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PARTNER - AWARE VIRTUAL References in the specification to “ one embodiment , " " an 
MICROSECTORING FOR SECTORED embodiment , " " an example embodiment , " etc . , indicate that 

CACHE ARCHITECTURES the embodiment described may include a particular feature , 
structure , or characteristic , but every embodiment may not 

FIELD OF INVENTION necessarily include the particular feature , structure , or char 
acteristic . Moreover , such phrases are not necessarily refer 

The field of invention relates generally to computer ring to the same embodiment . Further , when a particular 
feature , structure , or characteristic is described in connection processor architecture , and , more specifically , sectored with an embodiment , it is submitted that it is within the caches . 10 knowledge of one skilled in the art to affect such feature , 

BACKGROUND structure , or characteristic in connection with other embodi 
ments whether or not explicitly described . 

Detailed below are systems , methods , and apparatuses DRAM caches are increasingly becoming the preferred that utilize sectored DRAM caches to enable reasonably choice for architecting high - capacity last - level caches in 15 small on - die SRAM tag / state and minimize main memory high - end computing systems . Recent research proposals on bandwidth wastage . However , the sectored caches are DRAM cache architectures have explored designs with known to suffer from low hit rates due to poor utilization of conventional block sizes ( 64 or 128 bytes ) as well as large the cache space . 
page - sized blocks . These two classes of designs respectively FIG . 1 illustrates an embodiment of an exemplary hard 
focus on minimizing the space / latency impact of the tag 20 ware processor that utilizes sectored caches . The processor 
store and maximizing the effective utilization of the main 101 includes a plurality of hardware cores 103 - 109 . In some 
memory bandwidth . embodiments , each core includes 32 KB 8 - way instruction 

and data L1 caches and a 256 KB 8 - way unified L2 cache . 
BRIEF DESCRIPTION OF THE DRAWINGS Further , each core may include with a global history buffer 

25 based constant stride prefetcher . Prefetch requests are 
The present invention is illustrated by way of example injected on L1 data cache misses and the prefetched blocks 

and not limitation in the figures of the accompanying are filled all the way down to the L1 data cache . The 
drawings , in which like references indicate similar elements prefetcher can hide a sizable portion of the DRAM cache 
and in which : access latency . 

FIG . 1 illustrates an embodiment of an exemplary hard - 30 A last - level cache ( LLC ) , such as an L3 cache , is acces 
ware processor that utilizes sectored caches ; sible to each core 103 - 109 . In the illustrated embodiment , 

FIG . 2 illustrates an example of a DRAM cache page with the LLC is split into different slices 111 - 117 with each slice 
a plurality of sectors ; accessible by the cores through a ring 119 . 

FIG . 3 illustrates an example of sectored cache that In some embodiments , a graphics processor or other 
utilizes sector tags ; 35 accelerator 121 is included in the hardware processor 101 . 

FIG . 4 illustrates an embodiment of a sector ; This graphics processor or other accelerator 121 may share 
FIG . 5 shows a physical sector with two sectors multi access to the LLC with the cores 103 - 109 . 

plexed onto it ; Additionally , in some embodiments , the hardware pro 
FIG . 6 illustrates an example of a virtual sector tag usage ; cessor 101 includes a decoupled sectored DRAM cache 123 
FIG . 7 shows a sector implementing micro - sectors ; 40 on - die ( making this an embedded DRAM cache ) . However , 
FIG . 8 illustrates an embodiment of a flow for handling in other embodiments the DRAM cache 123 is located 

sector hits and misses in a sectored DRAM cache ; off - die . Typically , the DRAM cache 123 is shared between 
FIGS . 9A - B are block diagrams illustrating both an exem the cores 103 - 109 and accelerators 121 of the processor 101 . 

plary in - order pipeline and an exemplary register renaming The DRAM cache 123 is the high level in the processor ' s 
out - of - order issue / execution pipeline according to embodi - 45 123 cache hierarchy ( for example , it is L4 ) . In most embodi 
ments of the invention . ments , the DRAM cache 123 is non - inclusive with respect 

FIGS . 10A - B illustrate a block diagram of a more specific to the LLC ( an eviction from the L4 cache does not send 
exemplary in - order core architecture ; invalidation to the LLC cache ) and shared by all cores . Dirty 

FIG . 11 is a block diagram of a processor that may have evictions from the LLC cache are sent to the DRAM cache 
more than one core , may have an integrated memory con - 50 123 which allocates a block for a write miss . Compared to 
troller , and may have integrated graphics according to the main memory DRAM , the sectored DRAM cache 123 
embodiments of the invention ; has many times the bandwidth and less latency for pre 

FIGS . 12 - 15 are block diagrams of exemplary computer charge , activate ( row - to - column delay ) , and column access . 
architectures ; and Not shown in this illustration is storage for tags associated 

FIG . 16 is a block diagram contrasting the use of a 55 with the sectored DRAM cache 123 . This storage may be 
software instruction converter to convert binary instructions on - die with the DRAM cache 123 , or as a part of either one 
in a source instruction set to binary instructions in a target or more of the cores 103 - 109 and / or a centralized storage 
instruction set according to embodiments of the invention . location accessible by each of the cores 103 - 109 but not on 

the same die as the DRA cache 123 . 
DETAILED DESCRIPTION 60 Typically , a sectored cache is organized as a set - associa 

tive cache as a collection of sets and ways , with each way 
In the following description , numerous specific details are being allocated to an entire sector . Sectored ( or sub - blocked ) 

set forth . However , it is understood that embodiments of the caches use relatively large allocation units called sectors 
invention may be practiced without these specific details . In typically ranging in size from 512 bytes to 8 KB . In most 
other instances , well - known circuits , structures and tech - 65 embodiments , each sector is composed of a number of 
niques have not been shown in detail in order not to obscure contiguous conventionally - sized cache blocks . For example , 
the understanding of this description . a 2 KB sector could be designed as a collection of 32 
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contiguous cache blocks each of size 64 bytes . The amount sector . The requested cache block is filled into position k of 
of data fetched from main memory on a demand miss is physical sector s . This may require replacing the block at 
usually a cache block . As a result , the cache blocks filled into position k of physical sector s , if that position is still 
the sectored cache are guaranteed to experience at least one occupied . Since the tag / state SRAM size of the decoupled 
use . In a sectored DRAM cache , a sector is allocated 5 sectored cache increases with the degree of multiplexing , we 
contiguously in the DRAM pages leading to high DRAM confine our exploration to the architectures that multiplex 
page hit rate in the presence of good spatial locality . Since only two sectors onto a physical sector frame . 
the allocation unit in a sectored cache is a sector , only one Unfortunately , decoupled sectored caches often suffer 
tag needs to be maintained per sector along with a state from high levels of conflicts when two sectors with reason 
vector to record the states of the constituent cache blocks 10 ably high sector utilization get multiplexed onto the same 
( e . g . , valid / occupied and dirty ) . Additionally , each sector physical sector . In this scenario , each cache block position of 
maintains replacement state bits required for carrying out the physical sector would be contended by two cache blocks 
sector replacement . from the two multiplexed sectors and it is very likely that 

