a2 United States Patent

Gaur et al.

US008667222B2

US 8,667,222 B2
Mar. 4, 2014

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

@
(22)
(65)

(1)
(52)

(58)

BYPASS AND INSERTION ALGORITHMS
FOR EXCLUSIVE LAST-LEVEL CACHES

Inventors: Jayesh Gaur, Bangalore (IN); Mainak
Chaudhuri, Kanpur (IN); Sreenivas

Subramoney, Bangalore (IN)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 288 days.

Appl. No.: 13/078,415

Filed: Apr. 1,2011

Prior Publication Data

US 2012/0254550 A1 Oct. 4, 2012

Int. CL.

GO6F 12/00 (2006.01)

U.S. CL

USPC e 711/122

Field of Classification Search

None

See application file for complete search history.

Stages and L1 Cache /S
201 /

Memory S

Additional Processor .

204 S

(56) References Cited
U.S. PATENT DOCUMENTS

2004/0133748 Al*
2008/0209131 Al*

7/2004 Yang ..o 711/144
8/2008 Kornegay et al. 711/135

* cited by examiner

Primary Examiner — Brian Peugh
(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

An apparatus and method are described for implementing an
exclusive lower level cache (LLC) policy within a computer
processor. For example, one embodiment of a computer pro-
cessor comprises: a mid-level cache circuit (MLC) for storing
a first set of cache lines containing instructions and/or data; a
lower level cache circuit (LLC) for storing a second set of
cache lines of instructions and/or data; and an insertion circuit
for implementing a policy for inserting or replacing cache
lines within the LL.C based on values of use recency and use
frequency associated with the lines.

18 Claims, 11 Drawing Sheets

\

211
Line Line | tine J tine |
Line Line] Lline | line }
Line tine t line | Line |
Line Line | tine | tiine |
Way Way
03 Line TC, UC Ling TC, UC 212
02 Line TC, UC Line TC, UC
ol Line TC, UC L ing TC, UC
o0 Line TC, UC Line TC, UC
213 = TCUC Total Live
13 000
001
010
R 212
00
. 01
N 10
111
Sum(Cntl) Sum{Cnt1}

US 8,667,222 B2

Sheet 1 of 11

Mar. 4, 2014

U.S. Patent

T T T Ty aNsoe B S 0
Stisssopxe g7 IR

- 800"

i

R -1 11 4

B TR T T I NQ\W

e m Al aMemaaammr e maa %Ad»m.

B T T I pu m.mm,w

T T mmumrw

S¥OE

501

DT SuEU N € OF pRERULOl Ot

US 8,667,222 B2

Sheet 2 of 11

Mar. 4, 2014

U.S. Patent

Z "bid4
{Tujwns J (T1UDJwing
TTT
011
1017
001 h
110
re—— oT0
100
000
5 = 3noL —p— E1¢
oN oL 3U | on oL Bl 00
2N DL Ul 2N D1 Ul 10
21T N DL Qul] oN 0L ENY 0
20 21§ IuUly oN DL aul])
TR, RLEM
[Toun T oun T aun =N
[3uq T wsun_] eun EIH)
[sum T —suim T sun SUl]
[T=ui T »sun T eun SUl] ,
112

102
ayor) |1 pue sabeig
10$5800.1d [euoiuppy

US 8,667,222 B2

Sheet 3 of 11

Mar. 4, 2014

U.S. Patent

10€ 1

¢ 'bi4

50 L EL oN DL Sul
50 oL our] on DL oul
S

T4
Aloway

(X174
ayoe) |7 pue sebelg
10SS800.1d feuonippy

US 8,667,222 B2

Sheet 4 of 11

Mar. 4, 2014

U.S. Patent

v 7T -

NOLLIEIEN L

o 3

.x.,,wﬂ

vy

IRV A

el i B

S e Rt L

=31

v b4

o, tvah\.
2 L
-
i =
.
-

1

L. ffy s yrwman 70y

T YIRS

| P T 7

s Y-}

US 8,667,222 B2

Sheet 5 of 11

Mar. 4, 2014

U.S. Patent

qs ‘bi4

(@)

SEOBI |
mw mm @v QF Q2 0F mm‘m
: ! ! §dwg¢i§ ! !
T, g g, U A U S . Jarn
n ; A N %&EE«E&I:’
[UTSUU TONOE SO 4 ...ar.c& L U e
. : ' H R
T : ; i : ae_c_a.&a
P APEPIIN e B B T LERT LI TECTTECT TR £ 48 §
: g:%& s
s L3}
G
: 421
T UREEVE] R
- .n - u-“.. U —— mw“,
.. e $
T RS T
; i a1

AHH B 0 ARG Ol

Rt IRt
i TRag [
U ¥~ AN yH-on-nltesedig
| ar-w-Dn-opresudig f
SE-ILY-Df-TLresudig
1 pe-Iey-orroiresedig
H Foy-ni+esedig

-Foy-onr-ol Bl

5 gx-35v-on-oL BB |

ww‘w.ﬂwﬁ- X

AN L U peziEudoll Gl

US 8,667,222 B2

Sheet 6 of 11

Mar. 4, 2014

U.S. Patent

o

G-y DN~ OF PRAHRLNOY (|

wonoey ssedsg

ng “bi4

44) i
o .

e

e

L]

[57) <11 med&é

U.S. Patent Mar. 4, 2014 Sheet 7 of 11 US 8,667,222 B2

Fig. 7

F-SL] RO Dl

US 8,667,222 B2

Sheet 8 of 11

Mar. 4, 2014

U.S. Patent

qg "614 g 'bi4

(2}

%
%

e
w P & o o > :
% a2 e g &0 %w %@%% X % &

____ﬂ NS

5"
o

S - -.m 3. S e 2 S = L

T ¥
L
AN WE-1 O O AR GIO0N)

T
1
"
-

SHM UL O PSR Ko
T T
) L
o w0
e £

S < Y B L LLRRETE &1 28

L LT T I b= 1 S8 § e B T T R T T PR £ T AR A
R T AR L T R R R .ly.'.-<t..A.-|.v..|A...,l4|.,A.||<...|mm‘AF T ...»n....ix.v.V4l:\v.<rq|v.,..|r|,.,.|>lmW5w

