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Recent studies on secure last-level cache (LLC) have advocated the fully associative organization to defend
against conflict-based side-channel attacks. In a fully associative LLC, an attacker cannot extract any informa-
tion about the cache location of the addresses evicted due to cross-core conflict. Use of the random replacement
policy further guards against any deterministic eviction patterns. However, the fully associative LLC design
remains vulnerable against timing-based covert channel attacks. In this article, we present LeakyRand, a high-
bandwidth covert communication mechanism that exploits the fully associative LLC with random replacement
while guaranteeing an ultra-low bit error rate (BER). Our proposal is a union of three unique contributions.
First, we present an efficient algorithm with strong analytical guarantees that enables the attacker to quickly
occupy nearly the whole LLC with high probability, a prerequisite for achieving high bandwidth and high
fidelity. Second, we present a novel covert communication protocol that allows the attacker to maintain high
LLC occupancy. Third, our proposal detects error syndromes and efficiently takes corrective measures leading
to an ultra-low expected BER. Exploiting a 2 MB fully associative LLC with random replacement policy to set
up a covert channel, LeakyRand experiences an average BER of 10−4 or less while offering 3.3× to 5.7× higher
channel bandwidth compared to the recently proposed Stochastic Prime+Probe attack. We also demonstrate
that LeakyRand can be adopted to mount high-precision fine-grain fingerprinting attacks.
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1 Introduction
Attacks exploiting the timing channels in the last-level cache (LLC) shared among the cores of a chip-
multiprocessor have raised serious security concerns in general-purpose processors [10, 11, 18, 23,
26, 36] as well as embedded system-on-chips found in mobile and notebook devices [12, 15–17, 37].
Communication between two isolated execution entities (e.g., receiver and sender processes) in a
clandestine manner using covert channels is one of the practically demonstrated ways of exploiting
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the cache timing channel. Conflict-based covert channels built on top of Prime+Probe rely on
controlled cache contention [18, 21, 34]. These channels have been shown to be very effective in
set-associative caches with deterministic replacement policies. The following three steps are used
to set up such a channel. (a) Cache region identification: The receiver and the sender operate on
an identified region of the LLC for communication. This region could be an LLC set or a group of
LLC sets. This LLC region is filled (or primed) by the receiver with a set 𝑅 of addresses, referred to
as an eviction set [18, 22, 24, 28]. (b) Communication: The sender encodes a message bit 1 in the
form of some conflict-induced disturbance in the identified LLC region with the help of a set 𝑆 of
addresses. In techniques based on Prime+Probe, the eviction sets 𝑅 and 𝑆 satisfy 𝑅⋂𝑆 = 𝜙. Since
the accesses to 𝑆 necessarily evict some elements of 𝑅, the receiver can detect a message bit 1 by
probing the elements of 𝑅 and identifying any missing element with the help of the probe latency.
If no element is missing, the message bit is 0. (c) Cache region maintenance: Before communication
of each bit, the identified LLC region should be in a fixed deterministic pre-negotiated state that
contains the set 𝑅.

The vulnerabilities of set-associative caches with deterministic replacement policies have been
extensively studied [5, 8, 22, 23, 33]. As a countermeasure, recent research has advocated practically
implementable fully associative LLC organizations employing the random replacement policy [2, 26].
The fully associative LLC design eliminates leakage of set index bits, while the three steps discussed
above becomes extremely challenging with random replacement. The random replacement policy
makes it very difficult for the receiver to efficiently prime the identified cache region, to accurately
detect the communicated bit, and to quickly undo the disturbance caused by communication.

The central contribution of this article is to demonstrate that even a fully associative LLC with the
random replacement policy can be exploited to carry out covert communication at a reasonably
high bandwidth with an ultra-low bit error rate. Formally, we design two processes referred to as
the sender and the receiver with no part of their address spaces shared between them executing
on two cores of a chip-multiprocessor with a fully associative LLC shared between the cores such
that the sender communicates a bit string to the receiver by encoding the bits using LLC events.
The end-result of our design is LeakyRand , a novel error-resilient high-bandwidth covert channel,
that dynamically detects communication error syndromes and takes corrective measures to restrict
future errors. The design of LeakyRand involves a fresh relook at cache region identification,
covert communication, and cache region maintenance. In the following, we first discuss why these
three traditional steps do not work well in a fully associative LLC with the random replacement
policy (Section 1.1). Next, we briefly introduce our proposal (Section 1.2).

1.1 Covert Channel in Fully Associative LLC
Demarcation of a cache region at the set granularity requires the receiver to prime the entire fully
associative LLC (the only LLC set) using an eviction set that has at least as many blocks as the
cache has, thus making the process slow. Random replacement policy makes this process non-
deterministic because the receiver can occupy only a fraction of the LLC with a certain probability.
If the receiver fails to occupy a good portion of the LLC, the sender needs to create a large enough
disturbance (for sending a 1 bit) that intersects with the receiver’s occupied LLC portion for error-
free communication. Thus, we have a new error-bandwidth tradeoff. The cache region maintenance
step may, in the worst case, need to resort to the heavy-weight Prime step.

In Stochastic Prime+Probe (SPP) [29], a recently proposed covert channel exploiting a fully
associative cache with random replacement, the receiver primes the cache with a set 𝑅 of block
addresses such that |𝑅| is equal to the number of blocks in the cache. For example, in a 2 MB cache
with 64-byte blocks, the cache has 𝑐 = 32K blocks and 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑐} has 𝑐 block addresses.
Due to the random replacement policy, the receiver can replace 𝑟𝑖 when accessing 𝑟𝑗 with 𝑖 < 𝑗,
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leading to a final cache occupancy that is less than 32K blocks. We show in Section 3.3 that the
receiver, on average, occupies only 63% of the cache requiring the sender to use a large set 𝑆 of block
addresses when communicating a 1 bit. For example, |𝑆| = 0.4𝑐 = 12.8K blocks for a 2 MB cache
offers acceptable communication fidelity, as we will see in Section 5. Communication is error-free
if access to 𝑆 evicts a detectable number of blocks of 𝑅. In the Probe step, the receiver accesses 𝑅 to
detect misses, but fails to maintain a deterministic LLC occupancy due to the random replacement
policy. For example, in a 2 MB LLC, when sending a 1 bit, the sender replaces a number of blocks
belonging to 𝑅. When the receiver probes 𝑅 to infer this bit, it can replace other blocks of 𝑅 to fill
the blocks that the sender replaced, leading to an average LLC occupancy less than 63%.

To achieve acceptable error rates, SPP employs error control techniques such as differential
signaling and repetition coding. Differential signaling requires sending a reference bit 0 before
each data bit so that the receiver can detect the presence (absence) of disturbance due to a data bit
1 (0) with better fidelity, but the receiver needs to probe 𝑅 twice to receive the reference bit and the
data bit. Repetition coding requires that multiple copies of the same data bit be sent. Thus, in our
example of 2 MB cache, even without repetition coding, communication of 0 and 1 bits respectively
requires 64K and 76.8K cache accesses together from the receiver and the sender leading to poor
average channel bandwidth. Thus, SPP suffers from three shortcomings, namely, (a) due to the
receiver’s inability to occupy a large portion of the LLC, the sender needs to access a large number
of cache blocks for high-fidelity communication of a 1 bit, (b) every data bit needs to be augmented
with heavy-weight error control codes, and (c) the receiver fails to maintain a deterministic LLC
occupancy. In summary, straightforward adoption of the Prime+Probe technique, as in SPP, to fully
associative caches with random replacement policy leads to covert channels that cannot achieve
high fidelity and high bandwidth simultaneously.

1.2 Our Approach and Contributions
Construction of a high-bandwidth error-resilient covert channel for fully associative caches with
random replacement policy requires novel redesign of the cache region identification, communica-
tion, and cache region maintenance steps. We pose cache region identification as an optimization
problem which attempts to minimize the cycles needed by the receiver to achieve a target ex-
pected LLC occupancy. We develop a procedure to automatically synthesize reasonably good region
identification algorithms using which the receiver quickly occupies 99% or more of the LLC. The
primary advantage of having the receiver control a large portion of the LLC is that even a small
disturbance in the LLC introduced by the sender is noticed by the receiver during the Probe step
with high probability. We propose a novel communication protocol that does not require any shared
memory between receiver and sender, has low overhead, and lets the receiver maintain the large
expected LLC occupancy with minimum additional work. Communication errors arise when the
sender’s disturbance does not intersect with the receiver’s occupied cache region. Our proposal
periodically detects the syndromes of such errors and invokes corrective measures to restrict the
number of future errors. Moreover, our proposal is designed to have in-built resilience to external
noise.

Putting it all together, we present LeakyRand , an efficient error-resilient covert channel (Sections 3
and 4). Since no commercial processor has a fully associative LLC today, we evaluate LeakyRand
using a detailed microarchitecture simulation model (Section 5). We use the MIRAGE design to
model a secure fully associative LLC with the random replacement policy [26]. Our results show
that the LeakyRand channel, when exploiting a 2 MB LLC, offers an average channel bandwidth
of 26.4 Kbps which is 3.3× to 5.7× higher than a bandwidth-optimized implementation of SPP
running without repetition coding. The LeakyRand channel experiences a bit error rate of 10−4
or less.
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2 Related Work
A large body of work has explored information leakage through cache timing channels. In the
following, we discuss the studies that are most relevant to our covert channel proposal.
Conflict-based covert channels use the Prime+Probe technique to exploit conflicts between

sender’s and receiver’s LLC accesses [18, 21, 28, 29, 34]. A subset of these proposals relies on
the deterministic eviction order of the least recently used (LRU) replacement policy [18, 34] or other
age-based policies [21]. These proposals lose robustness in the presence of the random replacement
policy. While SPP augments Prime+Probe with error control codes [29], this proposal fails to guar-
antee large LLC occupancy for the receiver and suffers from poor bandwidth in fully associative
caches with random replacement policy, as already discussed. A recent study has proposed a covert
channel fundamentally similar to SPP except that the sender induces two different levels of non-zero
disturbance to communicate 0 and 1 bits [7]. In contrast to these proposals, our proposal guarantees
large expected LLC occupancy for the receiver, helps the receiver maintain this large occupancy
by introducing a novel communication protocol different from Prime+Probe, and periodically
invokes low-overhead error syndrome detection and correction procedures to achieve ultra-low bit
error rates and high bandwidth. The conflict-based attacks on the randomized skewed-associative
caches have employed cache flush instructions to enable repeated use of a small partially congruent
eviction set [28]. Our proposal optionally makes use of the cache flush instructions for a very
different purpose, namely, to help the receiver establish and retain a large LLC occupancy. We show
that our proposal also works without cache flush instructions.

The proposals on shared memory-based covert channels rely on read-only memory locations
shared between the sender and receiver processes for communication [6, 10, 25, 35, 36]. In the
Flush+Reload attack, the receiver flushes the shared cache block, waits for the sender to read the
block (to transmit a 1 bit), and then measures the time to read the block to decode the transmitted
message bit [36]. The first two steps of the Flush+Flush attack are same as the Flush+Reload attack,
but in the last step, the receiver, instead of reading the block, flushes the block and measures the
latency of the flush operation to infer the message bit [10]. In the Reload+Refresh attack, the
receiver relies on the change in the victimization priority of the shared block due to a cache hit
from the sender to the block (encoding a 1 bit) to decode the communicated bit [6]. This attack
fails to work in the presence of random replacement policy. The time difference in accessing a
shared block in E vs. S state has also been exploited to design covert channels [35]. The Streamline
channel does not rely on flush operations, but allows the receiver and sender to communicate by
streaming through a large shared read-only array [25]. The Streamline attack relies on an age-based
LLC replacement policy which helps devise access patterns of the receiver/sender to minimize the
probability that a block representing an already sent bit gets replaced before the bit is received. This
probability becomes sizable in the presence of the random replacement policy making Streamline
significantly less robust. In contrast to these proposals, our proposal does not rely on memory
locations shared between the sender and the receiver. We present two different implementations of
our proposal, one using the cache line flush instruction and the other without it.

The proposals on occupancy-based covert channels estimate the footprint of a process in a shared
cache to infer sensitive information [7, 27]. Our proposal uses occupancy measurement in the cache
region identification step to help the receiver occupy a large fraction of the LLC. However, the
occupancy measurement procedure is crafted differently to work reliably with random replacement.

