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ABSTRACT
Timely instruction delivery is an important prerequisite for
smooth progress of the instruction processing pipelines found
in the microprocessors. Instruction cache misses can severely
hamper this progress. As a result, code prefetchers play an
important role in mitigating the bottlenecks encountered in
the front-end of the instruction processing pipelines. A typi-
cal code prefetcher attempts to run significantly ahead of the
demand instruction stream while fetching the code blocks
that the upcoming control flow is likely to touch. Since the
operations of a code prefetcher closely resemble those of a
branch predictor, in this paper we propose to synthesize code
prefetchers directly from the well-researched control specula-
tion hardware. We first pose the code prefetching problem in
such a way that it becomes equivalent to the control specula-
tion problem and then design a code prefetcher that sports a
partially tagged gshare predictor fused into a partially tagged
prefetch target buffer, which closely resembles a traditional
branch target buffer. Compared to a baseline that has no code
prefetching at L1 cache, our proposal, evaluated on a single-
core processor having a 32 KB 8-way L1 instruction cache,
saves 83.7% instruction cache demand misses and achieves
a speedup of 27.6% while offering an L1 instruction cache
demand hit rate of 97.7% averaged over fifty code-intensive
client, server, and SPEC CPU application traces. This perfor-
mance comes close to the ideal oracle prefetcher that achieves
a speedup of 30.6% while offering 100% L1 instruction cache
hits for the demand stream.

1. INTRODUCTION
The instruction processing pipelines found in the micropro-

cessors need to be fed with instructions at a certain rate for
optimal performance. The L1 instruction cache is designed
to deliver instructions at least at this rate. However, L1 in-
struction cache misses lower the average rate of instruction
delivery leading to insertion of bubbles into the instruction
processing pipelines. Code prefetching is an important tech-
nique that attempts to hide this inefficiency by running sig-
nificantly ahead of the demand stream and prefetching code
blocks that are likely to be touched in the near future. As
a result, a typical code prefetcher is required to predict the
upcoming instruction block addresses. Since this is very sim-
ilar to what a branch predictor does at a finer grain of basic
blocks (predicts the entry point of the next dynamic basic
block on encountering a control transfer instruction), in this
paper we propose to design an L1 cache code prefetcher that
synthesizes its operations and storage structures directly from

the vastly researched field of control speculation techniques.
We pose the code prefetching problem as a branch predic-

tion problem at the grain of code cache blocks (as opposed to
basic blocks). This opens up a large number of possibilities
for synthesizing code prefetchers. In this study, we confine
our exploration to a simple predictor that resembles a partially
tagged branch target buffer (which we refer to as the prefetch
target buffer) with an embedded partially tagged gshare pre-
dictor. To increase the effective reach of the prefetch target
buffer, we couple the design with a simple dynamic prefetch
target compression technique assisted by a small temporally
populated dictionary. Our design also incorporates a simple
prefetch filter to avoid prefetches to blocks that have recently
been demanded or prefetched. We evaluate our proposal on
a single-core system having a three-level cache hierarchy
including a 32 KB 8-way L1 instruction cache on fifty code-
intensive traces collected from client, server, and SPEC CPU
applications. Our proposal, on average, saves 83.7% instruc-
tion cache demand misses and achieves a speedup of 27.6%
relative to a baseline that does not have an L1 cache code
prefetcher. Our proposal enjoys an L1 instruction cache de-
mand hit rate of 97.7% on average. In comparison, the ideal
oracle prefetcher, which offers 100% L1 instruction cache hit
rate while accounting for all resource consumption (i.e., con-
sumption of bandwidth and cache capacity) of the prefetcher
throughout the entire memory hierarchy, achieves an average
speedup of 30.6%. We also compare our proposal with a few
existing ones, namely an optimized next-two-line prefetcher,
the return-directed instruction prefetching (RDIP) technique,
the proactive instruction prefetching (PIF) technique imple-
mented with the instruction cache access order, and an op-
timized PIF technique; these proposals speed up execution
by 12.5%, 18.8%, 21.4%, and 24.5% on average respectively.
These and other related research contributions are discussed
in the next section.

2. RELATED WORK
The next-line and next-n-line code prefetchers are the ear-

liest code prefetchers proposed in the literature [22, 23].
These prefetchers rely on the sequential pattern of code ex-
ecution. However, control transfer instructions introduce
discontinuities in this sequential pattern. Several studies have
approached this problem of discontinuities by correlating a
sequence of prefetch targets with the current code block ad-
dress [24], with the branch history patterns [26], or with the
past code block addresses to improve the prefetcher’s looka-
head [25]. These techniques predict a sequence of prefetch
addresses by remembering such correlations. As we will see
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in the next section, our proposal also attempts to predict the
discontinuities in the sequential code stream, but appeals to
the rich design space of control speculation hardware to do
so.

Branch predictors that run ahead of the main execution
stream and offer prefetch candidates with significant looka-
head have been explored [3, 19]. Such branch-prediction-
directed or fetch-directed prefetching techniques require the
control speculation unit to be decoupled from the instruction
fetch unit for achieving significant lookahead that is inde-
pendent of the instruction cache performance. Lately, such
decoupled prefetch units have been improved significantly
by prefilling the branch target buffer (Boomerang) [15] or
by short-circuiting branch prediction stages in the cases of
pipeline flushes (elastic fetch) [18]. A recent proposal has
further improved branch target buffer-directed prefetching
with the help of a specialized branch target buffer design
that maintains the global control flow across functions and a
region-encoding capturing the local control flow within the
functions (Shotgun) [16].

