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In one embodiment , a processor includes : a cache memory 
to store a plurality of cache lines ; and a cache controller to 
control the cache memory . The cache controller may include 
a control circuit to allocate a virtual write buffer within the 
cache memory in response to a bandwidth on an intercon 
nect that exceeds a first bandwidth threshold . The cache 
controller may further include a replacement circuit to 
control eviction of cache lines from the cache memory . 
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SYSTEM , APPARATUS AND METHOD FOR 
ADAPTIVELY BUFFERING WRITE DATA IN 

A CACHE MEMORY 

TECHNICAL FIELD 

[ 0001 ] Embodiments relate to control of a cache memory 
hierarchy of a processing device . 

BACKGROUND 
[ 0002 ] In typical processor - based systems , a processor 
couples to one or more memory devices with which it 
communicates information . As processor speeds continue to 
increase , memory , and the processor ' s interaction with 
memory , becomes a bottleneck to performance enhance 
ments . This is the case , as memory bandwidth and latency 
continues to limit the performance of both single core and 
multi - core workloads . A large last level cache ( LLC ) within 
the processor can help reduce the fraction of memory 
requests served by the memory and improve performance . 
Typically LLCs seek to increase hit rate within the LLC in 
order to reduce traffic to the memory . However such opera 
tion does not take memory efficiency into account . As an 
example , data evicted from the LLC ( victim data ) and 
written to the memory may consume large amounts of 
memory bandwidth , reducing available for incoming 
memory traffic , resulting in lower delivered bandwidth from 
the memory . This situation thus adversely affects perfor 
mance . 

[ 0016 ] FIG . 14 is a block diagram of another example 
system in accordance with an embodiment of the present 
invention . 
[ 00171 FIG . 15 is a block diagram of a representative 
computer system in accordance with an embodiment of the 
present invention . 
[ 0018 ] FIG . 16 is a block diagram of a system in accor 
dance with an embodiment of the present invention . 
[ 00191 . FIG . 17 is a block diagram illustrating an IP core 
development system in accordance with an embodiment of 
the present invention . 
[ 0020 ] FIG . 18 is a block diagram of a register architecture 
according to one embodiment of the invention . 
[ 0021 ] FIG . 19A is a block diagram illustrating both an 
exemplary in - order pipeline and an exemplary register 
renaming , out - of - order issue / execution pipeline according 
to embodiments of the invention . 
0022 ] FIG . 19B is a block diagram illustrating both an 
exemplary embodiment of an in - order architecture core and 
an exemplary register renaming , out - of - order issue / execu 
tion architecture core to be included in a processor according 
to embodiments of the invention . 
[ 0023 ] FIGS . 20A , 20B illustrate a block diagram of a 
more specific exemplary in - order core architecture , which 
core would be one of several logic blocks ( including other 
cores of the same type and / or different types ) in a chip . 
[ 0024 ] FIG . 21 is a block diagram of a processor that may 
have more than one core , may have an integrated memory 
controller , and may have integrated graphics according to 
embodiments of the invention . 
[ 0025 ] FIG . 22 is a block diagram contrasting the use of a 
software instruction converter to convert binary instructions 
in a source instruction set to binary instructions in a target 
instruction set according to embodiments of the invention . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0003 ] FIG . 1 is a block diagram of a portion of a system 
in accordance with an embodiment . 
[ 0004 ] FIG . 2 is a block diagram of a portion of a cache 
hierarchy in accordance with an embodiment of the present 
invention . 
[ 0005 ] FIG . 3 is a flow diagram of a method in accordance 
with an embodiment . 
[ 0006 ] FIG . 4 is a flow diagram of a method in accordance 
with another embodiment of the present invention . 
[ 0007 ] FIG . 5 is a flow diagram of a method in accordance 
with yet another embodiment of the present invention . 
[ 0008 ] FIG . 6 is a block diagram of a micro - architecture of 
a processor core in accordance with one embodiment of the 
present invention . 
[ 0009 ] FIG . 7 is a block diagram of a micro - architecture of 
a processor core in accordance with another embodiment . 
[ 0010 ] FIG . 8 is a block diagram of a micro - architecture of 
a processor core in accordance with yet another embodi 
ment . 
[ 0011 ] FIG . 9 is a block diagram of a micro - architecture of 
a processor core in accordance with a still further embodi 
ment . 
[ 0012 ] FIG . 10 is a block diagram of a processor in 
accordance with another embodiment of the present inven 
tion . 
[ 0013 ] FIG . 11 is a block diagram of a representative SoC 
in accordance with an embodiment of the present invention . 
[ 0014 ] FIG . 12 is a block diagram of another example SoC 
in accordance with an embodiment of the present invention . 
[ 0015 ) FIG . 13 is a block diagram of an example system 
in accordance with an embodiment of the present invention . 

DETAILED DESCRIPTION 
[ 0026 ] In various embodiments , techniques are provided 
to control at least a portion of a cache memory hierarchy of 
a processor to dynamically allocate , within the cache 
memory hierarchy , an explicit virtual write buffer . In this 
way , during periods of high communication bandwidths 
between the processor and a memory , write interference on 
a memory interconnect that couples the processor to the 
memory may be reduced . Various features of this virtual 
write buffer , including its creation , allocation , maintenance 
and so forth may be dynamically controlled based on 
operating conditions , including bandwidth ( s ) on the memory 
interconnect , virtual write buffer occupancy , cache hit rates 
and so forth . Note that in embodiments , dynamic sizing of 
the virtual write buffer ( or its presence at all ) may be based 
at least in part on cache hit rate , in addition to bandwidth . In 
this way , the cache memory may maintain a sufficient hit 
rate , while improving memory efficiency and thus gaining 
overall performance benefits . 
10027 ] It is noted that by converting some portion of a 
cache memory such as a portion of a last level cache ( LLC ) 
to be a virtual write buffer , hit rates may be compromised , 
potentially impacting performance . As such , embodiments 
provide machine learning techniques to identify and mini 
mize this impact . To this end , a learning mechanism may be 
provided that periodically profiles hit rate of a workload 
( e . g . , one or more applications , threads , processes or so 
forth ) using cache hardware . Based at least in part on this hit 
rate information , a hit rate loss may be minimized , effec 
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tively trading off a small drop in LLC hit rate in order to 
improve memory efficiency and gain overall performance . 
In an example embodiment , the techniques described herein 
may enable a performance gain on memory - sensitive mul - 
ticore workloads . 
[ 0028 ] With the embodiments described herein in which a 
virtual write buffer is provided within an LLC , other write 
buffering resources may be minimized . For example , an 
integrated memory controller typically includes a small 
amount of storage for a write buffer . By providing a cache 
based virtual write buffer , the size of this resource may be 
kept relatively small , e . g . , on the order of between approxi - 
mately 2 - 4 kilobytes per memory controller channel . By 
maintaining the write buffers with a small size , performance 
may be enhanced , as increasing this write buffer is not a 
scalable solution , given area , power and timing concerns . 
[ 0029 ] Referring now to FIG . 1 , shown is a block diagram 
of a portion of a system in accordance with an embodiment . 
More specifically , FIG . 1 shows a portion of a system 100 
including at least a portion of a processor 110 and a memory 
150 . Processor 10 may be a system on chip ( SOC ) or other 
multicore processor , and system memory 150 may be imple 
mented as a dynamic random access memory ( DRAM ) . 
Understand of course that additional components will be 
present in a given system , and system 100 is shown at a high 
level to show the general flow of data between multiple 
levels of a memory hierarchy of the system , including 
multiple cache memory levels within a processor and its 
system memory . 
10030 ] As seen , processor 100 includes an execution cir 
cuit 102 , an L1 instruction cache 104 , an Li data cache 106 , 
an L2 cache 108 , a LLC 115 , and a memory controller 112 . 
Execution circuit 102 may be a portion of a processor 
configured to execute instructions . In some implementa 
tions , a processor may have multiple cores , with each core 
having a processing unit and one or more caches . FIG . 1 
illustrates a three - level cache hierarchy in which Ll caches 
104 and 106 are closest to execution circuit 102 , L2 cache 
108 is farther from execution circuit 102 compared to L1 
caches 104 and 106 , and LLC 115 is the farthest from 
execution circuit 102 . 
[ 0031 ] In operation , execution circuit 102 may perform an 
instruction fetch after executing a current instruction . The 
instruction fetch may request a next instruction from L1 
instruction cache 104 for execution by execution circuit 102 . 
If the instruction is present in L1 instruction cache 104 , an 
L1 hit may occur and the next instruction may be provided 
to execution circuit 102 from L1 instruction cache 104 . If 
not , an L1 miss occurs , and L1 instruction cache 104 may 
request the next instruction from L2 cache 108 , which 
includes a cache controller 109 . 
[ 0032 ] If the next instruction is in L2 cache 108 , an L2 hit 
occurs and the next instruction is provided to L1 cache 104 . 
If not an L2 miss occurs , and L2 cache 108 may request the 
next instruction from LLC 115 . 
[ 0033 ] If the next instruction is in LLC 115 , an LLC hit 
occurs and the next instruction is provided to L2 cache 108 
and / or to L1 instruction cache 104 . If not , an LLC miss may 
occur and LLC 115 may request the next instruction from 
memory controller 112 . Memory controller 112 may read a 
block 114 that includes the next instruction and fill block 114 
into L2 cache 108 , in a non - exclusive cache hierarchy 
implementation . Other fill techniques of course are possible . 
And understand that while an instruction - based cache fill 

example is given , the same operations occur for a data - based 
fill ( with the exception that the data is finally filled back to 
L1 data cache 106 ) . 
( 0034 ) In some implementations , a core 118 may include 
execution circuit 102 and one or more of caches 104 , 106 , 
or 108 . For example , in FIG . 1 , core 118 includes caches 
104 , 106 , and 108 but excludes LLC 115 . In this example , 
LLC 115 may be shared with other cores . As another 
example , if core 118 includes LLC 115 , LLC 115 may be 
private to core 118 . Whether LLC 115 is private to core 118 
or shared with other cores may be unrelated to whether LLC 
115 is inclusive or exclusive of other caches , such as caches 
104 , 106 , or 108 . 
[ 0035 ] In addition to the above discussion of fill opera 
tions , eviction operations also may be performed within the 
cache memory hierarchy . As shown , due to capacity issues 
within a lower level cache ( e . g . , one of L1 instruction cache 
104 or L1 data cache 106 ) a data block 107 may be evicted 
and stored temporarily in storage within L2 cache 108 . Still 
further due to capacity issues , evicted block 107 in turn may 
become evicted from L2 cache 108 and be provided to LLC 
115 as evicted block 117 . 
[ 0036 ] In embodiments herein , when evicted data block 
107 includes dirty data to be written back to memory 150 , 
such dirty data may be maintained in a virtual write buffer 
118 of LLC 115 . As used herein , note that the term “ virtual 
write buffer ” is used to refer to a dedicated allocation of one 
or more cache lines ( per set ) within a cache memory in 
which dirty data are to be stored and maintained instead of 
cache lines storing clean data . Stated another way , a virtual 
write buffer is a dedicated cache memory storage for write 
back data , so that such writeback data can be maintained for 
longer periods of time within the cache memory before an 
actual writeback to memory occurs , thus reducing memory 
traffic . At the same time , an upper bound on the size of the 
virtual write buffer may be maintained to ensure that hit rates 
within the cache memory do not impact performance to an 
undesired extent . As will be described in more detail herein , 
the presence of virtual write buffer 118 may be dynamically 
controlled based at least in part on a bandwidth on an 
interconnect 140 that couples processor 110 with memory 
150 . 
[ 0037 ] In embodiments herein , a cache controller 120 may 
be configured to dynamically allocate virtual write buffer 
118 , dynamically control its size based at least in part on hit 
statistics , and adaptively drain entries from virtual write 
buffer 118 to memory 150 according to varying conditions , 
including bandwidth on interconnect 140 and / or capacity 
issues within virtual write buffer 118 . In embodiments , 
virtual write buffer 118 may be implemented as an explicit 
write buffer . This explicit write buffer may be formed of at 
least a predetermined number of lines or ways within each 
set of LLC 115 . 
0038 ) Note that memory controller 112 includes its own 

