
US 20190286567A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0286567 A1

Chaudhuri et al . (43) Pub . Date : Sep . 19 , 2019

(54) SYSTEM , APPARATUS AND METHOD FOR
ADAPTIVELY BUFFERING WRITE DATA IN
A CACHE MEMORY

(71) Applicant : Intel Corporation , Santa Clara , CA
(US)

G06F 12 / 0804 (2006 . 01)
G06F 12 / 12 (2006 . 01)

(52) U . S . CI .
CPC G06F 12 / 0895 (2013 . 01) ; G06F 12 / 0891

(2013 . 01) ; G06F 12 / 0804 (2013 . 01) ; G06F
2212 / 604 (2013 . 01) ; G06F 2212 / 1016

(2013 . 01) ; G06F 2212 / 601 (2013 . 01) ; G06F
12 / 12 (2013 . 01) (72) Inventors : Mainak Chaudhuri , Kanpur (IN) ;

Jayesh Gaur , Bangalore (IN) ;
Sreenivas Subramoney , Bangalore
(IN) ; Hong Wang , Santa Clara , CA
(US)

(57) ABSTRACT

(21) Appl . No . : 15 / 923 , 174
(22) Filed : Mar . 16 , 2018

In one embodiment , a processor includes : a cache memory
to store a plurality of cache lines ; and a cache controller to
control the cache memory . The cache controller may include
a control circuit to allocate a virtual write buffer within the
cache memory in response to a bandwidth on an intercon
nect that exceeds a first bandwidth threshold . The cache
controller may further include a replacement circuit to
control eviction of cache lines from the cache memory .
Other embodiments are described and claimed .

Publication Classification
(51) Int . Cl .

G06F 12 / 0895 (2006 . 01)
G06F 12 / 0891 (2006 . 01)

100

Memory Block
114 150

140 [Read / Write Read / Write

Memory Controller
112

Write
Buffer

LLC Miss

Last - Level Cache (LLC)
115 Cache

Controller
120

Virtual Write
Buffer

Block
117

118

- L2 Miss - -] - [L2 Miss
Cache Controller

109
L2 Cache

108
Evicted Block

107
110

L1 Miss L1 Miss

L1 Instruction Cache
104

L1 Data Cache
106

Instruction Fetch Data Fetch

Execution Circuit
102

— — — —
Core 118

— — — — — — —
Processor

Patent Application Publication Sep . 19 , 2019 Sheet 1 of 23 US 2019 / 0286567 A1

100

Block
114

Memory
150

140] [Read / Write
Memory Controller

112
Write
Buffer

LLC Miss
Last - Level Cache (LLC)

115 Cache
Controller

120
Virtual Write

Buffer

Block
117

118

7 L2 Miss - L2 Miss - - - - - -

Cache Controller L2 Cache
108 109

Evicted Block
107

L1 Miss L1 Miss

- L1 Instruction Cache
104

L1 Data Cache
106 -

-

Instruction Fetch Data Fetch

Execution Circuit
102

Core 118
.

Processor

FIG . 1

Patent Application Publication Sep . 19 , 2019 Sheet 2 of 23 US 2019 / 0286567 A1

200

260n

Tag MD Data

264 2600

Cache Controller

273
WWB Control Circuit 250

276 , 278
Drain
Circuit Replacement

Circuit RC WC 270

Allocation
Circuit 272

2760 2780
275 . html

LLC

Evicted Cache Line

2200

222

Tag MD Data

2200 210

Cache
Controller

Replacement Circuit Replacement Circuit za 245 240

MLC

FIG . 2

Start

300

Monitor Write Bandwidth With Memory

Patent Application Publication

310
N

Write Bandwidth Exceeds First Bandwidth Threshold ?

Allocate Virtual Write Buffer In LLC

| 320

315

Monitor Virtual Write Buffer Consumption

Initiate Write Draining Of Virtual Write Buffer

350

380

Monitor Read And Write Hit Histograms
| 330

Sep . 19 , 2019 Sheet 3 of 23

Consumption Exceeds Threshold ?

Update Size Of Virtual Write Buffer Based At Least In Part On Read And / Or Write Hit Histograms

360

340

Read Bandwidth Less Than Second Bandwidth Threshold ?

FIG . 3

US 2019 / 0286567 A1

370

Patent Application Publication Sep . 19 , 2019 Sheet 4 of 23 US 2019 / 0286567 A1

400
Start

Accumulate Hit Counter For
Given LRU Stack Position With
Accumulated Hit Counter Value 410

X = X + 1
430

Accumulated Hit
Counter Value Meet Or
Exceed Hit Threshold ?

420

Set Maximum Stretch Value
ToX

440

FIG . 4

500

Start

Patent Application Publication

Identify Dirty Line Of Set Closest To LRU Position

N

Threshold Number Of Rounds Completed ?

End

580

N

- -

Identified Dirty Line Within Threshold Distance Of LRU Position ?

520

- - - -

- - - -

- -

Increment Set Number

Sep . 19 , 2019 Sheet 5 of 23

560

Write Identified Dirty Line To Memory Controller

Increment Round Counter

530

570

All Sets Visited ?

Update Identified Dirty Line To Clean State

550

| 540

FIG . 5

US 2019 / 0286567 A1

600

MSRs

Patent Application Publication

638 Register File

Fetch Unit

630

601

Extended Register File

ROB

-

Cache

LLC

Instruction Cache

Out - Of Order Engine

635

640

603

Sep . 19 , 2019 Sheet 6 of 23

Execution Units

615

ALUS 622

Instruction Decoder

660

605

VEUS 624

Front End Units

620

610

FIG . 6

US 2019 / 0286567 A1

7007

730

6735

1732

734

705

ALU

Patent Application Publication

Register File

Scheduler

Shufflet

Branch Predictor

FP Adder

736 738

.

. . .

. .

715

720

Instruction Cache
Instruction Decoder

6745

744

.

. .

742

1185

TALU Shifter

Microcode ROM

740

Scheduler

746 1748

INT Register File

770

752

- 760

Sep . 19 , 2019 Sheet 7 of 23

: :

LLLLL

! ! !

! !

! ! ! !

!

! ! ! ! !

!

? ? ? ? ? ?

? ? ? ? ? ? ?

? ?

2

.

. : :

Data

ME Scheduler
: : : :

:

: :

TLB

Cache

Allocatori Renamer 780 Reorder Buffer

750

7547

To / From L2 Cache

From / TOL2 Cache

US 2019 / 0286567 A1

FIG . 7

US 2019 / 0286567 A1

088

OZ8

8 ' 018

WWWWWWWWWWWWWW

. 1 . 1 . 1111 /

} { 1 8101S / peo

eneno

mm
098

Hmmmmmmm

un anssi jena

Sep . 19 , 2019 Sheet 8 of 23

- 058

WW

WWW

un joloo quod Dugeob

01001 anssi

WWW

AM

apoved

4012
WWW

hon

o

ng to

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
boom

- 018

978

ST8

018

Ajdginw jabalu
W

Patent Application Publication

008

OOOOOOOOOOOO077
088

st8

900

YCb

930

980

Patent Application Publication

ma
wwwwwwwwwwww

Integer

w

935
w www

uuuuu

915

940

Fetch Unit

Decoderi Renameri Dispatcher
Queue

Issue Logic

Floating Point Vector Unit

WB Unit

- 950

Sep . 19 , 2019 Sheet 9 of 23

910

Branch

XXX

curuuuuuuuuuuuu
u

960 WWWWW

Cache

Load / Store Unit

w

920

970

FIG . 9

US 2019 / 0286567 A1

Patent Application Publication Sep . 19 , 2019 Sheet 10 of 23 US 2019 / 0286567 A1

1000

VE
1060b

Non - Volatile
Storage / ROM

1030
MC
1035

Power
Manager

1040

Security
Processor

1045

Core Unit
1010a - n

Image Signal Processor
1025

VF
1060a

VF
1060C

Shared Cache
1015

Video Coder
1050

Graphics Unit
1020

Display Controller
1055

VE
1060d

FIG . 10

1100

Patent Application Publication

wwwwwwwwwwwwwwwwwwwwwwwwwwwwww

1110

1120

1130

????????????????????????????
LAVAVAAVAANVAAAAAAAAAAAAAAAAAAAAAAAA

1112a

1122a

Core

Core

Core

Core

- 1112d

- 1122d

VARNEHMENGHARAMA

wwwww

Core

Core

Core

Core

GPU

1115

1125 WWWWWWWWWWWWWW

Cache Memory

Cache Memory

Sep . 19 , 2019 Sheet 11 of 23

IRANAMARRARAWARA

REHRRKARE

1140

ALLAHAALAMAN
Coherent Interconnect

ALALALALALALAL
A LALALALALALALALALALALALAL

wwwww

1150

LAULULLLLLLLLL
PARARAAVAANRANNAN

Memory Controller

w

wwwwwwwwwwwwwwwwwwwwwwwwww

US 2019 / 0286567 A1

FIG . 11

Patent Application Publication Sep . 19 , 2019 Sheet 12 of 23 US 2019 / 0286567 A1

1200

1210 1250

CPU

1220
Multimedia
Processor

*

GPU * * *

* * * * *

* W

1230 , 1260

. . . .

DSP Sensor Unit

1235 1270

Display Processor ISP Y

1235 1280

Shared Cache LAAKAKAK Display Processor

1240 1290

VAARAAN RAMARAAMAMMAMMA MARA .

Communication Unit wwwwwwwwwwwwwwwww * * * * * * . WU Location Unit
* * * * * *

FIG . 12

1300

UICC 1340

DRAM 1335

Flash 1330

Patent Application Publication

GPS Sensor 1380

UI / Display 1320

1305

Sensors

1390

1325

RE Transceiver 1370

Baseband
Processor

Application Processor 1310
PMIC

Sep . 19 , 2019 Sheet 13 of 23

Security Processor 1350

WLAN Transceiver 1375

1315

Capture Device 1340

1365

NFC Contactless Interface 1360

Audio Output
1395

US 2019 / 0286567 A1

FIG . 13

1400

1440

1445

Patent Application Publication

Flash

DRAM

1455

DOOOOOOOOOOOOoooooOOOOOOOOOOOOOOO
SOOOOOOOOOOOOOOOOOOOOOOOD

1420 Touch Panel

1410

1430

1450

w

wwwwwwwwwwwwwwwww Ethernet IF

SoC

Sensors

cocccccccccccccccccccccccccccccccco

W

1460

1425 Peripheral
nnnnnnnnnnnnn

Audio Codec

wwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Sep . 19 , 2019 Sheet 14 of 23

YYYYYYYYYYYYYY

1465

1470

M

PMIC

1480

AR

www
1495

Battery
conocoooooooooo
KURUS

ooooooooooooooooooooooooo
1490

FIG . 14

US 2019 / 0286567 A1

LPDDR3 1515 + LPDDR3

1500

1510

Patent Application Publication

1524

USB 3 . 0 CAMERA

1554 1555 71556
WWAN UNIT P NGFF

UART OR 1°C USB 2 / 3

DISPLAY

GPS

PROCESSOR

SIM

TOUCH SCREEN 1530 TOUCH
PAD

1541 ACCELEROMETER

WLAN UNIT

1550

1545 NFC SMBUS
UNIT

1540
SENSORY 1°C

HUB | THERMAL SMBUS SENSOR

PCIE SDIO UART USB
SATA

BLUETOOTHÍ NGFF

15421

ALS

UNIT

Sep . 19 , 2019 Sheet 15 of 23

1552

1543

COMPASS

- 1546

SPIL

1520

1544

GYROSCOPE

THDA DSP ADA

SSD OR HDD SPEAKERS HEADPHONE
- 1563

PS2

1535

1564

1538
BIOS ,

AUDIO CODEC AND CLASS D AMP - 1562

- 1560

MIC

EC

TPM

- 1565

THERMAL SENSOR
1539

SMBUS

FW

PS2

1522

FLASH

1537 - FAN

KEYBOARD - 1536

US 2019 / 0286567 A1

FIG . 15

1674b

1684b

1600

PROCESSOR

PROCESSOR

1670

1680

PROC . CORE 1674a

PROC . CORE 1684a

Patent Application Publication

MEMORY 1632
MCH 1672

MCH 1682

MEMORY 1634

+ 1675

Shared Cache

Shared Cache

1685

P - P 1676

P - P 1678

P - P 1688

P - P 1686

1650

01662

1664

VF

HIGH - PERF GRAPHICS 1638

P - P 1694

CHIPSET 1690

P - P 1698

1692

VF 1696

Sep . 19 , 2019 Sheet 16 of 23

1639

1616

BUS BRIDGE 1618

I / O DEVICES
1614

AUDIO I / O 1624
1626

KEYBOARD / MOUSE 1622

COMM DEVICES 1626

DATA STORAGE 1628
CODE

1630

US 2019 / 0286567 A1

FIG . 16

1700

Patent Application Publication

FABRICATION FACILITY 1765

SOFTWARE SIMULATION 1710
RTL DESIGN 1715

HARDWARE MODEL (HDL OR PHYSICAL DESIGN DATA) 1720

- 1740 IO41750

Sep . 19 , 2019 Sheet 17 of 23

DESIGN FACILITY
1730

ve 1760

FIG . 17

US 2019 / 0286567 A1

REGISTER ARCHITECTURE 1800

SCALAR FP STACK REGISTER FILE

FIG . 18

1845 (X87FP) 80 BITS

Patent Application Publication

General Purpose Registers 1825 16 X 64 BITS

ALIASED

Vector Registers 1810
512 BITS

64 BITS MMX PACKED INT FLAT REGISTER FILE 1850

zmmo

ymmo

xmmo

Write Mask Registers 1815 64 BITS

Sep . 19 , 2019 Sheet 18 of 23

ymm15

xmm 15 128 BITS ,

256 BITS

wwwwwwwwwwww

zmm 31

US 2019 / 0286567 A1

ky

Patent Application Publication

PIPELINE 1900

FETCH

LENGTH occoochun ?DER
DECODE ALLOC . RENAMING SCHEDULE

DECODING

1908 1910 1912

1904

REGISTER READI MEMORY READ 1914

EXECUTE STAGE 1916

1902

WRITE BACK EXCEPTION COMMIT I

1906

MEMORY WRITE 1918
HANDLING 1922
| 1924

-

- -

- -

-

- -

-

-

-

-

-

- -

-

- -

-

-

-

-

-

-

Sep . 19 , 2019 Sheet 19 of 23

FIG . 19A

US 2019 / 0286567 A1

BRANCH PREDICTION UNIT 1932

INSTRUCTION CACHE UNIT 1934 INSTRUCTION TLB UNIT 1936

CORE 1990

INSTRUCTION FETCH 1938

Patent Application Publication

FRONT END UNIT 1930

DECODE UNIT 1940

EXECUTION ENGINE UNIT 1950

RENAME I ALLOCATOR UNIT 1952

7

i RETIREMENT UNIT 1954 !