EToL Lo T T I s | U SRR =2 oYL G0 Lad Leeeoeemee ot e d
FX-I0Y-on-glesedia ax-3ny-on-zpssedin M
ZTt Tl

US 8,667,222 B2

Sheet 9 of 11

Mar. 4, 2014

U.S. Patent

1

DY~ 10 O) pERRUIOY Odi

J.:L;_n¢5:5;5:5¢s:5 o

r
oy

.-p.;.;-.

o

ETE

o
-~

-
8 Dl

[£7]
o
-

AP UG- G pRERUL

U.S. Patent Mar. 4, 2014 Sheet 10 of 11 US 8,667,222 B2

T DIReTO-AGE

Ml By passTC-UC-AGE-XE |

Fig. 10b

IR
1.09}-
108k
107F
102¢
10tk

1

W 4
096

-

&

Lo i1
2 & 3838 35
K W1 A PR AU D |

& 1060

bt
9E

{
Fig. 10a

Bl Bypass+ TC-UC-AGE-x3
3 GiPsTC-AGE e

1.3
1.08
148
187 F
1081
5
SR] TTTCINPRRNN PPN
143
142
Gtk
¥
e84
&

US 8,667,222 B2

Sheet 11 of 11

Mar. 4, 2014

U.S. Patent

IT 614

Q) (e)
S805
o 9e QE S 02 G B %5 O pRpMaBld PRSI -Uop
a T T T T T T BRO : > i
G50 N : .ZM.... M d&7n
. : ” ! ! hw@mm»
o ot 4250 ”
510 : F g W
B s
zZo £ &
@ & z SHOL
S A = 1 §
H g E
dee ¥ 2, F3 .
£o g W m. Bt A
Asen B 7 g
S g i gy
) \Jr.ﬂw W m watid
i W 4 .
y 4 M
~dera m g g £t
0 wEm...iw.u,_. Wv W .
, p i ATy LB § ([_sovargavl 580
%0 S,Qmmw§x¢..-§ ¢ 3 = IS -BIEMB~pUaIg]
S = wag-maun-peaiyl
Qg 1 1 i 1 i I 13 T T 3L

AN N1 8 pazipiaeu ndyBnoag

US 8,667,222 B2

1
BYPASS AND INSERTION ALGORITHMS
FOR EXCLUSIVE LAST-LEVEL CACHES

BACKGROUND

1. Field of the Invention

This invention relates generally to the field of computer
processors. More particularly, the invention relates to bypass
and insertion techniques implemented for processor caches.

2. Description of the Related Art

Inclusive last-level caches (LLCs) waste precious silicon
estate due to cross-level replication of cache blocks. As the
industry moves toward cache hierarchies with larger inner
levels, this wasted cache space leads to bigger performance
losses compared to exclusive LL.Cs. However, exclusive
LLCs make the design of replacement policies more chal-
lenging. While in an inclusive LL.C a block can gather a
filtered access history, this is not possible in an exclusive
design because the block is de-allocated from the LL.C on a
hit. As a result, the popular least-recently-used replacement
policy and its approximations are rendered ineffective and
proper choice of insertion ages of cache blocks becomes even
more important in exclusive designs. On the other hand, it is
not necessary to fill every block into an exclusive LLC. This
is known as selective cache bypassing and is not possible to
implement in an inclusive LL.C because such a policy would
violate inclusion.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description in conjunc-
tion with the following drawings, in which:

FIG. 1 illustrates a comparison of instructions retired per
cycle (IPC) between exclusive and inclusive LL.Cs.

FIG. 2 illustrates logical structures employed within the
LLC in one embodiment of the invention.

FIG. 3 illustrates logical structures employed within the
MLC in one embodiment of the invention

FIG. 4 illustrates logic diagrams illustrating bypass (a) and
TC-UC-AGE algorithms in accordance with one embodi-
ment of the invention.

FIGS. 5a-b illustrate a summary of performance of several
policies normalized to 1-bit NRF (a) and distribution of IPC
improvements (b) for one embodiment of the invention.

FIGS. 6a-b a distribution of bypass fraction in one policy
(a) and details of additional performance gains achieved by
bypassing on top of TC-UC-AGE-x8 (b).

FIG. 7 illustrates IPC of one policy normalized to DIP+
TC-AGE.

FIGS. 8a-b illustrate details of IPC improvement achieved
by one policy and DIP+TC-AGE for (a) selected SPEC
2006applications and (b) server applications.

FIG. 9a-b illustrate a distribution of IPC improvements of
one policy normalized to 1-bit NRF (a) and IPC of one policy
normalized to DIP+TC-AGE (b).

FIGS. 10g-b illustrate details of IPC improvement
achieved by one policy and DIP+TC-AGE for selected
SPEC2006 applications (a) and server applications in the
presence of prefetchers (b).

FIG. 11 illustrates throughput improvements, fairness and
bypass fraction for the 4-way multi-programmed workloads.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in orderto provide

20

25

30

35

40

45

50

55

60

65

2

a thorough understanding of the embodiments of the inven-
tion described below. It will be apparent, however, to one
skilled in the art that the embodiments of the invention may be
practiced without some of these specific details. In other
instances, well-known structures and devices are shown in
block diagram form to avoid obscuring the underlying prin-
ciples of the embodiments of the invention.

As mentioned above, inclusive last-level caches (LLCs)
have been the preferred choice for designing on-die high-
performance cache hierarchies. Such a choice is primarily
motivated by the possible simplifications in the cache coher-
ence protocol in an inclusive hierarchy; an LL.C tag lookup is
enough to decide if a cache block is not present in the inner
levels of the cache hierarchy. In an exclusive LLC, however,
a block is allocated only on an eviction from the inner level
cache and de-allocated on a hit when the block is recalled by
the inner level cache. As a result, a separate coherence direc-
tory array (decoupled from the LLC tag array) is needed to
maintain coherence efficiently. While coherence simplifica-
tion is seen as a major advantage of an inclusive LL.C, such a
design may waste silicon real estate due to replication of
cached data in multiple levels of the hierarchy. With a three-
level or a four-level cache hierarchy with reasonably large
inner levels, such cross-level replication begins to degrade
performance with an inclusive design when compared to an
exclusive design.