write buffer 113 . However , embodiments may leverage 
virtual write buffer 118 , implemented within already exist 
ing storage within LLC 115 , such that the expense of an 
increased size of this additional memory structure within 
memory controller 112 can be mitigated . As such , virtual 
write buffer 118 is a separate structure from write buffer 113 
of memory controller 112 . 
[ 0039 ] Referring now to FIG . 2 , shown is a block diagram 
of a portion of a cache hierarchy in accordance with an 
embodiment of the present invention . More specifically FIG . 
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2 shows further details of two levels of a multi - level cache 
hierarchy , with included circuitry for maintaining a virtual 
write buffer as described herein . As seen , a cache hierarchy 
200 includes two levels of cache memory , namely a mid 
level cache ( MLC ) 210 and a LLC 250 . Understand while 
only two levels of a hierarchy are shown , more than two 
levels may be present in other embodiments . As in FIG . 1 
above , typically a processor may include at least three levels 
of cache hierarchy , including a Ll cache that is smallest and 
closest to a core ( e . g . , within the core ) or other processing 
unit , a second level cache ( such as MLC 210 ) and a shared 
or last level cache , such as LLC 250 . 
[ 0040 ] As illustrated in FIG . 2 , MLC 210 includes a 
plurality of cache lines 221 , a representative one of which is 
shown in detail in FIG . 2 . In embodiments , MLC 210 may 
be implemented as an M - way N - set associative cache 
memory . Thus as illustrated , a plurality of sets 220 . - 220 , are 
shown . Each such set may include a plurality of ways ( e . g . , 
M ways ) , each corresponding to a cache line 221 . Repre 
sentative details of information stored in cache line 221 are 
shown . Specifically , cache line 221 may include or be 
associated with a tag portion 222 that is used to index into 
the cache line . Cache line 221 further includes a metadata 
portion 223 including a plurality of fields to store informa 
tion regarding hit information , coherency information and so 
forth , and a data portion 230 that stores the corresponding 
data of the cache line . 
[ 0041 ] Still referring to FIG . 2 , MLC 210 further includes 
a cache controller 240 that in embodiments may be a given 
hardware circuit , in addition to additional control logic , 
software and / or firmware to perform cache control opera 
tions with regard to storage of data in MLC 210 . Cache 
controller 240 may perform various cache management 
operations . 
[ 0042 ] For purposes of discussion herein , cache controller 
240 may include a replacement circuit 245 which , when 
MLC 210 is at a capacity ( or at least a set is at such capacity ) 
may be used to identify an eviction candidate to be evicted 
from MLC 210 as an evicted cache line 235 , in turn to be 
provided to LLC 250 . In different implementations , replace 
ment circuit 245 may perform replacement operations based 
on various replacement policies . For purposes of discussion 
herein , assume that evicted cache line 235 includes dirty 
data that is to be stored within LLC 250 . Understand while 
shown with a single particular sub - circuit in the embodiment 
of FIG . 2 , a given cache controller may include additional 
logic and circuitry . 
[ 0043 ] As illustrated in FIG . 2 , during operation MLC 210 
may identify an evicted cache line , and send a communica 
tion ( message 235 ) to LLC 250 . As illustrated , LLC 250 
includes a plurality of sets 260 , - 260m , each of which may 
include a plurality of ways , a representative way 261 being 
illustrated . LLC 250 may similarly be arranged as a set 
associative cache memory . In embodiments , when allocated 
a virtual write buffer may be implemented using some of 
ways 261 of each of sets 260 . As with the cache lines within 
MLC 210 , each cache line 261 may include a tag portion 
262 , a metadata portion 263 , and a data portion 264 . In some 
cases , at least some of the metadata information in metadata 
portion 223 of MLC 210 may be included in metadata 
portion 263 . LLC 250 further includes a cache controller 270 
to perform control activities with regard to LLC 250 . 
[ 0044 ] Note that the virtual write buffer and its control 
may be implemented with very little area , as the buffer itself 

is formed of already existing cache lines within LLC 250 . In 
this way , a portion of LLC 250 may be repurposed as an 
effective and broadly applicable virtual write buffer , con 
trolled based at least in part on dynamic learning mecha 
nisms . 
[ 0045 ] This virtual write buffer may be configured to 
absorb write data . The buffered writes in turn drain out of the 
virtual write buffer in periods of low memory bandwidth . 
This virtual write buffer is dynamically adjustable and 
balances the conflicting goals of improving memory effi 
ciency by absorbing writes and maintaining a good hit rate 
in LLC 250 . The virtual write buffer dynamically grows 
inside LLC 250 . To avoid interfering with reads when the 
virtual write buffer is present , an LLC fill operation seeks to 
find a clean victim to evict . As a result , the extent to which 
the virtual write buffer is allowed to grow in LLC 250 
influences the availability of clean victims and the quality of 
victims . For example , if the virtual write buffer is allowed to 
grow too large , the possibility of replacing clean live blocks 
increases . 
[ 0046 ] Of interest here , cache controller 270 includes a 
virtual write buffer control circuit 273 . In the illustration 
shown , virtual write buffer control circuit 273 includes 
constituent sub - circuits , including an allocation circuit 277 
and a drain circuit 279 . Still further , control circuit 273 may 
maintain a set of counters 275 . Of interest here , such 
counters may include a set of read hit counters 2760 - n and a 
set of write hit counters 278 . n . In an embodiment , for a 
16 - way cache arrangement , there may be 16 read hit coun 
ters and 16 write hit counters , each of which may be 
implemented with 16 bits , in an embodiment . Such counters 
may count , respectively , read and write hits within particular 
positions of a stack , organized by recency of access . 
[ 0047 ] As described herein , cache controller 270 may 
maintain read and write hit statistics with regard to particular 
LRU positions of an LRU stack using counters 276 , 278 . 
Allocation circuit 277 may trigger allocation of a virtual 
write buffer within LLC 250 , e . g . , based on bandwidth 
information of a memory interconnect , which may be 
received from a memory controller ( not shown for ease of 
illustration in FIG . 2 ) . Upon allocation of a virtual write 
buffer , allocation circuit 277 issues an allocation signal to 
replacement circuit 272 to cause it to update a replacement 
policy used in determining cache lines for eviction . In one 
embodiment , this update changes the replacement policy 
from a given LRU policy to a LRU clean policy , such that 
clean lines are preferentially evicted from LLC 250 . This 
change to the replacement policy may minimize impact on 
memory traffic , since such clean lines are not written back to 
memory when they are evicted from LLC 250 . Still further , 
allocation circuit 277 may initialize the virtual write buffer 
to be of a predetermined size . Then based at least in part on 
hit statistics maintained within counters 276 , 278 , control 
circuit 273 can dynamically update a size of the virtual write 
buffer . Understand while shown with this particular embodi 
ment in FIG . 2 , many variations and alternatives are pos 
sible . For example , while virtual write buffer is illustrated 
and discussed as being present within LLC 250 , embodi 
ments are not so limited . That is , in other embodiments the 
advantages of a virtual write buffer may be realized within 
other cache memories of a cache memory hierarchy to 
reduce bandwidth on other interconnects . 
10048 ] Hit histogram information based on the hit count 
information maintained by counters 276 , 278 may be used to 
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prevent hit rate loss in LLC 250 . More specifically this 
information may be used to dynamically adjust the size of 
the virtual write buffer in order to limit the LLC hit rate loss . 
In an embodiment , the virtual write buffer is sized periodi 
cally based on two metrics . First , a bound is imposed on the 
percentage of sacrificed LLC hits due to implementation of 
the clean LRU replacement policy . Second , a bound is 
imposed on the probability of dirty inclusion victims . 
[ 0049 ] A read hit histogram ( RHH ) is maintained using 
information from read hit counters 276 . More specifically , 
this RHH records the number of LLC read hits in each LRU 
stack position . In one particular embodiment , the number of 
ways beginning from the tail of the LRU stack ( namely the 
LRU position ) that cover 1 / 16th of all LLC read hits may 
define a maximum stretch of the virtual write buffer . Let this 
be called MaxReadStretch . This value guarantees that if the 
write buffer becomes full , a clean LRU replacement policy 
will not sacrifice more than 1 / 16th of LLC hits . 
[ 0050 ] A write hit histogram ( WHH ) is also maintained 
using information from write hit counters 278 . More spe 
cifically , this WHH records the number of LLC write hits in 
each LRU stack position . In one particular embodiment , the 
number of ways starting from the tail of the LRU stack that 
cover half of all LLC write hits may define a maximum 
stretch of the virtual write buffer . Let this be called Max 
WriteStretch . Evicting a block beyond the Max WriteStretch 
has the probability of generating a dirty inclusion victim 
equal to ( # dirty blocks / # all blocks ) * inclusion victim 
fraction * fraction of write hits covered by MaxWriteStretch . 
Assuming 1 / 3 ” a dirty blocks , this leads to ( 1 / 3 ) * ( 1 / 4 ) * ( 1 / 2 ) , or 
about a 4 % chance of generating a dirty inclusion victim . 
Note that the inclusion victim fraction may be set as the ratio 
of MLC to LLC capacity . 
[ 0051 ] In one particular embodiment , these two values 
may be used in determining an appropriate size of the virtual 
write buffer . In such embodiments , the write buffer size may 
be dynamically controlled to be a maximum of a predeter 
mined ( or initialization ) value and these stretch values , as 
follows : max ( 3 , min ( Max WriteStretch , MaxReadStretch ) ) . 
In this example in other words , the minimum virtual write 
buffer capacity is set to 3 LLC ways . Of course , in other 
embodiments other values may exist , or other techniques 
may be used to determine the virtual write buffer size . 
[ 0052 ] Different sets in the virtual write buffer fill up with 
dirty blocks at different rates . Some sets fill up quickly and 
put pressure on the clean LRU replacement policy for those 
sets . In embodiments there may be multiple criteria to be 
considered in determining when it is appropriate to drain 
entries from the virtual write buffer . In one embodiment , a 
first drain or scrub trigger may be based on the number of 
overflown sets in the virtual write buffer . As used herein , the 
term " overflown set ' means a set in which all of the number 
of ways that constitute the virtual write buffer include dirty 
data . Note that different applications can tolerate different 
numbers of overflown sets . For example , an application with 
reasonably high hit rate can sacrifice a bigger number of hits 
to delay a scrub operation . In one implementation , a lookup 
table ( LUT ) may be used to map hits per fill to the number 
of tolerable overflown sets . More specifically , the LUT may 
be used to identify how many overflown sets an application 
can tolerate . If the hits per fill is high for that application 
( e . g . , hit rate is high ) , more overflown sets can be tolerated . 
The rationale is that since the hit rate is high , the memory 
bandwidth demand is lower , and hence a little decrease in hit 

rate will not hurt memory bandwidth demand . Note that 
RHH information may still cap the overall hit rate loss . In an 
embodiment , each set within LLC 250 may include an 
overflow indicator , e . g . , a single bit , which when set is to 
indicate that the virtual write buffer for the set is full ( namely 
each way of the virtual write buffer , to the specified depth 
stores dirty data ) . This information may be used to identify 
when a scrub may be triggered due to a capacity issue . 
[ 0053 ] A second criterion for triggering a scrub may be 
based on the number of reads pending on a memory channel . 
In a particular system configuration , an LLC may be con 
figured with multiple banks , where each LLC bank is 
associated with a specific memory channel . If the number of 
reads pending on that channel is higher than a threshold , 
scrubbing is deferred until the number of pending reads falls 
below the threshold . In one embodiment , this threshold may 
be set to : ( number of miss status holding registers ( MSHRs ) , 
which is a measure of pending reads in a bank ) ) x ( number of 
LLC banks feeding to a DRAM channel ) . In other words , a 
write scrubbing is triggered in an LLC bank only if the 
memory channel is not saturated with the maximum number 
of reads . Of course in other embodiments , a LLC - wide 
analysis may be performed . 
[ 0054 ] In typical embodiments , each of these criteria may 
be considered independently , such that scrubbing is trig 
gered when either criterion is met . In another embodiment , 
both the criteria may be satisfied for an LLC bank to enter 
the scrub mode . 
[ 0055 ] In the scrub mode , cache controller 270 or other 
control circuit may analyze each set ( e . g . , one or more times 
or rounds ) . In each visit or analysis to a set , at most one dirty 
block closest to the LRU position may be scrubbed , in one 
embodiment . Note that this scrub operation may be imple 
mented as a write of the dirty data to memory and a 
corresponding update to cache coherency metadata of the 
line to indicate that the line now stores clean data . Stated 
another way , this scrub of a line is a write to memory and 
update to the cache coherency state of the line , without 
victimizing the line . In one embodiment , within a set , the 
search for a dirty block is restricted to the lowest N LRU 
stack positions to minimize over scrubs . This variable N 
may be determined periodically by visiting the WHH and 
computing the number of ways , starting from the LRU tail 
that cover at most 1 / 16th of all LLC write hits . 
[ 0056 ] Referring now to FIG . 3 , shown is a flow diagram 
of a method in accordance with an embodiment . More 
specifically , method 300 is a method for controlling a virtual 
write buffer as described herein . In embodiments , method 
300 may be performed by a cache controller , such as an LLC 
cache controller , which may be implemented as one or more 
hardware circuits , firmware , software and / or combinations 
thereof . 
[ 0057 ] At a high level , method 300 may be used to allocate 
a virtual write buffer in the LLC based on system conditions 
and maintain the virtual write buffer during at least portions 
of operation , including inserting dirty lines into entries of the 
virtual write buffer and adaptively draining or scrubbing 
these dirty lines from the virtual write buffer . Maintenance 
may further include dynamic control of the virtual write 
buffer , including dynamic sizing of the virtual write buffer , 
dynamic allocation / deallocation of the virtual write buffer 
and so forth . 
0058 ] As illustrated , method 300 begins by monitoring a 
write bandwidth with a memory ( block 310 ) . More specifi 
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cally , a write bandwidth of an interconnect that couples a 
processor to a memory such as a DRAM can be monitored . 
In embodiments , an integrated memory controller of the 
processor may maintain such statistics regarding channel 
usage . As an example , statistics may be maintained as to 
read and write bandwidths for read and write operations on 
the interconnect . In different implementations , such statis 
tics may be maintained independently for multiple channels . 
Furthermore , while in the embodiment of FIG . 3 , the moni 
toring performed at block 310 is with regard to write 
bandwidth , understand the scope of the present invention is 
not limited in this regard , and in other embodiments this 
monitoring may be of read bandwidth or a combination of 
read and write bandwidths . 
[ 0059 ] In any event , control next passes to diamond 315 to 
determine whether this monitored bandwidth exceeds a first 
bandwidth threshold . Although the scope of the present 
invention is not limited in this regard , this first bandwidth 
threshold may be set at a given level of bandwidth , e . g . , as 
a percentage of maximum bandwidth . If the bandwidth is 
determined not to exceed this first bandwidth threshold , 
control passes back to block 310 for further monitoring of 
the bandwidth . Note that this bandwidth monitoring may 
occur periodically . 
[ 0060 ] Still with reference to FIG . 3 , if it is determined at 
diamond 315 that the bandwidth exceeds the first bandwidth 
threshold , control passes to block 320 , where a virtual write 
buffer is allocated . More specifically , this virtual write buffer 
is allocated within the LLC . As generally described above , 
the virtual write buffer may be implemented as one or more 
ways within each set of the LLC . In the embodiment of FIG . 
3 , this allocation may be initialized at a predetermined 
number of ways . For example , in a cache implementation in 
which the LLC is arranged as an N - set 16 - way associative 
cache memory , the predetermined number of ways may be 
set equal to three . Of course other examples are possible in 
different embodiments . 
[ 0061 ] Allocation of the virtual write buffer may include 
additional operations , such as updating a replacement policy 
within the LLC . For example , the virtual write buffer allo 
cation may be performed by updating the replacement policy 
to a clean LRU policy . That is , to enable a virtual write 
buffer as described herein , the replacement policy may be set 
such that clean lines are preferentially evicted from the LLC 
and dirty lines are not selected as victims . Note that by 
evicting clean lines , there is no impact on memory band 
width , as these lines may simply be dropped , since they are 
clean and thus include the same data as present in the 
memory . Understand that in some embodiments , additional 
operations to allocate the virtual write buffer may occur . 
[ 0062 ] At this point in operation , the virtual write buffer is 
allocated , such that when dirty lines are written into the 
LLC , they are more likely to be maintained within the LLC 
and be less likely to be evicted from the LLC ( to the memory 
controller ( more specifically , a write buffer within the 
memory controller ) and in turn to the memory ) . 
10063 ) Still referring to FIG . 3 , additional operations 
regarding dynamic maintenance and control of the virtual 
write buffer are further described . As illustrated , during 
operation , control proceeds to block 330 where read and 
write histograms may be monitored . More specifically as 
described herein , these read and write histograms provide hit 
statistical information regarding read and write requests that 
hit within the LLC at particular LRU positions within an 