3 Design of LeakyRand
We discuss our baseline architecture and the threat model in Section 3.1. Section 3.2 presents
an overview of the LeakyRand design. Sections 3.3 and 3.4 respectively discuss the cache region
identification algorithm and the error-resilient communication protocol of LeakyRand.
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Fig. 1. LLC miss count without fill preference for invalid ways normalized to with fill preference.

ALGORITHM 1: Iterative invalidation and reuse of buffer A
1 Int 𝑖, 𝑗, num_sharing_episodes, num_compute_iterations
2 Array A

3 for 𝑖 = 1 to num_sharing_episodes do
4 Invalidate A from LLC
5 for 𝑗 = 1 to num_compute_iterations do
6 Use A in computation
7 end
8 end

3.1 Baseline Architecture and Threat Model
The LeakyRand covert channel is designed to work in a generic chip-multiprocessor with multiple
cores. In this section, we assume the support for a user-level cache line flush instruction (e.g.,
clflush of x86 ISA). In Section 4, we show how our proposal works without a cache line flush
instruction. Each core is assumed to have a private cache hierarchy and the LLC is shared by all the
cores. The LLC has a fully associative organization and exercises the random replacement policy.

The random replacement policy has two possible implementations. In one implementation,
invalid blocks are filled before invoking the replacement policy to maximize cache space utilization.
In the other implementation, a random way is selected even if invalid ways are present in the
cache. The second implementation is simpler because invalid ways need not be tracked, but it may
suffer from performance degradation in the scenarios where a buffer is iteratively invalidated from
the LLC and then reaccessed multiple times for computation as shown in the skeleton code of
Algorithm 1.

This iterative pattern is observed in applications with (𝑖) DMA copies triggered by iterative I/O
operations, (𝑖𝑖) read-write sharing between threads scheduled on different CPU sockets, or (𝑖𝑖𝑖) data
sharing between writer threads scheduled on GPU(s) and reader threads scheduled on CPU. Figure 1
shows the LLC miss count of the second implementation of random replacement normalized to the
first. The LLC misses are counted for a number of inner loop iterations of the skeleton code shown
in Algorithm 1 running on a processor model with a 2 MB LLC.1 The size of the array A is varied
from 256 KB to 2 MB and num_compute_iterations is varied from 2 to 8. In terms of LLC miss
count, we see a significant advantage of filling the invalid ways first. Therefore, we assume that
the invalid ways are filled first in the rest of this section. Section 4 discusses how LeakyRand
could be adopted to the other (less optimized) implementation of the random replacement
policy.

The threat model considered in this study involves two processes leaking sensitive information
through a covert channel constructed by exploiting a shared cache level. The communication is
one-way from the sender process (or trojan) to the receiver process (or spy). In this study, the sender

1Our simulation environment is discussed in Section 5.
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Fig. 2. Overview of the LeakyRand design with LLC states shown along the flow.

and the receiver processes are assumed to be co-scheduled on two cores of a chip-multiprocessor
socket exploiting the socket’s shared LLC to set up the covert channel.

3.2 Overview of the LeakyRand Design
The LeakyRand design introduces three novel contributions to address the shortcomings of SPP [29]
discussed in Section 1.1. Figure 2 presents a schematic overview of the LeakyRand design. The
first contribution is a cache region identification algorithm designed to quickly occupy a large
fraction of the LLC with a deterministically known set of blocks (CRFill and CRProbe steps shown
in Figure 2(a)). The CRFill step uses a short LLC access sequence to achieve the expected target LLC
occupancy. The CRProbe step counts the number of occupied LLC blocks, flushes them, and fills
this space using a deterministic set of blocks with probability close to one. Section 3.3 discusses
our cache region identification algorithm. To the best of our knowledge, this is the first study to
propose an algorithm supported by strong analytical guarantees for efficiently occupying a large
portion of a fully associative LLC exercising the random replacement policy.

The receiver needs to maintain high LLC occupancy throughout the communication phase.
The second contribution of LeakyRand is a novel Evict+Flush+Probe communication protocol
that helps the receiver achieve this with no additional work (Figure 2(b)). In this communication
protocol, the sender creates invalid LLC ways that the receiver uses to reallocate the blocks that are
evicted due to sender’s disturbance during communication of a 1 bit. This novel communication
protocol plays a key role in achieving a much larger bandwidth at a much lower bit error rate com-
pared to SPP, which relies on traditional Prime+Probe. We discuss the communication protocol in
Section 3.4.

Communication errors arise due to the non-determinism inherent in the random replacement
policy. When the sender fails to evict any of the receiver’s blocks while transmitting a 1 bit, the
bit is received as 0. Thanks to the large LLC occupancy of the receiver, the probability of error
increases slowly as more bits are communicated. As a result, unlike SPP which needs error control
codes for every data bit, LeakyRand only needs to take corrective measures periodically. The
third contribution of the LeakyRand design is a low-overhead algorithm to periodically detect
error syndromes and correct the LLC state so that errors do not keep accumulating (Figure 2(b)).
Sections 3.4.3 and 3.4.4 discuss the error detection and correction procedures.
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3.3 Cache Region Identification
In the cache region identification step, the receiver must occupy a large enough region of the fully
associative LLC using a deterministically known set of blocks. This allows the sender to use a
small disturbance during the communication of a 1 bit and the receiver to detect the bit with high
probability. The random replacement policy makes it non-trivial to quickly replace the existing
LLC blocks for achieving a target LLC occupancy close to 100%. In this section, we consider a set
of unique block addresses and synthesize a sequence of accesses using those block addresses to
efficiently achieve the target LLC occupancy. We refer to the set of block addresses as the Occupancy
Set and the generated access sequence as the Occupancy Sequence. For example, an Occupancy Set
of size three would have three block addresses {𝑎, 𝑏, 𝑐}, while an Occupancy Sequence is an access
sequence built using these three block addresses e.g., < 𝑎, 𝑏, 𝑎, 𝑐, 𝑏, 𝑐, 𝑎 >.

The cache region (CR) identification procedure has two steps, namely CRFill and CRProbe. In the
CRFill step, the receiver executes the synthesized Occupancy Sequence in an attempt to fill the
cache with addresses from the Occupancy Set. Therefore, minimizing the length of the Occupancy
Sequence optimizes the CRFill step. The second step is CRProbe, in which the receiver accesses the
addresses in the Occupancy Set to compute the achieved LLC occupancy. Minimizing the Occupancy
Set size optimizes the CRProbe step. Thus, the cache region identification procedure should achieve
the target LLC occupancy with the smallest Occupancy Set and Occupancy Sequence.

3.3.1 CRFill Step. We begin the search for a high-performance CRFill algorithm by stating an
important relationship between the number of LLC misses and the expected LLC occupancy. Based
on this relationship, we explore two alternate strategies for designing the CRFill step, one that
minimizes the Occupancy Set size and the other that minimizes the Occupancy Sequence length.
These strategies do not optimize the Occupancy Set and the Occupancy Sequence simultaneously.
However, they establish that a simple heuristic for designing a high-performance CRFill step would
be to iterate over a collection of small Occupancy Sets. Finally, we propose two algorithms to
synthesize Occupancy Sequences that are built by iterating over a single Occupancy Set (static
algorithm) or a collection of Occupancy Sets with growing sizes (dynamic algorithm).

For an LLC capacity of 𝑐 blocks and target expected LLC occupancy of 𝑓 𝑐 blocks with 𝑓 ∈ (0, 1],
the Occupancy Set must have at least 𝑓 𝑐 blocks. Proposition#1 stated below plays a pivotal role in
the design of the CRFill step by relating the number of LLC misses to the expected occupancy.2
Proposition#1: A fully associative cache of capacity 𝑐 blocks exercises random replacement with
an eviction probability of 1

𝑐 for any block. Any access sequence having 𝑛 cache misses achieves an
expected occupancy of 𝑐 − 𝑐(1− 1

𝑐 )
𝑛 blocks with variance 𝑐(1 − 1

𝑐 )
𝑛 + 𝑐(𝑐 − 1)(1− 2

𝑐 )
𝑛 − 𝑐2(1 − 1

𝑐 )
2𝑛.

Since the expected occupancy depends only on the number of misses, the minimum-length
Occupancy Sequence should have only misses and no hits. Using Proposition#1 we find that the
required number of misses (𝑛) to achieve an expected occupancy of 𝑓 𝑐 is bigger than 𝑓 𝑐 as shown
in Equation (1). This also follows intuitively, as some of the misses can evict Occupancy Set blocks.

𝑛 =
log(1 − 𝑓 )
log(1 − 1

𝑐 )
=

−𝑓 − 𝑓 2
2 − 𝑓 3

3 − ⋯
− 1

𝑐 −
1
2𝑐2 −

1
3𝑐3 − ⋯

=
𝑓 𝑐(1 + 𝑓

2 +
𝑓 2
3 + ⋯)

1 + 1
2𝑐 +

1
3𝑐2 + ⋯

> 𝑓 𝑐 for all 𝑓 >
1
𝑐
. (1)

Since one iteration of accesses through the minimum-sized Occupancy Set having 𝑓 𝑐 blocks can
induce only 𝑓 𝑐 LLC misses, one iteration is not sufficient. If 𝑀 elements of this Occupancy Set are
present in the LLC after one iteration, accessing the Occupancy Set again induces at least (𝑓 𝑐 − 𝑀)
additional LLC misses, thus increasing the LLC occupancy. So, the receiver can approach the target

2Proofs of the propositions are omitted for brevity. Interested readers can access them at https://www.cse.iitk.ac.in/users/
mainakc/pub/leakyrand-proofs.pdf.
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occupancy by iterating over a minimum-sized Occupancy Set, but the Occupancy Sequence length
may not be optimal.

Alternately, we could choose an Occupancy Set of size 𝑛 = log(1 − 𝑓 )/ log(1 − 1
𝑐 ) and access

the LLC using the Occupancy Set once, resulting in the number of misses required to achieve an
expected occupancy of 𝑓 𝑐 according to Proposition#1. While this Occupancy Sequence is of optimal
length, the Occupancy Set size 𝑛 is greater than the optimal (𝑓 𝑐). Figure 3 shows the results obtained
from simulation of this strategy on a 2 MB LLC (𝑐 = 32, 768). The Occupancy Set size is varied as
an integral multiple (𝑥) of 𝑐. The figure shows the percent LLC occupied averaged over a number of
experiments for each 𝑥 where each experiment accesses the entire Occupancy Set once.

From Figure 3, we observe that an Occupancy Set of size 1× achieves an expected occupancy of
only 63%. This is what the receiver of SPP [29] achieves when communication begins. Achieving
99% LLC occupancy requires an Occupancy Set of size 5× (4.6× by Proposition#1). The average
occupancy is also close to the minimum and maximum occupancy (the standard deviation is at
most a few tens of blocks for a 2 MB LLC by Proposition#1). Importantly, in Figure 3, we see that
the CRProbe step is more expensive than the CRFill step (PC much larger than FC) due to the timed
accesses in the CRProbe step needed to measure occupancy. Therefore, it is much more important
to optimize the Occupancy Set size than the Occupancy Sequence length. Hence, in the following,
we formalize a strategy of iterating over small Occupancy Sets to attain the target occupancy.

Let 𝑇𝐹 𝑖𝑙𝑙(𝑥) be the CRFill step’s latency for an Occupancy Sequence of length 𝑥 and 𝑇𝑃𝑟𝑜𝑏𝑒(𝑥) be
the CRProbe step’s latency for an Occupancy Set of size 𝑥. If an Occupancy Set 𝑂𝑆 is accessed 𝑅
times, we need to search for (|𝑂𝑆|, 𝑅) that minimizes 𝑇𝐹 𝑖𝑙𝑙(|𝑂𝑆| × 𝑅) + 𝑇𝑃𝑟𝑜𝑏𝑒(|𝑂𝑆|) and achieves the
target occupancy. The search space is bounded because 𝑓 𝑐 ≤ |𝑂𝑆| ≤ log(1 − 𝑓 )/ log(1 − 1

𝑐 ). The
search for the optimal (|𝑂𝑆|, 𝑅) proceeds by increasing |𝑂𝑆| in steps of Δ (a precision parameter)
and finding the minimum 𝑅 that achieves the target occupancy for each |𝑂𝑆|. This optimal solution
leads to a static cache region identification procedure for which |𝑂𝑆|𝑜𝑝𝑡 is fixed for all 𝑅𝑜𝑝𝑡 iterations.