The performance gains in an exclusive design over an
identical inclusive design usually come from two factors. One
factor is the overall capacity advantage enjoyed by the exclu-
sive design. The second factor is related to premature evic-
tions in the inner levels of the hierarchy caused by LLC
replacements in an inclusive design. In the absence of access
hints from the .1 and 1.2 caches, the last level (referred to as
either L3 or LLC herein) of an inclusive design can end up
making incorrect replacement decisions. The risk of prema-
ture evictions from the .1 and .2 caches caused by a partially
informed LLC replacement policy is non-existent in an exclu-
sive design.

FIG. 1 is a chart that compares the number of instructions
retired per cycle (IPC) between exclusive and inclusive LL.Cs
with a 512 KB cache. Specifically, the figure shows the per-
formance of an exclusive LL.C with respect to an inclusive
LLC for 98 single-threaded dynamic instruction traces rep-
resenting different regions of floating-point SPEC 2006
(FSPEC), integer SPEC 2006 (ISPEC), and server (SERVER)
applications with a tuned multi-stream hardware prefetcher
enabled. Each trace runs for six million dynamic instructions
after a sufficiently long warm up phase. For the left bar, the
simulated three-level cache hierarchy in both inclusive and
exclusive cases is identical in capacity and associativity at
every level. More specifically, the left bar presents simulation
results for an architecture with a 512 KB 8-way 1.2 cache and
a2 MB 16-way LLC. The bar on the right shows the perfor-
mance of an exclusive LLC relative to an inclusive design,
where the exclusive LLC is sized such that the effective
capacity advantage of the exclusive design is nullified (1.5
MB 12-way).

In both cases, the inclusive LLC simulates a not-recently-
used (NRU) replacement policy (one bit age per block) and
the exclusive LLC simulates a one-bit not-recently-filled
(NRF) replacement policy. The NRU policy victimizes the
not recently used block (age zero) from the way with the
smallest id. The NRF policy updates the age bit array only on
a fill and is otherwise similar to NRU. Both the policies reset
the age bits of all the blocks (except the one most recently
accessed/filled) in a set to zero only if all blocks in that set
have age of one. For each application category, the bar on the

US 8,667,222 B2

3

right in FIG. 1 brings out the performance difference stem-
ming from the premature evictions from the inner levels of the
cache hierarchy in the inclusive design. The bar on the left
further adds the capacity advantage that an exclusive design
enjoys. On average, for 98 traces, the exclusive design enjoys
a 3.1% higher IPC than the inclusive design.

While premature LLC replacements can cause perfor-
mance degradation in inclusive designs, a block resident in
the LL.C of an inclusive design can still observe a filtered
version of access recency during its lifetime. This is not
possible in an exclusive design. A block resides in the LL.C of
an exclusive design from the time it is evicted from the [.2
cacheto the time it is either recalled by the .2 cache or evicted
by the LLC, whichever is earlier. Thus, an exclusive LLC
serves as a large set-associative victim cache. Due to the
absence of any access information in an exclusive LLC, the
popular least-recently-used (LRU) replacement policy and all
its well-researched derivatives lose significance. As a result,
the design of replacement policies in an exclusive LLC
requires a fresh look. A replacement policy has three distinct
algorithmic components, namely, insertion algorithm, update
algorithm, and victim selection algorithm. In this paper, we
explore the algorithms for deciding the insertion age of a
block in an exclusive LLC.

Another important optimization opportunity offered by an
exclusive design is related to the fact that every block evicted
from the L2 cache is not required to be sent to the LL.C. Such
a design with selective LL.C insertion/bypass enabled can
[Incomplete]

Use recency and use frequency are the two properties that
are traditionally employed to determine the death and live-
ness of a cache block. Exclusive LLCs make the effective use
of these two properties challenging because a block is de-
allocated from the LLC on its first recall from the inner-level
caches. For purposes of illustration, a three level cache hier-
archy is illustrated in FIG. 2-3 which includes a memory 204,
a lower level cache (LL.C) 203, a mid level cache (MLC) 202,
and an upper level cache (ULC) or L1 cache 201. For the
purposes of illustration, a set of cache lines 211-212 and
corresponding trip count (TC) and use count (UC) values is
illustrated for the LL.C in FIG. 2. Similarly, a set of cache lines
301 and corresponding TC/UC values is illustrated in FIG. 3.

A block is filled into the MLLC 202 when it is first brought
from the DRAM. On an MLC cache 202 eviction, the block
makes its first trip to the LLLC 203. If the block is recalled from
the LL.C 203 before it is evicted, it will make its second trip to
the LLC 203 eventually when it is victimized from the 1.2
cache again. These trips continue until the block is evicted
from the L1.C 203. In general, a block with low average recall
distance is expected to have a higher overall trip count before
it is evicted from the LLC 203.

Below we explore the possibility of exploiting the use
count of a block during its residency in the MLC to further
tune the classification of dead and live blocks. In one embodi-
ment, every time a block is filled into the ML.C (from DRAM
or LLC) by a demand request, its use count (UC) is set to one.
A block filled into the ML.C by a prefetch request sets its use
count to zero. In one embodiment, only a demand hit in the
MLC increments the use count. In one embodiment, two UC
bits are maintained in the MLC to record use count, illustrated
as the rightmost bits in column 213 of the data structure 212
shown in FIG. 2. Thus, every block that comes to an LL.C for
allocation carries three bits of information with it, namely, the
trip count (TC) (one bit) and use count (UC) (two bits). Based
on the TC, UC values of an incoming block it is categorized
into one of eight possible TC-UC bins 213. The techniques

20

25

30

35

40

45

50

55

60

65

4

discussed below use information derived from the eight TC-
UC bins 213 at the time of allocating a block to the LL.C 203.