LRU stack . That is , this statistical information is maintained 
by LRU position and not according to physical way infor 
mation . During operation the size of the virtual write buffer 
can be dynamically determined based at least in part on the 
read and / or write hit histogram information ( block 340 ) . For 
example , depending upon certain so - called stretch values 
determined based on these histograms , the number of ways 
allocated for the virtual write buffer can be dynamically 
increased or decreased , details of which are described above . 
[ 0064 ] Still further with reference to FIG . 3 , during opera 
tion consumption of the virtual write buffer may be moni 
tored ( block 350 ) . In embodiments , this consumption moni 
toring may be by way of identification of a number of sets 
within the LLC that have their virtual write buffer allocation 
full ( e . g . , by reference to an overflow indicator ) . For 
example , assume an initial configuration in which a maxi 
mum of three ways per set are allocated to the virtual write 
buffer . In this case , a determination of a full virtual write 
buffer for a set may be when these three ways ( beginning 
with the LRU position ) store dirty data . Next it may be 
determined based upon this monitoring whether the number 
of full virtual write buffer sets exceeds a threshold ( diamond 
360 ) . If not , control next passes to diamond 370 where it 
may be determined whether a read bandwidth on the 
memory interconnect is less than a second bandwidth thresh 
old . If it is not , no further operations occur , and control 
passes back to diamond 350 . 
[ 0065 ] Note with regard to FIG . 3 , if it is determined at 
diamond 360 that the number of full virtual write buffer sets 
exceeds the threshold or at diamond 370 that the read 
bandwidth is less than the second bandwidth threshold , 
control passes to block 380 where a drain operation may be 
initiated . More specifically , this drain operation is thus an 
adaptive write draining of dirty lines from the virtual write 
buffer to memory ( more specifically to the memory control 
ler and thereafter to memory ) . Understand while shown at 
this high level in the embodiment of FIG . 3 , many variations 
and alternatives are possible . 
[ 0066 ] Referring now to FIG . 4 , shown is a flow diagram 
of a method in accordance with another embodiment of the 
present invention . More specifically , method 400 is a 
method for setting values that may be used to determine a 
depth or size of a virtual write buffer as described herein . In 
embodiments , method 400 may be performed by a cache 
controller , such as an LLC cache controller , which may be 
implemented as one or more hardware circuits , firmware , 
software and / or combinations thereof . 
[ 0067 ] As illustrated , method 400 begins by accumulating 
a hit counter for a given LRU stack position with an 
accumulated hit counter value ( block 410 ) . Note that this 
accumulation may begin at an LRU position by access to a 
hit counter associated with the LRU position ( within a set of 
such hit counters ) . Thus in an initial iteration of the accu 
mulation at block 410 , this accumulated hit counter value 
may be set at an initialized value of zero . Understand that a 
cache controller may maintain independent hit counters for 
read and write hits . Still further , in an embodiment herein , 
multiple hit counters may be maintained , with a hit counter 
for each LRU position within an LRU stack . In an example 
of a cache arrangement having 16 ways , there thus may be 
16 LRU positions . As such , a cache controller may maintain 
16 read hit counters and 16 write hit counters . Understand 
that the cache controller may update the appropriate read / 
write hit counter on a given read or write hit to the 
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corresponding LRU position when a request hits within that 
LRU position in one of the sets of the LLC . 
[ 0068 ] Still with reference to FIG . 4 , next it is determined 
at diamond 420 whether the accumulated hit count value 
meets or exceeds a hit threshold . Although the scope of the 
present invention is not limited in this regard , this hit 
threshold may correspond to a given percentage of hits . Note 
that this total number of hits can be determined by summing 
all of the hit counters of all LRU positions within the LRU 
stack . In a particular embodiment , for a read hit analysis , this 
hit threshold may be set to 1 / 16 . If it is determined that the 
accumulated hit counter value does not meet or exceed this 
hit threshold , control passes to block 430 where a variable 
X may be incremented . Thereafter , control passes back to 
block 410 for accumulation of the next hit counter with the 
accumulated hit counter value . 
100691 Still with reference to FIG . 4 , instead if it is 
determined at diamond 420 that the accumulated hit counter 
value meets or exceeds the hit threshold , control passes to 
block 440 . At block 440 a maximum stretch value may be set 
equal to the value of the variable N . Assume , for purposes 
of example , that the accumulated hit counter value that 
reached the hit threshold occurred after the hit counters for 
four ways were accumulated . In this case , the maximum 
stretch value may be set to X = 4 . 
[ 0070 ] Note that method 400 may proceed independently 
for read hit counters and write hit counters . As such , two 
different maximum stretch values may be set , one associated 
with read hits and the other associated with write hits . As 
described herein , both of these values may be used to 
determine a size or depth of the virtual write buffer . For 
example , the cache controller of the LLC may set the virtual 
write buffer depth to a smallest one of these two maximum 
stretch values , assuming that the value of whichever is the 
smaller maximum stretch value exceeds the baseline or 
predetermined virtual write buffer depth . Of course other 
examples are possible . 
[ 0071 ] Referring now to FIG . 5 , shown is a flow diagram 
of a method in accordance with yet another embodiment of 
the present invention . More specifically , method 500 may be 
performed by a cache controller in performing adaptive 
write draining or scrubbing as described herein . In embodi 
ments , method 500 may be performed by a cache controller , 
such as an LLC cache controller , which may be implemented 
as one or more hardware circuits , firmware , software and / or 
combinations thereof . As illustrated , method 500 begins by 
identifying a dirty line of a set that is closest to the LRU 
position ( block 510 ) . Note that method 500 may begin in 
response to a trigger for draining of the virtual write buffer . 
This trigger may be based upon a capacity issue with regard 
to the virtual write buffer and / or available memory band 
width . Of course other triggers may be possible . 
[ 0072 ] As an option , it may be determined whether the 
identified dirty line is within a threshold distance of the LRU 
position itself ( diamond 520 ) . As an example , this threshold 
distance may restrict the search for dirty lines to the lowest 
N LRU stack positions , thus minimizing over scrubs . In 
other cases , this optional determination may not occur . In 
any event , control passes to block 530 where the identified 
dirty line may be written to the memory controller ( for 
eventual write back to the memory ) . Note that this write of 
the identified dirty line does not cause an eviction of the 
dirty line . Instead as further shown in FIG . 5 at block 540 the 
status or metadata associated with the dirty line can be 

updated to a clean state , as the memory will be updated with 
the newly written information . By not evicting this line at 
this point during the scrub operation , the information 
remains in the LLC where it may be hit one or more times 
prior to eviction , improving hit rates , while at the same time 
providing the dirty data to memory . 
[ 0073 ] Still with reference to FIG . 5 , control next passes to 
diamond 550 where it is determined whether all sets within 
the LLC have been visited in a given round of this adaptive 
write draining . If not all sets have been visited control passes 
to block 560 , where the set number may be incremented . 
After this increment to set number occurs , control passes 
back to block 510 where the next set may be analyzed to 
identify a given dirty line . 
[ 0074 ] Still referring to FIG . 5 , if instead it is determined 
that all sets have been visited ( at diamond 550 ) , control 
passes to block 570 where a round counter itself may be 
incremented , meaning that a full round of adaptive write 
draining of all sets of the LLC has been performed . Next it 
is determined whether a threshold number of rounds of the 
adaptive write draining have been completed ( diamond 
580 ) . Although the scope of the present invention is not 
limited in this regard , in one embodiment this threshold may 
be set at two rounds , meaning that for a given iteration or 
triggering of adaptive write draining , each set is visited 
twice , potentially leading to two dirty lines being written 
back to memory ( via the memory controller ) . If the threshold 
number of rounds has not been completed , control passes to 
block 510 where another round of adaptive write draining 
begins . Otherwise , when it is determined that the threshold 
number of rounds has completed , method 500 concludes for 
that adaptive write draining process . Note that this adaptive 
write draining thus occurs for all sets of the LLC , even when 
only some number of the sets have full virtual write buffers . 
Stated another way , adaptive write draining of one or more 
sets may occur even though such one or more sets do not 
have full virtual write buffers . And as seen in the illustration 
of FIG . 5 , for any given set of the LLC , an entry may be 
drained only when a dirty line is within a threshold distance 
of the LRU position in an embodiment incorporating the 
determination at optional diamond 520 ) . For example , 
assume this threshold distance is four . In this case , assuming 
that the 4 LRU positions of a set do not have dirty data , no 
draining of an entry within that set occurs during a given 
round of the adaptive write draining . Understand while 
shown at this high level in the embodiment of FIG . 5 , many 
variations and alternatives are possible . 
[ 0075 ] Referring now to FIG . 6 , shown is a block diagram 
of a micro - architecture of a processor core in accordance 
with one embodiment of the present invention . As shown in 
FIG . 6 , processor core 600 may be a multi - stage pipelined 
out - of - order processor . As seen in FIG . 6 , core 600 includes 
front end units 610 , which may be used to fetch instructions 
to be executed and prepare them for use later in the proces 
sor pipeline . For example , front end units 610 may include 
a fetch unit 601 , an instruction cache 603 , and an instruction 
decoder 605 . In some implementations , front end units 610 
may further include a trace cache , along with microcode 
storage as well as a micro - operation storage . Fetch unit 601 
may fetch macro - instructions , e . g . , from memory or instruc 
tion cache 603 , and feed them to instruction decoder 605 to 
decode them into primitives , i . e . , micro - operations for 
execution by the processor . 
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[ 0076 ] Coupled between front end units 610 and execution 
units 620 is an out - of - order ( 000 ) engine 615 that may be 
used to receive the micro - instructions and prepare them for 
execution . More specifically 000 engine 615 may include 
various buffers to re - order micro - instruction flow and allo 
cate various resources needed for execution , as well as to 
provide renaming of logical registers onto storage locations 
within various register files such as register file 630 and 
extended register file 635 . Register file 630 may include 
separate register files for integer and floating point opera 
tions . For purposes of configuration , control , and additional 
operations , a set of machine specific registers ( MSRs ) 638 
may also be present and accessible to various logic within 
core 600 ( and external to the core ) . 
10077 ] Various resources may be present in execution 
units 620 , including , for example , various integer , floating 
point , and single instruction multiple data ( SIMD ) logic 
units , among other specialized hardware . For example , such 
execution units may include one or more arithmetic logic 
units ( ALUS ) 622 and one or more vector execution units 
624 , among other such execution units . 
[ 0078 ] Results from the execution units may be provided 
to retirement logic , namely a reorder buffer ( ROB ) 640 . 
More specifically , ROB 640 may include various arrays and 
logic to receive information associated with instructions that 
are executed . This information is then examined by ROB 
640 to determine whether the instructions can be validly 
retired and result data committed to the architectural state of 
the processor , or whether one or more exceptions occurred 
that prevent a proper retirement of the instructions . Of 
course , ROB 640 may handle other operations associated 
with retirement . 
100791 As shown in FIG . 6 , ROB 640 is coupled to a cache 
650 which , in one embodiment may be a low level cache 
( e . g . , an Ll cache ) although the scope of the present 
invention is not limited in this regard . Also , execution units 
620 can be directly coupled to cache 650 . From cache 650 , 
data communication may occur with higher level caches , 
system memory and so forth . As discussed herein , cache 650 
may be in communication with higher level caches including 
one or more of an L2 and LLC . Thus as illustrated in FIG . 
6 , a higher level cache 660 ( external to core 600 ) couples to 
cache 650 . In embodiments herein , LLC 660 may be con 
figured to dynamically allocate and manage an adaptive 
write buffer , e . g . , based at least in part on memory band 
width , to reduce memory traffic . While shown with this high 
level in the embodiment of FIG . 6 , understand the scope of 
the present invention is not limited in this regard . For 
example , while the implementation of FIG . 6 is with regard 
to an out - of - order machine such as of an Intel® x86 instruc 
tion set architecture ( ISA ) , the scope of the present invention 
is not limited in this regard . That is , other embodiments may 
be implemented in an in - order processor , a reduced instruc 
tion set computing ( RISC ) processor such as an ARM - based 
processor , or a processor of another type of ISA that can 
emulate instructions and operations of a different ISA via an 
emulation engine and associated logic circuitry . 
[ 0080 ] Referring now to FIG . 7 , shown is a block diagram 
of a micro - architecture of a processor core in accordance 
with another embodiment . In the embodiment of FIG . 7 , 
core 700 may be a low power core of a different micro - 
architecture , such as an Intel® AtomTM - based processor 
having a relatively limited pipeline depth designed to reduce 
power consumption . As seen , core 700 includes an instruc 