While sectored caches offer an attractive design choice for these two cache blocks would thrash ( conflict ) each other 
architecting DRAM caches , they often suffer from poor 15 hurting the overall hit rate . 
performance due to low utilization of the sectors arising To help alleviate these drawbacks , within each sector , a 
from the unoccupied cache blocks in a sector . coarse - grain allocation unit called micro - sector may be 

FIG . 2 illustrates an example of a DRAM cache page with utilized . A micro - sector is a contiguous region of a sector 
a plurality of sectors . In this example , the DRAM cache page comprising one or more consecutive cache blocks that 
201 includes N sectors 203 to 205 . As noted above , each 20 represents the minimum granularity of a fill and ownership 
sector of the sectored DRAM cache page is a collection of within the sectored cache . For example , a 1 KB sector would 
consecutive cache lines . have four 256 - byte micro - sectors . The first four cache 

FIG . 3 illustrates an example of sectored cache that blocks form the first micro - sector , the next four cache blocks 
utilizes sector tags . Each physical sector 301 to 303 includes form the second micro - sector , and so on . In a decoupled 
a plurality of lines such as lines 305 and 311 . Each line 25 sectored cache , when a cache block belonging to one of the 
includes data and may include valid and / or dirty bits ( V and multiplexed sectors is filled into the host physical sector 
D in the illustration ) . The valid and / or dirty bits may frame , a full micro - sector is reserved for that sector . The 
alternatively be stored in a different data structure . flexibility in the mapping scheme comes from the fact that 

Associated with each physical sector 303 to 303 is a sector this micro - sector can be allocated in any of the micro - sectors 
tag 307 to 309 . Sector tags are used by an accessing unit 30 of the physical sector frame . 
( core , memory controller , etc . ) as a part of an address of the As an example , consider a decoupled sectored cache with 
physical sector . Typically , these tags are on - die , but not 1 KB sectors and 256 - byte micro - sectors . There are four 
stored inside the sectored DRAM cache . For example , these possible micro - sector mapping positions in each physical 
tags may be stored in one or more cores , or in a central sector frame . Each sector has sixteen cache blocks numbered 
location accessible by the cores . Having these tags on - die 35 0 to 15 . Consider a completely unoccupied physical sector 
allows for less latency in determining if a cache access is a frame P . The first access to a sector S , requests cache block 
hit or miss . However , in some embodiments , the sector tags number 7 of that sector . This cache block belongs to the 
307 to 309 are stored inside the DRAM cache . second micro - sector ( containing cache blocks 4 , 5 , 6 , 7 ) of 

FIG . 4 illustrates an embodiment of a 512 - byte sector 401 sector S , . When the requested cache block is filled into P , the 
composed of eight 64 - byte cache blocks 407 , four of which 40 first micro - sector of P is reserved for the second micro 
are occupied ( marked with a hash and called " valid ” ) . Two sector of S , . Next , suppose another access from some other 
of the occupied blocks are dirty ( marked “ D ” ) . The sector sector S , mapping to the same physical sector P requests 
tag 305 , the not - recently - used ( NRU ) replacement bit 403 , cache block 7 of sector Sz . This cache block belongs to the 
and the valid and dirty blocks ( 409 and 411 ) are also shown . second micro - sector ( containing cache blocks 4 , 5 , 6 , 7 ) of 

An n - way set - associative sectored cache would have n 45 sector S , . The tag of S , is allocated in the second tag of P 
such sectors in each cache set . FIG . 5 shows a physical and when the requested cache block is filled into P , the 
sector 511 ( e . g . , a 512 - byte sector ) with two sectors multi - second micro - sector of Pis reserved for the second micro 
plexed onto it ( in other words , two sectors 0 and 1 share the sector of S , . It is important to observe that in the baseline 
same physical sector ) . In this simple illustration , the physi - decoupled sectored cache this fill would have conflicted with 
cal sector 501 is multiplexed in two ways . There is a NRU 50 the earlier fill from sector S . In general , a filling cache block 
bit ( 301 and 503 ) and tag ( 305 and 505 ) per sector . The first finds out if its micro - sector has already been allocated . 
physical cache blocks 509 show the mapping of these If yes , it just fills at the appropriate offset within the 
sectors ( sector 1 is mapped to blocks 2 , 3 , 5 , and 7 , and micro - sector . For instance , in the above example , a subse 
sector O is mapped to blocks 0 , 3 , and 6 ) . Each cache block quent request to cache block 5 of sector S would not 
position of the physical sector maintains log ( N ) bits indi - 55 allocate a new micro - sector , but fill the cache block at the 
cating which one of the multiplexed sectors it belongs to , second cache block position within the first micro - sector of 
where N is the degree of multiplexing . Additionally , each P . If a filling cache block needs to allocate a new micro 
physical sector maintains N sector tags 503 and 505 and sector , it first looks for an unoccupied micro - sector in the 
associated NRU bits ( not shown ) . physical sector frame ; if none exists , a micro - sector replace 

In an n - way decoupled sectored cache , when a sector 60 ment needs to be carried out . 
needs to be filled into a set , the global NRU sector among The storage space for tag / state in a design exercising 
all the N * n sectors mapped to that set is identified and the micro - sectors includes the two tags discussed above , their 
new sector tag occupies the position of this global NRU tag . NRU bits , the valid vector and the dirty vector per physical 
Suppose the global NRU sector is mapped to physical sector frame . Instead of a membership bit per cache block , 
sector s . All cache blocks belonging to the global NRU 65 now a membership bit per micro - sector of the physical 
sector are replaced from physical sector s . Further , suppose sector frame is added . This bit indicates which of the two 
that the requested cache block is at position k of the new sectors a particular physical micro - sector belongs to and is 
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a " virtual sector tag . ” A virtual sector allows a physical At 803 , an attempt to retrieve the data of the requested 
micro - sector to be shared . Each logical micro - sector of a cache line is made . In some embodiments , one or more 
given virtual sector may occupy any physical micro - sector . actions are performed to allow for this attempt such as a 