A dynamic cache region identification procedure that optionally grows |𝑂𝑆| over iterations can
achieve the target occupancy faster. Thus, a general formulation of the cache region identification
problem is to find the optimal sequence of pairs {(𝑁1, 𝑅1), (𝑁2, 𝑅2), … , (𝑁𝑚, 𝑅𝑚)} to achieve the
target occupancy.The 𝑖th Occupancy Set 𝑆𝑖 of size𝑁𝑖 is accessed 𝑅𝑖 times in the Occupancy Sequence,
which is of length ∑𝑖 𝑁𝑖𝑅𝑖. To prune the search space of such sequences, we assume that 𝑆𝑖 ⊂ 𝑆𝑖+1
and use the same Δ as the static procedure to grow the Occupancy Set sizes i.e., 𝑁𝑖+1 − 𝑁𝑖 is a
multiple of Δ. The CRProbe step is executed using 𝑆𝑚, the largest Occupancy Set used by CRFill.
The search space explored for finding the optimal sequence can be viewed as a recursion tree
with each vertex 𝑣 representing a sequence {(𝑁1, 𝑅1), … , (𝑁𝑖, 𝑅𝑖)}. The children of this sequence are
{(𝑁1, 𝑅1), … , (𝑁𝑖, 𝑅𝑖+1)} and all sequences of the form {(𝑁1, 𝑅1), … , (𝑁𝑖, 𝑅𝑖), (𝑁𝑗, 1)} for all 𝑁𝑗 > 𝑁𝑖.
The root vertex is {(𝑁1, 1)}. The sequence at each vertex 𝑣 is evaluated for the estimated total time
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ALGORITHM 2: Synthesis of dynamic cache region identification procedure
Input:
𝐶𝑎𝑐ℎ𝑒𝑆𝑧: LLC capacity in blocks, 𝐵𝑙𝑜𝑐𝑘𝑆𝑧: LLC block size
𝑇𝑎𝑟𝑔𝑒𝑡𝑂𝑐𝑐: Target LLC occupancy in blocks
Δ: Increment step in Occupancy Set size (e.g., 10% of 𝐶𝑎𝑐ℎ𝑒𝑆𝑧)
Output:
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡: All sequences 𝑆 that perform better than the best static procedure

1 Record ℛ
2 Function SynthesizeDynamicProcedure(CacheSz, BlockSz, TargetOcc, Δ):
3 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑆𝑡𝑎𝑡𝑖𝑐𝑃𝑟𝑜𝑐𝑊 𝑖𝑡ℎ𝑅𝑒𝑐𝑜𝑟𝑑(𝐶𝑎𝑐ℎ𝑒𝑆𝑧, 𝐵𝑙𝑜𝑐𝑘𝑆𝑧, 𝑇𝑎𝑟𝑔𝑒𝑡𝑂𝑐𝑐, Δ, ℛ)
4 For each enumerated sequence 𝒮, estimate the total time 𝑇𝒮 and achieved LLC occupancy 𝑂𝒮

using ℛ and linear interpolation
5 if 𝑂𝒮 ≥ 𝑇𝑎𝑟𝑔𝑒𝑡𝑂𝑐𝑐 AND 𝑇𝒮 < the best static solution time then
6 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 ← 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 ∪ 𝒮
7 end
8 else if 𝑇𝒮 < the best static solution time then
9 Recursively enumerate and evaluate children sequences of 𝒮

10 end
11 return 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡
12 End Function

𝑇𝑣 and the achieved LLC occupancy 𝑂𝑐𝑐𝑣. The children of the vertex 𝑣 are explored only if 𝑂𝑐𝑐𝑣 < 𝑓 𝑐
and 𝑇𝑣 < 𝑇 𝑜𝑝𝑡𝑠𝑡𝑎𝑡𝑖𝑐 where 𝑇 𝑜𝑝𝑡𝑠𝑡𝑎𝑡𝑖𝑐 is the total time of the best static procedure. Also, a child of the form
{(𝑁1, 𝑅1), … , (𝑁𝑖, 𝑅𝑖), (𝑁𝑗, 1)} is explored only if it satisfies 𝑇𝑃𝑟𝑜𝑏𝑒(𝑁𝑗) + 𝑇𝑣 < 𝑇 𝑜𝑝𝑡𝑠𝑡𝑎𝑡𝑖𝑐.

Before starting the recursive exploration of the search tree, the optimal static cache region
identification procedure is synthesized and, during this synthesis process, a record ℛ is built
containing the attained LLC occupancy, the CRFill time, and the CRProbe time for each explored
pair (𝑁 , 𝑅). The search tree exploration uses the same Occupancy Set sizes 𝑁 as the static synthesis
procedure. Hence, record ℛ can be employed to carry out linear interpolation for efficient estimation
of 𝑇𝑣 and 𝑂𝑐𝑐𝑣. Let 𝑂𝑐𝑐𝑋 be the LLC occupancy attained by sequence 𝑋 = {(𝑁1, 𝑅1), … , (𝑁𝑖, 𝑅𝑖)}. To
estimate 𝑂𝑐𝑐𝑌 for its child 𝑌 = {(𝑁1, 𝑅1), … , (𝑁𝑖, 𝑅𝑖), (𝑁𝑗, 1)}, the record ℛ is consulted to find the
minimum number of iterations 𝑘 needed by an Occupancy Set of size 𝑁𝑗 to attain LLC occupancy
𝑂𝑗,𝑘 ≥ 𝑂𝑐𝑐𝑋. The fraction 𝑤 of the Occupancy Set size 𝑁𝑗 needed to attain the occupancy 𝑂𝑗,𝑘
starting from 𝑂𝑐𝑐𝑋 can be computed by linear interpolation. Next, starting from 𝑂𝑗,𝑘, the occupancy
attained using the remaining fraction of the Occupancy Set is estimated as 𝑂𝑐𝑐𝑌 by one more linear
interpolation. Similarly, if the CRFill step’s time for sequence 𝑋 is 𝑇𝐹𝑋, the total time for sequence 𝑌
is estimated by linear interpolation. This calculation is shown in Equation (2). The values of 𝑂𝑗,𝑘−1,
𝑂𝑗,𝑘+1, 𝑇𝐹 𝑖𝑙𝑙, and 𝑇𝑃𝑟𝑜𝑏𝑒 are obtained from Record ℛ. Algorithm 2 summarizes the steps.

𝑤 =
𝑂𝑗,𝑘 − 𝑂𝑐𝑐𝑋
𝑂𝑗,𝑘 − 𝑂𝑗,𝑘−1

; 𝑂𝑐𝑐𝑌 = 𝑂𝑗,𝑘 + (1 − 𝑤)(𝑂𝑗,𝑘+1 − 𝑂𝑗,𝑘);

Total time of Y = 𝑇𝐹𝑋 + 𝑤(𝑇𝐹 𝑖𝑙𝑙(𝑁𝑗 × 𝑘) − 𝑇𝐹 𝑖𝑙𝑙(𝑁𝑗 × (𝑘 − 1)))
+ (1 − 𝑤)(𝑇𝐹 𝑖𝑙𝑙(𝑁𝑗 × (𝑘 + 1)) − 𝑇𝐹 𝑖𝑙𝑙(𝑁𝑗 × 𝑘)) + 𝑇𝑃𝑟𝑜𝑏𝑒(𝑁𝑗).

(2)

3.3.2 CRProbe Step. By counting hits to the Occupancy Set elements, the CRProbe step computes
the LLC occupancy achieved by CRFill. The CRProbe algorithm (Algorithm 3) always maintains an
invalid LLC way so that a miss to an Occupancy Set block does not evict another Occupancy Set
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ALGORITHM 3: Algorithm for CRProbe step
Input: 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑆𝑒𝑡: Collection of LLC block addresses
Output: 𝑜𝑐𝑐: Achieved LLC occupancy

1 Int 𝑠𝑖𝑧𝑒 = len(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑆𝑒𝑡), 𝑓 𝑒𝑡𝑐ℎ𝑒𝑑 = 0, 𝑜𝑐𝑐 = 0, 𝑖 = 𝑠𝑖𝑧𝑒 − 1
2 goto Occupy // Fetches the code block at label Occupy
3 NOPs till the end of this code block

4 ProbeAndFlush: // New code block begins here

5 while 𝑖 >= 0 do
6 𝑡1 = rdtsc // Read processor's timestamp counter

7 load(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑆𝑒𝑡[𝑖])
8 𝑑𝑒𝑙𝑎𝑦 = rdtsc - 𝑡1
9 clflush(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑆𝑒𝑡[𝑖])

10 if 𝑑𝑒𝑙𝑎𝑦 < ℎ𝑖𝑡_𝑚𝑖𝑠𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 OR 𝑖 == 𝑠𝑖𝑧𝑒 − 1 then
11 𝑜𝑐𝑐++
12 end
13 𝑖 = 𝑖 − 1
14 end
15 NOPs till the end of this code block

16 Occupy: // New code block begins here

17 if 𝑓 𝑒𝑡𝑐ℎ𝑒𝑑 == 0 then
18 𝑓 𝑒𝑡𝑐ℎ𝑒𝑑 = 1
19 goto ProbeAndFlush
20 end
21 NOPs // To reduce chance of LLC fill on wrong path

22 i=0
23 while 𝑖 < 𝑜𝑐𝑐 − 𝑠𝑒𝑛𝑑𝑒𝑟𝐹𝑜𝑜𝑡𝑝𝑟 𝑖𝑛𝑡 − 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝐹𝑜𝑜𝑡𝑝𝑟 𝑖𝑛𝑡 do
24 load(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑆𝑒𝑡[𝑖])
25 𝑖++
26 end

block. To minimize the probability of an LLC miss in the first iteration when no invalid LLC way is
available, the Occupancy Set is accessed in the reverse order. Each iteration of the ProbeAndFlush
while loop loads one Occupancy Set element, flushes it, and increments occ if the load is an LLC
hit. The variable occ counts the number of invalid LLC ways. The while loop at the label Occupy
fills up a subset of the invalid ways by loading the Occupancy Set blocks from the beginning leaving
space to accommodate the additional footprints of the sender and receiver during communication.

The occ variable needs to be equal to the number of invalid LLC ways till the second while
loop starts. However, this may not hold due to accesses to non-Occupancy Set blocks: (a) a non-
Occupancy Set block fills up an invalid LLC way, (b) a hit to OccupancySet[i] at line number 8 is
inferred as a miss because a non-Occupancy Set block replaces the code block for those instructions,
(c) the block containing OccupancySet[i] gets replaced by a non-Occupancy Set block after
experiencing a hit at line number 8 but before being flushed at line number 10 so that no invalid
LLC way is created. The number of non-Occupancy Set blocks is reduced by register-allocating all
temporaries and accommodating the two while loops in two code blocks. The second loop’s code
block is also fetched into the LLC by jumping to Occupy before starting the first loop. Nonetheless,
the following proposition establishes that occ is accurate with high probability.
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Proposition#2: Let the LLC capacity be 𝑐 blocks and the Occupancy Set size be |𝑂𝑆|. If 𝑘 is the
number of blocks other than the Occupancy Set blocks accessed in the while loop starting at the
label ProbeAndFlush, the probability that the value of the variable occ is equal to the number of
invalid LLC ways created during this loop is at least (1− 𝑘

𝑐 )(1−
5𝑘
𝑐 )(1−

𝑘
𝑐−𝑘 (1− ( 𝑘𝑐 )

|𝑂𝑆|−2)( 3𝑘𝑐 +2)).
For a 2 MB LLC (𝑐 = 32, 768) and |𝑂𝑆| = 1.2𝑐 (as per our best CRFill algorithm to attain 99% LLC

occupancy), this probability is one when 𝑘 = 0 and 0.99 even with 𝑘 = 40. Hence, with probability
nearly one, the receiver knows the blocks of the Occupancy Set residing in the LLC at the end of
the Probe step. These blocks will be referred to as the Occupancy Blocks.

The second while loop of the CRProbe algorithm requires the LLC footprints (excluding the
Occupancy Blocks) of the receiver and sender. To make the LLC footprint of the receiver and sender
binaries constant, we use the -no-pie flag of gcc to disable PIE. Using the --entry flag of gcc, we
override the default entry point _start of the receiver and sender executables by a function, which
sets the stack pointer to the start of a global array of fixed size and then jumps to the main function.
Additionally, we use the gcc flag -fno-stack-protector and avoid the use of the heap segment.