-

SCHEDULER UNIT (S) 1956 - - - - - -

L

-

-

PHYSICAL REGISTER FILES UNIT (S) 1958

Sep . 19 , 2019 Sheet 20 of 23

EXECUTION UNIT (S)
1962

MEMORY ACCESS UNIT (S) 1964

EXECUTION CLUSTER (S) 1960

MEMORY UNIT 1970

DATA TLB UNIT 1972 DATA CACHE UNIT 1974

L2 CACHE UNIT 1976

US 2019 / 0286567 A1

FIG . 19B

INSTRUCTION DECODE 2000

WRITE MASK REGISTERS 2026

Patent Application Publication

SCALAR UNIT 2008

VECTOR UNIT 2010

16 - WIDE VECTOR ALU 2028 HAWAE NESTOR AL

SCALAR REGISTERS 2012

VECTOR REGISTERS 2014

REPLICATE 2024

SWIZZLE 2020

L1 CACHE 2006

VECTOR REGISTERS 2014

Sep . 19 , 2019 Sheet 21 of 23

LOCAL SUBSET OF THE L2 CACHE 2004

NUMERIC CONVERT 2022A

NUMERIC CONVERT 2022B

RING NETWORK 2002

L1 DATA CACHE 2006A L1 DATA CACHE

RING NETWORK FIG . 20A

FIG . 20B

US 2019 / 0286567 A1

Patent Application Publication

PROCESSOR 2100

SPECIAL PURPOSE LOGIC 2108

SYSTEM AGENT UNIT 2110

- - - -

CORE 2102A CACHE UNIT (S) 2104A

CORE 2102N CACHE UNIT (S) 2104N

BUS CONTROLLER UNIT (S) 2116

SHARED CACHE UNIT (S) 2106

INTEGRATED MEMORY CONTROLLER UNIT (S) 2114

-

-

-

-

-

-

-

-

-

-

-

- - - - - - -

_ RING 2112 - - -

I - - - - - - - - - - - - - -

Sep . 19 , 2019 Sheet 22 of 23

- - - - - - - - - - - - - - - -

FIG . 21

US 2019 / 0286567 A1

PROCESSOR WITHOUT AN X86 INSTRUCTION SET CORE 2214

PROCESSOR WITH AT LEAST ONE X86 INSTRUCTION SET CORE 2216

Patent Application Publication

HARDWARE SOFTWARE

ALTERNATIVE INSTRUCTION SET BINARY CODE 2210

INSTRUCTION CONVERTER 2212

X86 BINARY CODE 2206

Sep . 19 , 2019 Sheet 23 of 23

ALTERNATIVE INSTRUCTION SET COMPILER 2208

X86 COMPILER 2204

HIGH LEVEL LANGUAGE 2202

FIG . 22

US 2019 / 0286567 A1

US 2019 / 0286567 A1 Sep . 19 , 2019

SYSTEM , APPARATUS AND METHOD FOR
ADAPTIVELY BUFFERING WRITE DATA IN

A CACHE MEMORY

TECHNICAL FIELD

[0001] Embodiments relate to control of a cache memory
hierarchy of a processing device .

BACKGROUND
[0002] In typical processor - based systems , a processor
couples to one or more memory devices with which it
communicates information . As processor speeds continue to
increase , memory , and the processor ' s interaction with
memory , becomes a bottleneck to performance enhance
ments . This is the case , as memory bandwidth and latency
continues to limit the performance of both single core and
multi - core workloads . A large last level cache (LLC) within
the processor can help reduce the fraction of memory
requests served by the memory and improve performance .
Typically LLCs seek to increase hit rate within the LLC in
order to reduce traffic to the memory . However such opera
tion does not take memory efficiency into account . As an
example , data evicted from the LLC (victim data) and
written to the memory may consume large amounts of
memory bandwidth , reducing available for incoming
memory traffic , resulting in lower delivered bandwidth from
the memory . This situation thus adversely affects perfor
mance .

[0016] FIG . 14 is a block diagram of another example
system in accordance with an embodiment of the present
invention .
[00171 FIG . 15 is a block diagram of a representative
computer system in accordance with an embodiment of the
present invention .
[0018] FIG . 16 is a block diagram of a system in accor
dance with an embodiment of the present invention .
[00191 . FIG . 17 is a block diagram illustrating an IP core
development system in accordance with an embodiment of
the present invention .
[0020] FIG . 18 is a block diagram of a register architecture
according to one embodiment of the invention .
[0021] FIG . 19A is a block diagram illustrating both an
exemplary in - order pipeline and an exemplary register
renaming , out - of - order issue / execution pipeline according
to embodiments of the invention .
0022] FIG . 19B is a block diagram illustrating both an
exemplary embodiment of an in - order architecture core and
an exemplary register renaming , out - of - order issue / execu
tion architecture core to be included in a processor according
to embodiments of the invention .
[0023] FIGS . 20A , 20B illustrate a block diagram of a
more specific exemplary in - order core architecture , which
core would be one of several logic blocks (including other
cores of the same type and / or different types) in a chip .
[0024] FIG . 21 is a block diagram of a processor that may
have more than one core , may have an integrated memory
controller , and may have integrated graphics according to
embodiments of the invention .
[0025] FIG . 22 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention .

BRIEF DESCRIPTION OF THE DRAWINGS
[0003] FIG . 1 is a block diagram of a portion of a system
in accordance with an embodiment .
[0004] FIG . 2 is a block diagram of a portion of a cache
hierarchy in accordance with an embodiment of the present
invention .
[0005] FIG . 3 is a flow diagram of a method in accordance
with an embodiment .
[0006] FIG . 4 is a flow diagram of a method in accordance
with another embodiment of the present invention .
[0007] FIG . 5 is a flow diagram of a method in accordance
with yet another embodiment of the present invention .
[0008] FIG . 6 is a block diagram of a micro - architecture of
a processor core in accordance with one embodiment of the
present invention .
[0009] FIG . 7 is a block diagram of a micro - architecture of
a processor core in accordance with another embodiment .
[0010] FIG . 8 is a block diagram of a micro - architecture of
a processor core in accordance with yet another embodi
ment .
[0011] FIG . 9 is a block diagram of a micro - architecture of
a processor core in accordance with a still further embodi
ment .
[0012] FIG . 10 is a block diagram of a processor in
accordance with another embodiment of the present inven
tion .
[0013] FIG . 11 is a block diagram of a representative SoC
in accordance with an embodiment of the present invention .
[0014] FIG . 12 is a block diagram of another example SoC
in accordance with an embodiment of the present invention .
[0015) FIG . 13 is a block diagram of an example system
in accordance with an embodiment of the present invention .

DETAILED DESCRIPTION
[0026] In various embodiments , techniques are provided
to control at least a portion of a cache memory hierarchy of
a processor to dynamically allocate , within the cache
memory hierarchy , an explicit virtual write buffer . In this
way , during periods of high communication bandwidths
between the processor and a memory , write interference on
a memory interconnect that couples the processor to the
memory may be reduced . Various features of this virtual
write buffer , including its creation , allocation , maintenance
and so forth may be dynamically controlled based on
operating conditions , including bandwidth (s) on the memory
interconnect , virtual write buffer occupancy , cache hit rates
and so forth . Note that in embodiments , dynamic sizing of
the virtual write buffer (or its presence at all) may be based
at least in part on cache hit rate , in addition to bandwidth . In
this way , the cache memory may maintain a sufficient hit
rate , while improving memory efficiency and thus gaining
overall performance benefits .
10027] It is noted that by converting some portion of a
cache memory such as a portion of a last level cache (LLC)
to be a virtual write buffer , hit rates may be compromised ,
potentially impacting performance . As such , embodiments
provide machine learning techniques to identify and mini
mize this impact . To this end , a learning mechanism may be
provided that periodically profiles hit rate of a workload
(e . g . , one or more applications , threads , processes or so
forth) using cache hardware . Based at least in part on this hit
rate information , a hit rate loss may be minimized , effec

US 2019 / 0286567 A1 Sep . 19 , 2019

tively trading off a small drop in LLC hit rate in order to
improve memory efficiency and gain overall performance .
In an example embodiment , the techniques described herein
may enable a performance gain on memory - sensitive mul -
ticore workloads .
[0028] With the embodiments described herein in which a
virtual write buffer is provided within an LLC , other write
buffering resources may be minimized . For example , an
integrated memory controller typically includes a small
amount of storage for a write buffer . By providing a cache
based virtual write buffer , the size of this resource may be
kept relatively small , e . g . , on the order of between approxi -
mately 2 - 4 kilobytes per memory controller channel . By
maintaining the write buffers with a small size , performance
may be enhanced , as increasing this write buffer is not a
scalable solution , given area , power and timing concerns .
[0029] Referring now to FIG . 1 , shown is a block diagram
of a portion of a system in accordance with an embodiment .
More specifically , FIG . 1 shows a portion of a system 100
including at least a portion of a processor 110 and a memory
150 . Processor 10 may be a system on chip (SOC) or other
multicore processor , and system memory 150 may be imple
mented as a dynamic random access memory (DRAM) .
Understand of course that additional components will be
present in a given system , and system 100 is shown at a high
level to show the general flow of data between multiple
levels of a memory hierarchy of the system , including
multiple cache memory levels within a processor and its
system memory .
10030] As seen , processor 100 includes an execution cir
cuit 102 , an L1 instruction cache 104 , an Li data cache 106 ,
an L2 cache 108 , a LLC 115 , and a memory controller 112 .
Execution circuit 102 may be a portion of a processor
configured to execute instructions . In some implementa
tions , a processor may have multiple cores , with each core
having a processing unit and one or more caches . FIG . 1
illustrates a three - level cache hierarchy in which Ll caches
104 and 106 are closest to execution circuit 102 , L2 cache
108 is farther from execution circuit 102 compared to L1
caches 104 and 106 , and LLC 115 is the farthest from
execution circuit 102 .
[0031] In operation , execution circuit 102 may perform an
instruction fetch after executing a current instruction . The
instruction fetch may request a next instruction from L1
instruction cache 104 for execution by execution circuit 102 .
If the instruction is present in L1 instruction cache 104 , an
L1 hit may occur and the next instruction may be provided
to execution circuit 102 from L1 instruction cache 104 . If
not , an L1 miss occurs , and L1 instruction cache 104 may
request the next instruction from L2 cache 108 , which
includes a cache controller 109 .
[0032] If the next instruction is in L2 cache 108 , an L2 hit
occurs and the next instruction is provided to L1 cache 104 .
If not an L2 miss occurs , and L2 cache 108 may request the
next instruction from LLC 115 .
[0033] If the next instruction is in LLC 115 , an LLC hit
occurs and the next instruction is provided to L2 cache 108
and / or to L1 instruction cache 104 . If not , an LLC miss may
occur and LLC 115 may request the next instruction from
memory controller 112 . Memory controller 112 may read a
block 114 that includes the next instruction and fill block 114
into L2 cache 108 , in a non - exclusive cache hierarchy
implementation . Other fill techniques of course are possible .
And understand that while an instruction - based cache fill

example is given , the same operations occur for a data - based
fill (with the exception that the data is finally filled back to
L1 data cache 106) .
(0034) In some implementations , a core 118 may include
execution circuit 102 and one or more of caches 104 , 106 ,
or 108 . For example , in FIG . 1 , core 118 includes caches
104 , 106 , and 108 but excludes LLC 115 . In this example ,
LLC 115 may be shared with other cores . As another
example , if core 118 includes LLC 115 , LLC 115 may be
private to core 118 . Whether LLC 115 is private to core 118
or shared with other cores may be unrelated to whether LLC
115 is inclusive or exclusive of other caches , such as caches
104 , 106 , or 108 .
[0035] In addition to the above discussion of fill opera
tions , eviction operations also may be performed within the
cache memory hierarchy . As shown , due to capacity issues
within a lower level cache (e . g . , one of L1 instruction cache
104 or L1 data cache 106) a data block 107 may be evicted
and stored temporarily in storage within L2 cache 108 . Still
further due to capacity issues , evicted block 107 in turn may
become evicted from L2 cache 108 and be provided to LLC
115 as evicted block 117 .
[0036] In embodiments herein , when evicted data block
107 includes dirty data to be written back to memory 150 ,
such dirty data may be maintained in a virtual write buffer
118 of LLC 115 . As used herein , note that the term “ virtual
write buffer ” is used to refer to a dedicated allocation of one
or more cache lines (per set) within a cache memory in
which dirty data are to be stored and maintained instead of
cache lines storing clean data . Stated another way , a virtual
write buffer is a dedicated cache memory storage for write
back data , so that such writeback data can be maintained for
longer periods of time within the cache memory before an
actual writeback to memory occurs , thus reducing memory
traffic . At the same time , an upper bound on the size of the
virtual write buffer may be maintained to ensure that hit rates
within the cache memory do not impact performance to an
undesired extent . As will be described in more detail herein ,
the presence of virtual write buffer 118 may be dynamically
controlled based at least in part on a bandwidth on an
interconnect 140 that couples processor 110 with memory
150 .
[0037] In embodiments herein , a cache controller 120 may
be configured to dynamically allocate virtual write buffer
118 , dynamically control its size based at least in part on hit
statistics , and adaptively drain entries from virtual write
buffer 118 to memory 150 according to varying conditions ,
including bandwidth on interconnect 140 and / or capacity
issues within virtual write buffer 118 . In embodiments ,
virtual write buffer 118 may be implemented as an explicit
write buffer . This explicit write buffer may be formed of at
least a predetermined number of lines or ways within each
set of LLC 115 .
0038) Note that memory controller 112 includes its own

write buffer 113 . However , embodiments may leverage
virtual write buffer 118 , implemented within already exist
ing storage within LLC 115 , such that the expense of an
increased size of this additional memory structure within
memory controller 112 can be mitigated . As such , virtual
write buffer 118 is a separate structure from write buffer 113
of memory controller 112 .
[0039] Referring now to FIG . 2 , shown is a block diagram
of a portion of a cache hierarchy in accordance with an
embodiment of the present invention . More specifically FIG .