A thrash ( or conflict ) happens when an existing virtual determination of which set that the address maps to is made . 
sector that is using a physical micro - sector needs to be 5 Typically , this set is determined from the physical address . 
potentially evicted by a newly allocated virtual sector part - At 805 , a determination of if there was a miss at the sector 
ner in the same way . This can be alleviated through flexible location is made . There are two types of misses in a sectored 
micro - sector allocation . FIG . 6 illustrates an example of a cache . A first type involves a sector miss meaning that a new 
virtual sector tag usage . In this example , the physical sector sector tag should be allocated . In this case , a global NRU 
601 includes a plurality of physical micro - sectors ( micro - 10 replacement policy is used for selecting the victim sector 
sectors 0 - 3 ) . The virtual sector tags 603 and 605 dictate that and all the cache blocks belonging to the victim sector are 
virtual micro - sectors 0 and 2 of virtual sector tag 603 occupy replaced from the host physical sector frame . The requested 
physical micro - sectors 1 and 3 of the physical sector while cache block is filled into any of the unoccupied cache block 
avoiding thrashing with virtual micro - sectors 0 and 2 of positions in the physical sector frame ( at least one position 
virtual sector tag 605 . 15 would be unoccupied due to replacement of the cache blocks 

Additionally , each physical micro - sector maintains log2 belonging to the victim sector ) . 
( N ) bits indicating its actual position within its parent sector , If there is a miss ( and therefore the cache line does not 
where N is the number of micro - sectors in a sector . In have the correct data ) , then the NRU is set to a different 
summary , assuming K cache blocks per sector , the K - bit depth . Physical sector ways in a set are ordered from NRU 
membership vector of the baseline decoupled sector gets 20 to non - NRU . Within each visited physical sector way , the 
replaced by N + N log , ( N ) bits of micro - sector membership current utilization of the non - NRU sector between the two 
vector and micro - sector location vector . Therefore , if N is multiplexed sectors is examined . The chosen NRU multiple 
chosen such that N + N log ( N ) < K with 2sNsK , the overall sector ( the victim sector ) is the one whose partner has the 
tag / state SRAM storage can be less than the baseline minimum current sector utilization among the depth d 
decoupled sectored cache . 25 visited physical sector ways . In short , the search depth d is 

FIG . 7 shows a 512 - byte sector 701 implementing 128 - a function of the utilization of the sector being filled cur 
byte micro - sectors 711 - 717 ) . The four micro - sectors are rently . 
shown with bold lines . All the micro - sectors are occupied ( as In the illustrated embodiment , the NRU depth is set 
can be inferred from the valid vector ) . In this example , dependent upon the sector occupancy determined at 807 . 
virtual TAGO 707 and TAG1 709 correspond to sectors S , 30 Sector occupancy is the average number of valid lines in a 
and S , . Let the four micro - sectors in each sector be num - sector upon eviction . As the sector size is increased and the 
bered zero to three . The sector tags are viewed as member - cache size kept constant , sector occupancy drops . In some 
ship vector ( 1001 ) that indicates that the first and the last embodiments , the sector occupancy is kept by each thread . 
micro - sectors belong to Si , while the middle two micro In those embodiments , keeping a record of the sector occu 
sectors belong to So . A location vector ( 11010000 ) is inter - 35 pancy requires remembering the identification of the thread 
preted as follows . The first two bits indicate the position of the filled the sector so that when the sector is evicted , the 
the first physical micro - sector within its parent sector , the owner thread ' s sector utilization can be updated with the 
next two bits indicate the position of the second physical utilization of the evicted sector . Each physical sector way 
micro - sector within its parent sector , and so on . In this needs two thread ids corresponding to the two multiplexed 
example , the first physical micro - sector is micro - sector 40 sectors . Typically , the thread ids of only a few sampled sets 
number three in S? , the second physical micro - sector is of the DRAM cache are kept in a separate on - die SRAM 
micro - sector number one in So , the third physical micro - structure . 
sector is micro - sector number zero in So , and the last In this example , when the sector occupancy is : 1 ) greater 
physical micro - sector is micro - sector number zero in S . than or equal to 60 % then the NRU depth is set to 2 at 809 ; 

Instead of maintaining an NRU bit 703 , 705 with each tag 45 2 ) greater than or equal to 20 % and less than 60 % , then the 
( i . e . , two NRU bits per physical sector frame ) , an NRU bit NRU depth is set to 5 at 811 ; and 3 ) less than or equal to 
is maintained with each physical sector frame . Within each 20 % , then the NRU depth is set to 9 at 813 . Of course , these 
physical sector frame , another bit is used to record which of are merely exemplary depths and percentages . 
the two multiplexed tags is the NRU tag . The sector replace After the NRU is set , the micro - sector is filled from 
ment algorithm detailed below first selects the NRU physical 50 memory ( DRAM , etc . ) at 821 . 
sector frame within a set . It is guaranteed that none of the The second type of sectored cache miss involves a sector 
two sectors multiplexed onto this physical sector frame is hit , but a micro - sector miss . When there is no miss in the 
recently accessed . Within this physical sector frame , the sector at 805 , a determination of if there was a micro - sector 
NRU sector is replaced . miss is made at 815 . In this case , the requested micro - sector 

FIG . 8 illustrates an embodiment of a flow for handling 55 needs to be filled into the physical sector frame on which the 
sector hits and misses in a sectored DRAM cache . In accessed sector is mapped . If the physical sector frame has 
essence , this flow implements a random replacement among any unoccupied micro - sector position , the requested block is 
the partner micro - sectors . This flow is typically executed by filled into that position ; otherwise among the partner micro 
a memory controller either in a core or in a central location sectors residing in the physical sector frame , a random 
accessible to the cores . 60 micro - sector is replaced and the requested cache block is 

At 801 , a request is received for data retrieval stored at a filled into this position . 
cache line of a sector . For example , a thread may request for If there is a miss in the micro - sector , then a determination 
data to be retrieved from a cache line ( a particular location ) of if micro - sector fill bypass should occur is made at 817 . 
of a sector of a plurality of micro - sectors . In some embodi - Thrashes continue to happen even after the pairing of virtual 
ments , the request includes a physical address of a cache line 65 sectors in given way . The DRAM cache continues to vic 
and in other embodiments the request includes a virtual timize a random micro - sector of the partner sector when 
address of a cache line . allocating a new micro - sector . A simple hit rate - based 
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micro - sector bypass mechanism is used to further reduce are coupled to a memory unit 970 . The core 990 may be a 
thrashing . When allocating a micro - sector , if all micro reduced instruction set computing ( RISC ) core , a complex 
sector positions are occupied in the physical sector , the instruction set computing ( CISC ) core , a very long instruc 
average hit rate of the thread causing this allocation is tion word ( VLIW ) core , or a hybrid or alternative core type . 
looked up . When this hit rate is below a threshold , the 5 As yet another option , the core 990 may be a special - purpose 
micro - sector is not allocated ( and thereby bypassed ) in the core , such as , for example , a network or communication 
DRAM cache . When the hit rate is above the threshold , then core , compression engine , coprocessor core , general purpose 
the micro - sector is filled at 821 . computing graphics processing unit ( GPGPU ) core , graphics 