3.4 Communication Protocol
Before the actual communication begins, the receiver and the sender processes access their code
and data in a trial bit communication to fill up the invalid LLC ways left vacant by the CRProbe
algorithm. In the following, we discuss our Evict+Flush+Probe protocol for covert communication
(Section 3.4.1), bandwidth optimization strategies (Section 3.4.2), analysis of bit errors (Section 3.4.3),
error syndrome detection and correction (Section 3.4.4), and noise handling (Section 3.4.5).

3.4.1 Evict+Flush+Probe Protocol. For communicating a 1 bit, the sender induces the eviction
of at least one Occupancy Block of the receiver by accessing a set 𝑆 of cache blocks in the sender’s
address space. We will refer to 𝑆 as the Disturbance Set. Thanks to the large LLC occupancy achieved
by the receiver, now it is possible to make |𝑆| small. However, the receiver’s LLC occupancy may
get reduced if a missing Occupancy Block replaces another Occupancy Block in the Probe step. To
guarantee that the receiver maintains its LLC occupancy, we observe that it is enough for the sender
to access the Disturbance Set blocks and then flush them (using e.g., the clflush instruction). The
receiver can use these invalid LLC ways created by the sender to fill the missing Occupancy Blocks
while probing. The existing covert channels use the flush operation to induce a miss to a shared
block [6, 10, 35, 36] or to enable reuse of a partially congruent eviction set [28]. We use the flush
operation for a very different purpose. Our Evict+Flush+Probe protocol is summarized below.

Sender’s step (Evict+Flush): To send a bit 1, access the Disturbance Set blocks to induce eviction
of some Occupancy Block(s) and flush the Disturbance Set blocks. To send a bit 0, do nothing.

Receiver’s step (Probe): Probe all Occupancy Blocks and measure the probe latency for each Occu-
pancy Block. If at least one miss is detected based on the measured latency, infer the communicated
bit as 1; otherwise, the communicated bit is inferred as 0.

Synchronizing the sender and the receiver : The sender’s and receiver’s steps must strictly alternate
without any overlap, as is usual in this kind of channels. This synchronization can be achieved
by empirically measuring the worst-case latency of the sender’s (receiver’s) step and making the
receiver (sender) wait for that duration. Given that the receiver’s step takes a significant amount of
time, it may experience some variation in latency. If the receiver overshoots the predetermined
worst-case time, its step is terminated, and the received bit is inferred using the probes done so far.

This synchronization protocol may lead to three different error scenarios as discussed in the
following. (i) If the receiver overshoots its time budget and is forced to terminate the Probe step
prematurely when receiving a 1 bit, the bit may get received as a 0 bit. This error arises if all the
Occupancy Blocks evicted by the sender belong to the population of the Occupancy Blocks that
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ALGORITHM 4: Receiver’s probe loop iteration

1 Int 𝑡1, 𝑡2, 𝑖, Threshold;
2 fence; 𝑡1 = rdtsc; fence;
3 load(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝐵𝑙𝑜𝑐𝑘[𝑖]);
4 fence; 𝑡2 = rdtsc; fence;
5 𝑖 = 𝑖 + 1;
6 if 𝑡2 − 𝑡1 > Threshold then
7 infer miss;
8 end
9 else

10 infer hit;
11 end

the receiver could not probe. (ii) Let us consider the scenario in which the receiver overshoots its
time budget and is forced to terminate the Probe step prematurely when receiving a 1 bit. If the
unprobed population of the Occupancy Blocks has at least one block 𝐵 missing from the LLC and
the next communicated bit is a 0 bit, the next bit will be received as a 1 bit because the receiver
will suffer a miss to 𝐵 in its Probe step when receiving the next bit. This error can be avoided if
the receiver remembers which segment of the Occupancy Blocks remains unprobed and does not
take into account the LLC misses arising from the access to the unprobed Occupancy Blocks when
inferring the next bit. However, this mitigation technique gives rise to the third error scenario.
(iii) Let us consider the scenario in which the receiver’s Probe step is terminated prematurely while
receiving a bit and the next communicated bit is a 1 bit. While communicating the next bit, let us
suppose that the sender’s accesses evict Occupancy Blocks only from the unprobed population. If
the receiver ignores all LLC misses arising from the accesses to the previously unprobed population
of Occupancy Blocks, the next bit will be erroneously inferred as a 0 bit.

Thanks to the small number of LLC misses experienced by the receiver (due to small Disturbance
Sets in LeakyRand), the observed variation in the latency of the receiver’s step is small. As a result,
the probability that the receiver overshoots the predetermined worst-case interval is very low, and
even in those cases, only a small fraction of the Occupancy Blocks remains unprobed leading to a
small probability that the sender’s accesses evict Occupancy Blocks from the unprobed population
only.Thus, the probability of error scenarios (i) and (iii) is small. Hence, after the receiver overshoots
its time budget, it can ignore the LLC misses arising from accesses to the unprobed population
of the Occupancy Blocks while receiving the next bit. We further study the implications of this
synchronization protocol on the bit error rate in Section 5.

3.4.2 Bandwidth Optimization. The receiver’s step is slow due to the timed access to each
Occupancy Block. One iteration of the receiver’s probe loop has the structure shown in Algorithm 4.
Threshold is a pre-determined constant decided based on themaximumLLChit latency (𝑀𝑎𝑥𝐻𝐿)

and minimum LLC miss latency (𝑀𝑖𝑛𝑀𝐿) observed empirically in a large number of training
samples (see Section 5). In general, Threshold can be set to𝑀𝑎𝑥𝐻𝐿+ 𝜏 for a suitably chosen 𝜏 that
minimizes the number of LLC hit/miss inference errors in the training samples. In the commonly
observed case of 𝑀𝑎𝑥𝐻𝐿 < 𝑀𝑖𝑛𝑀𝐿, the value of 𝜏 can be set to (𝑀𝑖𝑛𝑀𝐿 − 𝑀𝑎𝑥𝐻𝐿)/2.

To reduce the overhead of latency measurement and introduce memory-level parallelism, we club
the measurement of a group of loads. We refer to the number of loads in a group as the unrolling
factor . Since the number of Occupancy Blocks 𝑁𝑂𝐵 may not be divisible by the unrolling factor 𝐹,
the receiver does not probe the last (𝑁𝑂𝐵 mod 𝐹) Occupancy Blocks sacrificing LLC occupancy by
at most 𝐹 − 1 blocks. One iteration of the probe loop for 𝐹 = 2 is shown in Algorithm 5.
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ALGORITHM 5: Receiver’s probe loop iteration with unrolling factor 𝐹 = 2
1 Int 𝑡1, 𝑡2, 𝑖, Threshold;
2 fence; 𝑡1 = rdtsc; fence;
3 load(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝐵𝑙𝑜𝑐𝑘[𝑖]);
4 load(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝐵𝑙𝑜𝑐𝑘[𝑖 + 1]);
5 fence; 𝑡2 = rdtsc; fence;
6 𝑖 = 𝑖 + 2;
7 if 𝑡2 − 𝑡1 > Threshold then
8 infer miss;
9 end

10 else
11 infer hit;
12 end

For an unrolling factor 𝐹, let 𝑀𝑎𝑥𝐻𝐿𝐹 denote the maximum observed latency of a group of 𝐹
LLC hits and 𝑀𝑖𝑛𝑀𝐿𝐹 denote the minimum observed latency of a group of 𝐹 LLC accesses with at
least one miss. We find 𝜏𝐹 such that setting Threshold to 𝑀𝑎𝑥𝐻𝐿𝐹 + 𝜏𝐹 minimizes the number of
inference errors in the training samples. Due to the accumulated variation in the hit/miss latency
of a group of 𝐹 LLC accesses, (𝑀𝑖𝑛𝑀𝐿𝐹 − 𝑀𝑎𝑥𝐻𝐿𝐹) decreases with increasing 𝐹 and eventually
becomes negative. Therefore, beyond a certain 𝐹, the number of inference errors may increase.
However, for a given 𝐹, increasing the Disturbance Set size may lead to at least one group of 𝐹 loads
with more than one LLC miss, thus improving the inference margin while sacrificing bandwidth.

3.4.3 Communication Errors. A communication error is said to occur when the sender’s step
has the effect of sending the inversion of the actual bit. These communication errors arise due to
unexpected LLC eviction events. To understand these errors, we categorize the LLC blocks into
four groups. Group I consists of the Occupancy Blocks of the receiver. Group II consists of all
code and data blocks except the Occupancy Blocks used by the receiver’s and sender’s steps in the
communication of every bit. Group III consists of the blocks that are used by the receiver’s and
sender’s steps only in certain scenarios which may not arise in the communication of every bit.
Group IV consists of all the remaining LLC blocks. These blocks are not used during communication.

The sender’s Disturbance Set must evict at least one Group I block from the LLC. A 1 bit is
received as a 0 bit if all blocks of the Disturbance Set evict only Group II, Group III, and Group IV
blocks. Let us suppose that the sender’s accesses to the Disturbance Set evict a Group II block
and |𝐷𝑆| − 1 Group I blocks from the LLC where |𝐷𝑆| is the Disturbance Set size. Since the sender
flushes all the Disturbance Set blocks from the LLC, the LLC ways from which the Group II block
and the Group I blocks are evicted become invalid after the flush operations. During the receiver’s
Probe step, |𝐷𝑆| − 1 invalid LLC ways get filled with the evicted Occupancy Blocks. Since the
Group II blocks are accessed whenever the receiver and sender execute their communication steps,
the remaining invalid LLC way also gets filled with the evicted Group II block. Thus, the invalid
LLC ways created due to sender’s eviction of Group I and Group II blocks get filled automatically
without much delay. On the other hand, if the sender evicts a Group III or Group IV block, the
invalid LLC way thus created may not get filled immediately in the absence of third party noise
because Group III and Group IV blocks are not accessed in the communication of every bit. If the
number of such invalid LLC ways keeps increasing and becomes equal to the Disturbance Set size,
the sender will not be able to evict any Group I block because all the Disturbance Set blocks will get
filled into the invalid LLC ways. From then on, all 1 bits will be erroneously communicated as 0 bits.
Thus, accumulation of invalid LLC ways increases the likelihood of 1s getting communicated as 0s.
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3.4.4 Error Handling. Inference errors can be avoided through appropriate setting of hit/miss
inference threshold and Disturbance Set size for a given unrolling factor 𝐹 (see Section 3.4.2). Here,
we focus on handling communication errors only. Two possible reasons for such errors that flip
a 1 bit to a 0 bit are (a) accumulation of invalid LLC ways due to eviction of idle Group III and
Group IV blocks, and (b) inability of the sender’s Disturbance Set in evicting a Group I block.
Handling the first type of error requires detecting the relevant error syndrome, i.e., the existence of
invalid LLC ways and then correcting the LLC state. The probability of the second type of error can
be reduced by appropriately sizing the Disturbance Set. We discuss both in the following.
Error Syndrome Detection and Correction. The error syndrome detection algorithm for a
1 bit to 0 bit error is invoked periodically to avoid accumulation of too many invalid LLC ways.
Every 𝑘th bit communicated by the sender is a marker bit of value 1. To receive the marker bit,
the receiver probes the Occupancy Blocks. Additionally, it counts the number of iterations of the
unrolled probe loop that detect LLC misses. If this number is 𝑀, the number of invalid LLC ways is
at most (|𝐷𝑆| − 𝑀) where |𝐷𝑆| is the Disturbance Set size. The receiver uses an empirically chosen
small unrolling factor in the probe loop of the error syndrome detection algorithm so that at most
one LLC miss can occur in one iteration of the unrolled loop with high probability. If 𝑀 < |𝐷𝑆|, the
error syndrome is detected and the receiver invokes the correction algorithm.

The correction algorithm runs at most (|𝐷𝑆| − 𝑀) iterations. In each iteration, the receiver fills
one invalid LLC way by accessing a new block 𝐵 from a set of blocks referred to as the Correction
Set . Next, the receiver flushes 𝐵 from the LLC recreating the invalid LLC way. Then the receiver
probes the Occupancy Blocks. If a miss is detected while probing, the receiver concludes that the
access to 𝐵 must have evicted an Occupancy Block and therefore, there is no more invalid LLC
way. Hence, the correction algorithm is terminated. On the other hand, if no miss is detected while
probing the Occupancy Blocks, the receiver accesses 𝐵 again to fill the invalid LLC way created by
flushing 𝐵 and moves on to the next iteration if (|𝐷𝑆| − 𝑀) iterations are not yet completed.