The design and implementation of the bypass and insertion
algorithms for exclusive LLCs is discussed below. First we
discuss the dynamic learning framework that all our algo-
rithms use and then present the algorithms.

The bypass and insertion decisions should be based on the
population of dead and live blocks in the TC-UC bins 213.
Note that a block allocated in the exclusive LLC is classified
as dead if it gets evicted before getting recalled by the ML.C
(these are essentially LL.C victims); otherwise the block is
classified as live. We would like to learn the dead and live
populations in each TC-UC bin 213. Depending on the mem-
bership bin of an incoming block and the dead and live popu-
lations of that bin, we would like to take a decision about
whether to bypass this block or what initial age to assign if'it
is not bypassed. To carry out this learning, we dedicate six-
teen sample sets per 1024 sets of LLC that observe the dead
and live populations of each TC-UCbin 213. These sets will
be referred to as the “observers” and are illustrated as 211 in
FIG. 2. The observers allocate all blocks and implement a
static insertion age assignment scheme based on the single-bit
TC value of an incoming block.

For each TC-UC bin per LL.C bank, the observers maintain
two values, namely, the difference of dead and live allocations
to the observers (D-L) and the live allocations to the observ-
ers (L). Our algorithms need eight D-L and eight L counters
per LLC bank corresponding to the eight TC-UC bins. When
a block arrives at the LLC for allocation to one of the observ-
ers, the block’s TC-UC bin b is decided based on the block’s
TC, UC values (carried by the eviction message from the [.2
cache). The observer increments the D-L counter of bin b by
one when the block is allocated. On a hit to a block B in an
observer set, the observer decrements the D-L counter of the
bin the block B belongs to by two and increments that bin’s L
counter by one. The observers maintain three bits per cache
block to remember the bin an allocated block belongs to. A
non-observer set, when allocating a block, first determines
the block’s membership bin based on the block’s TC, UC
values and then queries the D-L and L counters of that bin.
The returned D-Land L values are input to the bypass and
insertion algorithms we discuss next. The non-observer sets
do not store any information pertaining to the bin membership
of the allocated blocks.

When updating the D-L and L counters in an LL.C bank,
the observers also maintain the max(D-L), min(D-L), max
(L), and min(L) across the TC-UC bins, excluding the UC=0
bins, within that LLC bank.

In addition to these, the aggregate D-L over all TC-UC
bins, excluding the UC=0 bins, is maintained per LLC bank.
We will refer to this as Z,,..,(D-L). One of our insertion
algorithms requires that the observers maintain the aggregate
L over all TC=0 bins with positive UC. We will refer to this
aggregate as Xy pc.0(L). The updates of the maximum,
minimum, and the aggregate values take place mostly off the
critical path of LLC activities. Every N LLC allocations per
bank, where N is equal to the number of observer sets per LL.C
bank multiplied by the LL.C associativity, all the D-L. and LL
counters (including the max, min, and aggregate values) in
that LL.C bank are halved so that a temporally-aware expo-
nential average is maintained. Even with a storage overhead
of two bytes per counter, the overall counter overhead is
small. This general framework also requires every MLC 202
to store three additional bits to maintain the TC and UC values
of the block (indicated in TC, UC column 213 of the data
structure 212 in FIG. 2).

US 8,667,222 B2

5

Good bypass algorithms would bypass incoming blocks
that belong to bins with high D-L populations, yet low
enough L. populations. More specifically, an incoming block
belonging to TC-UC bin b with counter values (D-L)b and Lb
qualifies as a bypass candidate if (D-L)b="% (max(D-L)+
min(D-L)) and Lb=<'2 (max(L)+min(L)). However, we find
that there are situations where the overall magnitude of D-L
is so high that even if the second condition fails, bypassing
can be done without any performance degradation. Therefore,
we override the outcomes of these comparisons if

3
(D=L), = yi
UCz0

(D-1L).

A more carefully chosen weight of magnitude lower than 3%
may improve the bypass performance further. We summarize
our bypass algorithm in the following where bypass is a
boolean-valued variable.

bypass = ((D -L), = %(max(D — L)+ min(D - L)))

AND
1 .
L, =< E(max(L) + mJn(L))]

OR

3
((D—L)b_ D) (D—L)]

UC+0

A bypassed block is treated exactly the same way as an LL.C
victim and it mimics the LLC eviction protocol.

To minimize the risk of performance loss, we always duel
our bypass algorithm with the no-bypass algorithm of the
observers. For this purpose, in addition to the observer sets,
we dedicate an equal number of LLC sets (sixteen per 1024
LLC sets) that always execute our bypass algorithm.

We present three algorithms for insertion age assighment
with progressively increasing complexity. These algorithms
are applied to those blocks that are not bypassed. We assume
a two-bit budget to maintain ages per LL.C block. Our LL.C
replacement policy first looks for an invalid way in the target
set. If there is no such way, it victimizes the block with the
minimum age. A tie is broken by selecting the block with the
least physical way id.

Our first insertion algorithm assigns all TCz1 blocks an
insertion age of three and all TCO0 blocks an insertion age of
one. This is a static policy that does not require any dynamic
learning. This is the policy exercised by our observer sets. We
will refer to this policy as the TC-AGE policy. We note that
this algorithm is similar in spirit to the SRRIP algorithm
proposed for inclusive LLCs. In our age assignment setting
where a lower age corresponds to a higher replacement pri-
ority, the SRRIP algorithm would assign an insertion age of
one to a newly allocated block and promote it to the highest
possible age on a hit in an inclusive LL.C. In an exclusive
LLC, the blocks that have seen LLC hit(s) in the past are
necessarily the TC=1 blocks.