If there is not a miss in the micro - sector , a determination core , or the like . 
of if there is a hit in a cache line or not at 819 . If there is not 10 The front end unit 930 includes a branch prediction unit 
a hit , the micro - sector is filled at 821 . If there is a hit , then 932 coupled to an instruction cache unit 934 , which is 
the flow stops . coupled to an instruction translation lookaside buffer ( TLB ) 

Exemplary Core Architectures , Processors , and Computer 936 , which is coupled to an instruction fetch unit 938 , which 
Architectures is coupled to a decode unit 940 . The decode unit 940 ( or 

Processor cores may be implemented in different ways , 15 decoder ) may decode instructions , and generate as an output 
for different purposes , and in different processors . For one or more micro - operations , micro - code entry points , 
instance , implementations of such cores may include : 1 ) a microinstructions , other instructions , or other control sig 
general purpose in - order core intended for general - purpose nals , which are decoded from , or which otherwise reflect , or 
computing ; 2 ) a high performance general purpose out - of - are derived from , the original instructions . The decode unit 
order core intended for general - purpose computing ; 3 ) a 20 940 may be implemented using various different mecha 
special purpose core intended primarily for graphics and / or nisms . Examples of suitable mechanisms include , but are not 
scientific ( throughput ) computing . Implementations of dif - limited to , look - up tables , hardware implementations , pro 
ferent processors may include : 1 ) a CPU including one or grammable logic arrays ( PLAS ) , microcode read only 
more general purpose in - order cores intended for general - memories ( ROMs ) , etc . In one embodiment , the core 990 
purpose computing and / or one or more general purpose 25 includes a microcode ROM or other medium that stores 
out - of - order cores intended for general - purpose computing ; microcode for certain macroinstructions ( e . g . , in decode unit 
and 2 ) a coprocessor including one or more special purpose 940 or otherwise within the front end unit 930 ) . The decode 
cores intended primarily for graphics and / or scientific unit 940 is coupled to a rename / allocator unit 952 in the 
( throughput ) . Such different processors lead to different execution engine unit 950 . 
computer system architectures , which may include : 1 ) the 30 The execution engine unit 950 includes the rename / 
coprocessor on a separate chip from the CPU ; 2 ) the allocator unit 952 coupled to a retirement unit 954 and a set 
coprocessor on a separate die in the same package as a CPU ; of one or more scheduler unit ( s ) 956 . The scheduler unit ( s ) 
3 ) the coprocessor on the same die as a CPU ( in which case , 956 represents any number of different schedulers , including 
such a coprocessor is sometimes referred to as special reservations stations , central instruction window , etc . The 
purpose logic , such as integrated graphics and / or scientific 35 scheduler unit ( s ) 956 is coupled to the physical register 
( throughput ) logic , or as special purpose cores ) ; and 4 ) a file ( s ) unit ( s ) 958 . Each of the physical register file ( s ) units 
system on a chip that may include on the same die the 958 represents one or more physical register files , different 
described CPU ( sometimes referred to as the application ones of which store one or more different data types , such as 
core ( s ) or application processor ( s ) ) , the above described scalar integer , scalar floating point , packed integer , packed 
coprocessor , and additional functionality . Exemplary core 40 floating point , vector integer , vector floating point , status 
architectures are described next , followed by descriptions of ( e . g . , an instruction pointer that is the address of the next 
exemplary processors and computer architectures . instruction to be executed ) , etc . In one embodiment , the 

Exemplary Core Architectures physical register file ( s ) unit 958 comprises a vector registers 
In - Order and Out - of - Order Core Block Diagram unit , a write mask registers unit , and a scalar registers unit . 
FIG . 9A is a block diagram illustrating both an exemplary 45 These register units may provide architectural vector regis 

in - order pipeline and an exemplary register renaming , out - ters , vector mask registers , and general purpose registers . 
of - order issue / execution pipeline according to embodiments The physical register file ( s ) unit ( s ) 958 is overlapped by the 
of the invention . FIG . 9B is a block diagram illustrating both retirement unit 954 to illustrate various ways in which 
an exemplary embodiment of an in - order architecture core register renaming and out - of - order execution may be imple 
and an exemplary register renaming , out - of - order issuel 50 mented ( e . g . , using a reorder buffer ( s ) and a retirement 
execution architecture core to be included in a processor register file ( s ) ; using a future file ( s ) , a history buffer ( s ) , and 
according to embodiments of the invention . The solid lined a retirement register file ( s ) ; using a register maps and a pool 
boxes in FIGS . 9A - B illustrate the in - order pipeline and of registers ; etc . ) . The retirement unit 954 and the physical 
in - order core , while the optional addition of the dashed lined register file ( s ) unit ( s ) 958 are coupled to the execution 
boxes illustrates the register renaming , out - of - order issue / 55 cluster ( s ) 960 . The execution cluster ( s ) 960 includes a set of 
execution pipeline and core . Given that the in - order aspect one or more execution units 962 and a set of one or more 
is a subset of the out - of - order aspect , the out - of - order aspect memory access units 964 . The execution units 962 may 
will be described . perform various operations ( e . g . , shifts , addition , subtrac 

In FIG . 9A , a processor pipeline 900 includes a fetch stage tion , multiplication ) and on various types of data ( e . g . , scalar 
902 , a length decode stage 904 , a decode stage 906 , an 60 floating point , packed integer , packed floating point , vector 
allocation stage 908 , a renaming stage 910 , a scheduling integer , vector floating point ) . While some embodiments 
( also known as a dispatch or issue ) stage 912 , a register may include a number of execution units dedicated to 
read / memory read stage 914 , an execute stage 916 , a write specific functions or sets of functions , other embodiments 
back / memory write stage 918 , an exception handling stage may include only one execution unit or multiple execution 
922 , and a commit stage 924 . 65 units that all perform all functions . The scheduler unit ( s ) 