The error correction mechanism introduces the possibility of a new error where a 0 bit gets
communicated as a 1 bit. To see this, let us suppose that while communicating a 1 bit, the sender
replaces a Group III block 𝐵 creating an invalid LLC way. During the next error correction step, all
the invalid LLC ways are filled up. After that, the replaced Group III block 𝐵 is accessed and that
replaces an Occupancy Block 𝐵′. Next, the sender communicates a 0 bit and the receiver observes a
miss to 𝐵′ while probing the Occupancy Blocks, thus wrongly receiving a 1 bit. In the absence of
error correction, when the Group III block 𝐵 is reaccessed, it would have occupied the invalid LLC
way without disturbing the Occupancy Blocks. Fortunately, this error can be avoided by forcing the
reaccess of 𝐵 to occur before the error correction step. Hence, the sender touches all its blocks after
sending the marker and the receiver touches all its blocks before error correction. Thus, the error
correction iterations fill up the invalid LLC ways created due to eviction of Group IV blocks only.

A 0 bit can still get received as a 1 bit if the number of error correction iterations is over-estimated
leading to eviction of Group II or Group III blocks by Correction Set blocks. This recreates the
scenario discussed above leading to eviction of someOccupancy Blocks when the evicted Group II/III
blocks are reaccessed. An over-estimation in the number of error correction iterations happens if
an invalid LLC way that existed when transmitting the marker bit gets filled up when the sender
touches its blocks after sending the marker. To detect the 0 bit to 1 bit error syndrome, the sender
sends a marker bit of value 0 after 1 bit to 0 bit error correction is completed. If this 0 bit is received
as a 1 bit, the error syndrome is detected. The error correction algorithm proceeds iteratively. In the
𝑖th iteration, the receiver creates an invalid LLC way by flushing the 𝑖th last accessed Correction Set
block and probes the Occupancy Blocks to detect any LLC miss. In each iteration, the invalid LLC
way can accommodate one evicted Occupancy Block. In the worst-case, |𝐷𝑆| correction iterations
are needed to fill all evicted Occupancy Blocks. In summary, each stretch of (𝑘 + 1) bits contains
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ALGORITHM 6: Algorithm to estimate bit error rate
Input:
𝐶𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒: Number of LLC blocks, 𝑂𝐵𝐶𝑜𝑢𝑛𝑡: Number of Occupancy Blocks
𝐷𝑆𝑆𝑖𝑧𝑒: Number of Disturbance Set blocks, 𝑁𝑢𝑚𝑇 𝑟𝑖𝑎𝑙𝑠: Number of experiments
𝐵𝑖𝑡𝑆𝑡𝑟 𝑖𝑛𝑔𝐿𝑒𝑛: Number of data bits to communicate
Output: 𝐵𝐸𝑅: Estimated bit error rate

1 Int 𝐵𝐸𝑅 = 0
2 for 𝑘 = 0; 𝑘 < 𝑁𝑢𝑚𝑇 𝑟𝑖𝑎𝑙𝑠; 𝑘++ do
3 Int 𝑖𝑛𝑣𝑎𝑙𝑊 𝑎𝑦𝑠 = 0
4 for 𝑖 = 0; 𝑖 < 𝐵𝑖𝑡𝑆𝑡𝑟 𝑖𝑛𝑔𝐿𝑒𝑛; 𝑖++ do
5 Int 𝑏𝑖𝑡 = random() % 2
6 if 𝑏𝑖𝑡 then
7 Int 𝑛𝑢𝑚𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝐷𝑆𝑆𝑖𝑧𝑒 − 𝑖𝑛𝑣𝑎𝑙𝑊 𝑎𝑦𝑠
8 for 𝑗 = 0; 𝑗 < 𝑛𝑢𝑚𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛𝑠; 𝑗++ do
9 Int 𝑒𝑣 𝑖𝑐𝑡𝐼 𝑑 = random() % 𝐶𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒

10 if 𝑒𝑣 𝑖𝑐𝑡𝐼 𝑑 >= 𝑂𝐵𝐶𝑜𝑢𝑛𝑡 then
11 𝑖𝑛𝑣𝑎𝑙𝑊 𝑎𝑦𝑠++
12 end
13 end
14 if 𝑖𝑛𝑣𝑎𝑙𝑊 𝑎𝑦𝑠 == 𝐷𝑆𝑆𝑖𝑧𝑒 then
15 𝐵𝐸𝑅++
16 end
17 end
18 end
19 end
20 𝐵𝐸𝑅 = 𝐵𝐸𝑅/(𝐵𝑖𝑡𝑆𝑡𝑟 𝑖𝑛𝑔𝐿𝑒𝑛 × 𝑁𝑢𝑚𝑇 𝑟𝑖𝑎𝑙𝑠)

(𝑘 − 1) data bits and two marker bits where 𝑘 is defined as the error correction interval. The
Occupancy Blocks are probed at most 2(|𝐷𝑆| + 1) times in each invocation of error detection and
correction.
Disturbance Set Size. The sender’s accesses to the Disturbance Set should evict an Occupancy
Block with high probability when sending a 1 bit. The following proposition shows that even a small
Disturbance Set has a low expected bit error rate (BER) for a large Occupancy Block population.
Proposition#3. Consider communicating 𝑛 bits with each bit equally likely to be 0 or 1. If the
Occupancy Blocks fill up a fraction 𝑓 of the LLC, the expected 1 bit to 0 bit error rates for Disturbance
Set sizes one and two are respectively 1

2 −
𝑓

𝑛(1−𝑓 ) [1 − ( 1+𝑓2 )𝑛] and 1
2 −

𝑓 (𝑓 +2)
𝑛(1−𝑓 2) +

2𝑓
𝑛(1−𝑓 ) (

1+𝑓
2 )𝑛 −

𝑓 2
𝑛(1−𝑓 2) (

1+𝑓 2
2 )𝑛.

With an error correction interval of 𝑘, we can use this proposition to compute BER by setting
𝑛 = 𝑘 − 1 as the number of data bits between two error correction steps. For 𝑓 = 0.99 and 𝑘 = 32,
the expected BERs for |𝐷𝑆| = 1 and 2 are respectively 0.0404 and 0.0043 irrespective of the total
number of communicated bits. A larger |𝐷𝑆| would be needed to achieve a BER lower than this.

Analytical derivation of the relationship between a general |𝐷𝑆| and the expected BER is tedious.
We employ a fast bit error simulation algorithm (Algorithm 6) to estimate the BER. We use this algo-
rithm to decide |𝐷𝑆| for a target BER. This |𝐷𝑆| is then used in a more detailed processor simulation
setup. In each trial, Algorithm 6 simulates the sender’s step by generating random data bits (line 5)
and modeling random LLC evictions to communicate the bits (line 9). The Occupancy Blocks are
assumed to be the first OBCount LLC blocks. When the number of invalid LLC ways (invalWays),

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 90. Publication date: September 2025.



90:16 Y. Verma et al.

created outside the Occupancy Blocks due to sender’s evict and flush operations (lines 10–12),
becomes equal to the Disturbance Set size (DSSize), bit errors occur (lines 14–16).

3.4.5 Handling Noise. The noise process has the effect of accessing the LLC with third party
blocks that do not belong to the receiver or sender. LeakyRand, by design, has in-built noise
resilience. The size of the sender’s Disturbance Set can be adjusted to absorb the noise blocks in the
invalid ways created by the sender in the LLC region that is unoccupied by the receiver.

3.5 Summary of LeakyRand
The LeakyRand covert channel setup involves two high-level steps—cache region identification
and covert communication. In the cache region identification step, the receiver quickly fills up a
large fraction of the LLC. A novel Evict+Flush+Probe protocol is used to carry out high-bandwidth
covert communication while helping the receiver maintain its occupancy. Efficient error syndrome
detection and correction algorithms help increase channel fidelity.

4 Discussion
In this section, we discuss the extended scope and applications of LeakyRand. We also present the
designs of LeakyRand without any reliance on the cache line flush instructions as well as with a
simpler implementation of the random replacement policy. Possible avenues to detect and mitigate
LeakyRand are also briefly discussed.
Scope and Applications of LeakyRand. The scope of LeakyRand extends beyond fully associa-
tive caches with random replacement policy. In the following, we argue that the working principles
of LeakyRand are not tied to the uniform eviction probability distribution of the fully associative
cache ways. The static cache region identification procedure does not depend on the replacement
policy, but appeals to Proposition#1 only to bound the search space. However, Proposition#1 can
be restated in terms of a general probability distribution in which the cache way 𝑖 has an eviction
probability 𝑝𝑖 with ∑𝑐−1

𝑖=0 𝑝𝑖 = 1 for a cache of capacity 𝑐 blocks. Specifically, the expected cache
occupancy due to 𝑛 misses takes the form 𝑐 − ∑𝑐−1

𝑖=0 (1 − 𝑝𝑖)𝑛. Given a target expectation, a new
bound for the search space can be computed numerically. The dynamic cache region identification
procedure traverses a search tree and employs linear interpolation on the data collected by the
static procedure to estimate the achieved occupancy and the latency of an Occupancy Sequence.
The linear interpolation step relies on the fact that a bigger Occupancy Set or Sequence occupies a
proportionately bigger cache region and imposes a proportionately bigger latency. This principle
continues to hold as long as the cache replacement policy honors the access ages of the blocks and
does not have an unduly large eviction bias for any particular group of ways. This is true for all
age-based and pseudo-random cache replacement policies.The CRProbe step relies on Proposition#2
for a correct outcome with high probability. The probability bound stated in Proposition#2 improves
further for age-based replacement policies, since these policies reduce the chance of the recently
accessed Occupancy Blocks getting replaced due to accesses to the other blocks.

The communication protocol relies on the sender’s ability to evict at least one Occupancy Block
of the receiver when communicating a 1 bit. For an age-based replacement policy, the Occupancy
Blocks can be placed on the higher eviction priority side of the eviction stack if the replacement
policy is known; otherwise, the Disturbance Set size can be adjusted to affect eviction of Occupancy
Blocks by the sender. Error syndrome detection and correction protocols do not rely on any specific
property of the cache replacement policy. However, the average BER is a function of the cache
replacement policy as is evident from Proposition#3 and Algorithm 6. In summary, LeakyRand
can be adopted to work in the presence of any age-based or pseudo-random replacement policy.
Furthermore, since a set of a set-associative cache can be viewed as a standalone fully associative
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ALGORITHM 7: Main sender thread (sched-
uled on socket S1)
1 Access 𝐵1, 𝐵2, … , 𝐵𝑛; // Sender's Evict step
2 flag1 = 1;
3 while (flag2 == 0);
4 flag2 = 0; // Reinitialize for next bit