tion cache 710 coupled to provide instructions to an instruc 
tion decoder 715 . A branch predictor 705 may be coupled to 
instruction cache 710 . Note that instruction cache 710 may 
further be coupled to another level of a cache memory , such 
as an L2 cache ( not shown for ease of illustration in FIG . 7 ) . 
In turn , instruction decoder 715 provides decoded instruc 
tions to an issue queue ( IQ ) 720 for storage and delivery to 
a given execution pipeline . A microcode ROM 718 is 
coupled to instruction decoder 715 . 
[ 0081 ] A floating point pipeline 730 includes a floating 
point ( FP ) register file 732 which may include a plurality of 
architectural registers of a given bit width such as 128 , 256 
or 512 bits . Pipeline 730 includes a floating point scheduler 
734 to schedule instructions for execution on one of multiple 
execution units of the pipeline . In the embodiment shown , 
such execution units include an ALU 735 , a shuffle unit 736 , 
and a floating point adder 738 . In turn , results generated in 
these execution units may be provided back to buffers and / or 
registers of register file 732 . Of course understand while 
shown with these few example execution units , additional or 
different floating point execution units may be present in 
another embodiment . 
[ 0082 ] An integer pipeline 740 also may be provided . In 
the embodiment shown , pipeline 740 includes an integer 
( INT ) register file 742 which may include a plurality of 
architectural registers of a given bit width such as 128 or 256 
bits . Pipeline 740 includes an integer execution ( IE ) sched 
uler 744 to schedule instructions for execution on one of 
multiple execution units of the pipeline . In the embodiment 
shown , such execution units include an ALU 745 , a shifter 
unit 746 , and a jump execution unit ( JEU ) 748 . In turn , 
results generated in these execution units may be provided 
back to buffers and / or registers of register file 742 . Of course 
understand while shown with these few example execution 
units , additional or different integer execution units may be 
present in another embodiment . 
[ 0083 ] A memory execution ( ME ) scheduler 750 may 
schedule memory operations for execution in an address 
generation unit ( AGU ) 752 , which is also coupled to a TLB 
754 . As seen , these structures may couple to a data cache 
760 , which may be a LO and / or L1 data cache that in turn 
couples to additional levels of a cache memory hierarchy , 
including an L2 cache memory and which may be part of a 
cache memory hierarchy , and which may dynamically 
implement an adaptive write buffer as described herein . 
[ 0084 ] To provide support for out - of - order execution , an 
allocator / renamer 770 may be provided , in addition to a 
reorder buffer 780 , which is configured to reorder instruc 
tions executed out of order for retirement in order . Although 
shown with this particular pipeline architecture in the illus 
tration of FIG . 7 , understand that many variations and 
alternatives are possible . 
[ 0085 ] Referring to FIG . 8 , shown is a block diagram of a 
micro - architecture of a processor core in accordance with 
yet another embodiment . As illustrated in FIG . 8 , a core 800 
may include a multi - staged in - order pipeline to execute at 
very low power consumption levels . As one such example , 
processor 800 may have a micro - architecture in accordance 
with an ARM Cortex A53 design available from ARM 
Holdings , LTD . , Sunnyvale , Calif . In an implementation , an 
8 - stage pipeline may be provided that is configured to 
execute both 32 - bit and 64 - bit code . Core 800 includes a 
fetch unit 810 that is configured to fetch instructions and 
provide them to a decode unit 815 , which may decode the 



US 2019 / 0286567 A1 Sep . 19 , 2019 

instructions , e . g . , macro - instructions of a given ISA such as 
an ARMv8 ISA . Note further that a queue 830 may couple 
to decode unit 815 to store decoded instructions . Decoded 
instructions are provided to an issue logic 825 , where the 
decoded instructions may be issued to a given one of 
multiple execution units . 
[ 0086 ] With further reference to FIG . 8 , issue logic 825 
may issue instructions to one of multiple execution units . In 
the embodiment shown , these execution units include an 
integer unit 835 , a multiply unit 840 , a floating point / vector 
unit 850 , a dual issue unit 860 , and a load / store unit 870 . The 
results of these different execution units may be provided to 
a writeback ( WB ) unit 880 . Understand that while a single 
writeback unit is shown for ease of illustration , in some 
implementations separate writeback units may be associated 
with each of the execution units . Furthermore , understand 
that while each of the units and logic shown in FIG . 8 is 
represented at a high level , a particular implementation may 
include more or different structures . A processor designed 
using one or more cores having a pipeline as in FIG . 8 may 
be implemented in many different end products , extending 
from mobile devices to server systems . 
[ 0087 ] Referring to FIG . 9 , shown is a block diagram of a 
micro - architecture of a processor core in accordance with a 
still further embodiment . As illustrated in FIG . 9 , a core 900 
may include a multi - stage multi - issue out - of - order pipeline 
to execute at very high performance levels ( which may 
occur at higher power consumption levels than core 800 of 
FIG . 8 ) . As one such example , processor 900 may have a 
microarchitecture in accordance with an ARM Cortex A57 
design . In an implementation , a 15 ( or greater ) - stage pipe 
line may be provided that is configured to execute both 
32 - bit and 64 - bit code . In addition , the pipeline may provide 
for 3 ( or greater ) - wide and 3 ( or greater ) - issue operation . 
Core 900 includes a fetch unit 910 that is configured to fetch 
instructions and provide them to a decoder / renamer / dis 
patcher unit 915 coupled to a cache 920 . Unit 915 may 
decode the instructions , e . g . , macro - instructions of an 
ARMv8 instruction set architecture , rename register refer 
ences within the instructions , and dispatch the instructions 
( eventually ) to a selected execution unit . Decoded instruc 
tions may be stored in a queue 925 . Note that while a single 
queue structure is shown for ease of illustration in FIG . 9 , 
understand that separate queues may be provided for each of 
the multiple different types of execution units . 
[ 0088 ] Also shown in FIG . 9 is an issue logic 930 from 
which decoded instructions stored in queue 925 may be 
issued to a selected execution unit . Issue logic 930 also may 
be implemented in a particular embodiment with a separate 
issue logic for each of the multiple different types of 
execution units to which issue logic 830 couples . 
10089 ] Decoded instructions may be issued to a given one 
of multiple execution units . In the embodiment shown , these 
execution units include one or more integer units 935 , a 
multiply unit 940 , a floating point / vector unit 950 , a branch 
unit 960 , and a load / store unit 970 . In an embodiment , 
floating point / vector unit 950 may be configured to handle 
SIMD or vector data of 128 or 256 bits . Still further , floating 
point / vector execution unit 950 may perform IEEE - 754 
double precision floating - point operations . The results of 
these different execution units may be provided to a write - 
back unit 980 . Note that in some implementations separate 
writeback units may be associated with each of the execu 
tion units . Furthermore , understand that while each of the 

units and logic shown in FIG . 9 is represented at a high level , 
a particular implementation may include more or different 
structures . 
10090 ] A processor designed using one or more cores 
having pipelines as in any one or more of FIGS . 6 - 9 may be 
implemented in many different end products , extending 
from mobile devices to server systems . Referring now to 
FIG . 10 , shown is a block diagram of a processor in 
accordance with another embodiment of the present inven 
tion . In the embodiment of FIG . 10 , processor 1000 may be 
a SoC including multiple domains , each of which may be 
controlled to operate at an independent operating voltage 
and operating frequency . As a specific illustrative example , 
processor 1000 may be an Intel® Architecture CoreTM - based 
processor such as an i3 , i5 , i7 or another such processor 
available from Intel Corporation . However , other low power 
processors such as available from Advanced Micro Devices , 
Inc . ( AMD ) of Sunnyvale , Calif . , an ARM - based design 
from ARM Holdings , Ltd . or licensee thereof or a MIPS 
based design from MIPS Technologies , Inc . of Sunnyvale , 
Calif . , or their licensees or adopters may instead be present 
in other embodiments such as an Apple A7 processor , a 
Qualcomm Snapdragon processor , or Texas Instruments 
OMAP processor . Such SoC may be used in a low power 
system such as a smartphone , tablet computer , phablet 
computer , UltrabookTM computer or other portable comput 
ing device , which may incorporate a heterogeneous system 
architecture having a heterogeneous system architecture 
based processor design . 
[ 0091 ] In the high level view shown in FIG . 10 , processor 
1000 includes a plurality of core units 1010a - 1010n . Each 
core unit may include one or more processor cores , one or 
more cache memories and other circuitry . Each core unit 
1010 may support one or more instruction sets ( e . g . , an x86 
instruction set ( with some extensions that have been added 
with newer versions ) ; a MIPS instruction set ; an ARM 
instruction set ( with optional additional extensions such as 
NEON ) ) or other instruction set or combinations thereof . 
Note that some of the core units may be heterogeneous 
resources ( e . g . , of a different design ) . In addition , each such 
core may be coupled to a shared cache memory 1015 which 
in an embodiment may be a shared last level cache memory 
and which may be part of a cache memory hierarchy 
providing an adaptive write buffer , controllable as described 
herein . A non - volatile storage 1030 may be used to store 
various program and other data . For example , this storage 
may be used to store at least portions of microcode , boot 
information such as a BIOS , other system software or so 
forth . 
10092 ] Each core unit 1010 may also include an interface 
such as a bus interface unit to enable interconnection to 
additional circuitry of the processor . In an embodiment , each 
core unit 1010 couples to a coherent fabric that may act as 
a primary cache coherent on - die interconnect that in turn 
couples to a memory controller 1035 . In turn , memory 
controller 1035 controls communications with a memory 
such as a DRAM ( not shown for ease of illustration in FIG . 
10 ) , and may maintain bandwidth statistics used for control 
of an adaptive write buffer . 
[ 0093 ] In addition to core units , additional processing 
engines are present within the processor , including at least 
one graphics unit 1020 which may include one or more 
graphics processing units ( GPUs ) to perform graphics pro 
cessing as well as to possibly execute general purpose 
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operations on the graphics processor ( so - called GPGPU 
operation ) . In addition , at least one image signal processor 
1025 may be present . Signal processor 1025 may be con 
figured to process incoming image data received from one or 
more capture devices , either internal to the SoC or off - chip . 
[ 0094 ) Other accelerators also may be present . In the 
illustration of FIG . 10 , a video coder 1050 may perform 
coding operations including encoding and decoding for 
video information , e . g . , providing hardware acceleration 
support for high definition video content . A display control 
ler 1055 further may be provided to accelerate display 
operations including providing support for internal and 
external displays of a system . In addition , a security pro 
cessor 1045 may be present to perform security operations 
such as secure boot operations , various cryptography opera 
tions and so forth . Each of the units may have its power 
consumption controlled via a power manager 1040 . 
[ 0095 ] In some embodiments , SoC 1000 may further 
include a non - coherent fabric coupled to the coherent fabric 
to which various peripheral devices may couple . One or 
more interfaces 1060a - 1060d enable communication with 
one or more off - chip devices . Such communications may be 
via a variety of communication protocols such as PCIeTM , 
GPIO , USB , 1°C , UART , MIPI , SDIO , DDR , SPI , HDMI , 
among other types of communication protocols . Although 
shown at this high level in the embodiment of FIG . 10 , 
understand the scope of the present invention is not limited 
in this regard . 
[ 0096 ] Referring now to FIG . 11 , shown is a block dia 
gram of a representative SoC . In the embodiment shown , 
SoC 1100 may be a multi - core SoC configured for low 
power operation to be optimized for incorporation into a 
smartphone or other low power device such as a tablet 
computer or other portable computing device . As an 
example , SoC 1100 may be implemented using asymmetric 
or different types of cores , such as combinations of higher 
power and / or low power cores , e . g . , out - of - order cores and 
in - order cores . In different embodiments , these cores may be 
based on an Intel® ArchitectureTM core design or an ARM 
architecture design . In yet other embodiments , a mix of Intel 
and ARM cores may be implemented in a given SoC . 
[ 0097 ] As seen in FIG . 11 , SoC 1100 includes a first core 
domain 1110 having a plurality of first cores 1112a - 1112d . In 
an example , these cores may be low power cores such as 
in - order cores . In one embodiment these first cores may be 
implemented as ARM Cortex A53 cores . In turn , these cores 
couple to a cache memory 1115 of core domain 1110 . In 
addition , SoC 1100 includes a second core domain 1120 . In 
the illustration of FIG . 11 , second core domain 1120 has a 
plurality of second cores 1122a - 1122d . In an example , these 
cores may be higher power - consuming cores than first cores 
1112 . In an embodiment , the second cores may be out - of 
order cores , which may be implemented as ARM Cortex 
A57 cores . In turn , these cores couple to a cache memory 
1125 of core domain 1120 . Note that while the example 
shown in FIG . 11 includes 4 cores in each domain , under 
stand that more or fewer cores may be present in a given 
domain in other examples . Cache memories 1115 , 1125 may 
provide a cache memory hierarchy that has one or more 
adaptive write buffers , as described herein . 
[ 0098 ] With further reference to FIG . 11 , a graphics 
domain 1130 also is provided , which may include one or 
more graphics processing units ( GPUs ) configured to inde 
pendently execute graphics workloads , e . g . , provided by one 