US 2019 / 0286567 A1 Sep . 19 , 2019

2 shows further details of two levels of a multi - level cache
hierarchy , with included circuitry for maintaining a virtual
write buffer as described herein . As seen , a cache hierarchy
200 includes two levels of cache memory , namely a mid
level cache (MLC) 210 and a LLC 250 . Understand while
only two levels of a hierarchy are shown , more than two
levels may be present in other embodiments . As in FIG . 1
above , typically a processor may include at least three levels
of cache hierarchy , including a Ll cache that is smallest and
closest to a core (e . g . , within the core) or other processing
unit , a second level cache (such as MLC 210) and a shared
or last level cache , such as LLC 250 .
[0040] As illustrated in FIG . 2 , MLC 210 includes a
plurality of cache lines 221 , a representative one of which is
shown in detail in FIG . 2 . In embodiments , MLC 210 may
be implemented as an M - way N - set associative cache
memory . Thus as illustrated , a plurality of sets 220 . - 220 , are
shown . Each such set may include a plurality of ways (e . g . ,
M ways) , each corresponding to a cache line 221 . Repre
sentative details of information stored in cache line 221 are
shown . Specifically , cache line 221 may include or be
associated with a tag portion 222 that is used to index into
the cache line . Cache line 221 further includes a metadata
portion 223 including a plurality of fields to store informa
tion regarding hit information , coherency information and so
forth , and a data portion 230 that stores the corresponding
data of the cache line .
[0041] Still referring to FIG . 2 , MLC 210 further includes
a cache controller 240 that in embodiments may be a given
hardware circuit , in addition to additional control logic ,
software and / or firmware to perform cache control opera
tions with regard to storage of data in MLC 210 . Cache
controller 240 may perform various cache management
operations .
[0042] For purposes of discussion herein , cache controller
240 may include a replacement circuit 245 which , when
MLC 210 is at a capacity (or at least a set is at such capacity)
may be used to identify an eviction candidate to be evicted
from MLC 210 as an evicted cache line 235 , in turn to be
provided to LLC 250 . In different implementations , replace
ment circuit 245 may perform replacement operations based
on various replacement policies . For purposes of discussion
herein , assume that evicted cache line 235 includes dirty
data that is to be stored within LLC 250 . Understand while
shown with a single particular sub - circuit in the embodiment
of FIG . 2 , a given cache controller may include additional
logic and circuitry .
[0043] As illustrated in FIG . 2 , during operation MLC 210
may identify an evicted cache line , and send a communica
tion (message 235) to LLC 250 . As illustrated , LLC 250
includes a plurality of sets 260 , - 260m , each of which may
include a plurality of ways , a representative way 261 being
illustrated . LLC 250 may similarly be arranged as a set
associative cache memory . In embodiments , when allocated
a virtual write buffer may be implemented using some of
ways 261 of each of sets 260 . As with the cache lines within
MLC 210 , each cache line 261 may include a tag portion
262 , a metadata portion 263 , and a data portion 264 . In some
cases , at least some of the metadata information in metadata
portion 223 of MLC 210 may be included in metadata
portion 263 . LLC 250 further includes a cache controller 270
to perform control activities with regard to LLC 250 .
[0044] Note that the virtual write buffer and its control
may be implemented with very little area , as the buffer itself

is formed of already existing cache lines within LLC 250 . In
this way , a portion of LLC 250 may be repurposed as an
effective and broadly applicable virtual write buffer , con
trolled based at least in part on dynamic learning mecha
nisms .
[0045] This virtual write buffer may be configured to
absorb write data . The buffered writes in turn drain out of the
virtual write buffer in periods of low memory bandwidth .
This virtual write buffer is dynamically adjustable and
balances the conflicting goals of improving memory effi
ciency by absorbing writes and maintaining a good hit rate
in LLC 250 . The virtual write buffer dynamically grows
inside LLC 250 . To avoid interfering with reads when the
virtual write buffer is present , an LLC fill operation seeks to
find a clean victim to evict . As a result , the extent to which
the virtual write buffer is allowed to grow in LLC 250
influences the availability of clean victims and the quality of
victims . For example , if the virtual write buffer is allowed to
grow too large , the possibility of replacing clean live blocks
increases .
[0046] Of interest here , cache controller 270 includes a
virtual write buffer control circuit 273 . In the illustration
shown , virtual write buffer control circuit 273 includes
constituent sub - circuits , including an allocation circuit 277
and a drain circuit 279 . Still further , control circuit 273 may
maintain a set of counters 275 . Of interest here , such
counters may include a set of read hit counters 2760 - n and a
set of write hit counters 278 . n . In an embodiment , for a
16 - way cache arrangement , there may be 16 read hit coun
ters and 16 write hit counters , each of which may be
implemented with 16 bits , in an embodiment . Such counters
may count , respectively , read and write hits within particular
positions of a stack , organized by recency of access .
[0047] As described herein , cache controller 270 may
maintain read and write hit statistics with regard to particular
LRU positions of an LRU stack using counters 276 , 278 .
Allocation circuit 277 may trigger allocation of a virtual
write buffer within LLC 250 , e . g . , based on bandwidth
information of a memory interconnect , which may be
received from a memory controller (not shown for ease of
illustration in FIG . 2) . Upon allocation of a virtual write
buffer , allocation circuit 277 issues an allocation signal to
replacement circuit 272 to cause it to update a replacement
policy used in determining cache lines for eviction . In one
embodiment , this update changes the replacement policy
from a given LRU policy to a LRU clean policy , such that
clean lines are preferentially evicted from LLC 250 . This
change to the replacement policy may minimize impact on
memory traffic , since such clean lines are not written back to
memory when they are evicted from LLC 250 . Still further ,
allocation circuit 277 may initialize the virtual write buffer
to be of a predetermined size . Then based at least in part on
hit statistics maintained within counters 276 , 278 , control
circuit 273 can dynamically update a size of the virtual write
buffer . Understand while shown with this particular embodi
ment in FIG . 2 , many variations and alternatives are pos
sible . For example , while virtual write buffer is illustrated
and discussed as being present within LLC 250 , embodi
ments are not so limited . That is , in other embodiments the
advantages of a virtual write buffer may be realized within
other cache memories of a cache memory hierarchy to
reduce bandwidth on other interconnects .
10048] Hit histogram information based on the hit count
information maintained by counters 276 , 278 may be used to

US 2019 / 0286567 A1 Sep . 19 , 2019

prevent hit rate loss in LLC 250 . More specifically this
information may be used to dynamically adjust the size of
the virtual write buffer in order to limit the LLC hit rate loss .
In an embodiment , the virtual write buffer is sized periodi
cally based on two metrics . First , a bound is imposed on the
percentage of sacrificed LLC hits due to implementation of
the clean LRU replacement policy . Second , a bound is
imposed on the probability of dirty inclusion victims .
[0049] A read hit histogram (RHH) is maintained using
information from read hit counters 276 . More specifically ,
this RHH records the number of LLC read hits in each LRU
stack position . In one particular embodiment , the number of
ways beginning from the tail of the LRU stack (namely the
LRU position) that cover 1 / 16th of all LLC read hits may
define a maximum stretch of the virtual write buffer . Let this
be called MaxReadStretch . This value guarantees that if the
write buffer becomes full , a clean LRU replacement policy
will not sacrifice more than 1 / 16th of LLC hits .
[0050] A write hit histogram (WHH) is also maintained
using information from write hit counters 278 . More spe
cifically , this WHH records the number of LLC write hits in
each LRU stack position . In one particular embodiment , the
number of ways starting from the tail of the LRU stack that
cover half of all LLC write hits may define a maximum
stretch of the virtual write buffer . Let this be called Max
WriteStretch . Evicting a block beyond the Max WriteStretch
has the probability of generating a dirty inclusion victim
equal to (# dirty blocks / # all blocks) * inclusion victim
fraction * fraction of write hits covered by MaxWriteStretch .
Assuming 1 / 3 ” a dirty blocks , this leads to (1 / 3) * (1 / 4) * (1 / 2) , or
about a 4 % chance of generating a dirty inclusion victim .
Note that the inclusion victim fraction may be set as the ratio
of MLC to LLC capacity .
[0051] In one particular embodiment , these two values
may be used in determining an appropriate size of the virtual
write buffer . In such embodiments , the write buffer size may
be dynamically controlled to be a maximum of a predeter
mined (or initialization) value and these stretch values , as
follows : max (3 , min (Max WriteStretch , MaxReadStretch)) .
In this example in other words , the minimum virtual write
buffer capacity is set to 3 LLC ways . Of course , in other
embodiments other values may exist , or other techniques
may be used to determine the virtual write buffer size .
[0052] Different sets in the virtual write buffer fill up with
dirty blocks at different rates . Some sets fill up quickly and
put pressure on the clean LRU replacement policy for those
sets . In embodiments there may be multiple criteria to be
considered in determining when it is appropriate to drain
entries from the virtual write buffer . In one embodiment , a
first drain or scrub trigger may be based on the number of
overflown sets in the virtual write buffer . As used herein , the
term " overflown set ' means a set in which all of the number
of ways that constitute the virtual write buffer include dirty
data . Note that different applications can tolerate different
numbers of overflown sets . For example , an application with
reasonably high hit rate can sacrifice a bigger number of hits
to delay a scrub operation . In one implementation , a lookup
table (LUT) may be used to map hits per fill to the number
of tolerable overflown sets . More specifically , the LUT may
be used to identify how many overflown sets an application
can tolerate . If the hits per fill is high for that application
(e . g . , hit rate is high) , more overflown sets can be tolerated .
The rationale is that since the hit rate is high , the memory
bandwidth demand is lower , and hence a little decrease in hit

rate will not hurt memory bandwidth demand . Note that
RHH information may still cap the overall hit rate loss . In an
embodiment , each set within LLC 250 may include an
overflow indicator , e . g . , a single bit , which when set is to
indicate that the virtual write buffer for the set is full (namely
each way of the virtual write buffer , to the specified depth
stores dirty data) . This information may be used to identify
when a scrub may be triggered due to a capacity issue .
[0053] A second criterion for triggering a scrub may be
based on the number of reads pending on a memory channel .
In a particular system configuration , an LLC may be con
figured with multiple banks , where each LLC bank is
associated with a specific memory channel . If the number of
reads pending on that channel is higher than a threshold ,
scrubbing is deferred until the number of pending reads falls
below the threshold . In one embodiment , this threshold may
be set to : (number of miss status holding registers (MSHRs) ,
which is a measure of pending reads in a bank)) x (number of
LLC banks feeding to a DRAM channel) . In other words , a
write scrubbing is triggered in an LLC bank only if the
memory channel is not saturated with the maximum number
of reads . Of course in other embodiments , a LLC - wide
analysis may be performed .
[0054] In typical embodiments , each of these criteria may
be considered independently , such that scrubbing is trig
gered when either criterion is met . In another embodiment ,
both the criteria may be satisfied for an LLC bank to enter
the scrub mode .
[0055] In the scrub mode , cache controller 270 or other
control circuit may analyze each set (e . g . , one or more times
or rounds) . In each visit or analysis to a set , at most one dirty
block closest to the LRU position may be scrubbed , in one
embodiment . Note that this scrub operation may be imple
mented as a write of the dirty data to memory and a
corresponding update to cache coherency metadata of the
line to indicate that the line now stores clean data . Stated
another way , this scrub of a line is a write to memory and
update to the cache coherency state of the line , without
victimizing the line . In one embodiment , within a set , the
search for a dirty block is restricted to the lowest N LRU
stack positions to minimize over scrubs . This variable N
may be determined periodically by visiting the WHH and
computing the number of ways , starting from the LRU tail
that cover at most 1 / 16th of all LLC write hits .
[0056] Referring now to FIG . 3 , shown is a flow diagram
of a method in accordance with an embodiment . More
specifically , method 300 is a method for controlling a virtual
write buffer as described herein . In embodiments , method
300 may be performed by a cache controller , such as an LLC
cache controller , which may be implemented as one or more
hardware circuits , firmware , software and / or combinations
thereof .
[0057] At a high level , method 300 may be used to allocate
a virtual write buffer in the LLC based on system conditions
and maintain the virtual write buffer during at least portions
of operation , including inserting dirty lines into entries of the
virtual write buffer and adaptively draining or scrubbing
these dirty lines from the virtual write buffer . Maintenance
may further include dynamic control of the virtual write
buffer , including dynamic sizing of the virtual write buffer ,
dynamic allocation / deallocation of the virtual write buffer
and so forth .
0058] As illustrated , method 300 begins by monitoring a
write bandwidth with a memory (block 310) . More specifi

US 2019 / 0286567 A1 Sep . 19 , 2019

cally , a write bandwidth of an interconnect that couples a
processor to a memory such as a DRAM can be monitored .
In embodiments , an integrated memory controller of the
processor may maintain such statistics regarding channel
usage . As an example , statistics may be maintained as to
read and write bandwidths for read and write operations on
the interconnect . In different implementations , such statis
tics may be maintained independently for multiple channels .
Furthermore , while in the embodiment of FIG . 3 , the moni
toring performed at block 310 is with regard to write
bandwidth , understand the scope of the present invention is
not limited in this regard , and in other embodiments this
monitoring may be of read bandwidth or a combination of
read and write bandwidths .
[0059] In any event , control next passes to diamond 315 to
determine whether this monitored bandwidth exceeds a first
bandwidth threshold . Although the scope of the present
invention is not limited in this regard , this first bandwidth
threshold may be set at a given level of bandwidth , e . g . , as
a percentage of maximum bandwidth . If the bandwidth is
determined not to exceed this first bandwidth threshold ,
control passes back to block 310 for further monitoring of
the bandwidth . Note that this bandwidth monitoring may
occur periodically .
[0060] Still with reference to FIG . 3 , if it is determined at
diamond 315 that the bandwidth exceeds the first bandwidth
threshold , control passes to block 320 , where a virtual write
buffer is allocated . More specifically , this virtual write buffer
is allocated within the LLC . As generally described above ,
the virtual write buffer may be implemented as one or more
ways within each set of the LLC . In the embodiment of FIG .
3 , this allocation may be initialized at a predetermined
number of ways . For example , in a cache implementation in
which the LLC is arranged as an N - set 16 - way associative
cache memory , the predetermined number of ways may be
set equal to three . Of course other examples are possible in
different embodiments .
[0061] Allocation of the virtual write buffer may include
additional operations , such as updating a replacement policy
within the LLC . For example , the virtual write buffer allo
cation may be performed by updating the replacement policy
to a clean LRU policy . That is , to enable a virtual write
buffer as described herein , the replacement policy may be set
such that clean lines are preferentially evicted from the LLC
and dirty lines are not selected as victims . Note that by
evicting clean lines , there is no impact on memory band
width , as these lines may simply be dropped , since they are
clean and thus include the same data as present in the
memory . Understand that in some embodiments , additional
operations to allocate the virtual write buffer may occur .
[0062] At this point in operation , the virtual write buffer is
allocated , such that when dirty lines are written into the
LLC , they are more likely to be maintained within the LLC
and be less likely to be evicted from the LLC (to the memory
controller (more specifically , a write buffer within the
memory controller) and in turn to the memory) .
10063) Still referring to FIG . 3 , additional operations
regarding dynamic maintenance and control of the virtual
write buffer are further described . As illustrated , during
operation , control proceeds to block 330 where read and
write histograms may be monitored . More specifically as
described herein , these read and write histograms provide hit
statistical information regarding read and write requests that
hit within the LLC at particular LRU positions within an