FIG . 9B shows processor core 990 including a front end 956 , physical register file ( s ) unit ( s ) 958 , and execution 
unit 930 coupled to an execution engine unit 950 , and both cluster ( s ) 960 are shown as being possibly plural because 
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certain embodiments create separate pipelines for certain internal cache . In some embodiments , the system may 
types of data / operations ( e . g . , a scalar integer pipeline , a include a combination of an internal cache and an external 
scalar floating point / packed integer / packed floating point cache that is external to the core and / or the processor . 
vector integer / vector floating point pipeline , and / or a Alternatively , all of the cache may be external to the core 
memory access pipeline that each have their own scheduler 5 and / or the processor . 
unit , physical register file ( s ) unit , and / or execution cluster — Specific Exemplary In - Order Core Architecture 
and in the case of a separate memory access pipeline , certain FIGS . 10A - B illustrate a block diagram of a more specific 
embodiments are implemented in which only the execution exemplary in - order core architecture , which core would be 
cluster of this pipeline has the memory access unit ( s ) 964 ) . one of several logic blocks ( including other cores of the 
It should also be understood that where separate pipelines 10 same type and / or different types ) in a chip . The logic blocks 
are used , one or more of these pipelines may be out - of - order communicate through a high - bandwidth interconnect net 
issue / execution and the rest in - order . work ( e . g . , a ring network ) with some fixed function logic , 

The set of memory access units 964 is coupled to the memory I / O interfaces , and other necessary 1 / 0 logic , 
memory unit 970 , which includes a data TLB unit 972 depending on the application . 
coupled to a data cache unit 974 coupled to a level 2 ( L2 ) 15 FIG . 10A is a block diagram of a single processor core , 
cache unit 976 . In one exemplary embodiment , the memory along with its connection to the on - die interconnect network 
access units 964 may include a load unit , a store address 1002 and with its local subset of the Level 2 ( L2 ) cache 
unit , and a store data unit , each of which is coupled to the 1004 , according to embodiments of the invention . In one 
data TLB unit 972 in the memory unit 970 . The instruction embodiment , an instruction decoder 1000 supports the x86 
cache unit 934 is further coupled to a level 2 ( L2 ) cache unit 20 instruction set with a packed data instruction set extension . 
976 in the memory unit 970 . The L2 cache unit 976 is An L1 cache 1006 allows low - latency accesses to cache 
coupled to one or more other levels of cache and eventually memory into the scalar and vector units . While in one 
to a main memory . embodiment ( to simplify the design ) , a scalar unit 1008 and 

By way of example , the exemplary register renaming , a vector unit 1010 use separate register sets ( respectively , 
out - of - order issue / execution core architecture may imple - 25 scalar registers 1012 and vector registers 1014 ) and data 
ment the pipeline 900 as follows : 1 ) the instruction fetch 938 transferred between them is written to memory and then read 
performs the fetch and length decoding stages 902 and 904 ; back in from a level 1 ( L1 ) cache 1006 , alternative embodi 
2 ) the decode unit 940 performs the decode stage 906 ; 3 ) the ments of the invention may use a different approach ( e . g . , 
rename / allocator unit 952 performs the allocation stage 908 use a single register set or include a communication path that 
and renaming stage 910 ; 4 ) the scheduler unit ( s ) 956 per - 30 allow data to be transferred between the two register files 
forms the schedule stage 912 ; 5 ) the physical register file ( s ) without being written and read back ) . 
unit ( s ) 958 and the memory unit 970 perform the register The local subset of the L2 cache 1004 is part of a global 
read / memory read stage 914 ; the execution cluster 960 L2 cache that is divided into separate local subsets , one per 
perform the execute stage 916 ; 6 ) the memory unit 970 and processor core . Each processor core has a direct access path 
the physical register file ( s ) unit ( s ) 958 perform the write 35 to its own local subset of the L2 cache 1004 . Data read by 
back / memory write stage 918 ; 7 ) various units may be a processor core is stored in its L2 cache subset 1004 and can 
involved in the exception handling stage 922 ; and 8 ) the be accessed quickly , in parallel with other processor cores 
retirement unit 954 and the physical register file ( s ) unit ( s ) accessing their own local L2 cache subsets . Data written by 
958 perform the commit stage 924 . a processor core is stored in its own L2 cache subset 1004 

The core 990 may support one or more instructions sets 40 and is flushed from other subsets , if necessary . The ring 
( e . g . , the x86 instruction set ( with some extensions that have network ensures coherency for shared data . The ring net 
been added with newer versions ) ; the MIPS instruction set work is bi - directional to allow agents such as processor 
of MIPS Technologies of Sunnyvale , Calif . ; the ARM cores , L2 caches and other logic blocks to communicate with 
instruction set ( with optional additional extensions such as each other within the chip . Each ring data - path is 1012 - bits 
NEON ) of ARM Holdings of Sunnyvale , Calif . ) , including 45 wide per direction . 
the instruction ( s ) described herein . In one embodiment , the FIG . 10B is an expanded view of part of the processor 
core 990 includes logic to support a packed data instruction core in FIG . 10A according to embodiments of the inven 
set extension ( e . g . , AVX1 , AVX2 ) , thereby allowing the tion . FIG . 10B includes an L1 data cache 1006A part of the 
operations used by many multimedia applications to be L1 cache 1004 , as well as more detail regarding the vector 
performed using packed data . 50 unit 1010 and the vector registers 1014 . Specifically , the 

It should be understood that the core may support multi - vector unit 1010 is a 16 - wide vector processing unit ( VPU ) 
threading ( executing two or more parallel sets of operations ( see the 16 - wide ALU 1028 ) , which executes one or more of 
or threads ) , and may do so in a variety of ways including integer , single - precision float , and double - precision float 
time sliced multithreading , simultaneous multithreading instructions . The VPU supports swizzling the register inputs 
( where a single physical core provides a logical core for each 55 with swizzle unit 1020 , numeric conversion with numeric 
of the threads that physical core is simultaneously multi - convert units 1022A - B , and replication with replication unit 
threading ) , or a combination thereof ( e . g . , time sliced fetch - 1024 on the memory input . Write mask registers 1026 allow 
ing and decoding and simultaneous multithreading thereaf - predicating resulting vector writes . 
ter such as in the Intel® Hyperthreading technology ) . Processor with Integrated Memory Controller and Graph 

While register renaming is described in the context of 60 ics 
out - of - order execution , it should be understood that register FIG . 11 is a block diagram of a processor 1100 that may 
renaming may be used in an in - order architecture . While the have more than one core , may have an integrated memory 
illustrated embodiment of the processor also includes sepa - controller , and may have integrated graphics according to 
rate instruction and data cache units 934 / 974 and a shared L2 embodiments of the invention . The solid lined boxes in FIG . 
cache unit 976 , alternative embodiments may have a single 65 11 illustrate a processor 1100 with a single core 1102A , a 
internal cache for both instructions and data , such as , for system agent 1110 , a set of one or more bus controller units 
example , a Level 1 ( L1 ) internal cache , or multiple levels of 1116 , while the optional addition of the dashed lined boxes 
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illustrates an alternative processor 1100 with multiple cores capable of incorporating a processor and / or other execution 
1102A - N , a set of one or more integrated memory controller logic as disclosed herein are generally suitable . 
unit ( s ) 1114 in the system agent unit 1110 , and special Referring now to FIG . 12 , shown is a block diagram of a 
purpose logic 1108 . system 1200 in accordance with one embodiment of the 