or more cores of core domains 1110 and 1120 . As an 
example , GPU domain 1130 may be used to provide display 
support for a variety of screen sizes , in addition to providing 
graphics and display rendering operations . 
[ 0099 ] As seen , the various domains couple to a coherent 
interconnect 1140 , which in an embodiment may be a cache 
coherent interconnect fabric that in turn couples to an 
integrated memory controller 1150 . Coherent interconnect 
1140 may include a shared cache memory , such as an L3 
cache , in some examples . In an embodiment , memory con 
troller 1150 may be a direct memory controller to provide for 
multiple channels of communication with an off - chip 
memory , such as multiple channels of a DRAM ( not shown 
for ease of illustration in FIG . 11 ) . 
[ 0100 ] Referring now to FIG . 12 , shown is a block dia 
gram of another example SoC . In the embodiment of FIG . 
12 , SoC 1200 may include various circuitry to enable high 
performance for multimedia applications , communications 
and other functions . As such , SoC 1200 is suitable for 
incorporation into a wide variety of portable and other 
devices , such as smartphones , tablet computers , smart TVs 
and so forth . In the example shown , SoC 1200 includes a 
central processor unit ( CPU ) domain 1210 . In an embodi 
ment , a plurality of individual processor cores may be 
present in CPU domain 1210 . As one example , CPU domain 
1210 may be a quad core processor having 4 multithreaded 
cores . Such processors may be homogeneous or heteroge 
neous processors , e . g . , a mix of low power and high power 
processor cores . 
[ 0101 ] In turn , a GPU domain 1220 is provided to perform 
advanced graphics processing in one or more GPUs to 
handle graphics and compute APIs . A DSP unit 1230 may 
provide one or more low power DSPs for handling low 
power multimedia applications such as music playback , 
audio / video and so forth , in addition to advanced calcula 
tions that may occur during execution of multimedia instruc 
tions . 
[ 0102 ] As further illustrated , a shared cache 1235 may 
couple to various domains and may act as an LLC that has 
an adaptive write buffer as described herein . In turn , a 
communication unit 1240 may include various components 
to provide connectivity via various wireless protocols , such 
as cellular communications ( including 3G / 4G LTE ) , wire 
less local area protocols such as BluetoothTM , IEEE 802 . 11 , 
and so forth . 
[ 0103 ] Still further , a multimedia processor 1250 may be 
used to perform capture and playback of high definition 
video and audio content , including processing of user ges 
tures . A sensor unit 1260 may include a plurality of sensors 
and / or a sensor controller to interface to various off - chip 
sensors present in a given platform . An image signal pro 
cessor 1270 may be provided with one or more separate ISPs 
to perform image processing with regard to captured content 
from one or more cameras of a platform , including still and 
video cameras . 
[ 0104 ] A display processor 1280 may provide support for 
connection to a high definition display of a given pixel 
density , including the ability to wirelessly communicate 
content for playback on such display . Still further , a location 
unit 1290 may include a GPS receiver with support for 
multiple GPS constellations to provide applications highly 
accurate positioning information obtained using as such 
GPS receiver . Understand that while shown with this par 



US 2019 / 0286567 A1 Sep . 19 , 2019 
10 

ticular set of components in the example of FIG . 12 , many 
variations and alternatives are possible . 
[ 0105 ] Referring now to FIG . 13 , shown is a block dia 
gram of an example system with which embodiments can be 
used . As seen , system 1300 may be a smartphone or other 
wireless communicator . A baseband processor 1305 is con 
figured to perform various signal processing with regard to 
communication signals to be transmitted from or received by 
the system . In turn , baseband processor 1305 is coupled to 
an application processor 1310 , which may be a main CPU of 
the system to execute an OS and other system software , in 
addition to user applications such as many well - known 
social media and multimedia apps . Application processor 
1310 may further be configured to perform a variety of other 
computing operations for the device , and may include a 
cache memory hierarchy with adaptive write buffer as 
described herein . 
0106 ] In turn , application processor 1310 can couple to a 

user interface / display 1320 , e . g . , a touch screen display . In 
addition , application processor 1310 may couple to a 
memory system including a non - volatile memory , namely a 
flash memory 1330 and a system memory , namely a 
dynamic random access memory ( DRAM ) 1335 . As further 
seen , application processor 1310 further couples to a capture 
device 1340 such as one or more image capture devices that 
can record video and / or still images . 
[ 0107 ] Still referring to FIG . 13 , a universal integrated 
circuit card ( UICC ) 1340 comprising a subscriber identity 
module and possibly a secure storage and cryptoprocessor is 
also coupled to application processor 1310 . System 1300 
may further include a security processor 1350 that may 
couple to application processor 1310 . A plurality of sensors 
1325 may couple to application processor 1310 to enable 
input of a variety of sensed information such as accelerom 
eter and other environmental information . An audio output 
device 1395 may provide an interface to output sound , e . g . , 
in the form of voice communications , played or streaming 
audio data and so forth . 
10108 ] As further illustrated , a near field communication 
( NFC ) contactless interface 1360 is provided that commu 
nicates in a NFC near field via an NFC antenna 1365 . While 
separate antennae are shown in FIG . 13 , understand that in 
some implementations one antenna or a different set of 
antennae may be provided to enable various wireless func 
tionality . 
( 0109 ] A power management integrated circuit ( PMIC ) 
1315 couples to application processor 1310 to perform 
platform level power management . To this end , PMIC 1315 
may issue power management requests to application pro 
cessor 1310 to enter certain low power states as desired . 
Furthermore , based on platform constraints , PMIC 1315 
may also control the power level of other components of 
system 1300 . 
0110 ] . To enable communications to be transmitted and 
received , various circuitry may be coupled between base 
band processor 1305 and an antenna 1390 . Specifically , a 
radio frequency ( RF ) transceiver 1370 and a wireless local 
area network ( WLAN ) transceiver 1375 may be present . In 
general , RF transceiver 1370 may be used to receive and 
transmit wireless data and calls according to a given wireless 
communication protocol such as 3G or 4G wireless com 
munication protocol such as in accordance with a code 
division multiple access ( CDMA ) , global system for mobile 
communication ( GSM ) , long term evolution ( LTE ) or other 

protocol . In addition a GPS sensor 1380 may be present . 
Other wireless communications such as receipt or transmis 
sion of radio signals , e . g . , AM / FM and other signals may 
also be provided . In addition , via WLAN transceiver 1375 , 
local wireless communications can also be realized . 
[ 0111 ] Referring now to FIG . 14 , shown is a block dia 
gram of another example system with which embodiments 
may be used . In the illustration of FIG . 14 , system 1400 may 
be mobile low - power system such as a tablet computer , 2 : 1 
tablet , phablet or other convertible or standalone tablet 
system . As illustrated , a SoC 1410 is present and may be 
configured to operate as an application processor for the 
device , and may include a cache memory hierarchy having 
an adaptive write buffer as described herein . 
[ 0112 ] A variety of devices may couple to SoC 1410 . In 
the illustration shown , a memory subsystem includes a flash 
memory 1440 and a DRAM 1445 coupled to SoC 1410 . In 
addition , a touch panel 1420 is coupled to the SoC 1410 to 
provide display capability and user input via touch , includ 
ing provision of a virtual keyboard on a display of touch 
panel 1420 . To provide wired network connectivity , SoC 
1410 couples to an Ethernet interface 1430 . A peripheral hub 
1425 is coupled to SoC 1410 to enable interfacing with 
various peripheral devices , such as may be coupled to 
system 1400 by any of various ports or other connectors . 
[ 0113 ] In addition to internal power management circuitry 
and functionality within SoC 1410 , a PMIC 1480 is coupled 
to SoC 1410 to provide platform - based power management , 
e . g . , based on whether the system is powered by a battery 
1490 or AC power via an AC adapter 1495 . In addition to 
this power source - based power management , PMIC 1480 
may further perform platform power management activities 
based on environmental and usage conditions . Still further , 
PMIC 1480 may communicate control and status informa 
tion to SoC 1410 to cause various power management 
actions within SoC 1410 . 
[ 0114 ] Still referring to FIG . 14 , to provide for wireless 
capabilities , a WLAN unit 1450 is coupled to SoC 1410 and 
in turn to an antenna 1455 . In various implementations , 
WLAN unit 1450 may provide for communication accord 
ing to one or more wireless protocols . 
[ 0115 ] As further illustrated , a plurality of sensors 1460 
may couple to SoC 1410 . These sensors may include various 
accelerometer , environmental and other sensors , including 
user gesture sensors . Finally , an audio codec 1465 is coupled 
to SoC 1410 to provide an interface to an audio output 
device 1470 . Of course understand that while shown with 
this particular implementation in FIG . 14 , many variations 
and alternatives are possible . 
[ 0116 ] Referring now to FIG . 15 , shown is a block dia 
gram of a representative computer system such as notebook , 
UltrabookTM or other small form factor system . A processor 
1510 , in one embodiment , includes a microprocessor , multi 
core processor , multithreaded processor , an ultra low voltage 
processor , an embedded processor , or other known process 
ing element . In the illustrated implementation , processor 
1510 acts as a main processing unit and central hub for 
communication with many of the various components of the 
system 1500 , and may include a cache memory hierarchy 
with one or more adaptive write buffers as described herein . 
As one example , processor 1510 is implemented as a SoC . 
[ 0117 ] Processor 1510 , in one embodiment , communicates 
with a system memory 1515 . As an illustrative example , the 
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system memory 1515 is implemented via multiple memory 
devices or modules to provide for a given amount of system 
memory . 
[ 0118 ] . To provide for persistent storage of information 
such as data , applications , one or more operating systems 
and so forth , a mass storage 1520 may also couple to 
processor 1510 . In various embodiments , to enable a thinner 
and lighter system design as well as to improve system 
responsiveness , this mass storage may be implemented via 
a SSD or the mass storage may primarily be implemented 
using a hard disk drive ( HDD ) with a smaller amount of SSD 
storage to act as a SSD cache to enable non - volatile storage 
of context state and other such information during power 
down events so that a fast power up can occur on re 
initiation of system activities . Also shown in FIG . 15 , a flash 
device 1522 may be coupled to processor 1510 , e . g . , via a 
serial peripheral interface ( SPI ) . This flash device may 
provide for non - volatile storage of system software , includ 
ing a basic input / output software ( BIOS ) as well as other 
firmware of the system . 
[ 0119 ] Various input / output ( 1 / 0 ) devices may be present 
within system 1500 . Specifically shown in the embodiment 
of FIG . 15 is a display 1524 which may be a high definition 
LCD or LED panel that further provides for a touch screen 
1525 . In one embodiment , display 1524 may be coupled to 
processor 1510 via a display interconnect that can be imple 
mented as a high performance graphics interconnect . Touch 
screen 1525 may be coupled to processor 1510 via another 
interconnect , which in an embodiment can be an I²C inter 
connect . As further shown in FIG . 15 , in addition to touch 
screen 1525 , user input by way of touch can also occur via 
a touch pad 1530 which may be configured within the 
chassis and may also be coupled to the same 1°C intercon 
nect as touch screen 1525 . 
[ 0120 ] For perceptual computing and other purposes , vari 
ous sensors may be present within the system and may be 
coupled to processor 1510 in different manners . Certain 
inertial and environmental sensors may couple to processor 
1510 through a sensor hub 1540 , e . g . , via an 1°C intercon 
nect . In the embodiment shown in FIG . 15 , these sensors 
may include an accelerometer 1541 , an ambient light sensor 
( ALS ) 1542 , a compass 1543 and a gyroscope 1544 . Other 
environmental sensors may include one or more thermal 
sensors 1546 which in some embodiments couple to pro 
cessor 1510 via a system management bus ( SMBus ) bus . 
[ 0121 ] Also seen in FIG . 15 , various peripheral devices 
may couple to processor 1510 via a low pin count ( LPC ) 
interconnect . In the embodiment shown , various compo 
nents can be coupled through an embedded controller 1535 . 
Such components can include a keyboard 1536 ( e . g . , 
coupled via a PS2 interface ) , a fan 1537 , and a thermal 
sensor 1539 . In some embodiments , touch pad 1530 may 
also couple to EC 1535 via a PS2 interface . In addition , a 
security processor such as a trusted platform module ( TPM ) 
1538 may also couple to processor 1510 via this LPC 
interconnect . 
[ 0122 ] System 1500 can communicate with external 
devices in a variety of manners , including wirelessly . In the 
embodiment shown in FIG . 15 , various wireless modules , 
each of which can correspond to a radio configured for a 
particular wireless communication protocol , are present . 
One manner for wireless communication in a short range 
such as a near field may be via a NFC unit 1545 which may 
communicate , in one embodiment with processor 1510 via 