Temporal instruction fetch streaming (TIFS) [6] and proac-
tive instruction fetching (PIF) [5] exploit the observation that
the control flow paths repeat themselves in most server ap-
plications. However, since the repeat interval is very large,
these proposals require large history buffers for recording
the sequence of executed code regions of a fixed size (e.g.,
eight cache blocks); the specific cache blocks touched within
a region are recorded in a bitvector. While TIFS records only
the discontinuities in the instruction cache access stream, PIF
records all touched code blocks in retire order. An index table
is looked up using the current code region address and the
index table entry points to the latest matching entry in the
history buffer triggering code prefetches starting from that
history buffer entry. Subsequently, shared history instruction
fetch (SHIFT) has significantly reduced the metadata over-
head of PIF by sharing the history buffer across cores and em-
bedding the metadata in the large on-chip last-level cache [10].
Confluence unifies the metadata for prefetching into the L1
instruction cache and the branch target buffer by proposing a
new branch target buffer organization, each entry of which
maintains a bundle of branches as a bitvector corresponding
to all branches in an instruction cache block [11]. Confluence
further minimizes the metadata overhead by backing up the
branch target buffer in the last-level cache following the idea
of virtualized branch target buffer [1].

Return-directed instruction prefetching (RDIP) correlates
the history of code regions with a hash of the top few entries in
the return address stack [14]. This technique also incorporates
lookahead into the prefetcher by correlating the code regions
of the current function with a return address stack hash seen
in the recent past. A similar approach involving function
and event signatures has been used for prefetching in web
applications [2].

Our proposal, to some extent, resembles those along the
line of fetch-directed or branch prediction-directed prefetch-
ing. However, our proposal makes predictions at the grain
of cache blocks. We employ partially tagged gshare and
branch target buffer designs to offer these predictions. Par-
tially tagged global history-based direction as well as target
predictors have been studied in great detail. For example,

the TAGE and ITTAGE predictors use multiple global pre-
dictor components to do this [20, 21]. The other studies on
target prediction of indirect branches include devirtualization
of indirect branch’s instruction pointer [12] and correlating
the output value of some hint instruction with the target of
an indirect branch [4]. Recent studies have exploited an en-
semble of neural predictors for target prediction of indirect
branches [7]. Replacement and insertion policy optimizations
for the instruction cache and the branch target buffer have
also been studied [17]. All these design optimizations can be
seamlessly applied to the branch target buffer proposed by us.
In this study, we restrict ourselves to a simple design.

3. DESIGN OF PROPOSED PREFETCHER
We first reduce the code prefetching problem to a control

flow speculation problem at block grain and then discuss the
design of our proposed prefetcher.

3.1 Control Flow at a Coarse Grain
Let us consider an example instruction fetch stream that

accesses the following sequence of cache block addresses:
A, A+ 1, A+ 2, B, C, C + 1, D, D+ 1, A,. . ., where B, C,
D, A are the discontinuities from the sequential stream i.e.,
B 6= A+ 3;C 6= B+ 1;D 6= C + 2;A 6= D+ 2. We imagine
each block address to be a branch address. The branch is
taken if the next block address in the sequence represents a
discontinuity and the target of the branch is the next block
address; otherwise the branch is not taken. In the above
example, A,A+1,C,D are not taken branches, while the rest
are taken branches. The targets of the taken branches A+
2,B,C+1,D+1 are respectively B,C,D,A i.e., precisely the
set of discontinuities. We further define a block-grain global
control flow history based on this taken/not taken behavior.
In the above example, this block-grain global history would
be 00110101 where 0 represents a not taken branch and 1
represents a taken branch. Therefore, the code prefetching
problem is equivalent to predicting taken/not-taken for each
code block and if the prediction is taken, a target prediction
is also needed. With this reduction of the code prefetching
problem to a block-grain control flow speculation problem,
it is easy to see that one can now appeal to the large body of
studies on control speculation to synthesize varieties of code
prefetchers. We discuss one simple design in the following.
We note that we will need a direction predictor (indicating
taken/not taken) and a target predictor for taken branches.

The aforementioned technique offers the impression that
it will work only when a code block has a single control
transfer instruction and this instruction exhibits consistent
taken/not-taken behavior. However, a code block can have
multiple control transfer instructions and they can exhibit
differing taken/not-taken behavior over time. To address
this, we will use the block-grain global history along with
the block address to train our predictor. We observe that
given a particular block-grain global history pattern, a code
block’s taken/not-taken behavior is quite consistent over time.
This observation has been used in the branch direction as
well as branch target prediction techniques. As an example,
consider a code block B with four control transfer instructions
I1, I2, I3, I4. Given a block-grain global history pattern H1, let
us suppose that I1 and I2 are predominantly not taken, while
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I3 is taken with the branch target in a different code block that
is not the next code block. In this case, a hash of H1 and the
block address of B will be trained with the target of I3 because
that represents the discontinuity in the sequential code stream.
On the other hand, let us suppose for a different global history
pattern H2, I1, I2, I3 are predominantly not taken and I4 is
taken with the target in the next sequential code block. In
this case, the hash of H2 and the block address of B will be
trained to predict not taken. Next, we discuss the design of
the proposed prefetcher.

3.2 Prefetch Target Buffer Design
We incorporate a branch target buffer to carry out the

prediction discussed above. We will refer to this structure as
the prefetch target buffer (PTB). The PTB is a set-associative
array indexed using the XOR of the least significant n bits
of the current block address and the most recent n bits of
the block-grain global history assuming that the PTB has 2n

sets. Each PTB entry has a valid bit, replacement state bits,
a partial tag, a prefetch target, and a 2-bit saturating pattern
history counter. The partial tag is same as the least significant
m bits of the current block address. In our implementation, n
is 11 (the PTB has 2048 sets) and m is 12.