LRU stack . That is , this statistical information is maintained
by LRU position and not according to physical way infor
mation . During operation the size of the virtual write buffer
can be dynamically determined based at least in part on the
read and / or write hit histogram information (block 340) . For
example , depending upon certain so - called stretch values
determined based on these histograms , the number of ways
allocated for the virtual write buffer can be dynamically
increased or decreased , details of which are described above .
[0064] Still further with reference to FIG . 3 , during opera
tion consumption of the virtual write buffer may be moni
tored (block 350) . In embodiments , this consumption moni
toring may be by way of identification of a number of sets
within the LLC that have their virtual write buffer allocation
full (e . g . , by reference to an overflow indicator) . For
example , assume an initial configuration in which a maxi
mum of three ways per set are allocated to the virtual write
buffer . In this case , a determination of a full virtual write
buffer for a set may be when these three ways (beginning
with the LRU position) store dirty data . Next it may be
determined based upon this monitoring whether the number
of full virtual write buffer sets exceeds a threshold (diamond
360) . If not , control next passes to diamond 370 where it
may be determined whether a read bandwidth on the
memory interconnect is less than a second bandwidth thresh
old . If it is not , no further operations occur , and control
passes back to diamond 350 .
[0065] Note with regard to FIG . 3 , if it is determined at
diamond 360 that the number of full virtual write buffer sets
exceeds the threshold or at diamond 370 that the read
bandwidth is less than the second bandwidth threshold ,
control passes to block 380 where a drain operation may be
initiated . More specifically , this drain operation is thus an
adaptive write draining of dirty lines from the virtual write
buffer to memory (more specifically to the memory control
ler and thereafter to memory) . Understand while shown at
this high level in the embodiment of FIG . 3 , many variations
and alternatives are possible .
[0066] Referring now to FIG . 4 , shown is a flow diagram
of a method in accordance with another embodiment of the
present invention . More specifically , method 400 is a
method for setting values that may be used to determine a
depth or size of a virtual write buffer as described herein . In
embodiments , method 400 may be performed by a cache
controller , such as an LLC cache controller , which may be
implemented as one or more hardware circuits , firmware ,
software and / or combinations thereof .
[0067] As illustrated , method 400 begins by accumulating
a hit counter for a given LRU stack position with an
accumulated hit counter value (block 410) . Note that this
accumulation may begin at an LRU position by access to a
hit counter associated with the LRU position (within a set of
such hit counters) . Thus in an initial iteration of the accu
mulation at block 410 , this accumulated hit counter value
may be set at an initialized value of zero . Understand that a
cache controller may maintain independent hit counters for
read and write hits . Still further , in an embodiment herein ,
multiple hit counters may be maintained , with a hit counter
for each LRU position within an LRU stack . In an example
of a cache arrangement having 16 ways , there thus may be
16 LRU positions . As such , a cache controller may maintain
16 read hit counters and 16 write hit counters . Understand
that the cache controller may update the appropriate read /
write hit counter on a given read or write hit to the

US 2019 / 0286567 A1 Sep . 19 , 2019

corresponding LRU position when a request hits within that
LRU position in one of the sets of the LLC .
[0068] Still with reference to FIG . 4 , next it is determined
at diamond 420 whether the accumulated hit count value
meets or exceeds a hit threshold . Although the scope of the
present invention is not limited in this regard , this hit
threshold may correspond to a given percentage of hits . Note
that this total number of hits can be determined by summing
all of the hit counters of all LRU positions within the LRU
stack . In a particular embodiment , for a read hit analysis , this
hit threshold may be set to 1 / 16 . If it is determined that the
accumulated hit counter value does not meet or exceed this
hit threshold , control passes to block 430 where a variable
X may be incremented . Thereafter , control passes back to
block 410 for accumulation of the next hit counter with the
accumulated hit counter value .
100691 Still with reference to FIG . 4 , instead if it is
determined at diamond 420 that the accumulated hit counter
value meets or exceeds the hit threshold , control passes to
block 440 . At block 440 a maximum stretch value may be set
equal to the value of the variable N . Assume , for purposes
of example , that the accumulated hit counter value that
reached the hit threshold occurred after the hit counters for
four ways were accumulated . In this case , the maximum
stretch value may be set to X = 4 .
[0070] Note that method 400 may proceed independently
for read hit counters and write hit counters . As such , two
different maximum stretch values may be set , one associated
with read hits and the other associated with write hits . As
described herein , both of these values may be used to
determine a size or depth of the virtual write buffer . For
example , the cache controller of the LLC may set the virtual
write buffer depth to a smallest one of these two maximum
stretch values , assuming that the value of whichever is the
smaller maximum stretch value exceeds the baseline or
predetermined virtual write buffer depth . Of course other
examples are possible .
[0071] Referring now to FIG . 5 , shown is a flow diagram
of a method in accordance with yet another embodiment of
the present invention . More specifically , method 500 may be
performed by a cache controller in performing adaptive
write draining or scrubbing as described herein . In embodi
ments , method 500 may be performed by a cache controller ,
such as an LLC cache controller , which may be implemented
as one or more hardware circuits , firmware , software and / or
combinations thereof . As illustrated , method 500 begins by
identifying a dirty line of a set that is closest to the LRU
position (block 510) . Note that method 500 may begin in
response to a trigger for draining of the virtual write buffer .
This trigger may be based upon a capacity issue with regard
to the virtual write buffer and / or available memory band
width . Of course other triggers may be possible .
[0072] As an option , it may be determined whether the
identified dirty line is within a threshold distance of the LRU
position itself (diamond 520) . As an example , this threshold
distance may restrict the search for dirty lines to the lowest
N LRU stack positions , thus minimizing over scrubs . In
other cases , this optional determination may not occur . In
any event , control passes to block 530 where the identified
dirty line may be written to the memory controller (for
eventual write back to the memory) . Note that this write of
the identified dirty line does not cause an eviction of the
dirty line . Instead as further shown in FIG . 5 at block 540 the
status or metadata associated with the dirty line can be

updated to a clean state , as the memory will be updated with
the newly written information . By not evicting this line at
this point during the scrub operation , the information
remains in the LLC where it may be hit one or more times
prior to eviction , improving hit rates , while at the same time
providing the dirty data to memory .
[0073] Still with reference to FIG . 5 , control next passes to
diamond 550 where it is determined whether all sets within
the LLC have been visited in a given round of this adaptive
write draining . If not all sets have been visited control passes
to block 560 , where the set number may be incremented .
After this increment to set number occurs , control passes
back to block 510 where the next set may be analyzed to
identify a given dirty line .
[0074] Still referring to FIG . 5 , if instead it is determined
that all sets have been visited (at diamond 550) , control
passes to block 570 where a round counter itself may be
incremented , meaning that a full round of adaptive write
draining of all sets of the LLC has been performed . Next it
is determined whether a threshold number of rounds of the
adaptive write draining have been completed (diamond
580) . Although the scope of the present invention is not
limited in this regard , in one embodiment this threshold may
be set at two rounds , meaning that for a given iteration or
triggering of adaptive write draining , each set is visited
twice , potentially leading to two dirty lines being written
back to memory (via the memory controller) . If the threshold
number of rounds has not been completed , control passes to
block 510 where another round of adaptive write draining
begins . Otherwise , when it is determined that the threshold
number of rounds has completed , method 500 concludes for
that adaptive write draining process . Note that this adaptive
write draining thus occurs for all sets of the LLC , even when
only some number of the sets have full virtual write buffers .
Stated another way , adaptive write draining of one or more
sets may occur even though such one or more sets do not
have full virtual write buffers . And as seen in the illustration
of FIG . 5 , for any given set of the LLC , an entry may be
drained only when a dirty line is within a threshold distance
of the LRU position in an embodiment incorporating the
determination at optional diamond 520) . For example ,
assume this threshold distance is four . In this case , assuming
that the 4 LRU positions of a set do not have dirty data , no
draining of an entry within that set occurs during a given
round of the adaptive write draining . Understand while
shown at this high level in the embodiment of FIG . 5 , many
variations and alternatives are possible .
[0075] Referring now to FIG . 6 , shown is a block diagram
of a micro - architecture of a processor core in accordance
with one embodiment of the present invention . As shown in
FIG . 6 , processor core 600 may be a multi - stage pipelined
out - of - order processor . As seen in FIG . 6 , core 600 includes
front end units 610 , which may be used to fetch instructions
to be executed and prepare them for use later in the proces
sor pipeline . For example , front end units 610 may include
a fetch unit 601 , an instruction cache 603 , and an instruction
decoder 605 . In some implementations , front end units 610
may further include a trace cache , along with microcode
storage as well as a micro - operation storage . Fetch unit 601
may fetch macro - instructions , e . g . , from memory or instruc
tion cache 603 , and feed them to instruction decoder 605 to
decode them into primitives , i . e . , micro - operations for
execution by the processor .

US 2019 / 0286567 A1 Sep . 19 , 2019

[0076] Coupled between front end units 610 and execution
units 620 is an out - of - order (000) engine 615 that may be
used to receive the micro - instructions and prepare them for
execution . More specifically 000 engine 615 may include
various buffers to re - order micro - instruction flow and allo
cate various resources needed for execution , as well as to
provide renaming of logical registers onto storage locations
within various register files such as register file 630 and
extended register file 635 . Register file 630 may include
separate register files for integer and floating point opera
tions . For purposes of configuration , control , and additional
operations , a set of machine specific registers (MSRs) 638
may also be present and accessible to various logic within
core 600 (and external to the core) .
10077] Various resources may be present in execution
units 620 , including , for example , various integer , floating
point , and single instruction multiple data (SIMD) logic
units , among other specialized hardware . For example , such
execution units may include one or more arithmetic logic
units (ALUS) 622 and one or more vector execution units
624 , among other such execution units .
[0078] Results from the execution units may be provided
to retirement logic , namely a reorder buffer (ROB) 640 .
More specifically , ROB 640 may include various arrays and
logic to receive information associated with instructions that
are executed . This information is then examined by ROB
640 to determine whether the instructions can be validly
retired and result data committed to the architectural state of
the processor , or whether one or more exceptions occurred
that prevent a proper retirement of the instructions . Of
course , ROB 640 may handle other operations associated
with retirement .
100791 As shown in FIG . 6 , ROB 640 is coupled to a cache
650 which , in one embodiment may be a low level cache
(e . g . , an Ll cache) although the scope of the present
invention is not limited in this regard . Also , execution units
620 can be directly coupled to cache 650 . From cache 650 ,
data communication may occur with higher level caches ,
system memory and so forth . As discussed herein , cache 650
may be in communication with higher level caches including
one or more of an L2 and LLC . Thus as illustrated in FIG .
6 , a higher level cache 660 (external to core 600) couples to
cache 650 . In embodiments herein , LLC 660 may be con
figured to dynamically allocate and manage an adaptive
write buffer , e . g . , based at least in part on memory band
width , to reduce memory traffic . While shown with this high
level in the embodiment of FIG . 6 , understand the scope of
the present invention is not limited in this regard . For
example , while the implementation of FIG . 6 is with regard
to an out - of - order machine such as of an Intel® x86 instruc
tion set architecture (ISA) , the scope of the present invention
is not limited in this regard . That is , other embodiments may
be implemented in an in - order processor , a reduced instruc
tion set computing (RISC) processor such as an ARM - based
processor , or a processor of another type of ISA that can
emulate instructions and operations of a different ISA via an
emulation engine and associated logic circuitry .
[0080] Referring now to FIG . 7 , shown is a block diagram
of a micro - architecture of a processor core in accordance
with another embodiment . In the embodiment of FIG . 7 ,
core 700 may be a low power core of a different micro -
architecture , such as an Intel® AtomTM - based processor
having a relatively limited pipeline depth designed to reduce
power consumption . As seen , core 700 includes an instruc

tion cache 710 coupled to provide instructions to an instruc
tion decoder 715 . A branch predictor 705 may be coupled to
instruction cache 710 . Note that instruction cache 710 may
further be coupled to another level of a cache memory , such
as an L2 cache (not shown for ease of illustration in FIG . 7) .
In turn , instruction decoder 715 provides decoded instruc
tions to an issue queue (IQ) 720 for storage and delivery to
a given execution pipeline . A microcode ROM 718 is
coupled to instruction decoder 715 .
[0081] A floating point pipeline 730 includes a floating
point (FP) register file 732 which may include a plurality of
architectural registers of a given bit width such as 128 , 256
or 512 bits . Pipeline 730 includes a floating point scheduler
734 to schedule instructions for execution on one of multiple
execution units of the pipeline . In the embodiment shown ,
such execution units include an ALU 735 , a shuffle unit 736 ,
and a floating point adder 738 . In turn , results generated in
these execution units may be provided back to buffers and / or
registers of register file 732 . Of course understand while
shown with these few example execution units , additional or
different floating point execution units may be present in
another embodiment .
[0082] An integer pipeline 740 also may be provided . In
the embodiment shown , pipeline 740 includes an integer
(INT) register file 742 which may include a plurality of
architectural registers of a given bit width such as 128 or 256
bits . Pipeline 740 includes an integer execution (IE) sched
uler 744 to schedule instructions for execution on one of
multiple execution units of the pipeline . In the embodiment
shown , such execution units include an ALU 745 , a shifter
unit 746 , and a jump execution unit (JEU) 748 . In turn ,
results generated in these execution units may be provided
back to buffers and / or registers of register file 742 . Of course
understand while shown with these few example execution
units , additional or different integer execution units may be
present in another embodiment .
[0083] A memory execution (ME) scheduler 750 may
schedule memory operations for execution in an address
generation unit (AGU) 752 , which is also coupled to a TLB
754 . As seen , these structures may couple to a data cache
760 , which may be a LO and / or L1 data cache that in turn
couples to additional levels of a cache memory hierarchy ,
including an L2 cache memory and which may be part of a
cache memory hierarchy , and which may dynamically
implement an adaptive write buffer as described herein .
[0084] To provide support for out - of - order execution , an
allocator / renamer 770 may be provided , in addition to a
reorder buffer 780 , which is configured to reorder instruc
tions executed out of order for retirement in order . Although
shown with this particular pipeline architecture in the illus
tration of FIG . 7 , understand that many variations and
alternatives are possible .
[0085] Referring to FIG . 8 , shown is a block diagram of a
micro - architecture of a processor core in accordance with
yet another embodiment . As illustrated in FIG . 8 , a core 800
may include a multi - staged in - order pipeline to execute at
very low power consumption levels . As one such example ,
processor 800 may have a micro - architecture in accordance
with an ARM Cortex A53 design available from ARM
Holdings , LTD . , Sunnyvale , Calif . In an implementation , an
8 - stage pipeline may be provided that is configured to
execute both 32 - bit and 64 - bit code . Core 800 includes a
fetch unit 810 that is configured to fetch instructions and
provide them to a decode unit 815 , which may decode the