ALGORITHM 8: Helper sender thread (sched-
uled on socket S2)
1 while (flag1 == 0);
2 flag1 = 0; // Reinitialize for next bit
3 Write to 𝐵1, 𝐵2, … , 𝐵𝑛; // Invalidate blocks in S1
4 flag2 = 1;

cache, LeakyRand can be used to construct a covert channel on a set of a shared set-associative
LLC. We evaluate such adoptions of LeakyRand on real-world platforms running contemporary
commercial processors and different replacement policies in Section 5. Additionally, since the CRFill
and CRProbe steps help an attacker occupy most of the LLC with a known set of blocks, even small
footprints of victim workloads can be identified accurately, enabling high-precision fine-grain
fingerprinting attacks in a fully associative LLC. In contrast, SPP would be able to identify only
large footprints. We discuss the application of LeakyRand to fingerprinting attacks in Section 5.
LeakyRand without Cache Line Flush Instructions. In a multi-socket processor, a block resid-
ing in one socket’s cache hierarchy can be invalidated with the help of a coherent store to the block
executed on another socket, thereby mimicing the effect of a cache line flush instruction. The cache
line flush operations of the sender in LeakyRand’s communication rounds can be implemented by
making the sender process dual-threaded and scheduling the two threads on two different sockets
using the POSIX API pthread_setaffinity_np. Let us suppose that the receiver process and the
main thread of the sender process are scheduled on two cores of socket S1. A helper thread of
the sender process that assists the main thread in invalidating the Disturbance Set blocks from
socket S1 is scheduled on a core in socket S2. The skeleton procedure to invalidate the Disturbance
Set blocks 𝐵1, 𝐵2, … , 𝐵𝑛 resident in the cache hierarchy of socket S1 is shown in Algorithms 7
and 8. The variables flag1 and flag2, shared among the threads of the sender process and both
initialized to zero, are used to synchronize the two sender threads. We assume total store order
memory consistency model for correct execution of the code. Since the receiver is, by far, the biggest
bottleneck in the performance of LeakyRand, we do not expect to see a large performance loss if
the cache line flushes in the sender are replaced by cross-socket coherent invalidations. We further
evaluate this “flushless” design of LeakyRand using the Evict+Invalidate+Probe communication
protocol in Section 5.
LeakyRand without Fill Preference for Invalid Ways. Random replacement has a sub-
optimal, yet simpler, implementation which does not fill invalid ways first. In this case, LeakyRand
does not use any cache line flush operation since invalid ways are not treated specially. The receiver
uses a simpler (but less efficient) CRFill step to fill a large fraction of the LLC by iterating over
an array 𝐴 of size equal to the LLC capacity. The CRProbe step probes all the blocks of the array
𝐴 and records the total latency. The sender’s communication step only accesses a Disturbance
Set to evict some of the receiver’s blocks. Thanks to the large LLC occupancy of the receiver, the
Disturbance Set is much smaller than what SPP needs for high fidelity. To infer a received bit,
the receiver probes the array 𝐴, records the total latency as 𝐿𝑐𝑢𝑟𝑟, compares it with the probe
latency 𝐿𝑝𝑟𝑒𝑣 observed while receiving the previous bit (or during CRProbe if this is the first bit).
If 𝐿𝑐𝑢𝑟𝑟 − 𝐿𝑝𝑟𝑒𝑣 > 𝜏, the received bit is inferred as 1 and 0 otherwise. The inference threshold 𝜏 is
determined using a set of training runs (see Section 5).

To further improve fidelity, the receiver employs an 𝑛-bit history of received bits to divide the
inference space of the next bit into 2𝑛 subspaces and uses a different inference threshold 𝜏ℎ for each
history subspace ℎ. Let us refer to 𝐿𝑐𝑢𝑟𝑟−𝐿𝑝𝑟𝑒𝑣 after a history ℎ as 𝛿ℎ0 and 𝛿ℎ1 when the current bit is
0 and 1, respectively. If the distributions of 𝛿ℎ0 and 𝛿ℎ1 are non-overlapping in the training set, we fix
𝜏ℎ as (min 𝛿ℎ1 +max 𝛿ℎ0)/2. For the history subspaces with overlapping distributions, we replace a

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 90. Publication date: September 2025.



90:18 Y. Verma et al.

subset of the sender’s Disturbance Set with a new subset of block addresses so that the distributions
have a high probability of becoming non-overlapping. To bootstrap the process, the CRProbe step
runs 𝑛 probes over the entire array 𝐴 so that the LLC reaches the state with history equal to 0𝑛 and
𝐿𝑝𝑟𝑒𝑣 is set to the latency of the last among these 𝑛 probes. This implementation of the LeakyRand
channel is most general as it works with any implementation of the random replacement policy
and without the cache line flush instruction. We refer to this channel as LeakyRandGen.
Detection and Mitigation. Studies on online detection of cache timing attacks have exploited
the cyclic access pattern of the receiver and sender to the blocks within a set of a set-associative
LLC [13] or run-time features collected using hardware event counters [20]. The number of active
cache blocks involved in the construction of the LeakyRand channel is much larger than a timing
channel designed within a set of a set-associative cache. Therefore, the complexity of the detection
algorithm is likely to increase. Effective mitigation of LeakyRand would need to isolate the receiver
and sender processes in the LLC so that the sender cannot evict receiver’s blocks. Partitioning the
LLC among security domains can offer such isolation [14].

5 Evaluation
In this section, we discuss our simulation methodology and present a quantitative evaluation of the
LeakyRand channel including a comparison with Stochastic Prime+Probe (SPP) [29].

5.1 Evaluation Methodology
5.1.1 Simulation Environment. We use ChampSim, a trace-based simulation infrastructure [9],

to evaluate our proposal. ChampSim accepts a trace of instructions of the executable binary
and simulates the trace on the processor model. It has detailed cycle-accurate timing models
of the out-of-order issue cores, the cache hierarchy, and the main memory. Table 1 shows the
details of the simulated processor. We augment ChampSim with fence and clflush instructions.
We use CACTI [1] to determine the cache lookup latency for 7 nm FinFET process. The fully
associative inclusive LLC with random replacement policy is modeled following the MIRAGE
design, which is provably secure against conflict-based side-channel attacks [26]. The MIRAGE
design implements decoupled tag and data stores. The tag store is skewed-associative with two
set-associative load-balanced skews. Each set-associative skew has an adequately over-provisioned
tag array to guarantee freedom from set-associative conflicts with high probability. Additionally, the
address to tag set mapping is randomized using the low-latency PRINCE encryption function. The
data store supports fully associative placement of data blocks with indirection pointers maintaining
the association between a tag and its data block. Independent of the MIRAGE design, we have also
validated our results through simulation of a traditional (impractical) fully associative LLC with
lookup latency same as MIRAGE. The instruction traces of the sender and receiver programs are
collected using a Pin tool [19]. These traces are replayed on two cores of the simulated processor.

To study the impact of operating system noise on LeakyRand, we use the Gem5 simulator [3] in
the full-system mode. We boot a simulated quad-core processor with Linux kernel 5.2.3 and use
two of the cores to schedule the receiver and the sender. The configuration of the simulated cache
hierarchy is as shown in Table 1.

5.1.2 Benchmark Suite. We generate 750 random 512-bit strings that the sender communicates
to the receiver. A subset of 250 strings, referred to as the train suite, is used to decide various
inference thresholds. We report our results on the remaining 500 strings which constitute the test
suite.

5.1.3 Comparison to Related Work. As discussed in Section 2, the covert channel proposals either
exploit LLC conflicts or rely on shared memory between the receiver and the sender. Our proposal
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Table 1. Simulated Processor Configuration

Processor Dual-core, 4 GHz, out-of-order issue superscalar cores
Microarchitecture of Fetch, execute, retire width: 4, (6 non-memory + 2 loads + 1 store), 4;
each core pipeline Scheduler/Load/Store queue sizes: 100/72/56; ROB size: 256
L1D and L1I caches 32 KB/8-way/LRU/2 cycles (private per core)
L2 cache 256 KB/8-way/LRU/3 cycles (private per core)

Shared LLC [26] 2 MB/FA/Random/15 cycles (11 cycles array lookup + 3 cycles
PRINCE cipher [4] + 1 cycle tag→data pointer indirection)

Cache line size 64 bytes for all caches
DRAM 800 MHz, tCAS=tRP=tRCD=11 cycles

belongs to the first category. Therefore, to keep the comparison fair, we confine our evaluation to
the conflict-based covert channels which do not use shared memory. Furthermore, a vast majority
of the proposals are designed for LLCs that exercise age-based replacement policies (e.g., traditional
Prime+Probe). These are rendered ineffective in the presence of random replacement. We compare
LeakyRand with SPP in the presence of random replacement policy, while an adoption of LeakyRand
to the LRU policy is compared with the traditional Prime+Probe covert channel. We also show
application of LeakyRand to mounting fine-grain fingerprinting attacks.

5.1.4 SPP Configuration. To improve communication bandwidth, we study SPP without rep-
etition coding in a noiseless setup. In SPP, the receiver uses an array of size equal to the LLC
capacity for priming and probing. We study the impact of varying the sender’s Disturbance Set size.
Differential signaling employed by SPP to reduce inference errors sends a reference 0 bit followed
by the actual data bit. If the receiver’s probe latencies to receive the reference bit and the data bit
are respectively 𝐿0 and 𝐿𝑑, the data bit is inferred as a 1 if 𝐿𝑑 > 𝐿0 + 𝜏 and 0 otherwise. We also
evaluate SPP without differential signaling, in which the data bit is inferred as a 1 if 𝐿𝑑 > 𝜏 ′ and 0
otherwise. For each Disturbance Set size, we choose 𝜏 and 𝜏 ′ that minimize bit errors in the train
suite.

5.2 Efficiency and Robustness of LeakyRand
Figure 4 quantifies the average channel bandwidth and BER of LeakyRand and SPP using the 500 test
suite strings. The receiver’s communication step in LeakyRand uses an unrolling factor of 16 in its
probe loop.The LeakyRand channel is studied for two different Occupancy Block populations (OBPs)
namely, 98.88% and 99.76% of LLC capacity (Figure 4(a)). For each OBP, we evaluate LeakyRand
for seven error correction intervals (x-axis of Figure 4(a)). For each error correction interval (ECI)
𝑘, we use the |𝐷𝑆| value (in number of LLC blocks) that minimizes the BER in Algorithm 6 when
the number of trials is ⌈ 512𝑘−1 ⌉ × 500 (the total number of data communication stretches in the test
suite). These |𝐷𝑆| values are shown on top of the bars in Figure 4(a). As expected, |𝐷𝑆| is lower for
higher OBP and increases with larger ECI (i.e., less frequent error correction). The SPP channel
is evaluated with (+ref) and without (−ref) reference bits for five different Disturbance Set sizes
namely, 10%, 20%, 30%, 40%, and 50% of the LLC capacity (x-axis of Figure 4(b)).

For OBP of 98.88%, LeakyRand channel bandwidth increases with ECI and attains a peak band-
width of 12.8 Kbps for ECI=128. On the other hand, a peak bandwidth of 14.8 Kbps is attained for
the ECI of 512 when OBP is 99.76%. The reason for this trend is that a larger ECI leads to an overall
lower error correction overhead. However, the bandwidth decreases for ECIs greater than 128 for
OBP of 98.88% because ECI > 128 requires a significantly bigger |𝐷𝑆| to keep BER low. Figure 5
confirms this trend by showing a breakdown of the total cycles expended by LeakyRand.
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The SPP channel bandwidth decreases from 7.9 Kbps to 4.6 Kbps with increasing |𝐷𝑆| in the
presence of reference bits (“+ref” in Figure 4(b)). At the best bandwidth point of 7.9 Kbps, the BER is
0.043. For error-free communication, the best bandwidth of SPP is only 6 Kbps attained with a |𝐷𝑆|
of 30% LLC capacity. In the absence of reference bits, the best bandwidth of SPP is 13.4 Kbps with a
BER of 0.114, while for error-free communication, the best bandwidth is 8.2 Kbps (for |𝐷𝑆| = 40%).

LeakyRand, on the other hand, offers error-free communication in all except three cases namely,
for ECI=16 when OBP is 99.76% and for ECI=256, experiencing a maximum BER of 0.000058. High
OBP and low-overhead error correction are the reasons for this remarkably low BER and high
channel bandwidth. We find that when error correction is disabled, LeakyRand is able to offer error-
free communication of the test suite strings with |𝐷𝑆| of 100 and 7 blocks respectively for 98.88%
and 99.76% OBPs achieving 14.5 Kbps and 15.3 Kbps bandwidth. However, with increasing message
length, |𝐷𝑆| will increase to keep BER low and the bandwidth will drop. So, for long messages, error
correction should be enabled with the best ECI, which is independent of the message length.

Figure 6 studies the effect of increasing |𝐷𝑆| on the bandwidth and the BER of the LeakyRand
channel for fixed ECI of 128 and OBP of 98.88%. The errors observed for |𝐷𝑆| < 12 are all 1 bit to
0 bit errors. As |𝐷𝑆| increases, the channel observes exponentially decreasing BERs while offering
linearly decreasing bandwidth in the range of 15 Kbps to 12.8 Kbps. Thus, |𝐷𝑆| can be effectively
used to operate the LeakyRand channel at high bandwidth with an ultra-low BER. Without error
correction (not shown in Figure 6), the BERs for |𝐷𝑆| = 1, 3, 6, 9, 12 are 0.34, 0.19, 0.12, 0.082, 0.048,
respectively, while the bandwidth ranges from 15.6 Kbps to 15.4 Kbps. Thus, our error detection
and correction algorithms help achieve remarkably low BER while imposing a small overhead.