The prefetch target stored in a PTB entry uses a com-
pressed encoding. It has two components, namely the lower
target and an upper target pointer. The lower target stores the
least significant t bits of the target block address, while the
upper target pointer stores a pointer to an entry of a small
fully-associative dictionary. The dictionary stores the possi-
ble values of upper target bits seen in the recent past. When
a new PTB entry is allocated, the dictionary is searched for
an entry having the same upper target bits as the prefetch
target of the new PTB entry. If found, the corresponding
entry id is stored in the upper target pointer of the PTB entry.
If not found, a new dictionary entry is allocated using the
LRU replacement and the corresponding entry id is stored in
the upper target pointer of the PTB entry. The LRU states
of the dictionary are updated whenever a dictionary entry
is retrieved to construct a prefetch target. This target com-
pression technique is similar to the one used in Seznec’s
ITTAGE predictor from CBP3 [21]. The ITTAGE design
used a static dictionary of 128 entries, while we use a tempo-
rally populated dynamic dictionary of much smaller size. In
our implementation, the lower target has 14 bits, the upper
target pointer has 5 bits, and the dictionary has 32 entries.
With 64-byte cache blocks, this arrangement, at any instant
of time, can track active prefetch targets over 32 MB of code
footprint distributed among 32 1 MB regions. This is usually
enough to capture the code locale during a reasonably large
execution window. Assuming 64-bit instruction addresses,
each dictionary entry needs to store the most significant 44
bits of a prefetch target. Adding five LRU state bits and a
valid bit makes a dictionary entry 50-bit wide.

A new entry is allocated in the PTB when a taken block
address is discovered in the instruction stream. However, it is
observed that a code block may exhibit both taken and not-
taken behavior during the execution. To train the PTB with
this behavior, we make use of the 2-bit pattern history counter
attached to each entry. To update this counter, the PTB is
looked up for both taken and not-taken block addresses. If

the entry is already present in the PTB, the counter is incre-
mented or decremented using saturating logic for taken or
not-taken outcome respectively. If the entry is not present in
the PTB, a new entry is allocated only if the outcome is taken
and the counter of the newly allocated entry is initialized
to 2 (weakly taken). These pattern history counters can be
thought of as belonging to a partially tagged gshare predic-
tor (a la one component of the TAGE predictor) where a new
entry is allocated only when a taken block address is seen.
Distributing the gshare counters across the PTB entries saves
the space investment of duplicate partial tags.

The replacement policy executed within a PTB set first
looks for an invalid entry. If none found, it looks for an
entry with pattern history counter value zero (representing
strongly not taken behavior in recent past) for replacement.
The rationale behind this policy is that ideally the PTB entries
should be devoted to only taken block addresses capturing the
discontinuities seen in the recent past. If no entry with counter
value zero is found within the target PTB set, the static re-
reference interval prediction (SRRIP) policy is invoked to find
a victim [9]. The SRRIP policy needs only two replacement
state bits per PTB entry for storing the re-reference prediction
value (RRPV) while offering performance that is never worse
than the LRU policy, which requires more replacement state
bits per PTB entry for associativity exceeding four.

To generate a prediction, the PTB is indexed using the
XOR of the current block address in the instruction stream
and the block-grain global history. On a hit, the prediction
is taken if the PTB entry’s pattern history counter value is
at least 2 and in this case, the prefetch target is used for in-
jecting a prefetch; otherwise if the pattern history counter
value is less than 2 or there is a PTB miss, the prediction
is not taken and a prefetch is injected for the block that is
sequentially next to the current block. To look ahead along
the control flow path, a copy of the block-grain global history
is created (same as checkpointing the global history in branch
prediction parlance) and the copy is updated speculatively
using the predicted outcome. The XOR of the speculative
global history and the predicted block address is used to in-
dex into the PTB recursively for generating further prefetch
candidates. The process stops when a pre-defined lookahead
L is reached. Thus each non-speculative block address in
the instruction stream generates L prefetches. The specula-
tive global history is discarded once L prefetches have been
generated. The PTB is never updated speculatively. Our
implementation uses L = 11.

We implement a 28K-entry PTB organized into 2K 14-way
sets. Each entry is 36-bit wide. The total size of the PTB is
126 KB. The total size of the dictionary is 32×50 bits or 200
bytes.

3.3 PTB Update and Prefetch Algorithm
The championship infrastructure offers two possible loca-

tions in the instruction processing pipeline where the PTB
can be updated and looked up for triggering prefetches. One
possibility is at the time a demand access looks up the L1
instruction cache. This point in the pipeline offers complete
visibility into the demand access stream and one can easily
discover the taken and not taken block addresses in the de-
mand stream. Another possibility is right after the branch
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predictor is looked up. This is before the L1 instruction cache
is looked up. This point exposes only the branch instructions
and their predicted outcomes. Although this point exposes
a filtered instruction stream containing only the branch in-
structions, this is enough to correctly update the PTB because
the left out instruction blocks are part of a basic block and
necessarily not taken. Therefore, these blocks are not needed
for updating the PTB. We can also maintain a condensed
block-grain global history at this point. One advantage of trig-
gering prefetches at the branch prediction point is that when
the branch is predicted taken and the prediction is correct,
the predicted target immediately offers one step of correct
prefetch lookahead. Given the average 99% accuracy of the
hashed perceptron branch predictor used in the front-end, we
always update the PTB with the predicted target whenever
a branch is predicted taken and in these cases, we always
trigger a prefetch for the predicted taken target block. Our
design updates the PTB and the block-grain global history at
the branch prediction point and also triggers prefetches at this
point. Our evaluation will show that this is a slightly superior
choice compared to triggering prefetches at the time of cache
lookup.

We explain our PTB update and prefetching algorithms
using two examples depicting two possible cases in the branch
instruction stream. Let us consider a branch instruction b1
belonging to cache block B1. Following b1 in the dynamic
instruction stream, b2 is the earliest branch instruction that
does not belong to B1 but belongs to, say, cache block B2. In
the first case, we will consider b1 to have been predicted taken
with the predicted target belonging to cache block BT . In the
second case, we will consider b1 to have been predicted not
taken. In both cases, the last seen code block will be denoted
by B0.