Thus , different implementations of the processor 1100 5 present invention . The system 1200 may include one or 
may include : 1 ) a CPU with the special purpose logic 1108 more processors 1210 , 1215 , which are coupled to a con 
being integrated graphics and / or scientific ( throughput ) troller hub 1220 . In one embodiment the controller hub 1220 
logic ( which may include one or more cores ) , and the cores includes a graphics memory controller hub ( GMCH ) 1290 
1102A - N being one or more general purpose cores ( e . g . , and an Input / Output Hub ( IOH ) 1250 ( which may be on 
general purpose in - order cores , general purpose out - of - order 10 separate chips ) ; the GMCH 1290 includes memory and 
cores , a combination of the two ) ; 2 ) a coprocessor with the graphics controllers to which are coupled memory 1240 and 
cores 1102A - N being a large number of special purpose a coprocessor 1245 ; the IOH 1250 is couples input / output 
cores intended primarily for graphics and / or scientific ( I / O ) devices 1260 to the GMCH 1290 . Alternatively , one or 
( throughput ) ; and 3 ) a coprocessor with the cores 1102A - N both of the memory and graphics controllers are integrated 
being a large number of general purpose in - order cores . 15 within the processor ( as described herein ) , the memory 1240 
Thus , the processor 1100 may be a general - purpose proces - and the coprocessor 1245 are coupled directly to the pro 
sor , coprocessor or special - purpose processor , such as , for cessor 1210 , and the controller hub 1220 in a single chip 
example , a network or communication processor , compres - with the IOH 1250 . 
sion engine , graphics processor , GPGPU ( general purpose The optional nature of additional processors 1215 is 
graphics processing unit ) , a high - throughput many inte - 20 denoted in FIG . 12 with broken lines . Each processor 1210 , 
grated core ( MIC ) coprocessor ( including 30 or more cores ) , 1215 may include one or more of the processing cores 
embedded processor , or the like . The processor may be described herein and may be some version of the processor 
implemented on one or more chips . The processor 1100 may 1100 . 
be a part of and / or may be implemented on one or more The memory 1240 may be , for example , dynamic random 
substrates using any of a number of process technologies , 25 access memory ( DRAM ) , phase change memory ( PCM ) , or 
such as , for example , BiCMOS , CMOS , or NMOS . a combination of the two . For at least one embodiment , the 

The memory hierarchy includes one or more levels of controller hub 1220 communicates with the processor ( s ) 
cache within the cores , a set or one or more shared cache 1210 , 1215 via a multi - drop bus , such as a frontside bus 
units 1106 , and external memory ( not shown ) coupled to the ( FSB ) , point - to - point interface such as QuickPath Intercon 
set of integrated memory controller units 1114 . The set of 30 nect ( QPI ) , or similar connection 1295 . 
shared cache units 1106 may include one or more mid - level In one embodiment , the coprocessor 1245 is a special 
caches , such as level 2 ( L2 ) , level 3 ( L3 ) , level 4 ( L4 ) , or purpose processor , such as , for example , a high - throughput 
other levels of cache , a last level cache ( LLC ) , and / or MIC processor , a network or communication processor , 
combinations thereof . While in one embodiment a ring compression engine , graphics processor , GPGPU , embed 
based interconnect unit 1112 interconnects the integrated 35 ded processor , or the like . In one embodiment , controller hub 
graphics logic 1108 , the set of shared cache units 1106 , and 1220 may include an integrated graphics accelerator . 
the system agent unit 1110 / integrated memory controller There can be a variety of differences between the physical 
unit ( s ) 1114 , alternative embodiments may use any number resources 1210 , 1215 in terms of a spectrum of metrics of 
of well - known techniques for interconnecting such units . In merit including architectural , microarchitectural , thermal , 
one embodiment , coherency is maintained between one or 40 power consumption characteristics , and the like . 
more cache units 1106 and cores 1102 - A - N . In one embodiment , the processor 1210 executes instruc 

In some embodiments , one or more of the cores 1102A - N tions that control data processing operations of a general 
are capable of multithreading . The system agent 1110 type . Embedded within the instructions may be coprocessor 
includes those components coordinating and operating cores instructions . The processor 1210 recognizes these coproces 
1102A - N . The system agent unit 1110 may include for 45 sor instructions as being of a type that should be executed by 
example a power control unit ( PCU ) and a display unit . The the attached coprocessor 1245 . Accordingly , the processor 
PCU may be or include logic and components needed for 1210 issues these coprocessor instructions ( or control sig 
regulating the power state of the cores 1102A - N and the nals representing coprocessor instructions ) on a coprocessor 
integrated graphics logic 1108 . The display unit is for bus or other interconnect to coprocessor 1245 . 
driving one or more externally connected displays . 50 Coprocessor ( s ) 1245 accept and execute the received copro 

The cores 1102A - N may be homogenous or heteroge - cessor instructions . 
neous in terms of architecture instruction set ; that is , two or Referring now to FIG . 13 , shown is a block diagram of a 
more of the cores 1102A - N may be capable of execution the first more specific exemplary system 1300 in accordance 
same instruction set , while others may be capable of execut with an embodiment of the present invention . As shown in 
ing only a subset of that instruction set or a different 55 FIG . 13 , multiprocessor system 1300 is a point - to - point 
instruction set . interconnect system , and includes a first processor 1370 and 