US 2019 / 0286567 A1 Sep . 19 , 2019

instructions , e . g . , macro - instructions of a given ISA such as
an ARMv8 ISA . Note further that a queue 830 may couple
to decode unit 815 to store decoded instructions . Decoded
instructions are provided to an issue logic 825 , where the
decoded instructions may be issued to a given one of
multiple execution units .
[0086] With further reference to FIG . 8 , issue logic 825
may issue instructions to one of multiple execution units . In
the embodiment shown , these execution units include an
integer unit 835 , a multiply unit 840 , a floating point / vector
unit 850 , a dual issue unit 860 , and a load / store unit 870 . The
results of these different execution units may be provided to
a writeback (WB) unit 880 . Understand that while a single
writeback unit is shown for ease of illustration , in some
implementations separate writeback units may be associated
with each of the execution units . Furthermore , understand
that while each of the units and logic shown in FIG . 8 is
represented at a high level , a particular implementation may
include more or different structures . A processor designed
using one or more cores having a pipeline as in FIG . 8 may
be implemented in many different end products , extending
from mobile devices to server systems .
[0087] Referring to FIG . 9 , shown is a block diagram of a
micro - architecture of a processor core in accordance with a
still further embodiment . As illustrated in FIG . 9 , a core 900
may include a multi - stage multi - issue out - of - order pipeline
to execute at very high performance levels (which may
occur at higher power consumption levels than core 800 of
FIG . 8) . As one such example , processor 900 may have a
microarchitecture in accordance with an ARM Cortex A57
design . In an implementation , a 15 (or greater) - stage pipe
line may be provided that is configured to execute both
32 - bit and 64 - bit code . In addition , the pipeline may provide
for 3 (or greater) - wide and 3 (or greater) - issue operation .
Core 900 includes a fetch unit 910 that is configured to fetch
instructions and provide them to a decoder / renamer / dis
patcher unit 915 coupled to a cache 920 . Unit 915 may
decode the instructions , e . g . , macro - instructions of an
ARMv8 instruction set architecture , rename register refer
ences within the instructions , and dispatch the instructions
(eventually) to a selected execution unit . Decoded instruc
tions may be stored in a queue 925 . Note that while a single
queue structure is shown for ease of illustration in FIG . 9 ,
understand that separate queues may be provided for each of
the multiple different types of execution units .
[0088] Also shown in FIG . 9 is an issue logic 930 from
which decoded instructions stored in queue 925 may be
issued to a selected execution unit . Issue logic 930 also may
be implemented in a particular embodiment with a separate
issue logic for each of the multiple different types of
execution units to which issue logic 830 couples .
10089] Decoded instructions may be issued to a given one
of multiple execution units . In the embodiment shown , these
execution units include one or more integer units 935 , a
multiply unit 940 , a floating point / vector unit 950 , a branch
unit 960 , and a load / store unit 970 . In an embodiment ,
floating point / vector unit 950 may be configured to handle
SIMD or vector data of 128 or 256 bits . Still further , floating
point / vector execution unit 950 may perform IEEE - 754
double precision floating - point operations . The results of
these different execution units may be provided to a write -
back unit 980 . Note that in some implementations separate
writeback units may be associated with each of the execu
tion units . Furthermore , understand that while each of the

units and logic shown in FIG . 9 is represented at a high level ,
a particular implementation may include more or different
structures .
10090] A processor designed using one or more cores
having pipelines as in any one or more of FIGS . 6 - 9 may be
implemented in many different end products , extending
from mobile devices to server systems . Referring now to
FIG . 10 , shown is a block diagram of a processor in
accordance with another embodiment of the present inven
tion . In the embodiment of FIG . 10 , processor 1000 may be
a SoC including multiple domains , each of which may be
controlled to operate at an independent operating voltage
and operating frequency . As a specific illustrative example ,
processor 1000 may be an Intel® Architecture CoreTM - based
processor such as an i3 , i5 , i7 or another such processor
available from Intel Corporation . However , other low power
processors such as available from Advanced Micro Devices ,
Inc . (AMD) of Sunnyvale , Calif . , an ARM - based design
from ARM Holdings , Ltd . or licensee thereof or a MIPS
based design from MIPS Technologies , Inc . of Sunnyvale ,
Calif . , or their licensees or adopters may instead be present
in other embodiments such as an Apple A7 processor , a
Qualcomm Snapdragon processor , or Texas Instruments
OMAP processor . Such SoC may be used in a low power
system such as a smartphone , tablet computer , phablet
computer , UltrabookTM computer or other portable comput
ing device , which may incorporate a heterogeneous system
architecture having a heterogeneous system architecture
based processor design .
[0091] In the high level view shown in FIG . 10 , processor
1000 includes a plurality of core units 1010a - 1010n . Each
core unit may include one or more processor cores , one or
more cache memories and other circuitry . Each core unit
1010 may support one or more instruction sets (e . g . , an x86
instruction set (with some extensions that have been added
with newer versions) ; a MIPS instruction set ; an ARM
instruction set (with optional additional extensions such as
NEON)) or other instruction set or combinations thereof .
Note that some of the core units may be heterogeneous
resources (e . g . , of a different design) . In addition , each such
core may be coupled to a shared cache memory 1015 which
in an embodiment may be a shared last level cache memory
and which may be part of a cache memory hierarchy
providing an adaptive write buffer , controllable as described
herein . A non - volatile storage 1030 may be used to store
various program and other data . For example , this storage
may be used to store at least portions of microcode , boot
information such as a BIOS , other system software or so
forth .
10092] Each core unit 1010 may also include an interface
such as a bus interface unit to enable interconnection to
additional circuitry of the processor . In an embodiment , each
core unit 1010 couples to a coherent fabric that may act as
a primary cache coherent on - die interconnect that in turn
couples to a memory controller 1035 . In turn , memory
controller 1035 controls communications with a memory
such as a DRAM (not shown for ease of illustration in FIG .
10) , and may maintain bandwidth statistics used for control
of an adaptive write buffer .
[0093] In addition to core units , additional processing
engines are present within the processor , including at least
one graphics unit 1020 which may include one or more
graphics processing units (GPUs) to perform graphics pro
cessing as well as to possibly execute general purpose

US 2019 / 0286567 A1 Sep . 19 , 2019

operations on the graphics processor (so - called GPGPU
operation) . In addition , at least one image signal processor
1025 may be present . Signal processor 1025 may be con
figured to process incoming image data received from one or
more capture devices , either internal to the SoC or off - chip .
[0094) Other accelerators also may be present . In the
illustration of FIG . 10 , a video coder 1050 may perform
coding operations including encoding and decoding for
video information , e . g . , providing hardware acceleration
support for high definition video content . A display control
ler 1055 further may be provided to accelerate display
operations including providing support for internal and
external displays of a system . In addition , a security pro
cessor 1045 may be present to perform security operations
such as secure boot operations , various cryptography opera
tions and so forth . Each of the units may have its power
consumption controlled via a power manager 1040 .
[0095] In some embodiments , SoC 1000 may further
include a non - coherent fabric coupled to the coherent fabric
to which various peripheral devices may couple . One or
more interfaces 1060a - 1060d enable communication with
one or more off - chip devices . Such communications may be
via a variety of communication protocols such as PCIeTM ,
GPIO , USB , 1°C , UART , MIPI , SDIO , DDR , SPI , HDMI ,
among other types of communication protocols . Although
shown at this high level in the embodiment of FIG . 10 ,
understand the scope of the present invention is not limited
in this regard .
[0096] Referring now to FIG . 11 , shown is a block dia
gram of a representative SoC . In the embodiment shown ,
SoC 1100 may be a multi - core SoC configured for low
power operation to be optimized for incorporation into a
smartphone or other low power device such as a tablet
computer or other portable computing device . As an
example , SoC 1100 may be implemented using asymmetric
or different types of cores , such as combinations of higher
power and / or low power cores , e . g . , out - of - order cores and
in - order cores . In different embodiments , these cores may be
based on an Intel® ArchitectureTM core design or an ARM
architecture design . In yet other embodiments , a mix of Intel
and ARM cores may be implemented in a given SoC .
[0097] As seen in FIG . 11 , SoC 1100 includes a first core
domain 1110 having a plurality of first cores 1112a - 1112d . In
an example , these cores may be low power cores such as
in - order cores . In one embodiment these first cores may be
implemented as ARM Cortex A53 cores . In turn , these cores
couple to a cache memory 1115 of core domain 1110 . In
addition , SoC 1100 includes a second core domain 1120 . In
the illustration of FIG . 11 , second core domain 1120 has a
plurality of second cores 1122a - 1122d . In an example , these
cores may be higher power - consuming cores than first cores
1112 . In an embodiment , the second cores may be out - of
order cores , which may be implemented as ARM Cortex
A57 cores . In turn , these cores couple to a cache memory
1125 of core domain 1120 . Note that while the example
shown in FIG . 11 includes 4 cores in each domain , under
stand that more or fewer cores may be present in a given
domain in other examples . Cache memories 1115 , 1125 may
provide a cache memory hierarchy that has one or more
adaptive write buffers , as described herein .
[0098] With further reference to FIG . 11 , a graphics
domain 1130 also is provided , which may include one or
more graphics processing units (GPUs) configured to inde
pendently execute graphics workloads , e . g . , provided by one

or more cores of core domains 1110 and 1120 . As an
example , GPU domain 1130 may be used to provide display
support for a variety of screen sizes , in addition to providing
graphics and display rendering operations .
[0099] As seen , the various domains couple to a coherent
interconnect 1140 , which in an embodiment may be a cache
coherent interconnect fabric that in turn couples to an
integrated memory controller 1150 . Coherent interconnect
1140 may include a shared cache memory , such as an L3
cache , in some examples . In an embodiment , memory con
troller 1150 may be a direct memory controller to provide for
multiple channels of communication with an off - chip
memory , such as multiple channels of a DRAM (not shown
for ease of illustration in FIG . 11) .
[0100] Referring now to FIG . 12 , shown is a block dia
gram of another example SoC . In the embodiment of FIG .
12 , SoC 1200 may include various circuitry to enable high
performance for multimedia applications , communications
and other functions . As such , SoC 1200 is suitable for
incorporation into a wide variety of portable and other
devices , such as smartphones , tablet computers , smart TVs
and so forth . In the example shown , SoC 1200 includes a
central processor unit (CPU) domain 1210 . In an embodi
ment , a plurality of individual processor cores may be
present in CPU domain 1210 . As one example , CPU domain
1210 may be a quad core processor having 4 multithreaded
cores . Such processors may be homogeneous or heteroge
neous processors , e . g . , a mix of low power and high power
processor cores .
[0101] In turn , a GPU domain 1220 is provided to perform
advanced graphics processing in one or more GPUs to
handle graphics and compute APIs . A DSP unit 1230 may
provide one or more low power DSPs for handling low
power multimedia applications such as music playback ,
audio / video and so forth , in addition to advanced calcula
tions that may occur during execution of multimedia instruc
tions .
[0102] As further illustrated , a shared cache 1235 may
couple to various domains and may act as an LLC that has
an adaptive write buffer as described herein . In turn , a
communication unit 1240 may include various components
to provide connectivity via various wireless protocols , such
as cellular communications (including 3G / 4G LTE) , wire
less local area protocols such as BluetoothTM , IEEE 802 . 11 ,
and so forth .
[0103] Still further , a multimedia processor 1250 may be
used to perform capture and playback of high definition
video and audio content , including processing of user ges
tures . A sensor unit 1260 may include a plurality of sensors
and / or a sensor controller to interface to various off - chip
sensors present in a given platform . An image signal pro
cessor 1270 may be provided with one or more separate ISPs
to perform image processing with regard to captured content
from one or more cameras of a platform , including still and
video cameras .
[0104] A display processor 1280 may provide support for
connection to a high definition display of a given pixel
density , including the ability to wirelessly communicate
content for playback on such display . Still further , a location
unit 1290 may include a GPS receiver with support for
multiple GPS constellations to provide applications highly
accurate positioning information obtained using as such
GPS receiver . Understand that while shown with this par

US 2019 / 0286567 A1 Sep . 19 , 2019
10

ticular set of components in the example of FIG . 12 , many
variations and alternatives are possible .
[0105] Referring now to FIG . 13 , shown is a block dia
gram of an example system with which embodiments can be
used . As seen , system 1300 may be a smartphone or other
wireless communicator . A baseband processor 1305 is con
figured to perform various signal processing with regard to
communication signals to be transmitted from or received by
the system . In turn , baseband processor 1305 is coupled to
an application processor 1310 , which may be a main CPU of
the system to execute an OS and other system software , in
addition to user applications such as many well - known
social media and multimedia apps . Application processor
1310 may further be configured to perform a variety of other
computing operations for the device , and may include a
cache memory hierarchy with adaptive write buffer as
described herein .
0106] In turn , application processor 1310 can couple to a

user interface / display 1320 , e . g . , a touch screen display . In
addition , application processor 1310 may couple to a
memory system including a non - volatile memory , namely a
flash memory 1330 and a system memory , namely a
dynamic random access memory (DRAM) 1335 . As further
seen , application processor 1310 further couples to a capture
device 1340 such as one or more image capture devices that
can record video and / or still images .
[0107] Still referring to FIG . 13 , a universal integrated
circuit card (UICC) 1340 comprising a subscriber identity
module and possibly a secure storage and cryptoprocessor is
also coupled to application processor 1310 . System 1300
may further include a security processor 1350 that may
couple to application processor 1310 . A plurality of sensors
1325 may couple to application processor 1310 to enable
input of a variety of sensed information such as accelerom
eter and other environmental information . An audio output
device 1395 may provide an interface to output sound , e . g . ,
in the form of voice communications , played or streaming
audio data and so forth .
10108] As further illustrated , a near field communication
(NFC) contactless interface 1360 is provided that commu
nicates in a NFC near field via an NFC antenna 1365 . While
separate antennae are shown in FIG . 13 , understand that in
some implementations one antenna or a different set of
antennae may be provided to enable various wireless func
tionality .
(0109] A power management integrated circuit (PMIC)
1315 couples to application processor 1310 to perform
platform level power management . To this end , PMIC 1315
may issue power management requests to application pro
cessor 1310 to enter certain low power states as desired .
Furthermore , based on platform constraints , PMIC 1315
may also control the power level of other components of
system 1300 .
0110] . To enable communications to be transmitted and
received , various circuitry may be coupled between base
band processor 1305 and an antenna 1390 . Specifically , a
radio frequency (RF) transceiver 1370 and a wireless local
area network (WLAN) transceiver 1375 may be present . In
general , RF transceiver 1370 may be used to receive and
transmit wireless data and calls according to a given wireless
communication protocol such as 3G or 4G wireless com
munication protocol such as in accordance with a code
division multiple access (CDMA) , global system for mobile
communication (GSM) , long term evolution (LTE) or other