In the first case, when the branch b1 is encountered, if B1
is not equal to B0, but equal to B0 + 1, then B0 is resolved
as not taken and the PTB is updated accordingly. On the
other hand, if B1 is equal to neither B0 nor B0 + 1, then B0
is resolved as taken with target B1 and the PTB is updated
accordingly. This is the first update of the PTB when the
branch b1 is encountered. Next, if BT is not equal to B1, but
equal to B1 +1, then B1 is resolved as not taken and the PTB
is updated accordingly. On the other hand, if BT is equal
to neither B1 nor B1 + 1, then B1 is resolved as taken with
target BT and the PTB is updated accordingly. This is the
second update of the PTB. Two PTB updates are needed for
the predicted taken branches. At this time, B0 is assigned
the value BT . When the branch b2 is encountered, since B0
has a predicted taken target, it is assumed that B0 and B2 are
parts of the same basic block and therefore, B0 is resolved as
not taken and the PTB is updated accordingly. All along, the
block-grain global history is also updated according to the
taken/not-taken outcomes.

The PTB update algorithm in the second case (when b1 is
predicted not taken) is same as the first PTB update in the first
case. The second update is not needed in this case. When the
branch b2 is encountered, since B0 does not have a predicted
taken target, the PTB update is similar to the first PTB update
when the branch b1 is encountered i.e., the update is decided
by comparing B2 with B0 and B0 +1.

In the first case (when b1 is predicted taken with target

block BT ), the following prefetches would be injected when
the branch b1 is encountered: one for block B1, one for block
BT , and L (lookahead parameter) prefetches following BT by
recursively looking up the PTB. In the second case (when
b1 is predicted not taken), the following prefetches would be
injected when the branch b1 is encountered: one for block B1,
and L prefetches following B1. Therefore, depending on the
predicted outcome of a branch, L+1 or L+2 prefetches are
generated for every encountered branch instruction.

For completeness, we present our PTB update and prefetch
algorithm in Algorithm 1. The current_block variable rep-
resents the code block containing the current branch instruc-
tion (B1 or B2 in the example above). The last_block variable
represents the last code block seen by this algorithm (B0 in
the example above). The current_target variable is non-
zero and holds the predicted branch target if the current
branch is predicted taken; otherwise this variable is zero.
The last_target_valid variable is true if the last seen branch
was predicted taken. The U pdatePT B function takes four
arguments, namely the block-grain global history (ghist), the
block address to be used for indexing (along with ghist) and
tagging, the target block address (marked don’t care if not
taken), and taken (T)/not-taken (NT). The algorithm assumes
that whenever a branch is predicted taken, the prediction is
correct, as has been made clear in the example above. This is
mostly true given the 99% accuracy of the branch predictor.
This is why the PTB and ghist are updated based on the pre-
dicted taken target whenever a branch is predicted taken. The
LookupPT B function takes the global history and a block ad-
dress to look up the PTB and returns hit/miss, prefetch target,
and the pattern history counter value of the looked up PTB en-
try. The last two outputs are relevant only in the case of a PTB
hit. The pre f etch function injects a prefetch for the block
containing the address passed as the argument to the function.
The lookahead_pre f etch function (Algorithm 2) generates a
sequence of L prefetches by recursively looking up the PTB
and updating the speculative global history (spec_ghist).

3.4 Recent Access Filter
Ideally, every prefetch request should be accurate and

should generate a new miss from the L1 cache. Unfortu-
nately, it is not easy to figure out which prefetches will hit in
the L1 cache without looking up the cache. We approximately
answer this question by maintaining a small fully-associative
Recent Access buffer for keeping track of the recently seen
block addresses in the demand access stream and the recently
inserted prefetches. A newly generated prefetch request looks
up this buffer and in the case of a hit, the prefetch is dropped.
In our implementation, the Recent Access filter has fifteen
entries, exercises FIFO insertion, and is organized as a circu-
lar FIFO buffer. Each entry stores a 58-bit block address and
a valid bit. The total size of the filter is 889 bits including the
four-bit write pointer.

3.5 Storage Overhead
The total storage overhead of our design is computed by

adding the sizes of the PTB, the dictionary, the Recent Access
filter, and auxiliary counters and registers. This total comes
to 126.3 KB.
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Algorithm 1 PTB update and prefetch algorithm
1: if last_block 6= current_block then
2: if last_target_valid then
3: U pdatePT B(ghist, last_block,X ,NT )
4: ghist← ghist << 1
5: else
6: if current_block == last_block+1 then
7: U pdatePT B(ghist, last_block,X ,NT )
8: ghist← ghist << 1
9: else

10: U pdatePT B(ghist, last_block,
11: current_block,T )
12: ghist← (ghist << 1)|1
13: if current_target 6= 0 then
14: if current_target_block == current_block+1 then
15: U pdatePT B(ghist,current_block,X ,NT )
16: ghist← ghist << 1
17: else
18: U pdatePT B(ghist,current_block,
19: current_target_block,T )
20: ghist← (ghist << 1)|1
21: pre f etch(current_target)
22: ip_block← current_target_block
23: spec_ghist← ghist
24: lookahead_pre f etch(ip_block,spec_ghist)
25: if last_block 6= current_block then
26: pre f etch(current_block << log(blocksize))
27: if current_target == 0 then
28: ip_block← current_block
29: spec_ghist← ghist
30: lookahead_pre f etch(ip_block,spec_ghist)
31: if current_target 6= 0 then
32: last_block← current_target_block
33: last_target_valid← true
34: else
35: last_block← current_block
36: last_target_valid← f alse

Algorithm 2 Lookahead prefetching algorithm
1: procedure lookahead_pre f etch(ip_block,spec_ghist)
2: lookahead← 0
3: while lookahead < L do
4: PT Bhit← LookupPT B(spec_ghist, ip_block,
5: &p f target_block,&count)
6: if PT Bhit == 0 OR count < 2 then
7: p f target_block← ip_block+1
8: spec_ghist← spec_ghist << 1
9: else

10: spec_ghist← (spec_ghist << 1)|1
11: ip_block← p f target_block
12: pre f etch(p f target_block << log(blocksize))
13: lookahead← lookahead +1

4. SIMULATION RESULTS
We evaluate our proposal on the ChampSim IPC1 infras-

tructure configured for single-core evaluation. The infras-
tructure uses a 32 KB 8-way L1 instruction cache, a 48 KB
12-way L1 data cache, a 512 KB 8-way L2 cache, and a 2 MB
16-way L3 cache. We use the hashed perceptron branch pre-
dictor and LRU replacement policy in the L3 cache. The
L3 cache has no prefetcher. The L1 instruction cache has no
prefetcher in the baseline, while the L1 data cache uses a next-
line prefetcher, and the unified L2 cache uses the signature
path prefetcher (SPP) [13]. We use 50 single-thread traces
captured from client, server, and the SPEC CPU applications.
These traces have baseline L1 instruction cache misses per
kilo instructions (MPKI) ranging from 4.4 to 81.7 averaging
at 35.7.

