c) with a PHT of size 8192 × 2 bits. For accessing
this shared PHT, a 13-bit index is needed. Hence, BHT stores
a 13-bit LBHR in (c). All designs are implemented inside the
CBP-5 [4] predictor evaluation infrastructure. After execution,
it reports the mispredictions per kilo instructions (MPKI). In
Design-1, once the local predictor gains ownership of a PHT
location through the WHO bit, the ownership does not change

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on January 26,2021 at 10:53:27 UTC from IEEE Xplore. Restrictions apply.

98 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 12, NO. 3, SEPTEMBER 2020

TABLE II
DESIGN DETAILS

Fig. 2. Average MPKI for different implementations.

TABLE III
CACHE ENTRY CREATION STATISTICS AND ENERGY RESULTS

further. To address this unfairness toward the global compo-
nent, we perform a periodic reset of the WHO bits after every
10-million branch instructions.

Fig. 2 shows the average MPKIs of (a), (b), (c) and our
designs for CBP-5 trace categories. MPKI reduces when a
side cache is used along with the shared PHT compared to the
MPKI of the shared PHT designs without the side cache. With
a 32-entry side cache, the MPKI reduces for both Design-1
and Design-2, even when compared to (c). The increase in
storage in (c) leads to less number of instances of positive
interference due to increase in the number of index bits and
thereby, the benefits of the extra storage are not achieved as
expected. Further, we compare the number of cache entries
allocated in Design-1 and Design-2. Results in Table III shows
that Design-2 indeed fares better. The average PHT and BHT
utilization is quite high in our proposed designs for each trace
category, thereby justifying the sizes chosen for each.

To evaluate the area and power consumption, we develop
Verilog RTL and use the Veriwell simulator [1] to verify the
designs. The DC [7] is used to synthesize our designs with
TSMC 90-nm libraries. Our design achieves a 1.6% area ben-
efit over (a). The 2 PHTs in (a) are synthesized as 2 single-port
SRAMs, while in the rest, the shared PHT is synthesized as a
dual-port SRAM to enable simultaneous access by the 2 com-
ponents in the fetch and retire stages. The synthesis of the BHT
and the choice tables are similar in all the 3 designs, while
the cache in our design is a fully associative SRAM. The PHT
and the side cache are looked up in parallel in the fetch stage
of the pipeline, hence the critical path is unchanged. The PHT
update in the retire stage is not on the critical path as well. We

TABLE IV
MPKI FOR CBP-4

also present our analysis on using a Verilog module to mea-
sure per access read energy for both the SRAM and the side
cache. We collect the total number of read and write accesses
for all the designs from the CBP-5 program traces and multiply
these numbers with the per access energy obtained from DC
to obtain the total energy expended in each CBP-5 program.
Table III shows the average % energy improvement for our
design over the nonshared implementation for each CBP-5 pro-
gram category. Further, we experiment with the CBP-4 traces,
some of which are derived from SPEC 2006 [3]. Table IV
presents a comparison of the average MPKI for each trace
category with the different designs. Our proposal significantly
outperforms the other designs in this case as well.

V. CONCLUSION

We propose a storage-efficient design for multicomponent
branch predictors. The main highlight of our proposal is to
enable the predictor components work on a shared prediction
table, while maintaining a tiny dealiasing cache to resolve
entries on which the predictors collide. We believe this design
can be useful for resource constrained embedded devices.

REFERENCES

[1] Veriwell Simulator. Accessed: Sep. 9, 2019. [Online]. Available:
https://veriwell-verilog-simulator.soft112.com/

[2] M. I. Bielby. Ultra Low Power Cooperative Branch Prediction. [Online].
Available: https://era.ed.ac.uk/handle/1842/14187

[3] CBP-4. (2014). 4th JILP Workshop on Computer Architecture
Competitions. [Online]. Available: https://www.jilp.org/cbp2014/

[4] CBP-5. (2016). 5th JILP Workshop on Computer Architecture
Competitions. [Online]. Available: https://www.jilp.org/cbp2016/

[5] P.-Y. Chang, E. Hao, and Y. N. Patt, “Alternative implementations of
hybrid branch predictors,” in Proc. 28th Annu. Int. Symp. Microarchit.
(MICRO), 1995, pp. 252–257.

[6] M. Das, A. Banerjee, and B. Sardar, “An empirical study on performance
of branch predictors with varying storage budgets,” in Proc. IEEE 7th
Int. Symp. Embedded Comput. Syst. Design (ISED), 2017, pp. 1–5.

[7] G. Dupenloup, “Automatic synthesis script generation for synopsys
design compiler,” U.S. Patent 6 836 877, Dec. 28, 2004.

[8] C. Egan, G. B. Steven, W. Shim, and L. Vintan, “Applying caching to
two-level adaptive branch prediction,” in Proc. IEEE Euromicro Symp.
Digit. Syst. Design, Warsaw, Poland, 2001, pp. 186–193.

[9] C. Egan, G. Steven, and L. Vintan, “Cached two-level adaptive branch
predictors with multiple stages,” in Proc. Int. Conf. Archit. Comput. Syst.
(ARCS), 2002, pp. 179–191.

[10] M. Evers, P.-Y. Chang, and Y. N. Patt, “Using hybrid branch predictors to
improve branch prediction accuracy in the presence of context switches,”
in Proc. ACM Comput. Archit. News (CAN), vol. 24, pp. 3–11, 1996.

[11] R. E. Kessler, “The alpha 21264 microprocessor,” IEEE Micro, vol. 19,
no. 2, pp. 24–36, Mar./Apr. 1999.

[12] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page
allocation,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 105–116, 2000.

[13] G. H. Loh, D. S. Henry, and A. Krishnamurthy, “Exploiting bias in
the hysteresis bit of 2-bit saturating counters in branch predictors,”
J. Instruct. Level Parallelism, vol. 5, pp. 1–32, Jun. 2003.

[14] A. Seznec, “A new case for the TAGE branch predictor,” in Proc. 44th
Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), 2011, pp. 117–127.

[15] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design tradeoffs
for the alpha EV8 conditional branch predictor,” in Proc. ACM Comput.
Archit. News (CAN), vol. 30, pp. 295–306, 2002.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on January 26,2021 at 10:53:27 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