Our second insertion algorithm continues to assign the
highest age, i.e., three to the TC=1 blocks, but it assigns more
finely graded ages to the TCO0 blocks. To achieve this, it takes
help of the dead and live populations learned by the observers.
This algorithm recognizes the fact that the TCO blocks
belonging to bins with low hit rates should not get a positive

20

25

30

35

40

45

50

55

60

65

6

age. Ifa certain bin b satisfies Db>xLb or equivalently, (D-L)
b>(x-1)Lb, that would translate to a hit rate bounded above
by 1/(x+1) for blocks belonging to bin b (hit rate is Lb/(Db+
Lb)). We would like to assign an insertion age of zero to an
incoming block if it belongs to a TC=0 bin with too low a hit
rate. However, we find that there are situations where the hit
rate of the target bin is low, but the bin still has a fairly high
number of live blocks i.e., Lb is above a threshold. In these
cases, assigning a zero insertion age is too risky. Overall, we
assign an insertion age of zero to a TC0 block belonging to bin
b with positive UC if it satisfies

3 (@3]
(D-L|),>@x—-DL, AND I, < = (D).

TC=0,UCx+0

All the remaining TCO blocks with positive UC are inserted
at an age of one. We will refer to this policy as the TC-UC-
AGE policy. We evaluate this policy for x=4, 8.

Our third insertion algorithm is similar to the TC-UC-AGE
policy, but instead of assigning an age of one to all the TOO
blocks with positive UC that do not satisfy Equation 2 above,
it grades them from age one to three based on live population.
First, the algorithm ranks the three TC=0, UC=0 bins based
on their L values and tags the bin having the smallest L. value
with an age of one and the one with the highest L value with
anage of three. Next, the algorithm determines the bin that the
incoming block belongs to and assigns the corresponding
insertion age to this block. We will refer to this policy as the
TC-UC-RANK policy. None of our insertion age assignment
schemes require dueling with the observers.

We give some special consideration to the bins with UC=0.
As wehave pointed out, the blocks belonging to these bins are
the result of either premature, yet correct, prefetches that
failed to see a demand hit during their residency in the [.2
cache or incorrect prefetches that will not see a demand hit in
near future. Our bypass algorithm continues to remain oblivi-
ous to such cases and treats the UC=0 bins exactly the way it
treats the other bins. Our TC-AGE insertion algorithm does
not do anything special for the UC=0 blocks.

The other two insertion algorithms assign a zero insertion
age to a (TC=0, UC=0) block belonging to bin b if it satisfies
(D-L)b>(x-1)Lb (here b is (TC=0, UC=0)). All other (TC=0,
UC=0) blocks receive an insertion age of one. All (TC>=1,
UC=0) blocks receive an insertion age of one. FIG. 4 shows
our bypass and TC-UC-AGE logic diagrams. The critical path
of'the insertion age assignment logic can be hidden under the
LLC fill latency.

Upgrading our bypass and insertion algorithms to a multi-
threaded environment requires maintaining the D-I and L
counters for each TC-UC bin per thread. Each thread is also
assigned a separate set of observers. The observers ear-
marked for a particular thread execute TC-AGE insertion for
that thread and the best emerging duel winner for each of the
other threads (similar to TADIP-F) if bypassing is enabled.
We use four observers per thread per 1024 LLC sets. Our
counter update schemes do not require storage of thread id in
the LL.C to incorporate thread-awareness. We assume one
thread per core in this article. At the time of an LLC alloca-
tion, the core id of the source L2 cache is available because
this information is needed to update the coherence directory
and therefore, the appropriate D-L. counter can be incre-
mented. At the time of an L.LC hit, the core id of the requester
is available and therefore, the appropriate D-L counter can be
decremented and the appropriate L. counter can be incre-

US 8,667,222 B2

7

mented. Also, the maximum, minimum, and aggregate values
of several counters, as discussed above, must be maintained
per thread.

Simulations were done on a cycle-accurate execution-
driven x86 simulator. Our 4 GHz 4-way dynamically sched-
uled out-of-order issue core model closely follows the core
microarchitecture of the Intel Corei7 processor. Throughout
this study, we assume one physical thread context per core.
Each core has its own L1 and L2 caches. The L1 instruction
cache is 32 KB 4-way associative and the [.1 data cache is 32
KB 8-way associative. The unified .2 cache is 512 KB 8-way
associative. The L2 cache is partially inclusive (also known as
non-inclusive) of the L1 caches in the sense that an [.2 cache
eviction always queries the L1 caches for up-to-date state and
data, but the .1 cache may choose to retain the block instead
of invalidating. For the single-thread studies, we model a 2
MB 16-way exclusive LLC partitioned into two banks, each
being 1 MB 16-way. For the multi-programming studies, we
model four cores with private L.1 and L.2 caches and the cores
are connected over a ring. Each core hop of the ring has a
shared 2 MB 16-way exclusive LLC bank attached to it lead-
ing to an aggregate 8 MB 16-way shared LL.C. The block size
at all the three levels of the cache hierarchy is 64 bytes. We
model a six-cycle hit latency (tag+data) for the L2 cache and
an eight-cycle hit latency (tag+data) for each LL.C bank. The
ring hop time is one cycle. We model a coherence directory
that can accommodate four times the number of aggregate .2
cache tags. For all simulations, we model a two-channel
integrated memory controller clocked at the core frequency
with each channel connecting to an 8-way banked DDR3-
1866 DIMM. The DRAM part has burst length of 64 bits and
10-10-10access cycle parameters (each cycleis about 1.1 ns).
In this paper, we show results without and with hardware
prefetchers enabled. In the latter case, we model per-core
aggressive multi-stream instruction and data prefetchers that
bring blocks into the [.2 cache of the core.