an SMBus . Note that via this NFC unit 1545 , devices in 
close proximity to each other can communicate . 
[ 0123 ] As further seen in FIG . 15 , additional wireless units 
can include other short range wireless engines including a 
WLAN unit 1550 and a BluetoothTM unit 1552 . Using 
WLAN unit 1550 , Wi - FiTM communications can be realized , 
while via BluetoothTM unit 1552 , short range BluetoothTM 
communications can occur . These units may communicate 
with processor 1510 via a given link . 
[ 0124 ] In addition , wireless wide area communications , 
e . g . , according to a cellular or other wireless wide area 
protocol , can occur via a WWAN unit 1556 which in turn 
may couple to a subscriber identity module ( SIM ) 1557 . In 
addition , to enable receipt and use of location information , 
a GPS module 1555 may also be present . Note that in the 
embodiment shown in FIG . 15 , WWAN unit 1556 and an 
integrated capture device such as a camera module 1554 
may communicate via a given link . 
( 0125 ] To provide for audio inputs and outputs , an audio 
processor can be implemented via a digital signal processor 
( DSP ) 1560 , which may couple to processor 1510 via a high 
definition audio ( HDA ) link . Similarly , DSP 1560 may 
communicate with an integrated coder / decoder ( CODEC ) 
and amplifier 1562 that in turn may couple to output 
speakers 1563 which may be implemented within the chas 
sis . Similarly , amplifier and CODEC 1562 can be coupled to 
receive audio inputs from a microphone 1565 which in an 
embodiment can be implemented via dual array micro 
phones ( such as a digital microphone array ) to provide for 
high quality audio inputs to enable voice - activated control of 
various operations within the system . Note also that audio 
outputs can be provided from amplifier / CODEC 1562 to a 
headphone jack 1564 . Although shown with these particular 
components in the embodiment of FIG . 15 , understand the 
scope of the present invention is not limited in this regard . 
10126 ] Embodiments may be implemented in many dif 
ferent system types . Referring now to FIG . 16 , shown is a 
block diagram of a system in accordance with an embodi 
ment of the present invention . As shown in FIG . 16 , mul 
tiprocessor system 1600 is a point - to - point interconnect 
system , and includes a first processor 1670 and a second 
processor 1680 coupled via a point - to - point interconnect 
1650 . As shown in FIG . 16 , each of processors 1670 and 
1680 may be multicore processors , including first and sec 
ond processor cores ( i . e . , processor cores 1674a and 1674b 
and processor cores 1684a and 1684b ) , although potentially 
many more cores may be present in the processors . Each of 
the processors includes a shared cache memory 1675 , 1685 
to implement adaptive write buffers , as described herein . 
[ 0127 ] Still referring to FIG . 16 , first processor 1670 
further includes a memory controller hub ( MCH ) 1672 and 
point - to - point ( PPP ) interfaces 1676 and 1678 . Similarly , 
second processor 1680 includes a MCH 1682 and P - P 
interfaces 1686 and 1688 . As shown in FIG . 16 , MCH ' s 
1672 and 1682 couple the processors to respective memo 
ries , namely a memory 1632 and a memory 1634 , which 
may be portions of system memory ( e . g . , DRAM ) locally 
attached to the respective processors . First processor 1670 
and second processor 1680 may be coupled to a chipset 1690 
via P - P interconnects 1662 and 1664 , respectively . As shown 
in FIG . 16 , chipset 1690 includes P - P interfaces 1694 and 
1698 . 
[ 0128 ] Furthermore , chipset 1690 includes an interface 
1692 to couple chipset 1690 with a high performance 



US 2019 / 0286567 A1 Sep . 19 , 2019 

graphics engine 1638 , by a P - P interconnect 1639 . In turn , 
chipset 1690 may be coupled to a first bus 1616 via an 
interface 1696 . As shown in FIG . 16 , various input / output 
( 1 / 0 ) devices 1614 may be coupled to first bus 1616 , along 
with a bus bridge 1618 which couples first bus 1616 to a 
second bus 1620 . Various devices may be coupled to second 
bus 1620 including , for example , a keyboard / mouse 1622 , 
communication devices 1626 and a data storage unit 1628 
such as a disk drive or other mass storage device which may 
include code 1630 , in one embodiment . Further , an audio I / O 
1624 may be coupled to second bus 1620 . Embodiments can 
be incorporated into other types of systems including mobile 
devices such as a smart cellular telephone , tablet computer , 
netbook , UltrabookTM , or so forth . 
[ 0129 ] One or more aspects of at least one embodiment 
may be implemented by representative code stored on a 
machine - readable medium which represents and / or defines 
logic within an integrated circuit such as a processor . For 
example , the machine - readable medium may include 
instructions which represent various logic within the pro 
cessor . When read by a machine , the instructions may cause 
the machine to fabricate the logic to perform the techniques 
described herein . Such representations , known as “ IP cores , ” 
are reusable units of logic for an integrated circuit that may 
be stored on a tangible , machine - readable medium as a 
hardware model that describes the structure of the integrated 
circuit . The hardware model may be supplied to various 
customers or manufacturing facilities , which load the hard 
ware model on fabrication machines that manufacture the 
integrated circuit . The integrated circuit may be fabricated 
such that the circuit performs operations described in asso 
ciation with any of the embodiments described herein . 
[ 0130 ] FIG . 17 is a block diagram illustrating an IP core 
development system 1700 that may be used to manufacture 
an integrated circuit to perform operations according to an 
embodiment . The IP core development system 1700 may be 
used to generate modular , re - usable designs that can be 
incorporated into a larger design or used to construct an 
entire integrated circuit ( e . g . , an SoC integrated circuit ) . A 
design facility 1730 can generate a software simulation 1710 
of an IP core design in a high level programming language 
( e . g . , C / C + + ) . The software simulation 1710 can be used to 
design , test , and verify the behavior of the IP core . A register 
transfer level ( RTL ) design can then be created or synthe 
sized from the simulation model . The RTL design 1715 is an 
abstraction of the behavior of the integrated circuit that 
models the flow of digital signals between hardware regis 
ters , including the associated logic performed using the 
modeled digital signals . In addition to an RTL design 1615 , 
lower - level designs at the logic level or transistor level may 
also be created , designed , or synthesized . Thus , the particu 
lar details of the initial design and simulation may vary . 
[ 0131 ] The RTL design 1715 or equivalent may be further 
synthesized by the design facility into a hardware model 
1720 , which may be in a hardware description language 
( HDL ) , or some other representation of physical design data . 
The HDL may be further simulated or tested to verify the IP 
core design . The IP core design can be stored for delivery to 
a third party fabrication facility 1765 using non - volatile 
memory 1740 ( e . g . , hard disk , flash memory , or any non 
volatile storage medium ) . Alternately , the IP core design 
may be transmitted ( e . g . , via the Internet ) over a wired 
connection 1750 or wireless connection 1760 . The fabrica 
tion facility 1765 may then fabricate an integrated circuit 

that is based at least in part on the IP core design . The 
fabricated integrated circuit can be configured to perform 
operations in accordance with at least one embodiment 
described herein . 
[ 0132 ] FIG . 18 is a block diagram of a register architecture 
1800 according to one embodiment of the invention . In the 
embodiment illustrated , there are 32 vector registers 1810 
that are 512 bits wide ; these registers are referenced as 
zmm0 through zmm31 . The lower order 256 bits of the 
lower 16 zmm registers are overlaid on registers ymm0 - 16 . 
The lower order 128 bits of the lower 16 zmm registers ( the 
lower order 128 bits of the ymm registers ) are overlaid on 
registers xmm0 - 15 . 
10133 ] Write mask registers 1815 — in the embodiment 
illustrated , there are 8 write mask registers ( k0 through k7 ) , 
each 64 bits in size . In an alternate embodiment , the write 
mask registers 1815 are 16 bits in size . As previously 
described , in one embodiment of the invention , the vector 
mask register ko cannot be used as a write mask ; when the 
encoding that would normally indicate k0 is used for a write 
mask , it selects a hardwired write mask of OxFFFF , effec 
tively disabling write masking for that instruction . 
[ 0134 ] General - purpose registers 1825 — in the embodi 
ment illustrated , there are sixteen 64 - bit general - purpose 
registers that are used along with the existing x86 addressing 
modes to address memory operands . These registers are 
referenced by the names RAX , RBX , RCX , RDX , RBP , RSI , 
RDI , RSP , and R8 through R15 . 
[ 0135 ] Scalar floating point stack register file ( x87 stack ) 
1845 , on which is aliased the MMX packed integer flat 
register file 1850 — in the embodiment illustrated , the x87 
stack is an eight - element stack used to perform scalar 
floating - point operations on 32 / 64 / 80 - bit floating point data 
using the x87 instruction set extension ; while the MMX 
registers are used to perform operations on 64 - bit packed 
integer data , as well as to hold operands for some operations 
performed between the MMX and XMM registers . 
[ 0136 ) Alternative embodiments of the invention may use 
wider or narrower registers . Additionally , alternative 
embodiments of the invention may use more , less , or dif 
ferent register files and registers . 
[ 0137 ) Processor cores may be implemented in different 
ways , for different purposes , and in different processors . For 
instance , implementations of such cores may include : 1 ) a 
general purpose in - order core intended for general - purpose 
computing ; 2 ) a high performance general purpose out - of 
order core intended for general - purpose computing ; 3 ) a 
special purpose core intended primarily for graphics and / or 
scientific ( throughput ) computing . Implementations of dif 
ferent processors may include : 1 ) a CPU including one or 
more general purpose in - order cores intended for general 
purpose computing and / or one or more general purpose 
out - of - order cores intended for general - purpose computing ; 
and 2 ) a coprocessor including one or more special purpose 
cores intended primarily for graphics and / or scientific 
( throughput ) . Such different processors lead to different 
computer system architectures , which may include : 1 ) the 
coprocessor on a separate chip from the CPU ; 2 ) the 
coprocessor on a separate die in the same package as a CPU ; 
3 ) the coprocessor on the same die as a CPU ( in which case , 
such a coprocessor is sometimes referred to as special 
purpose logic , such as integrated graphics and / or scientific 
( throughput ) logic , or as special purpose cores ) ; and 4 ) a 
system on a chip that may include on the same die the 
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described CPU ( sometimes referred to as the application 
core ( s ) or application processor ( s ) ) , the above described 
coprocessor , and additional functionality . Exemplary core 
architectures are described next , followed by descriptions of 
exemplary processors and computer architectures . 
[ 0138 ] FIG . 19A is a block diagram illustrating both an 
exemplary in - order pipeline and an exemplary register 
renaming , out - of - order issue / execution pipeline according 
to embodiments of the invention . FIG . 19B is a block 
diagram illustrating both an exemplary embodiment of an 
in - order architecture core and an exemplary register renam 
ing , out - of - order issue / execution architecture core to be 
included in a processor according to embodiments of the 
invention . The solid lined boxes in FIGS . 19A - B illustrate 
the in - order pipeline and in - order core , while the optional 
addition of the dashed lined boxes illustrates the register 
renaming , out - of - order issue / execution pipeline and core . 
Given that the in - order aspect is a subset of the out - of - order 
aspect , the out - of - order aspect will be described . 
[ 0139 ] In FIG . 19A , a processor pipeline 1900 includes a 
fetch stage 1902 , a length decode stage 1904 , a decode stage 
1906 , an allocation stage 1908 , a renaming stage 1910 , a 
scheduling ( also known as a dispatch or issue ) stage 1912 , 
a register read / memory read stage 1914 , an execute stage 
1916 , a write back / memory write stage 1918 , an exception 
handling stage 1922 , and a commit stage 1924 . 
[ 0140 ] FIG . 19B shows processor core 1990 including a 
front end unit 1930 coupled to an execution engine unit 
1950 , and both are coupled to a memory unit 1970 . The core 
1990 may be a reduced instruction set computing ( RISC ) 
core , a complex instruction set computing ( CISC ) core , a 
very long instruction word ( VLIW ) core , or a hybrid or 
alternative core type . As yet another option , the core 1990 
may be a special - purpose core , such as , for example , a 
network or communication core , compression engine , 
coprocessor core , general purpose computing graphics pro 
cessing unit ( GPGPU ) core , graphics core , or the like . 
10141 ] The front end unit 1930 includes a branch predic 
tion unit 1932 coupled to an instruction cache unit 1934 , 
which is coupled to an instruction translation lookaside 
buffer ( TLB ) 1936 , which is coupled to an instruction fetch 
unit 1938 , which is coupled to a decode unit 1940 . The 
decode unit 1940 ( or decoder ) may decode instructions , and 
generate as an output one or more micro - operations , micro 
code entry points , microinstructions , other instructions , or 
other control signals , which are decoded from , or which 
otherwise reflect , or are derived from , the original instruc 
tions . The decode unit 1940 may be implemented using 
various different mechanisms . Examples of suitable mecha 
nisms include , but are not limited to , look - up tables , hard 
ware implementations , programmable logic arrays ( PLAS ) , 
microcode read only memories ( ROMs ) , etc . In one embodi 
ment , the core 1990 includes a microcode ROM or other 
medium that stores microcode for certain macroinstructions 
( e . g . , in decode unit 1940 or otherwise within the front end 
unit 1930 ) . The decode unit 1940 is coupled to a rename ! 
allocator unit 1952 in the execution engine unit 1950 . 
[ 0142 ] The execution engine unit 1950 includes the 
rename / allocator unit 1952 coupled to a retirement unit 1954 
and a set of one or more scheduler unit ( s ) 1956 . The 
scheduler unit ( s ) 1956 represents any number of different 
schedulers , including reservations stations , central instruc 
tion window , etc . The scheduler unit ( s ) 1956 is coupled to 
the physical register file ( s ) unit ( s ) 1958 . Each of the physical 