4.1 Performance Evaluation
Figure 1 shows the speedup achieved by our PTB-based

L1 instruction cache prefetcher for each of the fifty traces.
Since this prefetcher injects prefetches at the time of branch
prediction, we denote it by PTBbr. For comparison, we
also evaluate the ideal oracle prefetcher which marks every
L1 instruction cache miss as processed immediately after
a miss is detected so that to the instruction fetcher every
access seems to enjoy a hit. However, the miss request is
sent out to the outer levels of the cache hierarchy thereby
modeling the bandwidth and cache capacity consumption of
the ideal prefetcher which prefetches with zero overfetch and
100% accuracy and coverage. As the figure shows, across the
board, PTBbr performs close to the oracle. Only a handful of
traces show a noticeable speedup gap between the two. The
speedup of PTBbr ranges from 3.2% to 91.3% averaging at
27.6% (GMEAN bar in the bottom panel). On average, the
ideal prefetcher achieves a speedup of 30.6%. On one trace of
gcc (gcc_3), PTBbr performs better than the ideal prefetcher.
We find that this is because with PTBbr, this trace enjoys
6% less LLC miss count compared to the oracle prefetcher
leading to lower DRAM congestion in PTBbr. This result
points to the fact that it is possible for a prefetcher to optimize
other aspects of the cache and memory hierarchy beyond just
prefetching ideally in terms of accuracy and coverage. PTBbr,
by accident, ends up lowering the DRAM congestion for one
trace. However, it is possible to systematically incorporate
DRAM bandwidth optimization in the prefetcher.

Figure 2 compares the speedup averaged across the fifty
traces for a number of different designs. We discuss each in
the following.
Next2L: The next-2-line prefetcher injects prefetches for
two sequential blocks following the current code block. We
implement a slightly optimized version of it. After the branch
prediction completes, this prefetcher injects a prefetch for
the block containing the current branch and if the branch is
predicted taken, it injects a prefetch for the block containing
the predicted target. In addition, if the branch is predicted
taken, it injects prefetches for the next two blocks following
the block containing the predicted target; if the branch is
predicted not taken, it injects prefetches for the next two
blocks following the block containing the current branch
instruction. The Next2L prefetcher improves performance by
12.5% averaged across fifty traces.
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Figure 1: Speedup of fifty traces.
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Figure 2: Comparison of average speedup.

RDIP: The return-directed instruction prefetcher (discussed
in Section 2) is tuned for the best possible performance within
128 KB storage budget. It is configured to have a 14K-entry
region table (1K 14-way sets), which is indexed using the
least significant ten bits of XOR of the top four entries in
the return address stack (RAS). The next twelve bits of the
XOR are used as the tag. Apart from the tag, valid bit, and
replacement states, each region table entry contains two re-
gion vectors each of size eight bits representing the first two
eight-block regions associated with the XOR signature. Each
vector is associated to a region address stored in the com-
pressed format using our dictionary. The best lookahead
for this prefetcher is found to be four. The prefetcher em-
ploys our recent access filter. RDIP improves performance by
18.8% averaged across fifty traces. The primary impediment
to performance improvement for RDIP is its limited looka-
head. The RAS signature-based region prediction accuracy
drops quickly with increasing lookahead.
PIF: The proactive instruction prefetching technique (dis-
cussed in Section 2) is tuned for the best possible perfor-
mance within 128 KB storage budget. It is configured to have
a 28K-entry history buffer and an 8K-entry index table (512
16-way sets). Each history buffer entry stores a compressed
region address using our dictionary and a bitvector of length
eight recording the cache blocks accessed within the eight-
block region. Apart from the valid bit and replacement states,
each index table entry stores a 13-bit partial tag derived from
region address and a 15-bit history buffer pointer. The best
lookahead (and degree) for this prefetcher is found to be
twelve history buffer entries. The prefetcher employs our
recent access filter. PIF improves performance by 21.4% av-
eraged across fifty traces. While prefetching the regions from
the history buffer, PIF injects a large volume of unnecessary

prefetches because the exact set of blocks in a region does
not always repeat.
PIF+ghist: The index table in PIF is looked up using a region
address. We design PIF+ghist which looks up the index table
using the XOR of the block-grain global history (maintained
using our concept of taken/not-taken block addresses) and
region address. PIF+ghist improves performance by 24.5%
averaged across fifty traces. Combining block-grain global
history with region address for looking up the index table
offers a sizable improvement in performance over PIF.
160KBL1i: In this design, the entire 128 KB storage budget
is invested to design a 160 KB L1 instruction cache (256
10-way sets). The L1 instruction cache has no prefetcher. We
also keep the cache access latency unchanged. This design
improves performance by 15.3% averaged across fifty traces
indicating that a 160 KB L1 instruction cache can bridge only
half the performance gap between the baseline 32 KB L1
instruction cache and the ideal oracle prefetcher.
160KBL1i+Next2L: The 160 KB L1 instruction cache is
augmented with the Next2L prefetcher. This design improves
performance by 19.3% averaged across fifty traces.
PTBcl: In this design, our proposed PTB is updated and
looked up for injecting prefetches at the time of L1 instruc-
tion cache lookup. PTBcl improves performance by 27.3%
averaged across fifty traces.
PTBbr: In this design, our proposed PTB is updated and
looked up for injecting prefetches at the time of branch pre-
diction. PTBbr improves performance by 27.6% averaged
across fifty traces. The reason for the performance gap be-
tween PTBcl and PTBbr was discussed in Section 3.3.