Our single-threaded traces span three workload categories,
namely, floating-point SPEC 2006 (FSPEC), integer SPEC
2006 (ISPEC), and server (SERVER). We first identified
about two hundred representative dynamic code regions each
of length six million dynamic instructions for detailed IPC
measurement prefixed with a sufficiently large dynamic
region (several hundreds of million instructions) to warm up
caches and microarchitectural arrays (predictors and queues).
All the policies evaluated in this application are executed
from the beginning of the warmup to make sure that the
detailed cycle-accurate measurement phase captures a
steady-state snapshot. Out of these two hundred regions, we
picked 98 regions that remain sensitive to uncore optimiza-
tions even after a well-tuned aggressive multi-stream
prefetcher is enabled. In these 98 traces, we have 44 FSPEC
traces spanning one dozen applications, namely, bwaves, cac-
tusADM, dealll, GemsFDTD, Ibm, leslie3d, milc, soplex,
sphinx3, tonto, wrf, and zeusmp. We have 23 ISPEC traces
spanning seven applications, namely, bzip2, gcc, gobmk,
libquantum, mcf, omnetpp, and xalancbmk. Finally, we have
31 server traces drawn from applications such as SAP, SAS,
SPECjbb, SPECweb2005, TPC-C, TPC-E, etc.

We present results for 35 4-way multi-programmed work-
loads prepared by mixing four single-threaded traces. These
multi-programmed mixes are representative in the sense that
they include representative single-threaded traces from all
three workload categories. Within a mix, each thread first
executes its warmup region before starting the detailed per-
formance simulation. If a thread finishes its performance
simulation phase of six million instructions early, it continues

20

25

30

35

40

45

50

55

60

65

8

executing so that we can model the shared LL.C contention
properly. The mix terminates after each thread has committed
its six million instructions.

We first present the simulation results with hardware
prefetchers disabled. FIG. 5a summarizes the geometric
mean [PC of several policies normalized to 1-bit NRF for
three single-threaded workload categories (FSPEC, ISPEC,
and SERVER) and overall (ALL). In each category, the left-
most three bars show the performance of static TC-AGE
insertion and dynamic learning-based TC-UC-AGE insertion
with x=4, 8. To avoid unnecessarily increasing the number of
policy bars, we will show the performance of TC-UC-RANK
only in the presence of bypassing. The next five bars show the
performance of LLC bypassing executing with three different
insertion algorithms. Note that in each of these five cases, the
evaluated policy (e.g., Bypass+TC-UC-AGE-x8) is always
dueled with the observers executing TC-AGE and if the
observers emerge the winner, the followers disable bypass-
ing, but continue to execute the insertion component (e.g.,
TC-UC-AGE-x8) of the policy. We have also experimented
with a 2-bit approximation of least-recently-filled (LRF)
replacement policy that ranks the blocks in a set by their fill
order (can only distinguish between the last three fills).
Finally, the rightmost bar in each workload category shows
the performance of dynamic insertion policy (DIP) in the
presence of TC-AGE insertion. This policy inserts all TC=1
blocks at age three and duels the TC0 blocks between inser-
tion age of zero and one. This policy is analogous to the
DRRIP policy proposed for inclusive LLCs. We also experi-
mented with the original DIP proposal. The performance of
this policy (not shown) is worse compared to the DIP+TC-
AGE policy discussed here. The TC-AGE policy improves
performance by more than 1% averaged over the 98 traces
(see the ALL group). This result motivated us to use the
TC-AGE policy for the observers in the place of NRF. The
TC-UC-AGE policy improves the overall performance by
almost 4%, with ISPEC showing an average performance
improvement of more than 7% compared to NRF. Overall,
there is no performance difference between x=4 and x=8 for
TC-UC-AGE. Our bypass algorithm running with TC-AGE
improves overall performance by 2.8%, with ISPEC showing
an impressive 5.3% improvement. However, these data show
that the TC-UC-AGE insertion algorithm alone can achieve
better performance across the board compared to bypassing
dueled with TC-AGE’. Nonetheless, the Bypass+TC-AGE
policy still offers an attractive design point. LLC bypassing
coupled with TC-UC-AGE offers the best performance
across the board with x=8.

The best combination i.e., Bypass+TC-UC-AGE-x8
improves the overall IPC of the 98 traces by 4.3% with
FSPEC, ISPEC, and SERVER showing individual improve-
ments of 3.9%, 8.5%, and 1.8%, respectively. Correspond-
ingly, it saves 8%, 11%, and 8% of the baseline LLC misses.
The IPC benefits coming from the LL.C miss savings in the
SERVER category are dwarfed because these workloads suf-
fer from high volumes of L1 instruction cache misses. Over-
all, the Bypass+TC-UC-AGE-x8 policy requires three addi-
tional bits per L2 cache block for maintaining TC/UC values,
two additional bits per LL.C block in the non-observer sets for
maintaining the age, five additional bits per LLC block in the
observer sets (sixteen observer sets per 1024 LLC sets) for
maintaining the age and the bin identity, and a 16-entry partial
(ten bits) set index CAM per 1024 LLC sets to access the
appropriate observer’s five-bit metadata array. The total over-
head computed as a fraction of the .2 cache and the LLC data
array storage comes to about 0.5%.

US 8,667,222 B2

9

The performance results for Bypass+TC-UC-RANK show
that the addition of insertion age ranking mechanism based on
live population does not improve performance beyond what
Bypass+TC-UC-AGE delivers with x=8. In fact, in ISPEC
category, the ranking mechanism slightly hurts performance
because it cannot distinguish between the TC0 and TC=z1
blocks inserted with age three. The 2-bit LRF policy improves
ISPEC by 2.5%, but degrades the server workloads by 5.4%.
The primary shortcoming of this policy is that a block’s age in
a set climbs down to zero within four fills to that set and the
block becomes eligible for eviction. The 1-bit NRF policy
requires a higher average number of fills before it resets a
block’s age to zero (see Section 1). Finally, the DIP+TC-AGE
policy improves the overall IPC by 3.2% with ISPEC improv-
ing by about 7% in IPC. In the following, we analyze the
performance of our best policy (Bypass+TC-UC-AGE-x8) in
greater detail.