register file ( s ) units 1958 represents one or more physical 
register files , different ones of which store one or more 
different data types , such as scalar integer , scalar floating 
point , packed integer , packed floating point , vector integer , 
vector floating point , status ( e . g . , an instruction pointer that 
is the address of the next instruction to be executed ) , etc . In 
one embodiment , the physical register file ( s ) unit 1958 
comprises a vector registers unit , a write mask registers unit , 
and a scalar registers unit . These register units may provide 
architectural vector registers , vector mask registers , and 
general purpose registers . The physical register file ( s ) unit ( s ) 
1958 is overlapped by the retirement unit 1954 to illustrate 
various ways in which register renaming and out - of - order 
execution may be implemented ( e . g . , using a reorder buffer 
( s ) and a retirement register file ( s ) ; using a future file ( s ) , a 
history buffer ( s ) , and a retirement register file ( s ) ; using a 
register maps and a pool of registers , etc . ) . The retirement 
unit 1954 and the physical register file ( s ) unit ( s ) 1958 are 
coupled to the execution cluster ( s ) 1960 . The execution 
cluster ( s ) 1960 includes a set of one or more execution units 
1962 and a set of one or more memory access units 1964 . 
The execution units 1962 may perform various operations 
( e . g . , shifts , addition , subtraction , multiplication ) and on 
various types of data ( e . g . , scalar floating point , packed 
integer , packed floating point , vector integer , vector floating 
point ) . While some embodiments may include a number of 
execution units dedicated to specific functions or sets of 
functions , other embodiments may include only one execu 
tion unit or multiple execution units that all perform all 
functions . The scheduler unit ( s ) 1956 , physical register 
file ( s ) unit ( s ) 1958 , and execution cluster ( s ) 1960 are shown 
as being possibly plural because certain embodiments create 
separate pipelines for certain types of data / operations ( e . g . , 
a scalar integer pipeline , a scalar floating point / packed 
integer / packed floating point / vector integer / vector floating 
point pipeline , and / or a memory access pipeline that each 
have their own scheduler unit , physical register file ( s ) unit , 
and / or execution cluster and in the case of a separate 
memory access pipeline , certain embodiments are imple 
mented in which only the execution cluster of this pipeline 
has the memory access unit ( s ) 1964 ) . It should also be 
understood that where separate pipelines are used , one or 
more of these pipelines may be out - of - order issue / execution 
and the rest in - order . 
[ 0143 ] The set of memory access units 1964 is coupled to 
the memory unit 1970 , which includes a data TLB unit 1972 
coupled to a data cache unit 1974 coupled to a level 2 ( L2 ) 
cache unit 1976 . In one exemplary embodiment , the memory 
access units 1964 may include a load unit , a store address 
unit , and a store data unit , each of which is coupled to the 
data TLB unit 1972 in the memory unit 1970 . The instruc 
tion cache unit 1934 is further coupled to a level 2 ( L2 ) 
cache unit 1976 in the memory unit 1970 . The L2 cache unit 
1976 is coupled to one or more other levels of cache and 
eventually to a main memory . 
[ 0144 ] By way of example , the exemplary register renam 
ing , out - of - order issue / execution core architecture may 
implement the pipeline 1900 as follows : 1 ) the instruction 
fetch 1938 performs the fetch and length decoding stages 
1902 and 1904 ; 2 ) the decode unit 1940 performs the decode 
stage 1906 ; 3 ) the rename / allocator unit 1952 performs the 
allocation stage 1908 and renaming stage 1910 ; 4 ) the 
scheduler unit ( s ) 1956 performs the schedule stage 1912 ; 5 ) 
the physical register file ( s ) unit ( s ) 1958 and the memory unit 
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1970 perform the register read / memory read stage 1914 ; the 
execution cluster 1960 perform the execute stage 1916 ; 6 ) 
the memory unit 1970 and the physical register file ( s ) unit ( s ) 
1958 perform the write back / memory write stage 1918 ; 7 ) 
various units may be involved in the exception handling 
stage 1922 ; and 8 ) the retirement unit 1954 and the physical 
register file ( s ) unit ( s ) 1958 perform the commit stage 1924 . 
10145 ] The core 1990 may support one or more instruc 
tions sets ( e . g . , the x86 instruction set ( with some extensions 
that have been added with newer versions ) ; the MIPS 
instruction set of MIPS Technologies of Sunnyvale , Calif . , 
the ARM instruction set ( with optional additional extensions 
such as NEON ) of ARM Holdings of Sunnyvale , Calif . ) , 
including the instruction ( s ) described herein . In one embodi 
ment , the core 1990 includes logic to support a packed data 
instruction set extension ( e . g . , AVX1 , AVX2 ) , thereby allow 
ing the operations used by many multimedia applications to 
be performed using packed data . 
[ 0146 ] It should be understood that the core may support 
multithreading ( executing two or more parallel sets of 
operations or threads ) , and may do so in a variety of ways 
including time sliced multithreading , simultaneous multi 
threading ( where a single physical core provides a logical 
core for each of the threads that physical core is simultane 
ously multithreading ) , or a combination thereof ( e . g . , time 
sliced fetching and decoding and simultaneous multithread 
ing thereafter such as in the Intel® Hyperthreading technol 
ogy ) . 
10147 ] While register renaming is described in the context 
of out - of - order execution , it should be understood that 
register renaming may be used in an in - order architecture . 
While the illustrated embodiment of the processor also 
includes separate instruction and data cache units 1934 / 1974 
and a shared L2 cache unit 1976 , alternative embodiments 
may have a single internal cache for both instructions and 
data , such as , for example , a Level 1 ( L1 ) internal cache , or 
multiple levels of internal cache . In some embodiments , the 
system may include a combination of an internal cache and 
an external cache that is external to the core and / or the 
processor . Alternatively , all of the cache may be external to 
the core and / or the processor . 
[ 0148 ] FIGS . 20A , 20B illustrate a block diagram of a 
more specific exemplary in - order core architecture , which 
core would be one of several logic blocks ( including other 
cores of the same type and / or different types ) in a chip . The 
logic blocks communicate through a high - bandwidth inter 
connect network ( e . g . , a ring network ) with some fixed 
function logic , memory I / O interfaces , and other necessary 
I / O logic , depending on the application . 
[ 0149 ] FIG . 20A is a block diagram of a single processor 
core , along with its connection to the on - die interconnect 
network 2002 and with its local subset of the Level 2 ( L2 ) 
cache 2004 , according to embodiments of the invention . In 
one embodiment , an instruction decoder 2000 supports the 
x86 instruction set with a packed data instruction set exten 
sion . An L1 cache 2006 allows low - latency accesses to 
cache memory into the scalar and vector units . While in one 
embodiment ( to simplify the design ) , a scalar unit 2008 and 
a vector unit 2010 use separate register sets ( respectively , 
scalar registers 2012 and vector registers 2014 ) and data 
transferred between them is written to memory and then read 
back in from a level 1 ( L1 ) cache 2006 , alternative embodi 
ments of the invention may use a different approach ( e . g . , 
use a single register set or include a communication path that 

allow data to be transferred between the two register files 
without being written and read back ) . 
[ 0150 ] The local subset of the L2 cache 2004 is part of a 
global L2 cache that is divided into separate local subsets , 
one per processor core . Each processor core has a direct 
access path to its own local subset of the L2 cache 2004 . 
Data read by a processor core is stored in its L2 cache subset 
2004 and can be accessed quickly , in parallel with other 
processor cores accessing their own local L2 cache subsets . 
Data written by a processor core is stored in its own L2 
cache subset 2004 and is flushed from other subsets , if 
necessary . The ring network ensures coherency for shared 
data . The ring network is bi - directional to allow agents such 
as processor cores , L2 caches and other logic blocks to 
communicate with each other within the chip . Each ring 
data - path is 1012 - bits wide per direction . 
0151 ] FIG . 20B is an expanded view of part of the 
processor core in FIG . 20A according to embodiments of the 
invention . FIG . 20B includes an L1 data cache 2006A part 
of the L1 cache 2004 , as well as more detail regarding the 
vector unit 2010 and the vector registers 2014 . Specifically , 
the vector unit 2010 is a 16 - wide vector processing unit 
( VPU ) ( see the 16 - wide ALU 2028 ) , which executes one or 
more of integer , single - precision float , and double - precision 
float instructions . The VPU supports swizzling the register 
inputs with swizzle unit 2020 , numeric conversion with 
numeric convert units 2022A - B , and replication with repli 
cation unit 2024 on the memory input . Write mask registers 
2026 allow predicating resulting vector writes . 
[ 0152 ] FIG . 21 is a block diagram of a processor 2100 that 
may have more than one core , may have an integrated 
memory controller , and may have integrated graphics 
according to embodiments of the invention . The solid lined 
boxes in FIG . 21 illustrate a processor 2100 with a single 
core 2102A , a system agent 2110 , a set of one or more bus 
controller units 2116 , while the optional addition of the 
dashed lined boxes illustrates an alternative processor 2100 
with multiple cores 2102A - N , a set of one or more integrated 
memory controller unit ( s ) 2114 in the system agent unit 
2110 , and special purpose logic 2108 . 
[ 0153 ] Thus , different implementations of the processor 
2100 may include : 1 ) a CPU with the special purpose logic 
2108 being integrated graphics and / or scientific ( through 
put ) logic ( which may include one or more cores ) , and the 
cores 2102A - N being one or more general purpose cores 
( e . g . , general purpose in - order cores , general purpose out 
of - order cores , a combination of the two ) ; 2 ) a coprocessor 
with the cores 2102A - N being a large number of special 
purpose cores intended primarily for graphics and / or scien 
tific ( throughput ) ; and 3 ) a coprocessor with the cores 
2102A - N being a large number of general purpose in - order 
cores . Thus , the processor 2100 may be a general - purpose 
processor , coprocessor or special - purpose processor , such 
as , for example , a network or communication processor , 
compression engine , graphics processor , GPGPU ( general 
purpose graphics processing unit ) , a high - throughput many 
integrated core ( MIC ) coprocessor ( including 30 or more 
cores ) , embedded processor , or the like . The processor may 
be implemented on one or more chips . The processor 2100 
may be a part of and / or may be implemented on one or more 
substrates using any of a number of process technologies , 
such as , for example , BiCMOS , CMOS , or NMOS . 
( 0154 ] The memory hierarchy includes one or more levels 
of cache within the cores , a set or one or more shared cache 
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units 2106 , and external memory ( not shown ) coupled to the 
set of integrated memory controller units 2114 . The set of 
shared cache units 2106 may include one or more mid - level 
caches , such as level 2 ( L2 ) , level 3 ( L3 ) , level 4 ( L4 ) , or 
other levels of cache , a last level cache ( LLC ) , and / or 
combinations thereof . While in one embodiment a ring 
based interconnect unit 2112 interconnects the integrated 
graphics logic 2108 , the set of shared cache units 2106 , and 
the system agent unit 2110 / integrated memory controller 
unit ( s ) 2114 , alternative embodiments may use any number 
of well - known techniques for interconnecting such units . In 
one embodiment , coherency is maintained between one or 
more cache units 2106 and cores 2102 - A - N . 
[ 0155 ] In some embodiments , one or more of the cores 
2102A - N are capable of multi - threading . The system agent 
2110 includes those components coordinating and operating 
cores 2102A - N . The system agent unit 2110 may include for 
example a power control unit ( PCU ) and a display unit . The 
PCU may be or include logic and components needed for 
regulating the power state of the cores 2102A - N and the 
integrated graphics logic 2108 . The display unit is for 
driving one or more externally connected displays . 
[ 0156 ] The cores 2102A - N may be homogenous or het 
erogeneous in terms of architecture instruction set ; that is , 
two or more of the cores 2102A - N may be capable of 
execution the same instruction set , while others may be 
capable of executing only a subset of that instruction set or 
a different instruction set . 
[ 0157 ] Program code may be applied to input instructions 
to perform the functions described herein and generate 
output information . The output information may be applied 
to one or more output devices , in known fashion . For 
purposes of this application , a processing system includes 
any system that has a processor , such as , for example ; a 
digital signal processor ( DSP ) , a microcontroller , an appli 
cation specific integrated circuit ( ASIC ) , or a microproces 
sor . 
[ 0158 ] The program code may be implemented in a high 
level procedural or object oriented programming language to 
communicate with a processing system . The program code 
may also be implemented in assembly or machine language , 
if desired . In fact , the mechanisms described herein are not 
limited in scope to any particular programming language . In 
any case , the language may be a compiled or interpreted 
language . 
[ 0159 ] Accordingly , embodiments of the invention also 
include non - transitory , tangible machine - readable media 
containing instructions or containing design data , such as 
Hardware Description Language ( HDL ) , which defines 
structures , circuits , apparatuses , processors and / or system 
features described herein . Such embodiments may also be 
referred to as program products . 
[ 0160 ] In some cases , an instruction converter may be 
used to convert an instruction from a source instruction set 
to a target instruction set . For example , the instruction 
converter may translate ( e . g . , using static binary translation , 
dynamic binary translation including dynamic compilation ) , 
morph , emulate , or otherwise convert an instruction to one 
or more other instructions to be processed by the core . The 
instruction converter may be implemented in software , hard 
ware , firmware , or a combination thereof . The instruction 
converter may be on processor , off processor , or part on and 
part off processor . 