Figure 3 shows, for different designs, the L1 instruction
cache miss count averaged over the fifty traces and normal-
ized to the baseline. For each design, the misses are catego-
rized into demand and prefetch misses. On top of each bar,
we show the percentage of prefetch misses that ultimately
turn out to be useful i.e., the prefetched block is consumed by
a demand access before getting evicted. This percentage is an
indication of prefetch accuracy and timeliness. We find that
PIF+ghist, PTBcl, and PTBbr have the lowest volume of de-
mand misses indicating best prefetch coverage among the de-
signs. They eliminate respectively 84.5%, 85.1%, and 83.7%
demand misses relative to the baseline. However, PIF+ghist
injects a lot more prefetches than PTBcl and PTBbr to achieve
the nearly same coverage. While PIF+ghist sees an 84.8%
overfetch, PTBcl and PTBbr overfetch by 33.8% and 43.6%
respectively. Additionally, the prefetch accuracy of PIF+ghist
is only 63%, while PTBcl and PTBbr achieve an accuracy
of 81% and 77% respectively. Overall, PIF+ghist, despite
having similar prefetch coverage as PTBcl and PTBbr, falls
short in terms of performance due to high overfetch leading to
lower prefetch accuracy and higher congestion in the memory
hierarchy. Nonetheless, PIF+ghist is successful in lowering
the overfetch and increasing the prefetch accuracy signifi-
cantly compared to PIF. Notably, RDIP sees zero overfetch
and nearly perfect (96%) prefetch accuracy. However, it falls
short in terms of coverage and this shortcoming arises from
its low lookahead. Among PTBcl and PTBbr, the former
has better coverage, better accuracy, and lower overfetch (the
differences are small though), yet the latter offers better over-
all performance. This is primarily due to an overall lower
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average demand miss latency of PTBbr arising from early
injection of prefetches to the blocks containing the predicted
taken branch targets.
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Figure 3: Normalized L1 instruction cache miss count.

Figure 4 shows the L1 instruction cache hit rates for dif-
ferent designs. PIF+ghist, PTBcl, and PTBbr achieve the
highest hit rates. Compared to the 81.3% hit rate of the base-
line, these three designs achieve hit rates of 98.3%, 98.0%,
and 97.7% respectively.
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Figure 4: L1 instruction cache hit rate.

4.2 Analysis of the Prefetches
In this section, we further analyze the prefetches injected

by the PTBbr design. As discussed in Algorithms 1, the
PTBbr design first injects one or two prefetches depending
on whether the current branch is predicted not taken or pre-
dicted taken, and then, as shown in Algorithm 2, it injects L
prefetches that we will refer to as the lookahead prefetches.
We configure our design to have L = 11. We will refer to the
initial prefetches injected by Algorithms 1 as depth-zero (d0)
prefetches. The subsequent L prefetches injected by Algo-
rithm 2 will have monotonically increasing depth and will
be referred to as d1 to d11 prefetches. Figure 5 shows the
distribution of injected prefetches across different lookahead
depths.
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Figure 5: Lookahead depth-wise prefetch distribution.

The d11 prefetches contribute 45% of all prefetches, while
d10 prefetches contribute 11%. The contribution of each of
d0 to d9 prefetches hovers between 2% and 7%. The reason
for this skewed distribution is that the d0 to d10 prefetches
injected by the current branch instruction would match the d1
to d11 prefetches injected by the previous branch instruction
under an ideal scenario where our PTB offers 100% accurate
speculation regarding the blocks touched along the control

flow path. In such a situation, our recent access filter would
not inject the d0 to d10 prefetches generated by the current
branch instruction. Since the PTB-based speculation is not
100% accurate, we see occasional contributions from d0 to
d10 lookahead depths that are far below the contribution
of the frontline d11 prefetches which essentially push the
prefetch wavefront forward. These data confirm that the
prediction accuracy of the PTB is quite high and the small
recent access filter is quite effective in removing duplicate
prefetches. This analysis also brings out the lower bound
L on the size of the recent access filter. Our configuration
uses four extra entries in the filter to accommodate demand
accesses i.e., our recent access filter has L+4 entries.

An injected prefetch can meet four possible fates: (i) it
can hit in the L1 instruction cache, (ii) it can miss in the L1
instruction cache and prefetch the block before demanded,
(iii) it can miss in the L1 instruction cache and get demanded
before the prefetch completes, and (iv) it can find an already
outstanding demand miss to the block being prefetched. In the
following, we analyze the first two cases. In the next section,
we will analyze the remaining two cases. Figure 6 shows the
distribution of prefetch hits across prefetch depths. Given
that most prefetches come from d11 group, it is not surprising
that most prefetch hits are sourced by this group of prefetches.
The contributions of d0 to d10 are under 10%. It may seem
tempting to design a filter that can eliminate all prefetch hits
because prefetch hits apparently do not contribute anything to
the end-performance. However, we find that the replacement
state update done by a prefetch hit sometimes helps retain the
accessed block longer in the cache. This is important because
a prefetch, if accurate, indicates an imminent demand access
to the same block. In fact, disabling replacement state update
of all prefetch hits leads to a small drop in average speedup
from 27.6% to 27.4% in PTBbr.
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Figure 6: Lookahead depth-wise prefetch hit distribu-
tion.