FIG. 5b shows the details of the IPC improvements
achieved by individual traces running with our best LLC
policy (Bypass+TC-UC-AGE-x8) compared to the baseline
1-bit NRF. Thetraces in each of the three categories are sorted
by the IPC improvements. Some of the traces are also marked
on the curve with their IPC improvements shown within
parentheses. Itis important to note that different regions of the
same application (e.g., GemsFDTD) react very differently to
our policy, thereby emphasizing the need to simulate multiple
regions of the same application. Overall, the FSPEC traces
show a performance improvement of at most 31% while
suffering from a performance loss of at most 2%. The ISPEC
traces experience IPC improvement of up to 44% while losing
at most 1% performance. The server traces show an IPC
improvement of up to 19%, but also suffer from up to 6%
performance losses (the poorly performing SPECjbb trace is
not friendly to TC-UC-AGE).

Next, we quantify the contributions of the LLC bypass
component in our best policy (Bypass+TC-UCAGE-x8).
FIG. 7(a) shows, for each trace, the fraction of L2 cache
evictions bypassed by the Bypass+TCUC-AGE-x8 algorithm
at the time of LL.C allocation. We also identify some of the
application traces that show moderate to high bypass frac-
tions. The traces are sorted exactly in the same order as in
FIG. 6(b).

Overall, across 98 traces, on average, 32% ofthe 1.2 cache
evictions are not allocated in the LLC. For FSPEC, ISPEC,
and SERVER categories, the bypass percentages are 37%,
52%, and 11%, respectively.

To further quantify the performance impact of LLC
bypasses in our best policy, the bottom panel of FIG. 65 shows
the IPC of Bypass+TC-UC-AGE-x8 relative to TC-UC-
AGE-x8, while the top panel reproduces the bypass fraction
distribution. Some of the application traces that enjoy notice-
able benefit from LL.C bypass are marked on the graph of the
bottom panel. It is clear that the server traces do not enjoy
much performance benefit from LLC bypasses as far as the
capacity benefit is concerned. However, several FSPEC and
ISPEC traces show significant improvements in IPC due to
LLCbypass. It is important to note that a high bypass fraction
does not necessarily translate to performance improvement
because the retained blocks may not always have small
enough reuse distances that can fit within the LLC reach.
Nonetheless, our impressive bypass fraction can lead to inter-
connect bandwidth savings and result in further performance
improvements, if our LL.C bypass scheme is implemented at
the L2 cache interface.

FIG. 7 shows the IPC of our best policy (Bypass+TC-UC-
AGE-x8) relative to the DIP+TC-AGE policy, with several
interesting trace points marked on the curve to show exactly

20

25

30

35

40

45

50

55

60

65

10

where we gain and lose. The traces are sorted exactly the same
way as in FIG. 6(b). As we have already noted, we see differ-
ent regions of the same application behaving differently (e.g.,
GemsFDTD, libquantum, SAS). Overall, while we see sev-
eral traces gaining significantly compared to DIP+TC-AGE,
the losses are not large.

FIGS. 8a and 8b show an application-level comparison
between Bypass+TC-UC-AGE-x8 and DIP+TC-AGE for
SPEC 2006 and server workloads, respectively. The normal-
ized IPC figure for each application shown in these charts is
computed by taking the geometric mean of the normalized
IPCs of all the traces belonging to that application. Overall,
for the nineteen SPEC 2006 applications, our best policy
improves IPC by 5.4% compared to 1-bit NRF, while for the
eight server applications, the corresponding improvement is
1.9%. The respective improvements achieved by DIP+TC-
AGE are 4.1% and 1.1%.

Finally, we turn to the performance results with an aggres-
sive multi-stream hardware prefetcher enabled. FIG. 9a
shows the IPC improvements achieved by Bypass+TC-UC-
AGE-x8 compared to the 1-bit NRF baseline with prefetchers
enabled. Within each workload category, the traces are sorted
by IPC improvements.

Overall, for FSPEC, the IPC improvement averages at 2%;
for ISPEC it is 6%; for server traces it is 4%. While the
average IPC improvements for FSPEC and ISPEC have
dropped compared to the non-prefetched scenario (as
expected), the improvement has gone up for server traces. We
find that our special handling of the UC=0 bins (see Section
3.4) helps the server traces significantly, since it is usually
hard to accurately prefetch data for the server workloads.
Overall, with prefetchers enabled, the IPC improvement
achieved by our best policy (Bypass+TC-UC-AGE-x8)
across 98 traces is 3.4%. The corresponding improvement
seen by DIP+TC-AGE is 2.8%. The bypass fraction achieved
by Bypass+TC-UC-AGE-x8 with the prefetchers enabled is,
on average, 28% of all .2 cache evictions.

FIG. 94 further quantifies the difference between Bypass+
TC-UC-AGE-x8 and DIP+TC-AGE in the presence of
prefetching. This plot shows the IPC of Bypass+TC-UC-
AGE-x8 normalized to that of DIP+TC-AGE. The traces are
sorted in the same way as in FIG. 10(a). Several traces where
our policy enjoys noticeable gains or suffers from noticeable
losses are marked on the curve.

FIGS. 10a and 1056 show the application-level IPC
improvements for our best policy and DIP+TCAGE normal-
ized to the 1-bit NRF baseline with prefetchers enabled. For
the SPEC 2006 applications (FIG. 10a), our policy improves
IPC by 3.7%, on average. The corresponding improvement in
the server applications is 3.6% (FIG. 105).

A discussion of the multi-programmed performance
results will now be provided. The leftmost panel of FIG. 11
shows the average IPC or throughput improvement achieved
by (ZIPC,"/3,IPC5**) three policies, namely, thread-
oblivious best policy (Bypass+TC-UC-AGE-x8), thread-
aware best policy (Bypass+TC-UC-AGE-x8), and thread-
aware DIP+TC-AGE for 35 4-way multi-programmed mixes.
The thread-aware dueling mechanism is borrowed from the
TADIP-F proposal. We show the performance comparison for
both non-pref etched and prefetched scenarios. The second
panel of FIG. 11 shows the distribution of throughput
improvements of our best policy (thread-aware Bypass+TC-
UC-AGE-x8) with hardware prefetchers enabled. Overall,
thread-awareness brings bigger performance gains in the
absence of prefetching. The thread-aware Bypas+TC-UC-
AGE-x8 policy improves the throughput by 2.5% in the pres-

US 8,667,222 B2

11

ence of prefetching, while the thread-aware DIP+TC-AGE
policy improves the throughput by 1.3%.