5.3 Inherent Noise Resilience of LeakyRand
To evaluate LeakyRand in a noisy setup, we model a noise process by injecting third party block
accesses to the LLC. Figure 7 shows how the BER varies as the noise injection rate is decreased
from one noise block access per data bit to one noise block access per 32 data bits. We disable error
detection and correction in this study to show how |𝐷𝑆| can be adjusted to mitigate the noise effects.
For |𝐷𝑆| values of 100 and 800 (with 98.88% OBP), the observed BER is zero when noise injection
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Fig. 8. CDF of the sender’s and receiver’s execution cycles for sending and receiving a bit.

rates are 8, 16, and 32. Importantly, as |𝐷𝑆| is increased from 100 to 800, the BER drops significantly
for high noise injection rates while maintaining a channel bandwidth close to 10.5 Kbps which is
still higher than what SPP achieves for the same level of BER in a noiseless setup (Figure 4(b)).

To study the impact of operating system (OS) noise, we run LeakyRand with |𝐷𝑆| =
1500, 3000, 4500 blocks on the Gem5 simulator in full-system mode. We observe that the cor-
responding average bit error rates are 0.025, 0.004, and 0.001, respectively. Furthermore, 80% of the
strings are communicated without error for |𝐷𝑆| = 4, 500. Thus, |𝐷𝑆| can be adjusted to mitigate
OS noise. Importantly, for |𝐷𝑆| = 4, 500 (13.7% of LLC), SPP has a much higher BER in a noiseless
setup (Figure 4(b)).

5.4 Synchronization Protocol of LeakyRand
In Section 3.4.1, we have discussed how the sender and receiver processes synchronize themselves
based on the worst-case execution cycles of the receiver and sender, respectively. Figure 8 shows
that the cumulative distributions of the sender’s and receiver’s execution cycles for sending and
receiving a bit in the test suite match closely with those in the train suite. The sender’s distribution
is bimodal in nature due to very different amounts of work needed to transmit a 0 bit and a 1 bit.
Overall, we conclude that the worst-case execution cycles observed in the train suite can be used
with an appropriate additional noise margin to synchronize the receiver and the sender during
communication of the test suite strings. Since the receiver’s execution time varies over a wide
range of about 6000 cycles, there is a possibility that the receiver may overshoot its time budget.
However, this variation is less than 3% of the receiver’s minimum execution cycles observed in the
entire test suite, indicating that any overshoot is most likely to be small.

In Section 3.4.1, we have discussed how we handle scenarios when the receiver overshoots its
predetermined time budget. In such cases, the receiver’s Probe step is terminated prematurely and
the received bit is inferred based on the probes done so far. Also, the receiver ignores the LLC misses
arising from the accesses to the unprobed population of the Occupancy Blocks when receiving the
next bit. For a direct evaluation of this synchronization protocol, we deliberately terminate the
receiver after it has probed 𝑋% of the Occupancy Blocks when receiving randomly chosen 𝑌% of the
bits. Our evaluation on the entire test suite shows that for 𝑌 ∈ {1, 2, 3, 4, 5, 6} and𝑋 ≥ 87, LeakyRand
does not experience any additional errors showing the effectiveness of our synchronization protocol.
We observe one, five, and one errors respectively for (𝑋 , 𝑌 ) = (86, 4), (86, 5), (86, 6). However, given
that the variation in the receiver’s execution time is small, it is most unlikely that the unprobed
region would be as large as 14% of the Occupancy Blocks.

5.5 Performance of “Flushless” LeakyRand
We study the performance of the “flushless” version of LeakyRand as discussed in Section 4. The
pseudocode employing coherent cross-socket invalidations to emulate cache line flush operations
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Table 2. Impact of Probe Loop’s Unrolling Factor on
Train Suite

Unrolling 𝑀𝑎𝑥𝐻𝐿 𝑀𝑖𝑛𝑀𝐿 Overlapped Threshold
factor (cycles) (cycles) iterations (%) (cycles)
16 121 127 0 124
32 133 135 0 134
64 232 162 0.02 233
128 315 216 0.04 316
256 630 366 4.09 631
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Fig. 9. Impact of probe loop’s unrolling factor on test
suite

was presented in Algorithms 7 and 8. We find that invalidating one cache block in a socket using
cross-socket invalidation takes about 1,400 ns including the flag-based synchronization overhead in a
dual-socket platform with Intel Xeon Gold 6,246 processors. When the corresponding 5600-cycle (at
4 GHz) latency to emulate one cache line flush operation is incorporated in our simulation model,
we observe that LeakyRand achieves peak bandwidths of 12.6 Kbps and 14.5 Kbps respectively for
98.88% and 99.76% OBPs. The drop in the peak bandwidth due to non-availability of cache line flush
instructions is small because the sender is not the bottleneck.

5.6 Performance of LeakyRandGen
As discussed in Section 4, LeakyRandGen is the most general implementation of LeakyRand that
works with a simpler implementation of the random replacement policy. LeakyRandGen also
does not rely on the cache line flush instructions. We evaluate LeakyRandGen on the test suite
using history length of 3 bits and |𝐷𝑆| = 6250 (19% of LLC capacity) with a new set of 1000 block
addresses replacing a subset of 𝐷𝑆 when the history is 001, 011, 101, or 111. For the entire test suite,
LeakyRandGen does not experience any error while delivering a bandwidth of 11.2 Kbps. In contrast,
the best bandwidth achieved by SPP for error-free communication is only 8.2 Kbps (Figure 4(b)).

5.7 Bandwidth Optimization in LeakyRand
As discussed in Section 3.4.2, LeakyRand’s bandwidth can be improved by increasing the unrolling
factor. For each unrolling factor, Table 2 shows the maximum latency of an iteration having all
LLC hits (𝑀𝑎𝑥𝐻𝐿) and the minimum latency of an iteration having at least one LLC miss (𝑀𝑖𝑛𝑀𝐿)
observed while communicating the train suite strings with ECI=128 and OBP=98.88%. When
𝑀𝑖𝑛𝑀𝐿 becomes less than 𝑀𝑎𝑥𝐻𝐿, the latency distributions of the iterations with only LLC
hits and the iterations with at least one LLC miss overlap. We set the LLC hit/miss inference
threshold (last column of Table 2) to (𝑀𝑎𝑥𝐻𝐿 + 𝑀𝑖𝑛𝑀𝐿)/2 for non-overlapping distributions;
otherwise, we set the threshold to 𝑀𝑎𝑥𝐻𝐿 + 1 so that all 0 bits may be received correctly. Dur-
ing error detection and correction, the probe loop uses unrolling factor of 16 to ensure high
reliability.

Figure 9 shows the variation in LeakyRand’s bandwidth and BER with unrolling factor when
communicating the test suite strings for ECI=128 and OBP in the range 98.44% to 98.88% for a 2 MB
LLC. The |𝐷𝑆| values are chosen using Algorithm 6 to minimize 1 bit to 0 bit errors and shown
below each unrolling factor in the figure. The OBP and |𝐷𝑆| vary slightly with unrolling factor
because the number of Occupancy Blocks probed by the receiver must be an integer multiple of
the unrolling factor. The channel bandwidth peaks at about 29 Kbps with a BER of about 0.0001
for unrolling factor of 128. For unrolling factor of 256, the bandwidth drops due to an increase in
|𝐷𝑆| and BER increases to 0.17 due to overlapping latency distributions; when |𝐷𝑆| is increased
to 30 LLC blocks (last x-axis point), the BER drops to 0.07 due to reduced overlap in latency
distributions.
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Table 3. Occupancy Sequences Generated by the Recursive Proce-
dure (Algorithm 2) for Occupying 99% of LLC

Occupancy Sequence Cyc. dev. (%) Occupancy Sequence Cyc. dev. (%)
(1𝑐)3(1.1𝑐)1(1.2𝑐)6 0.071 (1𝑐)2(1.1𝑐)3(1.2𝑐)5 0.039
(1.1𝑐)2(1.2𝑐)7 0.900 (1𝑐)1(1.1𝑐)5(1.2𝑐)4 0.215
(1𝑐)1(1.1𝑐)2(1.2𝑐)6 0.044 (1.1𝑐)2(1.2𝑐)7 0.092
(1𝑐)1(1.1𝑐)1(1.2𝑐)7 0.076 (1𝑐)1(1.2𝑐)8 0.516
(1.1𝑐)6(1.2𝑐)4 0.239 (1.1𝑐)3(1.2𝑐)6 0.109
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5.8 Sensitivity to LLC Capacity
Figure 10 shows how the channel bandwidth of LeakyRand and SPP (with reference bits) varies
with LLC size. LeakyRand observes a BER of 10−4 or less while delivering a bandwidth that is more
than 4× of SPP across the board.

5.9 Efficiency of Cache Region Identification
Table 3 lists ten Occupancy Sequences generated by our dynamic synthesis procedure (Algorithm 2)
to occupy 99% of a 2 MB LLC with Δ =10% of LLC block count. Each sequence is represented
as 𝑁 𝑅1

1 𝑁 𝑅2
2 …𝑁 𝑅𝑚𝑚 where an Occupancy Set of size 𝑁𝑖 is accessed 𝑅𝑖 times and 𝑁𝑖 is represented

as a multiple of the number of LLC blocks 𝑐. The second and fourth columns of the table show
that the percent deviation in cycles estimated by the algorithm using linear interpolation from
the cycles observed in detailed simulation is very small. The best performing dynamic sequence
is (1𝑐)1(1.1𝑐)2(1.2𝑐)6, while the best static sequence is (1.2𝑐)9. Figure 11 shows that the LLC
occupancy estimated by Algorithm 2 using linear interpolation at each step of the best Occupancy
Sequence (x-axis) matches closely with the LLC occupancy observed in detailed simulation.

Figure 12 shows the contribution of each LeakyRand component to the end-to-end time averaged
over 500 strings of the test suite as the LLC capacity is varied. The data are normalized to the 4 MB
LLC capacity point. The |𝐷𝑆| values are the same as shown in Figure 10. Data communication and
error correction take up most of the time, while the channel setup time arising from the CRFill
and CRProbe steps is less than 10% across the board. Including the CRFill and CRProbe overhead,
the LeakyRand channel achieves end-to-end bandwidth of 46.6 Kbps, 26.4 Kbps, and 12.6 Kbps
respectively for 1 MB, 2 MB, and 4 MB LLC sizes. For a 2 MB LLC, LeakyRand’s bandwidth is 3.3×
to 5.7× of SPP’s bandwidth in the presence of reference bits (“+ref” in Figure 4(b)).

5.10 Extended Scope and Applications of LeakyRand
In this section, we discuss several applications of LeakyRand to setting up covert channels in different
types of caches and to mounting fingerprinting attacks. These applications extend LeakyRand’s
scope beyond covert channel attacks on fully associative LLCs with random replacement.
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5.10.1 Adoption of LeakyRand to Real-world Settings. A set of a set-associative cache can be
viewed as a standalone fully associative cache with the number of entries equal to the associativity
of the set-associative cache. In the following, we discuss how we use LeakyRand to construct a
covert channel exploiting a set of the set-associative LLC in an Intel Xeon processor without any
knowledge of the LLC replacement policy, thereby showcasing the generality of LeakyRand, its
application to a real-world setting, and its robustness in the presence of operating system noise.
Before mounting the LeakyRand attack on the Xeon processor, we conduct a cycle-level functional
validation of LeakyRand by synthesizing it end-to-end on a field programmable gate array (FPGA).

FPGA Synthesis of LeakyRand : We synthesize a pipelined controller of a fully associative cache
supporting read, write, flush, and random replacement operations. A pseudo-random number
generator using a linear feedback shift register (LFSR) is employed to implement the random
replacement policy. For cycle-level functional testing of the LeakyRand attack, we also synthesize
the receiver and sender processes as two finite-state machines that interact with the cache controller.
We synthesize our Verilog RTL on a Xilinx Spartan-3E FPGA.The synthesized fully associative cache
has 16 entries. The CRFill step uses the dynamic cache region identification procedure. The cache
occupancy achieved by the receiver after the CRProbe step averaged over all experiments is seen
to be 98.8%. We experiment with |𝐷𝑆| = 2, 4 and ECI = 8, 32, 128. For ECI=8 and 32, LeakyRand
achieves error-free communication for both values of |𝐷𝑆|. For ECI=128 and |𝐷𝑆|=2, the average bit
error rate is 0.0009 and when |𝐷𝑆| increases to 4, the communication becomes error-free.