Exemplary Computer Architectures a second processor 1380 coupled via a point - to - point inter 
FIGS . 12 - 15 are block diagrams of exemplary computer connect 1350 . Each of processors 1370 and 1380 may be 

architectures . Other system designs and configurations some version of the processor 1100 . In one embodiment of 
known in the arts for laptops , desktops , handheld PCs , 60 the invention , processors 1370 and 1380 are respectively 
personal digital assistants , engineering workstations , serv - processors 1210 and 1215 , while coprocessor 1338 is copro 
ers , network devices , network hubs , switches , embedded cessor 1245 . In another embodiment , processors 1370 and 
processors , digital signal processors ( DSPs ) , graphics 1 380 are respectively processor 1210 coprocessor 1245 . 
devices , video game devices , set - top boxes , micro control - Processors 1370 and 1380 are shown including integrated 
lers , cell phones , portable media players , hand held devices , 65 memory controller ( IMC ) units 1372 and 1382 , respectively . 
and various other electronic devices , are also suitable . In Processor 1370 also includes as part of its bus controller 
general , a huge variety of systems or electronic devices units point - to - point ( P - P ) interfaces 1376 and 1378 ; simi 
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larly , second processor 1380 includes P - P interfaces 1386 more advanced SoCs . In FIG . 15 , an interconnect unit ( s ) 
and 1388 . Processors 1370 , 1380 may exchange information 1502 is coupled to : an application processor 1510 which 
via a point - to - point ( PPP ) interface 1350 using P - P interface includes a set of one or more cores 202A - N and shared cache 
circuits 1378 , 1388 . As shown in FIG . 13 , IMCs 1372 and unit ( s ) 1106 ; a system agent unit 1110 ; a bus controller 
1382 couple the processors to respective memories , namely 5 unit ( s ) 1116 ; an integrated memory controller unit ( s ) 1114 ; 
a memory 1332 and a memory 1334 , which may be portions a set or one or more coprocessors 1520 which may include 
of main memory locally attached to the respective proces integrated graphics logic , an image processor , an audio 
sors . processor , and a video processor ; an static random access 

Processors 1370 , 1380 may each exchange information memory ( SRAM ) unit 1530 ; a direct memory access ( DMA ) 
with a chipset 1390 via individual P - P interfaces 1352 , 1354 10 unit 1532 ; and a display unit 1540 for coupling to one or 
using point to point interface circuits 1376 , 1394 , 1386 , more external displays . In one embodiment , the 
1398 . Chipset 1390 may optionally exchange information coprocessor ( s ) 1520 include a special - purpose processor , 
with the coprocessor 1338 via a high - performance interface such as , for example , a network or communication proces 
1339 . In one embodiment , the coprocessor 1338 is a special sor , compression engine , GPGPU , a high - throughput MIC 
purpose processor , such as , for example , a high - throughput 15 processor , embedded processor , or the like . 
MIC processor , a network or communication processor , Embodiments of the mechanisms disclosed herein may be 
compression engine , graphics processor , GPGPU , embed implemented in hardware , software , firmware , or a combi 
ded processor , or the like . nation of such implementation approaches . Embodiments of 

A shared cache ( not shown ) may be included in either the invention may be implemented as computer programs or 
processor or outside of both processors , yet connected with 20 program code executing on programmable systems compris 
the processors via P - P interconnect , such that either or both ing at least one processor , a storage system ( including 
processors ' local cache information may be stored in the volatile and non - volatile memory and / or storage elements ) , 
shared cache if a processor is placed into a low power mode . at least one input device , and at least one output device . 

Chipset 1390 may be coupled to a first bus 1316 via an Program code , such as code 1330 illustrated in FIG . 13 , 
interface 1396 . In one embodiment , first bus 1316 may be a 25 may be applied to input instructions to perform the functions 
Peripheral Component Interconnect ( PCI ) bus , or a bus such described herein and generate output information . The out 
as a PCI Express bus or another third generation I / O put information may be applied to one or more output 
interconnect bus , although the scope of the present invention devices , in known fashion . For purposes of this application , 
is not so limited . a processing system includes any system that has a proces 
As shown in FIG . 13 , various 1 / 0 devices 1314 may be 30 sor , such as , for example ; a digital signal processor ( DSP ) , 

coupled to first bus 1316 , along with a bus bridge 1318 a microcontroller , an application specific integrated circuit 
which couples first bus 1316 to a second bus 1320 . In one ( ASIC ) , or a microprocessor . 
embodiment , one or more additional processor ( s ) 1315 , such The program code may be implemented in a high level 
as coprocessors , high - throughput MIC processors , GPG - procedural or object oriented programming language to 
PU ' s , accelerators ( such as , e . g . , graphics accelerators or 35 communicate with a processing system . The program code 
digital signal processing ( DSP ) units ) , field programmable may also be implemented in assembly or machine language , 
gate arrays , or any other processor , are coupled to first bus if desired . In fact , the mechanisms described herein are not 
1316 . In one embodiment , second bus 1320 may be a low limited in scope to any particular programming language . In 
pin count ( LPC ) bus . Various devices may be coupled to a any case , the language may be a compiled or interpreted 
second bus 1320 including , for example , a keyboard and / or 40 language . 
mouse 1322 , communication devices 1327 and a storage One or more aspects of at least one embodiment may be 
unit 1328 such as a disk drive or other mass storage device implemented by representative instructions stored on a 
which may include instructions / code and data 1330 , in one machine - readable medium which represents various logic 
embodiment . Further , an audio I / O 1324 may be coupled to within the processor , which when read by a machine causes 
the second bus 1320 . Note that other architectures are 45 the machine to fabricate logic to perform the techniques 
possible . For example , instead of the point - to - point archi - described herein . Such representations , known as “ IP cores ” 
tecture of FIG . 13 , a system may implement a multi - drop bus may be stored on a tangible , machine readable medium and 
or other such architecture . supplied to various customers or manufacturing facilities to 

Referring now to FIG . 14 , shown is a block diagram of a load into the fabrication machines that actually make the 
second more specific exemplary system 1400 in accordance 50 logic or processor . 
with an embodiment of the present invention . Like elements Such machine - readable storage media may include , with 
in FIGS . 13 and 14 bear like reference numerals , and certain out limitation , non - transitory , tangible arrangements of 
aspects of FIG . 13 have been omitted from FIG . 14 in order articles manufactured or formed by a machine or device , 
to avoid obscuring other aspects of FIG . 14 . including storage media such as hard disks , any other type 

FIG . 14 illustrates that the processors 1370 , 1380 may 55 of disk including floppy disks , optical disks , compact disk 
include integrated memory and I / O control logic ( " CL " ) read - only memories ( CD - ROMs ) , compact disk rewritable ' s 
1372 and 1382 , respectively . Thus , the CL 1372 , 1382 ( CD - RWs ) , and magneto - optical disks , semiconductor 
include integrated memory controller units and include I / O devices such as read - only memories ( ROMs ) , random 
control logic . FIG . 14 illustrates that not only are the access memories ( RAMs ) such as dynamic random access 
memories 1332 , 1334 coupled to the CL 1372 , 1382 , but also 60 memories ( DRAMs ) , static random access memories 
that I / O devices 1414 are also coupled to the control logic ( SRAMs ) , erasable programmable read - only memories 
1372 , 1382 . Legacy I / O devices 1415 are coupled to the ( EPROMs ) , flash memories , electrically erasable program 
chipset 1390 . mable read - only memories ( EEPROMs ) , phase change 