To make sure that the maximum slowdown of any indi-
vidual thread is within acceptable range, the third panel of
FIG. 11 quantifies a conservative fairness metric

1pCPotior
i

N e

i.e., the normalized IPC of the slowest thread in each mix for
the thread-aware Bypass+TC-UC-AGE-x8 policy with hard-
ware prefetchers enabled. The mixes are ordered in the same
way as in the second panel. Except for a few mixes, the
slowdown experienced by the slowest thread is within 2%
compared to the baseline and, on average, this is 1%. Finally,
the rightmost panel of FIG. 12 details the bypass fraction
achieved by the thread-aware Bypass+TC-UC-AGE-x8
policy with hardware prefetchers enabled. While several
mixes enjoy high to medium bypass fractions, the average is
9%.

The various embodiments of the invention described
herein make the important observation that LRU and its
approximations lose meaning in exclusive LL.Cs and pro-
poses a number of design choices for selective bypassing and
insertion age assignment for such designs in a three-level
cache hierarchy. Our LL.C bypass and age assignment deci-
sions are based on two properties of a block when it is con-
sidered for allocation in the LLC. The first one is the number
of trips (trip count) made by the block between the L2 cache
and the LL.C from the time it is brought into the hierarchy till
it is evicted from the LL.C. The second property is the number
of .2 cache hits (use count) experienced by a block during its
residency in the .2 cache. One proposal is a combination of
bypass and age insertion schemes based on trip count and use
count, which improves the average (geometric mean) IPC of
98 single-threaded traces by 3.4% compared to a baseline
not-recently-filled replacement policy in a 2 MB 16-way
exclusive LLC with aggressive multi-stream prefetchers. The
corresponding improvement in throughput seen by 35 4-way
multi-programmed mixes is 2.5%.

What is claimed is:

1. A computer processor comprising:

a mid-level cache circuit (MLC) for storing a first set of
cache lines containing instructions and/or data;

a last level cache circuit (LLC) for storing a second set of
cache lines of instructions and/or data, wherein the LL.C
includes a data structure for storing a trip count (TC)
value and use count (UC) value, the TC and UC values
being combinable to determine whether to insert or not
insert a cache line into the LLC; and

an insertion circuit for implementing a policy for inserting
orreplacing cache lines within the LLC based on TC and
UC values associated with the lines.

2. The computer processor as in claim 1 wherein an exclu-
sive cache policy is implemented such that when a cache line
is stored in the LLC it is not stored in the MLC and when a
cache line is stored in the MLC it is not stored in the LLC.

3. The computer processor as in claim 1 wherein when a
cache line is filled into the MLC from memory or from the
LLC by a demand request, its UC value is set to one.

4. The computer processor as in claim 3 wherein when a
cache line is filled into the MLC by a prefetch request, its UC
is set to zero.

5. The computer processor as in claim 1 wherein a plurality
of observers are defined which allocate all cache lines in the

5

20

25

30

35

40

45

50

60

65

12

LLC and implement a static insertion age assignment based
on a single-bit trip count (TC) value of an incoming cache
line.

6. The apparatus of claim 1, wherein the TC is a 1-bit value
and the UC is a 2-bit value.

7. The apparatus of claim 1, wherein the TC and UC values
belong to a plurality of TC-UC bins.

8. The apparatus of claim 1, further comprising:

observers to maintain, for each TC-UC bin, live allocations

and a difference of dead and live allocations.

9. A method comprising:

storing a first set of cache lines containing instructions

and/or data in a mid-level cache circuit (MLC);

storing a second set of cache lines of instructions and/or

data in a last level cache circuit (LLC);

storing a trip count (TC) value and use count (UC) value,

the TC and UC values being combined to determine
whether to insert or not insert a cache line into the LLC;
inserting or replacing cache lines within the LL.C based on
the stored TC and UC values associated with the lines.

10. The method as in claim 9 further comprising inserting
or replacing the cache lines according to an exclusive cache
policy such that when a cache line is stored in the LL.C itis not
stored in the ML.C and when a cache line is stored in the ML.C
it is not stored in the LLC.

11. The method as in claim 9 further comprising setting a
cache line’s UC value to one when the cache line is filled into
the MLC from memory or from the LL.C by a demand request.

12. The method as in claim 11 further comprising setting
the cache line’s UC value to zero when the cache line is filled
into the MLC by a prefetch request.

13. The method as in claim 9 further comprising defining a
plurality of observers which allocate all cache lines in the
LLC and implement a static insertion age assignment based
on a single-bit trip count (TC) value of an incoming cache
line.

14. A computer system comprising

a display device;

a memory for storing instructions;

a processor for processing the instructions, the processor

comprising:

a mid-level cache circuit (MLC) for storing a first set of
cache lines containing instructions and/or data;

alast level cache circuit (LLLC) for storing a second set of
cache lines of instructions and/or data, wherein the
LLC includes a data structure for storing a trip count
(TC) value and use count (UC) value, the TC and UC
values being combinable to determine whether to
insert or not insert a cache line into the LLC; and

an insertion circuit for implementing a policy for insert-
ing or replacing cache lines within the LLC based on
TC and UC values associated with the lines.

15. The computer system claim 14 wherein an exclusive
cache policy is implemented such that when a cache line is
stored inthe LLC itis not stored in the ML.C and when a cache
line is stored in the MLC it is not stored in the LLC.

16. The computer system as in claim 14 wherein when a
cache line is filled into the ML.C from memory or from the
LLC by a demand request, its UC value is set to one.

17. The computer system as in claim 16 wherein when a
cache line is filled into the MLC by a prefetch request, its UC
is set to zero.

18. The computer system as in claim 14 wherein a plurality
of observers are defined which allocate all cache lines in the

US 8,667,222 B2
13

LLC and implement a static insertion age assignment based
on a single-bit trip count (TC) value of an incoming cache
line.

14