Figure 7 shows the distribution of L1 instruction cache
prefetch misses across lookahead depths. For each looka-
head depth, we show its contribution toward prefetch misses
divided into two categories, namely useful prefetch misses
and useless prefetch misses. Overall, 77% prefetch misses
are useful and 23% are useless. Most of the useful prefetch
misses (60% of total 77%) are contributed by d10 and d11.
Unfortunately, most of the useless prefetch misses are also
contributed by d10 and d11 (16% of total 23%). As a result,
a prefetch depth-based filtering for useless prefetches won’t
work. The prefetch depths d0 to d9 contribute very little
(each under 2%) to useful prefetches. It may be tempting to
conclude that some of these prefetch depths may be elimi-
nated altogether. To quantify the relative importance of each
prefetch depth, we evaluate PTBbr by gradually disabling
prefetch injection from depths starting from d0. For exam-
ple, PTBbr evaluated with d6-d11 prefetch depths injects
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prefetches only for depths d6 to d11 and does not inject any
prefetch for depths d0 to d5. Figure 8 shows these speedup
numbers. These data show that the speedup gradually de-
clines as prefetch injection from a bigger block of prefetch
depths is disabled indicating that each prefetch depth con-
tributes positively to the end-performance. A filter for useless
prefetches would need to be more selective even within each
prefetch depth.
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Figure 7: Lookahead depth-wise prefetch miss distribu-
tion.
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The useless prefetches create congestion throughout the
memory hierarchy and pollute the cache levels wherever they
are filled. This may further increase the number of misses
at a cache level because a useless prefetch may replace a
useful block prematurely. Figure 9 shows the number of
misses (demand and prefetch taken together) and the aver-
age miss latency at different cache levels normalized to the
baseline. Our proposal increases the miss count of the L1
instruction cache by 43.6%, but decreases the average miss
latency by 3.2%. The miss count of the L1 data cache remains
unaffected, as expected, while the average miss latency in-
creases by 3.9% due to the congestion created in the memory
hierarchy by the useless code prefetches. The miss counts of
the L2 cache and the LLC increase by 22.9% and 8.9% re-
spectively, while their average miss latency numbers increase
by 6.9% and 7.2% respectively. Overall, even though PTBbr
increases the total demand plus prefetch miss counts at the
L1 instruction cache and the L2 cache quite significantly, the
increase in the average miss latency is under 8% at all cache
levels. Our performance results show that this increase in
the average miss latency at the L1 data cache, L2 cache, and
LLC is more than compensated by a reasonably large drop in
the L1 instruction cache demand miss count coupled with a
small drop in the average L1 instruction cache miss latency.
This latency drop is explained in the next section.

4.3 Analysis of the Demand Misses
As already discussed, the PTBbr prefetcher is able to con-

vert 83.7% demand misses into hits for the L1 instruction
cache. In this section, we characterize the residual 16.3%

Figure 9: Normalized miss count and miss latency at dif-
ferent levels of cache hierarchy.

demand misses. A demand miss can belong to two cate-
gories: (i) a demand access that misses in the cache, and (ii)
a demand access that finds an already outstanding prefetch
miss to the same block. The demand misses in the second
category are sometimes referred to as partial hits because in
these cases a fraction of the miss latency gets hidden due to
an already initiated prefetch. The demand misses in the first
category have an important subcategory as far as prefetches
are concerned: (i-a) a demand miss that receives a prefetch
to the same block while it is outstanding. These prefetches
are quite late and are dropped because they are of no use, but
it is helpful to understand how many such cases arise.

Figure 10 characterizes the demand misses in categories
(i-a) and (ii) for the PTBbr prefetcher. Depending on the
depth of the prefetch that merges with the demand miss, the
two categories are further divided into the prefetch depth
bins. Overall, 82% of the demand misses belong to cate-
gory (ii) i.e., partial hits (the left bar in each group) and only
7% belong to category (i-a). Therefore, 89% of the demand
misses have corresponding late prefetches indicating fairly
high “partial coverage” and accuracy of the prefetcher. Only
11% of the demand misses (which is 11% of 16.3% i.e., 2% of
baseline demand misses) cannot be covered by the prefetcher.
The biggest contributor to the partial hits are the prefetches
from depth d1 (contributes 20% out of 82% i.e., nearly one-
quarter), while depths d0, d2, and d11 each contributes more
than 10%. These data confirm that most partial hits arise
from prefetches with low lookahead depths (depths d0 to
d4 together contribute 57% out of 82%) and this is an ex-
pected behavior because the late prefetches are most likely to
come from low lookahead depths. The category (i-a) demand
misses also primarily arise from prefetch depths d0 to d4,
but these are much smaller in volume, which is encouraging
because we do not want to have such late prefetches in big
numbers.

An important parameter that characterizes the partial hits
is the fraction of the average miss latency that gets hidden in
these cases. We find that 43% of the miss latency gets hidden
in the partial hit cases meaning that only 57% of the miss
latency of the prefetch gets exposed on the critical path of
the demand miss that merges with the outstanding prefetch.
This large saving in the average miss latency of 82% of the
demand misses leads to an overall drop in the average L1
instruction cache miss latency as was pointed out in Figure 9
of the last section. In summary, the data in Figure 10 indicate
that one possible way to further improve performance is by
improving the timeliness of the prefetches injected by the
lower lookahead depths. Additionally, the prefetch coverage
needs to be improved to capture all residual demand misses.
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Figure 10: Characterizing demand misses that merge
with prefetches.

4.4 Bridging the Residual Performance Gap
The PTBbr prefetcher leaves a speedup gap of about 3%

from the ideal oracle prefetcher when measured relative to
the baseline. In this section, we attempt to understand any ob-
vious bottlenecks that could be addressed for narrowing this
gap. Figure 11 explores the performance of various idealized
configurations. The leftmost two bars present the speedup
of our PTBbr proposal and the ideal oracle prefetcher. The
third bar from the left shows that if all residual L1 instruc-
tion cache demand misses in PTBbr are marked processed
immediately after the miss is detected while letting the cache
miss fill request proceed as usual, the achievable speedup
is 29.8%. This speedup is slightly lower than the original
30.6% of the ideal oracle prefetcher due to the additional
congestion/pollution created by the PTBbr prefetcher in the
memory hierarchy. The fourth bar shows that if the demand
misses resulting in partial hits (i.e., a prefetch miss is al-
ready outstanding) are marked processed immediately after
they merge with the outstanding prefetch (phit-oracle), the
achievable speedup is only 28.3%. Therefore, just improving
the timeliness of the partial hits would not be enough even
though these partial hits account for 82% of the residual L1
instruction cache demand misses in PTBbr. Improving these
partial hits has low return because 43% of the average latency
of these misses is already saved. The remaining 18% of the
residual demand misses need to be covered with prefetches.