Implementation on an Intel Xeon Processor : To mount the LeakyRand attack, we exploit a set of the
16 MB 16-way set-associative LLC shared among eight cores of an Intel E-2278G Xeon processor
running commodity Linux operating system. First, the receiver and sender processes, pinned to
two cores of the processor, construct the Occupancy Set and the Disturbance Set, respectively, both
of which must map to a common set of the LLC. This construction follows the traditional protocol
for the design of eviction sets [32]. Briefly, the receiver constructs its Occupancy Set by streaming
through a large array of block addresses in its virtual address space and identifying the ones that
conflict in an LLC set based on the observed latency of access. First, a pair of such conflicting
addresses 𝐴1 and 𝐴2 is identified. In each subsequent step, the set of conflicting addresses is
extended by adding a new address 𝐴𝑖 that conflicts with the existing addresses 𝐴1, 𝐴2, … , 𝐴𝑖−1
of the set. Once the receiver has constructed its Occupancy Set, the sender accesses a different
array 𝐵 (larger than the LLC size) of block addresses in its virtual address space. The receiver
then accesses its Occupancy Set. Next, the sender accesses the array 𝐵 and identifies the missing
block addresses by observing the access latency. These missing addresses form a superset of the
Disturbance Set, which is iteratively refined by the sender by checking each individual address
for conflict with the Occupancy Set. We observe that different sets of the LLC experience different
amounts of noise due to operating system and other activities. Therefore, different choices of the
Occupancy Set and the Disturbance Set lead to differing fidelity of communication.

Once the Occupancy Set and the Disturbance Set have been identified, the LeakyRand attack
executes the CRFill and CRProbe steps of the receiver to occupy a large portion of the set followed
by the steps to communicate a bit string. Since the purpose of this exercise is to develop a proof-of-
concept implementation of the LeakyRand attack on a real machine, we exclude error detection
and correction from the implementation to keep it simple. We observe that the achieved occupancy
is either 15 or 16 out of the 16 blocks in the set. Without any error correction, the attack achieves a
bit error rate of 0.003 averaged across the entire test suite executed for 15 different configurations
with {|𝐷𝑆|=1, 2, 4}×{unrolling factor=1, 2, 4, 8, 16} while offering bandwidth up to 570 Kbps. The
significant increase in bandwidth compared to what we have seen in our simulation results is due to
the small size (16 entries) of the fully associative cache (an LLC set) exploited in these experiments.
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5.10.2 Adoption of LeakyRand to LRU Caches. Having presented an application of LeakyRand
to setting up a covert channel exploiting the shared LLC in a commercial processor with unknown
replacement policy, we now turn to a case in which the replacement policy is known to the attacker
and it is not the random replacement policy. We show that the Evict+Flush+Probe protocol of
LeakyRand can be simplified and easily adopted to create a covert channel with significantly
higher bandwidth in a fully associative LLC exercising the LRU replacement policy. The receiver
fills the only LLC set with its Occupancy Blocks leaving aside space for the code and other data
blocks of the receiver and sender. Importantly, exploiting the deterministic nature of the LRU
replacement policy, the receiver positions the Occupancy Blocks toward the LRU side of the set. For
communicating a 1 bit, the sender uses a Disturbance Set containing just one block 𝐵. Accessing 𝐵
evicts the Occupancy Block in the LRU position and then the sender flushes 𝐵. The receiver probes
the Occupancy Block in the LRU position to infer the received bit. Thus, the receiver does not need
to probe the entire set of Occupancy Blocks as is done in the traditional Prime+Probe protocol.
Evaluation of this attack on the simulated processor shows that our Evict+Flush+Probe protocol
delivers an average communication bandwidth of 7.1 Mbps compared to 59 Kbps achieved by the
traditional Prime+Probe on the test suite strings in a 2 MB LLC exercising LRU replacement policy.

5.10.3 High-precision Fingerprinting Attack. LeakyRand can be used to mount high-precision
fingerprinting attacks exploiting a fully associative LLC with random replacement policy. Since
the CRFill and CRProbe steps allow the attacker to occupy most of the fully associative LLC, the
attacker can easily detect even small differences in the LLC disturbance caused by different victim
workloads making high-precision fingerprinting attacks possible. We show that using this attack it
is possible to accurately distinguish between two inputs used by the md5 hash utility. One input
uses a file 𝐹1 of size 8 KB and another uses a file 𝐹2 of size 20 KB. The attacker first uses the CRFill
and CRProbe steps to occupy close to 99% of the LLC. Next, the victim uses the md5 hash utility to
process 𝐹1 or 𝐹2. In the final step, the attacker uses the Probe step (of the receiver in LeakyRand)
counting the number of unrolled iterations of the Probe step that experience LLC misses. Based on
these LLC miss counts, the attacker infers whether the victim used 𝐹1 or 𝐹2 as input.

We evaluate this attack on our simulated processor. The attacker uses an unrolling factor of
16 in the Probe step. We conduct 250 samples of this attack using 𝐹1 and another 250 samples
using 𝐹2 for different LLC replacement randomization seeds to train the best inference threshold
𝐶 such that if the observed LLC miss count is less than 𝐶, the inference is 𝐹1; the inference is 𝐹2
otherwise. Note that we already have a pre-trained threshold 𝜏 applied to the measured latency of an
unrolled iteration of the Probe step to infer whether the iteration suffers from an LLCmiss or not.We
similarly determine the best inference threshold when this attack is mounted using the Prime+Probe
steps of SPP. We test our setup on 1,000 execution samples of the attack employing different LLC
replacement randomization seeds. The victim uses 𝐹1 500 times and 𝐹2 in the remaining 500 cases.
The fingerprinting attack using the CRFill, CRProbe, and Probe steps of LeakyRand leads to 100%
accurate identification of 𝐹1 and 𝐹2 in all 1,000 cases. LeakyRandGen can also be used to mount
this attack if the cache line flush instruction is not available. We find that the fingerprinting attack
using the CRFill and Probe steps of LeakyRandGen leads to 100% accurate identification of 𝐹1 and
𝐹2. However, the use of the Prime+Probe steps of SPP leads to 161 errors in identifying 𝐹1 and
143 errors in identifying 𝐹2 resulting in an overall 30.4% errors out of 1,000 attack attempts. SPP’s
failure to occupy a large portion of the LLC is the primary reason for this large error rate.

6 Summary
We present LeakyRand that exploits a shared fully associative LLC exercising random replacement
policy for setting up a covert communication channel between two co-scheduled processes (receiver
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and sender). An automatically synthesized cache region identification procedure enables the receiver
to occupy a large portion of the LLC with probability nearly one. A novel Evict+Flush+Probe
communication protocol allows the receiver to maintain its high LLC occupancy. Periodic invocation
of low-overhead error syndrome detection and correction algorithms helps maintain an ultra-low
bit error rate. On a 2 MB LLC, LeakyRand achieves a bandwidth of 26.4 Kbps while maintaining
a bit error rate of 10−4 or less. This high-bandwidth high-fidelity channel exploiting the fully
associative LLC with random replacement necessitates continued search for a more secure caching
substrate.
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Appendix
A Details of the Artifact
A.1 Abstract
The artifact includes the implementation of LeakyRand on the trace-based microarchitecture
simulator ChampSim, full-system architecture simulator Gem5, Spartan-3E FPGA, and Intel Xeon
server. We include scripts to run the experiments and generate outputs. The README of the
repository contains the instructions for each setup [31]. The ChampSim and Gem5 codes have been
tested on Linux systems with Ubuntu distribution. To ease the setup process and portability, we
provide a Docker image for the ChampSim infrastructure and ready-to-execute scripts that automate
the execution of applications and plotting of graphs. The artifact is archived on Zenodo [30].

A.2 Artifact Checklist (Meta-information)
—Algorithm: Static and dynamic cache region identification procedures for the CRFill and

CRProbe steps, and the LeakyRand covert communication protocol with error detection and
correction procedures.

— Inputs: 750 random binary strings of length 512 each are used to generate ChampSim, Gem5,
and Intel Xeon processor results. For functional testing of LeakyRand synthesized end-to-end
on the FPGA, three types of input strings (all of length 1024 bits) are used, (a) all 1s, (b) 1011
repeated 256 times, and (c) 0010 repeated 256 times.

—Compilation: All required compilation dependencies for ChampSim are pre-installed in the
Docker image. Gem5 requires GCC version 10 or above, python3 and scons.

— Binary:
– The required build scripts or binaries are provided in the git repository [31] and Zenodo

DOI archive page [30].
– ChampSim: Scripts to build program binaries, generate instruction traces from program

binaries using Pin tool, and build ChampSim are included.
– Gem5: Pre-built linux kernel and Ubuntu disk image with program binaries are included.
– Intel Xeon: Commands for compiling and mounting the LeakyRand attack are included.

—Hardware: Intel processors are used for simulation. The LeakyRand attack on the Xeon
server should be executed on a multi-core processor with inclusive LLC. For FPGA synthesis
of LeakyRand, the Xilinx Spartan-3E starter board is used.

— Execution: The artifact includes scripts to launch experiments and plot graphs.
—Metrics: For different experiments, we report channel bandwidth, bit error rates, LLC

occupancy (in cache blocks or percentage of LLC capacity), normalized LLC miss counts, or
normalized execution cycles.

—Output: Per-figure scripts (script.sh) are included in the git repository to generate either a
plot or a result file.

— Experiments: script.sh per figure/result is used to launch experiments.
—How much disk space required (approximately)?: The ChampSim results may take

around 1.5 to 2 TB of space if all experiments are run on a single machine.
—How much time is needed to prepare workflow (approximately)?: Around an hour

including Gem5 compilation and docker setup.
—How much time is needed to complete experiments (approximately)?: More than

a month if all the experiments are run sequentially. num_prl used in script.sh controls the
number of parallel simulations, wherever applicable.

— Publicly available?: Yes
—Archived (provide DOI)?: Zenodo page URL: https://doi.org/10.5281/zenodo.16237834
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A.3 Description
A.3.1 How to Access: The source code of LeakyRand is available in the git repository [31] and

Zenodo archive page [30].

A.3.2 Hardware and Software Dependencies: For mounting the LeakyRand attack on Intel Xeon
server, the 16 MB 16-way set associative inclusive LLC of an Intel E-2278G Xeon processor, clocked
nominally at 3.4 GHz running Ubuntu 18.04, is used. For ChampSim and Gem5 simulations, we
use Intel Xeon x86-64 processors with 64 cores, 100 GB RAM and 2.5TB disk space running
Linux Ubuntu 20.04.5 LTS having support to run Docker containers. For FPGA synthesis, we use
the Xilinx Spartan-3E starter board, the Xilinx ISE 14.7 toolchain, connecting cables, and cable
driver.

A.4 Installation
— Install Docker.
— Download Docker image from Zenodo archive [30]. Use this image to start a Docker container.
— Inside Docker container, clone the git repository [31] and start simulations.
—All the steps with required commands are mentioned in the README of git repository.

A.5 Experiment Workflow
In the git repository, we provide the source code of our implementation and the bash scripts to
generate outputs corresponding to the figures and results presented in the article. For each figure,
there is a separate directory named fig* that contains all the corresponding scripts. To start
the simulations for generating a figure, one needs to switch to the corresponding directory and
launch script.sh using the ./script.sh command. The variable num_prl defined in script.sh, wherever
applicable, launches those many parallel simulations, thus reducing the simulation time. To reduce
the overall execution time of experiments, one can create multiple Docker containers (using the
Docker image shared on Zenodo) and start parallel simulations for generating different results
simultaneously. One Docker container, at a time, can run the simulations for generating only one
result figure.

A.6 Evaluation and Expected Results
script.sh corresponding to a particular figure generates the plot for the result with the name fig*.pdf
or stores the result generated in a text file in the same directory. The results shared in the article
are stored in a text file our_data.txt for reference.

A.7 Methodology
Submission, reviewing and badging methodology:

— https://www.acm.org/publications/policies/artifact-review-badging
— http://cTuning.org/ae/submission-20201122.html
— http://cTuning.org/ae/reviewing-20201122.html
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