[ 0161 ] FIG . 22 is a block diagram contrasting the use of a 
software instruction converter to convert binary instructions 
in a source instruction set to binary instructions in a target 
instruction set according to embodiments of the invention . 
In the illustrated embodiment , the instruction converter is a 
software instruction converter , although alternatively the 
instruction converter may be implemented in software , firm 
ware , hardware , or various combinations thereof . FIG . 22 
shows a program in a high level language 2202 may be 
compiled using an x86 compiler 2204 to generate x86 binary 
code 2206 that may be natively executed by a processor with 
at least one x86 instruction set core 2216 . The processor with 
at least one x86 instruction set core 2216 represents any 
processor that can perform substantially the same functions 
as an Intel processor with at least one x86 instruction set 
core by compatibly executing or otherwise processing ( 1 ) a 
substantial portion of the instruction set of the Intel x86 
instruction set core or ( 2 ) object code versions of applica 
tions or other software targeted to run on an Intel processor 
with at least one x86 instruction set core , in order to achieve 
substantially the same result as an Intel processor with at 
least one x86 instruction set core . The x86 compiler 2204 
represents a compiler that is operable to generate x86 binary 
code 2206 ( e . g . , object code ) that can , with or without 
additional linkage processing , be executed on the processor 
with at least one x86 instruction set core 2216 . Similarly , 
FIG . 22 shows the program in the high level language 2202 
may be compiled using an alternative instruction set com 
piler 2208 to generate alternative instruction set binary code 
2210 that may be natively executed by a processor without 
at least one x86 instruction set core 2214 ( e . g . , a processor 
with cores that execute the MIPS instruction set of MIPS 
Technologies of Sunnyvale , Calif . and / or that execute the 
ARM instruction set of ARM Holdings of Sunnyvale , 
Calif . ) . The instruction converter 2212 is used to convert the 
x86 binary code 2206 into code that may be natively 
executed by the processor without an x86 instruction set 
core 2214 . This converted code is not likely to be the same 
as the alternative instruction set binary code 2210 because 
an instruction converter capable of this is difficult to make ; 
however , the converted code will accomplish the general 
operation and be made up of instructions from the alterna 
tive instruction set . Thus , the instruction converter 2212 
represents software , firmware , hardware , or a combination 
thereof that , through emulation , simulation or any other 
process , allows a processor or other electronic device that 
does not have an x86 instruction set processor or core to 
execute the x86 binary code 2206 . 
[ 0162 ] The following examples pertain to further embodi 
ments . 
[ 0163 ] In one example , a processor includes : a cache 
memory to store a plurality of cache lines ; and a cache 
controller to control the cache memory . The cache controller 
may include a control circuit to allocate a virtual write buffer 
within the cache memory in response to a bandwidth on an 
interconnect to couple the processor with a memory that 
exceeds a first bandwidth threshold . The cache controller 
may further include a replacement circuit to control eviction 
of cache lines from the cache memory . 
10164 ] In an example , the control circuit is to cause the 
replacement circuit to update a replacement policy in 
response to the allocation of the virtual write buffer . 
[ 0165 ] In an example , the update to the replacement policy 
comprises a switch to a least recently used clean policy in 
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which cache lines including unmodified data are to be 
preferentially evicted from the cache memory . 
10166 ] In an example , the control circuit is to initiate a 
drain of the virtual write buffer in response to the bandwidth 
on the interconnect being less than a second bandwidth 
threshold . 
[ 0167 ] In an example , the replacement circuit , during the 
drain , is to write a cache line including modified data to the 
memory and maintain the cache line in the cache memory , 
where the cache line is within a threshold distance of a least 
recently used position . 
[ 0168 ] In an example , the control circuit is further to 
update a state of the cache line including the modified data 
to a clean state . 
[ 0169 ] In an example , the cache controller comprises a 
first set of hit counters associated with corresponding posi 
tions within a least recently used stack , and to be updated in 
response to read hits within the cache memory . 
[ 0170 ] In an example , the cache controller comprises a 
second set of hit counters associated with corresponding 
positions within the least recently used stack , and to be 
updated in response to write hits within the cache memory . 
[ 0171 ] In an example , the control circuit is to dynamically 
update a size of the virtual write buffer based on hit 
histogram information obtained from at least one of the first 
set of hit counters and the second set of hit counters . 
[ 0172 ] In an example , the virtual write buffer comprises 
one or more ways of a plurality of sets of the cache memory . 
[ 0173 ] In an example , the one or more ways comprises N 
least recently used ways of the plurality of sets of the cache 
memory , where N is dynamically controllable . 
[ 0174 ] . In an example , the cache controller is to initiate a 
drain of the virtual write buffer in response to a number of 
the plurality of sets having the one or more ways that store 
dirty data that exceeds a threshold . 
[ 0175 ] In another example , a method comprises : monitor 
ing a bandwidth of an interconnect that couples a processor 
to a memory ; in response to the bandwidth exceeding a first 
bandwidth threshold , allocating a virtual write buffer in a 
cache memory of the processor ; and dynamically controlling 
a size of the virtual write buffer based at least in part on hit 
histogram information . 
[ 0176 ] In an example , the method further comprises : 
monitoring a consumption of the virtual write buffer , and 
initiating a draining of the virtual write buffer in response to 
the consumption exceeding a threshold . 
[ 0177 ] In an example , the draining comprises : writing 
dirty data from a plurality of cache lines of the virtual write 
buffer to the memory ; and updating a state of the plurality of 
cache lines of the virtual write buffer to a clean state . 
[ 0178 ] In an example , the method further comprises ini 
tiating a draining of the virtual write buffer in response to the 
bandwidth being less than a second bandwidth threshold . 
10179 ] . In an example , allocating the virtual write buffer 
comprises updating a replacement policy of the cache 
memory to preferentially evict clean data instead of dirty 
data . 
[ 0180 ] In another example , a computer readable medium 
including instructions is to perform the method of any of the 
above examples . 
[ 0181 ] In another example , a computer readable medium 
including data is to be used by at least one machine to 
fabricate at least one integrated circuit to perform the 
method of any one of the above examples . 

[ 0182 ] In another example , an apparatus comprises means 
for performing the method of any one of the above 
examples . 
0183 ] . In another example , a system comprises a proces 
sor that includes : a plurality of cores each including a first 
level cache memory and a cache memory hierarchy coupled 
to the plurality of cores . The cache memory hierarchy may 
include : the first level cache memory included in the plu 
rality of cores , and a shared cache memory coupled to the 
first level cache memory . The shared cache memory may 
include : a cache controller to control the shared cache 
memory , the cache controller including a control circuit , in 
response to a bandwidth on a memory interconnect that 
couples the processor with a memory that exceeds a first 
bandwidth threshold , to allocate a virtual write buffer within 
the shared cache memory and update a replacement policy 
to preferentially evict clean data from the shared cache 
memory . The processor may further include a memory 
controller to interact with the memory and maintain band 
width information for the memory interconnect . The system 
may further include the memory interconnect to couple the 
processor to the memory , and the memory coupled to the 
processor via the memory interconnect . 
0184 ) In an example , the control circuit is to initiate a 
drain of the virtual write buffer in response to the bandwidth 
on the memory interconnect being less than a second band 
width threshold , and where the cache controller , during the 
drain , is to write a cache line including modified data to the 
memory and maintain the cache line in the shared cache 
memory , where the cache line is within a threshold distance 
of a least recently used position . 
10185 ) In an example , the cache controller comprises a set 
of hit counters associated with corresponding positions 
within a least recently used stack of the shared cache 
memory , and to be updated in response to hits within the 
shared cache memory , and where the control circuit is to 
dynamically update a size of the virtual write buffer based on 
hit histogram information obtained from the set of hit 
counters . 
[ 0186 ] Understand that various combinations of the above 
examples are possible . 
[ 0187 ] Note that the terms “ circuit ” and “ circuitry ” are 
used interchangeably herein . As used herein , these terms and 
the term " logic ” are used to refer to alone or in any 
combination , analog circuitry , digital circuitry , hard wired 
circuitry , programmable circuitry , processor circuitry , 
microcontroller circuitry , hardware logic circuitry , state 
machine circuitry and / or any other type of physical hard 
ware component . Embodiments may be used in many dif 
ferent types of systems . For example , in one embodiment a 
communication device can be arranged to perform the 
various methods and techniques described herein . Of course , 
the scope of the present invention is not limited to a 
communication device , and instead other embodiments can 
be directed to other types of apparatus for processing 
instructions , or one or more machine readable media includ 
ing instructions that in response to being executed on a 
computing device , cause the device to carry out one or more 
of the methods and techniques described herein . 
[ 0188 ] Embodiments may be implemented in code and 
may be stored on a non - transitory storage medium having 
stored thereon instructions which can be used to program a 
system to perform the instructions . Embodiments also may 
be implemented in data and may be stored on a non 
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transitory storage medium , which if used by at least one 
machine , causes the at least one machine to fabricate at least 
one integrated circuit to perform one or more operations . 
Still further embodiments may be implemented in a com 
puter readable storage medium including information that , 
when manufactured into a SoC or other processor , is to 
configure the SoC or other processor to perform one or more 
operations . The storage medium may include , but is not 
limited to , any type of disk including floppy disks , optical 
disks , solid state drives ( SSDs ) , compact disk read - only 
memories ( CD - ROMs ) , compact disk rewritables ( CD 
RWs ) , and magneto - optical disks , semiconductor devices 
such as read - only memories ( ROMs ) , random access memo 
ries ( RAMs ) such as dynamic random access memories 
( DRAMs ) , static random access memories ( SRAMs ) , eras 
able programmable read - only memories ( EPROMs ) , flash 
memories , electrically erasable programmable read - only 
memories ( EEPROMs ) , magnetic or optical cards , or any 
other type of media suitable for storing electronic instruc 
tions . 
10189 ] While the present invention has been described 
with respect to a limited number of embodiments , those 
skilled in the art will appreciate numerous modifications and 
variations therefrom . It is intended that the appended claims 
cover all such modifications and variations as fall within the 
true spirit and scope of this present invention . 

1 : A processor comprising : 
a cache memory to store a plurality of cache lines ; and 
a cache controller to control the cache memory , the cache 

controller including a control circuit to allocate a 
virtual write buffer within the cache memory in 
response to a bandwidth on an interconnect that couples 
the processor with a memory that exceeds a first 
bandwidth threshold , the cache controller further 
including a replacement circuit to control eviction of 
cache lines from the cache memory . 

2 : The processor of claim 1 , wherein the control circuit is 
to cause the replacement circuit to update a replacement 
policy in response to the allocation of the virtual write 
buffer . 

3 : The processor of claim 2 , wherein the update to the 
replacement policy comprises a switch to a least recently 
used clean policy in which cache lines including unmodified 
data are to be preferentially evicted from the cache memory . 

4 : The processor of claim 1 , wherein the control circuit is 
to initiate a drain of the virtual write buffer in response to the 
bandwidth on the interconnect being less than a second 
bandwidth threshold . 

5 : The processor of claim 4 , wherein the replacement 
circuit , during the drain , is to write a cache line including 
modified data to the memory and maintain the cache line in 
the cache memory , wherein the cache line is within a 
threshold distance of a least recently used position . 

6 : The processor of claim 5 , wherein the control circuit is 
further to update a state of the cache line including the 
modified data to a clean state . 

7 : The processor of claim 1 , wherein the cache controller 
comprises a first set of hit counters associated with corre 
sponding positions within a least recently used stack , and to 
be updated in response to read hits within the cache memory . 

8 : The processor of claim 7 , wherein the cache controller 
comprises a second set of hit counters associated with 

corresponding positions within the least recently used stack , 
and to be updated in response to write hits within the cache 
memory . 

9 : The processor of claim 8 , wherein the control circuit is 
to dynamically update a size of the virtual write buffer based 
on hit histogram information obtained from at least one of 
the first set of hit counters and the second set of hit counters . 

10 : The processor of claim 1 , wherein the virtual write 
buffer comprises one or more ways of a plurality of sets of 
the cache memory . 

11 : The processor of claim 10 , wherein the one or more 
ways comprises N least recently used ways of the plurality 
of sets of the cache memory , wherein N is dynamically 
controllable . 
12 : The processor of claim 10 , wherein the cache con 

troller is to initiate a drain of the virtual write buffer in 
response to a number of the plurality of sets having the one 
or more ways that store dirty data that exceeds a threshold . 

13 : A non - transitory machine - readable medium having 
stored thereon instructions , which if performed by a 
machine cause the machine to perform a method compris 
ing : 
monitoring a bandwidth of an interconnect that couples a 

processor to a memory ; 
in response to the bandwidth exceeding a first bandwidth 

threshold , allocating a virtual write buffer in a cache 
memory of the processor ; and 

dynamically controlling a size of the virtual write buffer 
based at least in part on hit histogram information . 

14 : The non - transitory machine - readable medium of 
claim 13 , wherein the method further comprises : 
monitoring a consumption of the virtual write buffer ; and 
initiating a draining of the virtual write buffer in response 

to the consumption exceeding a threshold . 
15 : The non - transitory machine - readable medium of 

claim 14 , wherein the draining comprises : 
writing dirty data from a plurality of cache lines of the 

virtual write buffer to the memory ; and 
updating a state of the plurality of cache lines of the 

virtual write buffer to a clean state . 
16 : The non - transitory machine - readable medium of 

claim 13 , wherein the method further comprises initiating a 
draining of the virtual write buffer in response to the 
bandwidth being less than a second bandwidth threshold . 

17 : The non - transitory machine - readable medium of 
claim 13 , wherein allocating the virtual write buffer com 
prises updating a replacement policy of the cache memory to 
preferentially evict clean data instead of dirty data . 

18 : A system comprising : 
a processor comprising : 

a plurality of cores each including a first level cache 
memory ; and 

a cache memory hierarchy coupled to the plurality of 
cores , the cache memory hierarchy including : 
the first level cache memory included in the plurality 

of cores ; 
a shared cache memory coupled to the first level 

cache memory , the shared cache memory includ 
ing : 
a cache controller to control the shared cache 
memory , the cache controller including a con 
trol circuit , in response to a bandwidth on a 
memory interconnect that couples the processor 
with a memory that exceeds a first bandwidth 
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threshold , to allocate a virtual write buffer 
within the shared cache memory and update a 
replacement policy to preferentially evict clean 
data from the shared cache memory ; and 

a memory controller to interact with the memory and 
maintain bandwidth information for the memory 
interconnect ; 

the memory interconnect to couple the processor to the 
memory ; and 

the memory coupled to the processor via the memory 
interconnect . 

19 : The system of claim 18 , wherein the control circuit is 
to initiate a drain of the virtual write buffer in response to the 
bandwidth on the memory interconnect being less than a 
second bandwidth threshold , and wherein the cache control 
ler , during the drain , is to write a cache line including 
modified data to the memory and maintain the cache line in 
the shared cache memory , wherein the cache line is within 
a threshold distance of a least recently used position . 

20 : The system of claim 18 , wherein the cache controller 
comprises a set of hit counters associated with correspond 
ing positions within a least recently used stack of the shared 
cache memory , and to be updated in response to hits within 
the shared cache memory , and wherein the control circuit is 
to dynamically update a size of the virtual write buffer based 
on hit histogram information obtained from the set of hit 
counters . 