Referring now to FIG . 15 , shown is a block diagram of a memory ( PCM ) , magnetic or optical cards , or any other type 
SoC 1500 in accordance with an embodiment of the present 65 of media suitable for storing electronic instructions . 
invention . Similar elements in FIG . 11 bear like reference Accordingly , embodiments of the invention also include 
numerals . Also , dashed lined boxes are optional features on non - transitory , tangible machine - readable media containing 
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instructions or containing design data , such as Hardware We claim : 
Description Language ( HDL ) , which defines structures , cir 1 . An apparatus comprising : 
cuits , apparatuses , processors and / or system features at least one hardware processor core ; 
described herein . Such embodiments may also be referred to a sectored dynamic random access memory ( DRAM ) 
as program products . cache coupled to the at least one hardware processor 

Emulation ( Including Binary Translation , Code Morph core , the sectored DRAM cache including a plurality of 
ing , Etc . ) micro - sectors assignable to threads to be executed by 

In some cases , an instruction converter may be used to the at least one hardware processor core , wherein each 
convert an instruction from a source instruction set to a of the plurality of micro - sectors is a continuous region 

of a sector comprising one or more consecutive cache target instruction set . For example , the instruction converter blocks ; and may translate ( e . g . , using static binary translation , dynamic storage for at least one tag per sector to be used in binary translation including dynamic compilation ) , morph , addressing a micro - sector and a not recently used emulate , or otherwise convert an instruction to one or more indicator per tag , wherein each tag is log 2 ( N ) bits in other instructions to be processed by the core . The instruc - 15 size where N is a number of micro - sectors in a sector ; tion converter may be implemented in software , hardware , 
firmware , or a combination thereof . The instruction con a memory controller to 
verter may be on processor , off processor , or part on and part receive a request for data at a sector location ; 
off processor . determine when there is a miss at the sector location ; 

FIG . 16 is a block diagram contrasting the use of a 20 when there is a miss at the sector location , 
software instruction converter to convert binary instructions determine the sector occupancy , 
in a source instruction set to binary instructions in a target set a least recently used lookup depth based on the 
instruction set according to embodiments of the invention . determined sector occupancy , and 
In the illustrated embodiment , the instruction converter is a fill a micro - sector based on the set least recently used 
software instruction converter , although alternatively the 25 lookup depth ; and 
instruction converter may be implemented in software , firm when there is not a miss at the sector location , 
ware , hardware , or various combinations thereof . FIG . 16 determine when there is a micro - sector miss , 
shows a program in a high level language 1602 may be when there is not a micro - sector miss , and there is 
compiled using an x86 compiler 1604 to generate x86 binary a hit , the micro - sector is filled , and 
code 1606 that may be natively executed by a processor with 30 when there is a micro - sector miss , fill the micro 
at least one x86 instruction set core 1616 . The processor with sector . 
at least one x86 instruction set core 1616 represents any 2 . The apparatus of claim 1 , wherein the DRAM cache is 
processor that can perform substantially the same functions an L4 cache . 
as an Intel processor with at least one x86 instruction set 3 . The apparatus of claim 1 , wherein the DRAM cache is 
core by compatibly executing or otherwise processing ( 1 ) a 35 shared with a graphics core . 
substantial portion of the instruction set of the Intel x86 4 . The apparatus of claim 1 , wherein a physical sector of 
instruction set core or ( 2 ) object code versions of applica - a DRAM cache page to include a plurality of micro - sectors . 
tions or other software targeted to run on an Intel processor 5 . The apparatus of claim 1 , wherein a micro - sector cache 
with at least one x86 instruction set core , in order to achieve block to include data , valid , and dirty information . 
substantially the same result as an Intel processor with at 406 . The apparatus of claim 1 , further comprising : 
least one x86 instruction set core . The x86 compiler 1604 a memory controller in the at least one processor core to 
represents a compiler that is operable to generate x86 binary access the DRAM cache . 
code 1606 ( e . g . , object code ) that can , with or without 7 . The apparatus of claim 1 , further comprising : 
additional linkage processing , be executed on the processor a memory controller external to the at least one processor 
with at least one x86 instruction set core 1616 . Similarly , 45 core to access the DRAM cache and accessible by all 
FIG . 16 shows the program in the high level language 1602 of the processor cores . 
may be compiled using an alternative instruction set com - 8 . The apparatus of claim 1 , further comprising : 
piler 1608 to generate alternative instruction set binary code storage for a not - recently used bit per sector . 
1610 that may be natively executed by a processor without 9 . The apparatus of claim 1 , wherein each bit position in 
at least one x86 instruction set core 1614 ( e . g . , a processor 50 the tag indicates which micro - sectors belong to a physical 
with cores that execute the MIPS instruction set of MIPS sector and a relative position within the physical sector . 
Technologies of Sunnyvale , Calif . and / or that execute the 10 . A method implemented in a memory controller , the 
ARM instruction set of ARM Holdings of Sunnyvale , method comprising : 
Calif . ) . The instruction converter 1612 is used to convert the receiving a request for data at a sector location ; 
x86 binary code 1606 into code that may be natively 55 determining when there is a miss at the sector location ; 
executed by the processor without an x86 instruction set when there is a miss at the sector location , 
core 1614 . This converted code is not likely to be the same determining the sector occupancy , 
as the alternative instruction set binary code 1610 because setting a least recently used lookup depth based on the 
an instruction converter capable of this is difficult to make ; determined sector occupancy , and 
however , the converted code will accomplish the general 60 filling a micro - sector based on the set least recently 
operation and be made up of instructions from the alterna used lookup depth ; and 
tive instruction set . Thus , the instruction converter 1612 when there is not a miss at the sector location , 
represents software , firmware , hardware , or a combination determining when there is a micro - sector miss , 
thereof that , through emulation , simulation or any other when there is not a micro - sector miss , and there is a 
process , allows a processor or other electronic device that 65 hit , the micro - sector is filled , and 
does not have an x86 instruction set processor or core to when there is a micro - sector miss , filling the micro 
execute the x86 binary code 1606 . sector . 
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11 . The method of claim 10 , wherein the sector occupancy 
is less than 20 % . 

12 . The method of claim 11 , wherein the least recently 
used lookup depth is 2 . 

13 . The method of claim 11 , wherein the least recently 5 
used lookup depth is 5 . 

14 . The method of claim 11 , wherein the least recently 
used lookup depth is 9 . 

15 . The method of claim 10 , further comprising : 
determining that a micro - sector bypass should occur and 10 

not filling the micro - sector . 
16 . The method of claim 10 , wherein the sector occupancy 

is between 20 % and less than 60 % . 
17 . The method of claim 10 , wherein the sector occupancy 

is greater than or equal to 60 % . 15 

* * * * 