protocol . In addition a GPS sensor 1380 may be present .
Other wireless communications such as receipt or transmis
sion of radio signals , e . g . , AM / FM and other signals may
also be provided . In addition , via WLAN transceiver 1375 ,
local wireless communications can also be realized .
[0111] Referring now to FIG . 14 , shown is a block dia
gram of another example system with which embodiments
may be used . In the illustration of FIG . 14 , system 1400 may
be mobile low - power system such as a tablet computer , 2 : 1
tablet , phablet or other convertible or standalone tablet
system . As illustrated , a SoC 1410 is present and may be
configured to operate as an application processor for the
device , and may include a cache memory hierarchy having
an adaptive write buffer as described herein .
[0112] A variety of devices may couple to SoC 1410 . In
the illustration shown , a memory subsystem includes a flash
memory 1440 and a DRAM 1445 coupled to SoC 1410 . In
addition , a touch panel 1420 is coupled to the SoC 1410 to
provide display capability and user input via touch , includ
ing provision of a virtual keyboard on a display of touch
panel 1420 . To provide wired network connectivity , SoC
1410 couples to an Ethernet interface 1430 . A peripheral hub
1425 is coupled to SoC 1410 to enable interfacing with
various peripheral devices , such as may be coupled to
system 1400 by any of various ports or other connectors .
[0113] In addition to internal power management circuitry
and functionality within SoC 1410 , a PMIC 1480 is coupled
to SoC 1410 to provide platform - based power management ,
e . g . , based on whether the system is powered by a battery
1490 or AC power via an AC adapter 1495 . In addition to
this power source - based power management , PMIC 1480
may further perform platform power management activities
based on environmental and usage conditions . Still further ,
PMIC 1480 may communicate control and status informa
tion to SoC 1410 to cause various power management
actions within SoC 1410 .
[0114] Still referring to FIG . 14 , to provide for wireless
capabilities , a WLAN unit 1450 is coupled to SoC 1410 and
in turn to an antenna 1455 . In various implementations ,
WLAN unit 1450 may provide for communication accord
ing to one or more wireless protocols .
[0115] As further illustrated , a plurality of sensors 1460
may couple to SoC 1410 . These sensors may include various
accelerometer , environmental and other sensors , including
user gesture sensors . Finally , an audio codec 1465 is coupled
to SoC 1410 to provide an interface to an audio output
device 1470 . Of course understand that while shown with
this particular implementation in FIG . 14 , many variations
and alternatives are possible .
[0116] Referring now to FIG . 15 , shown is a block dia
gram of a representative computer system such as notebook ,
UltrabookTM or other small form factor system . A processor
1510 , in one embodiment , includes a microprocessor , multi
core processor , multithreaded processor , an ultra low voltage
processor , an embedded processor , or other known process
ing element . In the illustrated implementation , processor
1510 acts as a main processing unit and central hub for
communication with many of the various components of the
system 1500 , and may include a cache memory hierarchy
with one or more adaptive write buffers as described herein .
As one example , processor 1510 is implemented as a SoC .
[0117] Processor 1510 , in one embodiment , communicates
with a system memory 1515 . As an illustrative example , the

US 2019 / 0286567 A1 Sep . 19 , 2019

system memory 1515 is implemented via multiple memory
devices or modules to provide for a given amount of system
memory .
[0118] . To provide for persistent storage of information
such as data , applications , one or more operating systems
and so forth , a mass storage 1520 may also couple to
processor 1510 . In various embodiments , to enable a thinner
and lighter system design as well as to improve system
responsiveness , this mass storage may be implemented via
a SSD or the mass storage may primarily be implemented
using a hard disk drive (HDD) with a smaller amount of SSD
storage to act as a SSD cache to enable non - volatile storage
of context state and other such information during power
down events so that a fast power up can occur on re
initiation of system activities . Also shown in FIG . 15 , a flash
device 1522 may be coupled to processor 1510 , e . g . , via a
serial peripheral interface (SPI) . This flash device may
provide for non - volatile storage of system software , includ
ing a basic input / output software (BIOS) as well as other
firmware of the system .
[0119] Various input / output (1 / 0) devices may be present
within system 1500 . Specifically shown in the embodiment
of FIG . 15 is a display 1524 which may be a high definition
LCD or LED panel that further provides for a touch screen
1525 . In one embodiment , display 1524 may be coupled to
processor 1510 via a display interconnect that can be imple
mented as a high performance graphics interconnect . Touch
screen 1525 may be coupled to processor 1510 via another
interconnect , which in an embodiment can be an I²C inter
connect . As further shown in FIG . 15 , in addition to touch
screen 1525 , user input by way of touch can also occur via
a touch pad 1530 which may be configured within the
chassis and may also be coupled to the same 1°C intercon
nect as touch screen 1525 .
[0120] For perceptual computing and other purposes , vari
ous sensors may be present within the system and may be
coupled to processor 1510 in different manners . Certain
inertial and environmental sensors may couple to processor
1510 through a sensor hub 1540 , e . g . , via an 1°C intercon
nect . In the embodiment shown in FIG . 15 , these sensors
may include an accelerometer 1541 , an ambient light sensor
(ALS) 1542 , a compass 1543 and a gyroscope 1544 . Other
environmental sensors may include one or more thermal
sensors 1546 which in some embodiments couple to pro
cessor 1510 via a system management bus (SMBus) bus .
[0121] Also seen in FIG . 15 , various peripheral devices
may couple to processor 1510 via a low pin count (LPC)
interconnect . In the embodiment shown , various compo
nents can be coupled through an embedded controller 1535 .
Such components can include a keyboard 1536 (e . g . ,
coupled via a PS2 interface) , a fan 1537 , and a thermal
sensor 1539 . In some embodiments , touch pad 1530 may
also couple to EC 1535 via a PS2 interface . In addition , a
security processor such as a trusted platform module (TPM)
1538 may also couple to processor 1510 via this LPC
interconnect .
[0122] System 1500 can communicate with external
devices in a variety of manners , including wirelessly . In the
embodiment shown in FIG . 15 , various wireless modules ,
each of which can correspond to a radio configured for a
particular wireless communication protocol , are present .
One manner for wireless communication in a short range
such as a near field may be via a NFC unit 1545 which may
communicate , in one embodiment with processor 1510 via

an SMBus . Note that via this NFC unit 1545 , devices in
close proximity to each other can communicate .
[0123] As further seen in FIG . 15 , additional wireless units
can include other short range wireless engines including a
WLAN unit 1550 and a BluetoothTM unit 1552 . Using
WLAN unit 1550 , Wi - FiTM communications can be realized ,
while via BluetoothTM unit 1552 , short range BluetoothTM
communications can occur . These units may communicate
with processor 1510 via a given link .
[0124] In addition , wireless wide area communications ,
e . g . , according to a cellular or other wireless wide area
protocol , can occur via a WWAN unit 1556 which in turn
may couple to a subscriber identity module (SIM) 1557 . In
addition , to enable receipt and use of location information ,
a GPS module 1555 may also be present . Note that in the
embodiment shown in FIG . 15 , WWAN unit 1556 and an
integrated capture device such as a camera module 1554
may communicate via a given link .
(0125] To provide for audio inputs and outputs , an audio
processor can be implemented via a digital signal processor
(DSP) 1560 , which may couple to processor 1510 via a high
definition audio (HDA) link . Similarly , DSP 1560 may
communicate with an integrated coder / decoder (CODEC)
and amplifier 1562 that in turn may couple to output
speakers 1563 which may be implemented within the chas
sis . Similarly , amplifier and CODEC 1562 can be coupled to
receive audio inputs from a microphone 1565 which in an
embodiment can be implemented via dual array micro
phones (such as a digital microphone array) to provide for
high quality audio inputs to enable voice - activated control of
various operations within the system . Note also that audio
outputs can be provided from amplifier / CODEC 1562 to a
headphone jack 1564 . Although shown with these particular
components in the embodiment of FIG . 15 , understand the
scope of the present invention is not limited in this regard .
10126] Embodiments may be implemented in many dif
ferent system types . Referring now to FIG . 16 , shown is a
block diagram of a system in accordance with an embodi
ment of the present invention . As shown in FIG . 16 , mul
tiprocessor system 1600 is a point - to - point interconnect
system , and includes a first processor 1670 and a second
processor 1680 coupled via a point - to - point interconnect
1650 . As shown in FIG . 16 , each of processors 1670 and
1680 may be multicore processors , including first and sec
ond processor cores (i . e . , processor cores 1674a and 1674b
and processor cores 1684a and 1684b) , although potentially
many more cores may be present in the processors . Each of
the processors includes a shared cache memory 1675 , 1685
to implement adaptive write buffers , as described herein .
[0127] Still referring to FIG . 16 , first processor 1670
further includes a memory controller hub (MCH) 1672 and
point - to - point (PPP) interfaces 1676 and 1678 . Similarly ,
second processor 1680 includes a MCH 1682 and P - P
interfaces 1686 and 1688 . As shown in FIG . 16 , MCH ' s
1672 and 1682 couple the processors to respective memo
ries , namely a memory 1632 and a memory 1634 , which
may be portions of system memory (e . g . , DRAM) locally
attached to the respective processors . First processor 1670
and second processor 1680 may be coupled to a chipset 1690
via P - P interconnects 1662 and 1664 , respectively . As shown
in FIG . 16 , chipset 1690 includes P - P interfaces 1694 and
1698 .
[0128] Furthermore , chipset 1690 includes an interface
1692 to couple chipset 1690 with a high performance

US 2019 / 0286567 A1 Sep . 19 , 2019

graphics engine 1638 , by a P - P interconnect 1639 . In turn ,
chipset 1690 may be coupled to a first bus 1616 via an
interface 1696 . As shown in FIG . 16 , various input / output
(1 / 0) devices 1614 may be coupled to first bus 1616 , along
with a bus bridge 1618 which couples first bus 1616 to a
second bus 1620 . Various devices may be coupled to second
bus 1620 including , for example , a keyboard / mouse 1622 ,
communication devices 1626 and a data storage unit 1628
such as a disk drive or other mass storage device which may
include code 1630 , in one embodiment . Further , an audio I / O
1624 may be coupled to second bus 1620 . Embodiments can
be incorporated into other types of systems including mobile
devices such as a smart cellular telephone , tablet computer ,
netbook , UltrabookTM , or so forth .
[0129] One or more aspects of at least one embodiment
may be implemented by representative code stored on a
machine - readable medium which represents and / or defines
logic within an integrated circuit such as a processor . For
example , the machine - readable medium may include
instructions which represent various logic within the pro
cessor . When read by a machine , the instructions may cause
the machine to fabricate the logic to perform the techniques
described herein . Such representations , known as “ IP cores , ”
are reusable units of logic for an integrated circuit that may
be stored on a tangible , machine - readable medium as a
hardware model that describes the structure of the integrated
circuit . The hardware model may be supplied to various
customers or manufacturing facilities , which load the hard
ware model on fabrication machines that manufacture the
integrated circuit . The integrated circuit may be fabricated
such that the circuit performs operations described in asso
ciation with any of the embodiments described herein .
[0130] FIG . 17 is a block diagram illustrating an IP core
development system 1700 that may be used to manufacture
an integrated circuit to perform operations according to an
embodiment . The IP core development system 1700 may be
used to generate modular , re - usable designs that can be
incorporated into a larger design or used to construct an
entire integrated circuit (e . g . , an SoC integrated circuit) . A
design facility 1730 can generate a software simulation 1710
of an IP core design in a high level programming language
(e . g . , C / C + +) . The software simulation 1710 can be used to
design , test , and verify the behavior of the IP core . A register
transfer level (RTL) design can then be created or synthe
sized from the simulation model . The RTL design 1715 is an
abstraction of the behavior of the integrated circuit that
models the flow of digital signals between hardware regis
ters , including the associated logic performed using the
modeled digital signals . In addition to an RTL design 1615 ,
lower - level designs at the logic level or transistor level may
also be created , designed , or synthesized . Thus , the particu
lar details of the initial design and simulation may vary .
[0131] The RTL design 1715 or equivalent may be further
synthesized by the design facility into a hardware model
1720 , which may be in a hardware description language
(HDL) , or some other representation of physical design data .
The HDL may be further simulated or tested to verify the IP
core design . The IP core design can be stored for delivery to
a third party fabrication facility 1765 using non - volatile
memory 1740 (e . g . , hard disk , flash memory , or any non
volatile storage medium) . Alternately , the IP core design
may be transmitted (e . g . , via the Internet) over a wired
connection 1750 or wireless connection 1760 . The fabrica
tion facility 1765 may then fabricate an integrated circuit

that is based at least in part on the IP core design . The
fabricated integrated circuit can be configured to perform
operations in accordance with at least one embodiment
described herein .
[0132] FIG . 18 is a block diagram of a register architecture
1800 according to one embodiment of the invention . In the
embodiment illustrated , there are 32 vector registers 1810
that are 512 bits wide ; these registers are referenced as
zmm0 through zmm31 . The lower order 256 bits of the
lower 16 zmm registers are overlaid on registers ymm0 - 16 .
The lower order 128 bits of the lower 16 zmm registers (the
lower order 128 bits of the ymm registers) are overlaid on
registers xmm0 - 15 .
10133] Write mask registers 1815 — in the embodiment
illustrated , there are 8 write mask registers (k0 through k7) ,
each 64 bits in size . In an alternate embodiment , the write
mask registers 1815 are 16 bits in size . As previously
described , in one embodiment of the invention , the vector
mask register ko cannot be used as a write mask ; when the
encoding that would normally indicate k0 is used for a write
mask , it selects a hardwired write mask of OxFFFF , effec
tively disabling write masking for that instruction .
[0134] General - purpose registers 1825 — in the embodi
ment illustrated , there are sixteen 64 - bit general - purpose
registers that are used along with the existing x86 addressing
modes to address memory operands . These registers are
referenced by the names RAX , RBX , RCX , RDX , RBP , RSI ,
RDI , RSP , and R8 through R15 .
[0135] Scalar floating point stack register file (x87 stack)
1845 , on which is aliased the MMX packed integer flat
register file 1850 — in the embodiment illustrated , the x87
stack is an eight - element stack used to perform scalar
floating - point operations on 32 / 64 / 80 - bit floating point data
using the x87 instruction set extension ; while the MMX
registers are used to perform operations on 64 - bit packed
integer data , as well as to hold operands for some operations
performed between the MMX and XMM registers .
[0136) Alternative embodiments of the invention may use
wider or narrower registers . Additionally , alternative
embodiments of the invention may use more , less , or dif
ferent register files and registers .
[0137) Processor cores may be implemented in different
ways , for different purposes , and in different processors . For
instance , implementations of such cores may include : 1) a
general purpose in - order core intended for general - purpose
computing ; 2) a high performance general purpose out - of
order core intended for general - purpose computing ; 3) a
special purpose core intended primarily for graphics and / or
scientific (throughput) computing . Implementations of dif
ferent processors may include : 1) a CPU including one or
more general purpose in - order cores intended for general
purpose computing and / or one or more general purpose
out - of - order cores intended for general - purpose computing ;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and / or scientific
(throughput) . Such different processors lead to different
computer system architectures , which may include : 1) the
coprocessor on a separate chip from the CPU ; 2) the
coprocessor on a separate die in the same package as a CPU ;
3) the coprocessor on the same die as a CPU (in which case ,
such a coprocessor is sometimes referred to as special
purpose logic , such as integrated graphics and / or scientific
(throughput) logic , or as special purpose cores) ; and 4) a
system on a chip that may include on the same die the

US 2019 / 0286567 A1 Sep . 19 , 2019
13

described CPU (sometimes referred to as the application
core (s) or application processor (s)) , the above described
coprocessor , and additional functionality . Exemplary core
architectures are described next , followed by descriptions of
exemplary processors and computer architectures .
[0138] FIG . 19A is a block diagram illustrating both an
exemplary in - order pipeline and an exemplary register
renaming , out - of - order issue / execution pipeline according
to embodiments of the invention . FIG . 19B is a block
diagram illustrating both an exemplary embodiment of an
in - order architecture core and an exemplary register renam
ing , out - of - order issue / execution architecture core to be
included in a processor according to embodiments of the
invention . The solid lined boxes in FIGS . 19A - B illustrate
the in - order pipeline and in - order core , while the optional
addition of the dashed lined boxes illustrates the register
renaming , out - of - order issue / execution pipeline and core .
Given that the in - order aspect is a subset of the out - of - order
aspect , the out - of - order aspect will be described .
[0139] In FIG . 19A , a processor pipeline 1900 includes a
fetch stage 1902 , a length decode stage 1904 , a decode stage
1906 , an allocation stage 1908 , a renaming stage 1910 , a
scheduling (also known as a dispatch or issue) stage 1912 ,
a register read / memory read stage 1914 , an execute stage
1916 , a write back / memory write stage 1918 , an exception
handling stage 1922 , and a commit stage 1924 .
[0140] FIG . 19B shows processor core 1990 including a
front end unit 1930 coupled to an execution engine unit
1950 , and both are coupled to a memory unit 1970 . The core
1990 may be a reduced instruction set computing (RISC)
core , a complex instruction set computing (CISC) core , a
very long instruction word (VLIW) core , or a hybrid or
alternative core type . As yet another option , the core 1990
may be a special - purpose core , such as , for example , a
network or communication core , compression engine ,
coprocessor core , general purpose computing graphics pro
cessing unit (GPGPU) core , graphics core , or the like .
10141] The front end unit 1930 includes a branch predic
tion unit 1932 coupled to an instruction cache unit 1934 ,
which is coupled to an instruction translation lookaside
buffer (TLB) 1936 , which is coupled to an instruction fetch
unit 1938 , which is coupled to a decode unit 1940 . The
decode unit 1940 (or decoder) may decode instructions , and
generate as an output one or more micro - operations , micro
code entry points , microinstructions , other instructions , or
other control signals , which are decoded from , or which
otherwise reflect , or are derived from , the original instruc
tions . The decode unit 1940 may be implemented using
various different mechanisms . Examples of suitable mecha
nisms include , but are not limited to , look - up tables , hard
ware implementations , programmable logic arrays (PLAS) ,
microcode read only memories (ROMs) , etc . In one embodi
ment , the core 1990 includes a microcode ROM or other
medium that stores microcode for certain macroinstructions
(e . g . , in decode unit 1940 or otherwise within the front end
unit 1930) . The decode unit 1940 is coupled to a rename !
allocator unit 1952 in the execution engine unit 1950 .
[0142] The execution engine unit 1950 includes the
rename / allocator unit 1952 coupled to a retirement unit 1954
and a set of one or more scheduler unit (s) 1956 . The
scheduler unit (s) 1956 represents any number of different
schedulers , including reservations stations , central instruc
tion window , etc . The scheduler unit (s) 1956 is coupled to
the physical register file (s) unit (s) 1958 . Each of the physical

register file (s) units 1958 represents one or more physical
register files , different ones of which store one or more
different data types , such as scalar integer , scalar floating
point , packed integer , packed floating point , vector integer ,
vector floating point , status (e . g . , an instruction pointer that
is the address of the next instruction to be executed) , etc . In
one embodiment , the physical register file (s) unit 1958
comprises a vector registers unit , a write mask registers unit ,
and a scalar registers unit . These register units may provide
architectural vector registers , vector mask registers , and
general purpose registers . The physical register file (s) unit (s)
1958 is overlapped by the retirement unit 1954 to illustrate
various ways in which register renaming and out - of - order
execution may be implemented (e . g . , using a reorder buffer
(s) and a retirement register file (s) ; using a future file (s) , a
history buffer (s) , and a retirement register file (s) ; using a
register maps and a pool of registers , etc .) . The retirement
unit 1954 and the physical register file (s) unit (s) 1958 are
coupled to the execution cluster (s) 1960 . The execution
cluster (s) 1960 includes a set of one or more execution units
1962 and a set of one or more memory access units 1964 .
The execution units 1962 may perform various operations
(e . g . , shifts , addition , subtraction , multiplication) and on
various types of data (e . g . , scalar floating point , packed
integer , packed floating point , vector integer , vector floating
point) . While some embodiments may include a number of
execution units dedicated to specific functions or sets of
functions , other embodiments may include only one execu
tion unit or multiple execution units that all perform all
functions . The scheduler unit (s) 1956 , physical register
file (s) unit (s) 1958 , and execution cluster (s) 1960 are shown
as being possibly plural because certain embodiments create
separate pipelines for certain types of data / operations (e . g . ,
a scalar integer pipeline , a scalar floating point / packed
integer / packed floating point / vector integer / vector floating
point pipeline , and / or a memory access pipeline that each
have their own scheduler unit , physical register file (s) unit ,
and / or execution cluster and in the case of a separate
memory access pipeline , certain embodiments are imple
mented in which only the execution cluster of this pipeline
has the memory access unit (s) 1964) . It should also be
understood that where separate pipelines are used , one or
more of these pipelines may be out - of - order issue / execution
and the rest in - order .
[0143] The set of memory access units 1964 is coupled to
the memory unit 1970 , which includes a data TLB unit 1972
coupled to a data cache unit 1974 coupled to a level 2 (L2)
cache unit 1976 . In one exemplary embodiment , the memory
access units 1964 may include a load unit , a store address
unit , and a store data unit , each of which is coupled to the
data TLB unit 1972 in the memory unit 1970 . The instruc
tion cache unit 1934 is further coupled to a level 2 (L2)
cache unit 1976 in the memory unit 1970 . The L2 cache unit
1976 is coupled to one or more other levels of cache and
eventually to a main memory .
[0144] By way of example , the exemplary register renam
ing , out - of - order issue / execution core architecture may
implement the pipeline 1900 as follows : 1) the instruction
fetch 1938 performs the fetch and length decoding stages
1902 and 1904 ; 2) the decode unit 1940 performs the decode
stage 1906 ; 3) the rename / allocator unit 1952 performs the
allocation stage 1908 and renaming stage 1910 ; 4) the
scheduler unit (s) 1956 performs the schedule stage 1912 ; 5)
the physical register file (s) unit (s) 1958 and the memory unit

US 2019 / 0286567 A1 Sep . 19 , 2019
14

1970 perform the register read / memory read stage 1914 ; the
execution cluster 1960 perform the execute stage 1916 ; 6)
the memory unit 1970 and the physical register file (s) unit (s)
1958 perform the write back / memory write stage 1918 ; 7)
various units may be involved in the exception handling
stage 1922 ; and 8) the retirement unit 1954 and the physical
register file (s) unit (s) 1958 perform the commit stage 1924 .
10145] The core 1990 may support one or more instruc
tions sets (e . g . , the x86 instruction set (with some extensions
that have been added with newer versions) ; the MIPS
instruction set of MIPS Technologies of Sunnyvale , Calif . ,
the ARM instruction set (with optional additional extensions
such as NEON) of ARM Holdings of Sunnyvale , Calif .) ,
including the instruction (s) described herein . In one embodi
ment , the core 1990 includes logic to support a packed data
instruction set extension (e . g . , AVX1 , AVX2) , thereby allow
ing the operations used by many multimedia applications to
be performed using packed data .
[0146] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads) , and may do so in a variety of ways
including time sliced multithreading , simultaneous multi
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane
ously multithreading) , or a combination thereof (e . g . , time
sliced fetching and decoding and simultaneous multithread
ing thereafter such as in the Intel® Hyperthreading technol
ogy) .
10147] While register renaming is described in the context
of out - of - order execution , it should be understood that
register renaming may be used in an in - order architecture .
While the illustrated embodiment of the processor also
includes separate instruction and data cache units 1934 / 1974
and a shared L2 cache unit 1976 , alternative embodiments
may have a single internal cache for both instructions and
data , such as , for example , a Level 1 (L1) internal cache , or
multiple levels of internal cache . In some embodiments , the
system may include a combination of an internal cache and
an external cache that is external to the core and / or the
processor . Alternatively , all of the cache may be external to
the core and / or the processor .
[0148] FIGS . 20A , 20B illustrate a block diagram of a
more specific exemplary in - order core architecture , which
core would be one of several logic blocks (including other
cores of the same type and / or different types) in a chip . The
logic blocks communicate through a high - bandwidth inter
connect network (e . g . , a ring network) with some fixed
function logic , memory I / O interfaces , and other necessary
I / O logic , depending on the application .
[0149] FIG . 20A is a block diagram of a single processor
core , along with its connection to the on - die interconnect
network 2002 and with its local subset of the Level 2 (L2)
cache 2004 , according to embodiments of the invention . In
one embodiment , an instruction decoder 2000 supports the
x86 instruction set with a packed data instruction set exten
sion . An L1 cache 2006 allows low - latency accesses to
cache memory into the scalar and vector units . While in one
embodiment (to simplify the design) , a scalar unit 2008 and
a vector unit 2010 use separate register sets (respectively ,
scalar registers 2012 and vector registers 2014) and data
transferred between them is written to memory and then read
back in from a level 1 (L1) cache 2006 , alternative embodi
ments of the invention may use a different approach (e . g . ,
use a single register set or include a communication path that

allow data to be transferred between the two register files
without being written and read back) .
[0150] The local subset of the L2 cache 2004 is part of a
global L2 cache that is divided into separate local subsets ,
one per processor core . Each processor core has a direct
access path to its own local subset of the L2 cache 2004 .
Data read by a processor core is stored in its L2 cache subset
2004 and can be accessed quickly , in parallel with other
processor cores accessing their own local L2 cache subsets .
Data written by a processor core is stored in its own L2
cache subset 2004 and is flushed from other subsets , if
necessary . The ring network ensures coherency for shared
data . The ring network is bi - directional to allow agents such
as processor cores , L2 caches and other logic blocks to
communicate with each other within the chip . Each ring
data - path is 1012 - bits wide per direction .
0151] FIG . 20B is an expanded view of part of the
processor core in FIG . 20A according to embodiments of the
invention . FIG . 20B includes an L1 data cache 2006A part
of the L1 cache 2004 , as well as more detail regarding the
vector unit 2010 and the vector registers 2014 . Specifically ,
the vector unit 2010 is a 16 - wide vector processing unit
(VPU) (see the 16 - wide ALU 2028) , which executes one or
more of integer , single - precision float , and double - precision
float instructions . The VPU supports swizzling the register
inputs with swizzle unit 2020 , numeric conversion with
numeric convert units 2022A - B , and replication with repli
cation unit 2024 on the memory input . Write mask registers
2026 allow predicating resulting vector writes .
[0152] FIG . 21 is a block diagram of a processor 2100 that
may have more than one core , may have an integrated
memory controller , and may have integrated graphics
according to embodiments of the invention . The solid lined
boxes in FIG . 21 illustrate a processor 2100 with a single
core 2102A , a system agent 2110 , a set of one or more bus
controller units 2116 , while the optional addition of the
dashed lined boxes illustrates an alternative processor 2100
with multiple cores 2102A - N , a set of one or more integrated
memory controller unit (s) 2114 in the system agent unit
2110 , and special purpose logic 2108 .
[0153] Thus , different implementations of the processor
2100 may include : 1) a CPU with the special purpose logic
2108 being integrated graphics and / or scientific (through
put) logic (which may include one or more cores) , and the
cores 2102A - N being one or more general purpose cores
(e . g . , general purpose in - order cores , general purpose out
of - order cores , a combination of the two) ; 2) a coprocessor
with the cores 2102A - N being a large number of special
purpose cores intended primarily for graphics and / or scien
tific (throughput) ; and 3) a coprocessor with the cores
2102A - N being a large number of general purpose in - order
cores . Thus , the processor 2100 may be a general - purpose
processor , coprocessor or special - purpose processor , such
as , for example , a network or communication processor ,
compression engine , graphics processor , GPGPU (general
purpose graphics processing unit) , a high - throughput many
integrated core (MIC) coprocessor (including 30 or more
cores) , embedded processor , or the like . The processor may
be implemented on one or more chips . The processor 2100
may be a part of and / or may be implemented on one or more
substrates using any of a number of process technologies ,
such as , for example , BiCMOS , CMOS , or NMOS .
(0154] The memory hierarchy includes one or more levels
of cache within the cores , a set or one or more shared cache

US 2019 / 0286567 A1 Sep . 19 , 2019
15

units 2106 , and external memory (not shown) coupled to the
set of integrated memory controller units 2114 . The set of
shared cache units 2106 may include one or more mid - level
caches , such as level 2 (L2) , level 3 (L3) , level 4 (L4) , or
other levels of cache , a last level cache (LLC) , and / or
combinations thereof . While in one embodiment a ring
based interconnect unit 2112 interconnects the integrated
graphics logic 2108 , the set of shared cache units 2106 , and
the system agent unit 2110 / integrated memory controller
unit (s) 2114 , alternative embodiments may use any number
of well - known techniques for interconnecting such units . In
one embodiment , coherency is maintained between one or
more cache units 2106 and cores 2102 - A - N .
[0155] In some embodiments , one or more of the cores
2102A - N are capable of multi - threading . The system agent
2110 includes those components coordinating and operating
cores 2102A - N . The system agent unit 2110 may include for
example a power control unit (PCU) and a display unit . The
PCU may be or include logic and components needed for
regulating the power state of the cores 2102A - N and the
integrated graphics logic 2108 . The display unit is for
driving one or more externally connected displays .
[0156] The cores 2102A - N may be homogenous or het
erogeneous in terms of architecture instruction set ; that is ,
two or more of the cores 2102A - N may be capable of
execution the same instruction set , while others may be
capable of executing only a subset of that instruction set or
a different instruction set .
[0157] Program code may be applied to input instructions
to perform the functions described herein and generate
output information . The output information may be applied
to one or more output devices , in known fashion . For
purposes of this application , a processing system includes
any system that has a processor , such as , for example ; a
digital signal processor (DSP) , a microcontroller , an appli
cation specific integrated circuit (ASIC) , or a microproces
sor .
[0158] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system . The program code
may also be implemented in assembly or machine language ,
if desired . In fact , the mechanisms described herein are not
limited in scope to any particular programming language . In
any case , the language may be a compiled or interpreted
language .
[0159] Accordingly , embodiments of the invention also
include non - transitory , tangible machine - readable media
containing instructions or containing design data , such as
Hardware Description Language (HDL) , which defines
structures , circuits , apparatuses , processors and / or system
features described herein . Such embodiments may also be
referred to as program products .
[0160] In some cases , an instruction converter may be
used to convert an instruction from a source instruction set
to a target instruction set . For example , the instruction
converter may translate (e . g . , using static binary translation ,
dynamic binary translation including dynamic compilation) ,
morph , emulate , or otherwise convert an instruction to one
or more other instructions to be processed by the core . The
instruction converter may be implemented in software , hard
ware , firmware , or a combination thereof . The instruction
converter may be on processor , off processor , or part on and
part off processor .

[0161] FIG . 22 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention .
In the illustrated embodiment , the instruction converter is a
software instruction converter , although alternatively the
instruction converter may be implemented in software , firm
ware , hardware , or various combinations thereof . FIG . 22
shows a program in a high level language 2202 may be
compiled using an x86 compiler 2204 to generate x86 binary
code 2206 that may be natively executed by a processor with
at least one x86 instruction set core 2216 . The processor with
at least one x86 instruction set core 2216 represents any
processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core , in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core . The x86 compiler 2204
represents a compiler that is operable to generate x86 binary
code 2206 (e . g . , object code) that can , with or without
additional linkage processing , be executed on the processor
with at least one x86 instruction set core 2216 . Similarly ,
FIG . 22 shows the program in the high level language 2202
may be compiled using an alternative instruction set com
piler 2208 to generate alternative instruction set binary code
2210 that may be natively executed by a processor without
at least one x86 instruction set core 2214 (e . g . , a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale , Calif . and / or that execute the
ARM instruction set of ARM Holdings of Sunnyvale ,
Calif .) . The instruction converter 2212 is used to convert the
x86 binary code 2206 into code that may be natively
executed by the processor without an x86 instruction set
core 2214 . This converted code is not likely to be the same
as the alternative instruction set binary code 2210 because
an instruction converter capable of this is difficult to make ;
however , the converted code will accomplish the general
operation and be made up of instructions from the alterna
tive instruction set . Thus , the instruction converter 2212
represents software , firmware , hardware , or a combination
thereof that , through emulation , simulation or any other
process , allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 2206 .
[0162] The following examples pertain to further embodi
ments .
[0163] In one example , a processor includes : a cache
memory to store a plurality of cache lines ; and a cache
controller to control the cache memory . The cache controller
may include a control circuit to allocate a virtual write buffer
within the cache memory in response to a bandwidth on an
interconnect to couple the processor with a memory that
exceeds a first bandwidth threshold . The cache controller
may further include a replacement circuit to control eviction
of cache lines from the cache memory .
10164] In an example , the control circuit is to cause the
replacement circuit to update a replacement policy in
response to the allocation of the virtual write buffer .
[0165] In an example , the update to the replacement policy
comprises a switch to a least recently used clean policy in

US 2019 / 0286567 A1 Sep . 19 , 2019
16

which cache lines including unmodified data are to be
preferentially evicted from the cache memory .
10166] In an example , the control circuit is to initiate a
drain of the virtual write buffer in response to the bandwidth
on the interconnect being less than a second bandwidth
threshold .
[0167] In an example , the replacement circuit , during the
drain , is to write a cache line including modified data to the
memory and maintain the cache line in the cache memory ,
where the cache line is within a threshold distance of a least
recently used position .
[0168] In an example , the control circuit is further to
update a state of the cache line including the modified data
to a clean state .
[0169] In an example , the cache controller comprises a
first set of hit counters associated with corresponding posi
tions within a least recently used stack , and to be updated in
response to read hits within the cache memory .
[0170] In an example , the cache controller comprises a
second set of hit counters associated with corresponding
positions within the least recently used stack , and to be
updated in response to write hits within the cache memory .
[0171] In an example , the control circuit is to dynamically
update a size of the virtual write buffer based on hit
histogram information obtained from at least one of the first
set of hit counters and the second set of hit counters .
[0172] In an example , the virtual write buffer comprises
one or more ways of a plurality of sets of the cache memory .
[0173] In an example , the one or more ways comprises N
least recently used ways of the plurality of sets of the cache
memory , where N is dynamically controllable .
[0174] . In an example , the cache controller is to initiate a
drain of the virtual write buffer in response to a number of
the plurality of sets having the one or more ways that store
dirty data that exceeds a threshold .
[0175] In another example , a method comprises : monitor
ing a bandwidth of an interconnect that couples a processor
to a memory ; in response to the bandwidth exceeding a first
bandwidth threshold , allocating a virtual write buffer in a
cache memory of the processor ; and dynamically controlling
a size of the virtual write buffer based at least in part on hit
histogram information .
[0176] In an example , the method further comprises :
monitoring a consumption of the virtual write buffer , and
initiating a draining of the virtual write buffer in response to
the consumption exceeding a threshold .
[0177] In an example , the draining comprises : writing
dirty data from a plurality of cache lines of the virtual write
buffer to the memory ; and updating a state of the plurality of
cache lines of the virtual write buffer to a clean state .
[0178] In an example , the method further comprises ini
tiating a draining of the virtual write buffer in response to the
bandwidth being less than a second bandwidth threshold .
10179] . In an example , allocating the virtual write buffer
comprises updating a replacement policy of the cache
memory to preferentially evict clean data instead of dirty
data .
[0180] In another example , a computer readable medium
including instructions is to perform the method of any of the
above examples .
[0181] In another example , a computer readable medium
including data is to be used by at least one machine to
fabricate at least one integrated circuit to perform the
method of any one of the above examples .

[0182] In another example , an apparatus comprises means
for performing the method of any one of the above
examples .
0183] . In another example , a system comprises a proces
sor that includes : a plurality of cores each including a first
level cache memory and a cache memory hierarchy coupled
to the plurality of cores . The cache memory hierarchy may
include : the first level cache memory included in the plu
rality of cores , and a shared cache memory coupled to the
first level cache memory . The shared cache memory may
include : a cache controller to control the shared cache
memory , the cache controller including a control circuit , in
response to a bandwidth on a memory interconnect that
couples the processor with a memory that exceeds a first
bandwidth threshold , to allocate a virtual write buffer within
the shared cache memory and update a replacement policy
to preferentially evict clean data from the shared cache
memory . The processor may further include a memory
controller to interact with the memory and maintain band
width information for the memory interconnect . The system
may further include the memory interconnect to couple the
processor to the memory , and the memory coupled to the
processor via the memory interconnect .
0184) In an example , the control circuit is to initiate a
drain of the virtual write buffer in response to the bandwidth
on the memory interconnect being less than a second band
width threshold , and where the cache controller , during the
drain , is to write a cache line including modified data to the
memory and maintain the cache line in the shared cache
memory , where the cache line is within a threshold distance
of a least recently used position .
10185) In an example , the cache controller comprises a set
of hit counters associated with corresponding positions
within a least recently used stack of the shared cache
memory , and to be updated in response to hits within the
shared cache memory , and where the control circuit is to
dynamically update a size of the virtual write buffer based on
hit histogram information obtained from the set of hit
counters .
[0186] Understand that various combinations of the above
examples are possible .
[0187] Note that the terms “ circuit ” and “ circuitry ” are
used interchangeably herein . As used herein , these terms and
the term " logic ” are used to refer to alone or in any
combination , analog circuitry , digital circuitry , hard wired
circuitry , programmable circuitry , processor circuitry ,
microcontroller circuitry , hardware logic circuitry , state
machine circuitry and / or any other type of physical hard
ware component . Embodiments may be used in many dif
ferent types of systems . For example , in one embodiment a
communication device can be arranged to perform the
various methods and techniques described herein . Of course ,
the scope of the present invention is not limited to a
communication device , and instead other embodiments can
be directed to other types of apparatus for processing
instructions , or one or more machine readable media includ
ing instructions that in response to being executed on a
computing device , cause the device to carry out one or more
of the methods and techniques described herein .
[0188] Embodiments may be implemented in code and
may be stored on a non - transitory storage medium having
stored thereon instructions which can be used to program a
system to perform the instructions . Embodiments also may
be implemented in data and may be stored on a non

doto

US 2019 / 0286567 A1 Sep . 19 , 2019
17

transitory storage medium , which if used by at least one
machine , causes the at least one machine to fabricate at least
one integrated circuit to perform one or more operations .
Still further embodiments may be implemented in a com
puter readable storage medium including information that ,
when manufactured into a SoC or other processor , is to
configure the SoC or other processor to perform one or more
operations . The storage medium may include , but is not
limited to , any type of disk including floppy disks , optical
disks , solid state drives (SSDs) , compact disk read - only
memories (CD - ROMs) , compact disk rewritables (CD
RWs) , and magneto - optical disks , semiconductor devices
such as read - only memories (ROMs) , random access memo
ries (RAMs) such as dynamic random access memories
(DRAMs) , static random access memories (SRAMs) , eras
able programmable read - only memories (EPROMs) , flash
memories , electrically erasable programmable read - only
memories (EEPROMs) , magnetic or optical cards , or any
other type of media suitable for storing electronic instruc
tions .
10189] While the present invention has been described
with respect to a limited number of embodiments , those
skilled in the art will appreciate numerous modifications and
variations therefrom . It is intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present invention .

1 : A processor comprising :
a cache memory to store a plurality of cache lines ; and
a cache controller to control the cache memory , the cache

controller including a control circuit to allocate a
virtual write buffer within the cache memory in
response to a bandwidth on an interconnect that couples
the processor with a memory that exceeds a first
bandwidth threshold , the cache controller further
including a replacement circuit to control eviction of
cache lines from the cache memory .

2 : The processor of claim 1 , wherein the control circuit is
to cause the replacement circuit to update a replacement
policy in response to the allocation of the virtual write
buffer .

3 : The processor of claim 2 , wherein the update to the
replacement policy comprises a switch to a least recently
used clean policy in which cache lines including unmodified
data are to be preferentially evicted from the cache memory .

4 : The processor of claim 1 , wherein the control circuit is
to initiate a drain of the virtual write buffer in response to the
bandwidth on the interconnect being less than a second
bandwidth threshold .

5 : The processor of claim 4 , wherein the replacement
circuit , during the drain , is to write a cache line including
modified data to the memory and maintain the cache line in
the cache memory , wherein the cache line is within a
threshold distance of a least recently used position .

6 : The processor of claim 5 , wherein the control circuit is
further to update a state of the cache line including the
modified data to a clean state .

7 : The processor of claim 1 , wherein the cache controller
comprises a first set of hit counters associated with corre
sponding positions within a least recently used stack , and to
be updated in response to read hits within the cache memory .

8 : The processor of claim 7 , wherein the cache controller
comprises a second set of hit counters associated with

corresponding positions within the least recently used stack ,
and to be updated in response to write hits within the cache
memory .

9 : The processor of claim 8 , wherein the control circuit is
to dynamically update a size of the virtual write buffer based
on hit histogram information obtained from at least one of
the first set of hit counters and the second set of hit counters .

10 : The processor of claim 1 , wherein the virtual write
buffer comprises one or more ways of a plurality of sets of
the cache memory .

11 : The processor of claim 10 , wherein the one or more
ways comprises N least recently used ways of the plurality
of sets of the cache memory , wherein N is dynamically
controllable .
12 : The processor of claim 10 , wherein the cache con

troller is to initiate a drain of the virtual write buffer in
response to a number of the plurality of sets having the one
or more ways that store dirty data that exceeds a threshold .

13 : A non - transitory machine - readable medium having
stored thereon instructions , which if performed by a
machine cause the machine to perform a method compris
ing :
monitoring a bandwidth of an interconnect that couples a

processor to a memory ;
in response to the bandwidth exceeding a first bandwidth

threshold , allocating a virtual write buffer in a cache
memory of the processor ; and

dynamically controlling a size of the virtual write buffer
based at least in part on hit histogram information .

14 : The non - transitory machine - readable medium of
claim 13 , wherein the method further comprises :
monitoring a consumption of the virtual write buffer ; and
initiating a draining of the virtual write buffer in response

to the consumption exceeding a threshold .
15 : The non - transitory machine - readable medium of

claim 14 , wherein the draining comprises :
writing dirty data from a plurality of cache lines of the

virtual write buffer to the memory ; and
updating a state of the plurality of cache lines of the

virtual write buffer to a clean state .
16 : The non - transitory machine - readable medium of

claim 13 , wherein the method further comprises initiating a
draining of the virtual write buffer in response to the
bandwidth being less than a second bandwidth threshold .

17 : The non - transitory machine - readable medium of
claim 13 , wherein allocating the virtual write buffer com
prises updating a replacement policy of the cache memory to
preferentially evict clean data instead of dirty data .

18 : A system comprising :
a processor comprising :

a plurality of cores each including a first level cache
memory ; and

a cache memory hierarchy coupled to the plurality of
cores , the cache memory hierarchy including :
the first level cache memory included in the plurality

of cores ;
a shared cache memory coupled to the first level

cache memory , the shared cache memory includ
ing :
a cache controller to control the shared cache
memory , the cache controller including a con
trol circuit , in response to a bandwidth on a
memory interconnect that couples the processor
with a memory that exceeds a first bandwidth

US 2019 / 0286567 A1 Sep . 19 , 2019
18

threshold , to allocate a virtual write buffer
within the shared cache memory and update a
replacement policy to preferentially evict clean
data from the shared cache memory ; and

a memory controller to interact with the memory and
maintain bandwidth information for the memory
interconnect ;

the memory interconnect to couple the processor to the
memory ; and

the memory coupled to the processor via the memory
interconnect .

19 : The system of claim 18 , wherein the control circuit is
to initiate a drain of the virtual write buffer in response to the
bandwidth on the memory interconnect being less than a
second bandwidth threshold , and wherein the cache control
ler , during the drain , is to write a cache line including
modified data to the memory and maintain the cache line in
the shared cache memory , wherein the cache line is within
a threshold distance of a least recently used position .

20 : The system of claim 18 , wherein the cache controller
comprises a set of hit counters associated with correspond
ing positions within a least recently used stack of the shared
cache memory , and to be updated in response to hits within
the shared cache memory , and wherein the control circuit is
to dynamically update a size of the virtual write buffer based
on hit histogram information obtained from the set of hit
counters .