P
TB

br

Id
ea

l

  o
ra

cl
e

P
TB

br
+

   
  o

ra
cl
e

P
TB

br
+

ph
it-
or

ac
le

   
P
TB

br
+

Id
ea

lB
P
in
pu

t

   
 P

TB
br

+

  M
S
H
R
10

24

   
   
P
TB

br
+

  U
Ls

ch
ed

B
W

   
   
  P

TB
br

+

  U
Ls

ch
ed

B
W

+

   
  M

S
H
R
10

24

1.26
1.27
1.28
1.29

1.3
1.31

S
p

e
e

d
u

p

Figure 11: Performance speedup for different idealized
configurations.

PTBbr relies on the accuracy of the hashed perceptron
branch predictor in the predicted taken cases because in these
cases, the starting point of the chain of L lookahead prefetches
is the predicted taken branch target. The PTBbr+IdealBPinput
bar examines the achievable speedup if always correct branch
predictions are offered to PTBbr. In this case, the speedup
increases to only 28%. The speedup improvement compared
to 27.6% of PTBbr is rather small due to already high (99%
on average) prediction accuracy of the hashed perceptron
branch predictor.

The PTBbr+MSHR1024 bar shows that the speedup does

not improve at all even if the number of L1 instruction cache
MSHRs is made 1024 indicating that MSHR is not a bottle-
neck. The PTBbr+ULschedBW evaluates the speedup when
the prefetch scheduling bandwidth at the L1 instruction cache
is made unlimited meaning that all pending prefetches in the
prefetch queue can be issued in the same cycle. In this case
also, the speedup does not improve indicating that prefetch
scheduling bandwidth is not a bottleneck. The rightmost bar
offers 1024 MSHRs to PTBbr+ULschedBW, but still cannot
improve the speedup. Overall, the timeliness of the prefetches
cannot be improved by equipping the front-end with more
MSHR or prefetch scheduling resources.

In summary, discovering new correlations to improve the
accuracy and coverage of the PTBbr prefetcher seems to hold
the key to bridging the residual performance gap between
PTBbr and the oracle. One possible approach in this direction
could be to synthesize the code prefetcher from more sophis-
ticated direction and target prediction mechanisms that the
branch predictors have employed. Examples include hashed
perceptron and TAGE predictor for predicting the direction
and ITTAGE and bit-level perceptron prediction for predict-
ing the target [7].

Before closing this discussion, we examine the efficiency
of content management of the PTB. On average, only 17%
of the allocated PTB entries are not used before getting
evicted. Therefore, we do not expect a significant advan-
tage to come from optimization of the PTB management
algorithms. Nonetheless, to verify this hypothesis, Figure 12
evaluates the performance of PTBbr as the number of PTB
entries is increased up to 8M. The achievable speedup satu-
rates at around 28.3%. This presents a small potential benefit
on top of the PTBbr speedup of 27.6% exercising a 28K-entry
PTB.
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Figure 12: Speedup variation in PTBbr with increasing
PTB entries.

5. PTB MICROARCHITECTURE
As discussed in Section 3.3, one branch instruction may

trigger up to two PTB writes and L+2 PTB reads. Since the
two writes are completely independent, they can be issued
in parallel provided the PTB has two write ports. However,
two writes are needed only for the predicted taken branches.
So, provisioning the PTB with two write ports would be a
wastage of resources and that would also slow down the PTB.
We design the PTB as an eight-way banked structure where
the PTB sets are distributed across the banks round-robin
i.e., the lower three bits of the PTB index constitute the bank
number. Each PTB bank is provisioned with a single write
port. As a result, if two writes go to two different banks, they
can be done in parallel. However, there remains a possibility
of bank conflict between the writes. To buffer such conflicted
writes, each PTB bank maintains a four-entry circular FIFO
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write buffer. Each buffer entry contains enough information
to complete the write at a later time (PTB index within the
bank, PTB tag, prefetch target, taken/not taken, valid bit).
Each write buffer also has a write pointer and a read pointer
to respectively enqueue and dequeue entries. The total size of
the write buffer including the read/write pointers aggregated
over eight PTB banks is 324 bytes. Each cycle the write at the
head of each PTB bank’s write buffer is scheduled provided
the buffer is not empty.

Among the PTB reads needed for injecting prefetches, the
last L− 1 reads generated by the lookahead_pre f etch pro-
cedure (Algorithm 2) form an inherently sequential chain
because each read in this chain depends on the speculative
global history and the prefetch target updated based on the
previous read’s outcome. This can lead to a drastic drop in the
prefetch injection rate. To maintain high prefetch injection
rate, we observe that the chains of PTB reads generated by
two different branch instructions are completely independent.
Therefore, if we consider N different branch instructions,
we can execute N PTB reads in parallel and inject as many
prefetches provided the PTB has enough read ports. To im-
plement this idea, we maintain N read scheduling queues.
Each queue is implemented as a circular FIFO buffer. Each
entry of a queue is populated by a new source/trigger instruc-
tion (either a branch instruction or a predicted taken target) of
a prefetch and the entry holds the spec_ghist, ip_block, and
lookahead values from Algorithm 2. Each queue maintains
write and read pointers for enqueuing and dequeuing purpose.
Consecutive source/trigger instructions populate the tail en-
tries pointed to by the write pointers of consecutive queues
in a round-robin fashion with the help of a queue pointer so
that the population across the queues remains balanced.

Every cycle the head entry of each read scheduling queue
is picked up and one iteration of the while loop from Algo-
rithm 2 is executed for that entry subject to availability of PTB
read ports. After execution, the entry’s spec_ghist, ip_block,
and lookahead values are updated as is done in each iteration
of the while loop in Algorithm 2. If the lookahead value of
the head entry of a queue has reached L, the read pointer of
that queue is advanced. We find that the best performance is
obtained when N, the number of queues, matches L so that a
peak prefetch injection rate of L per cycle is maintained. We
provision each PTB bank with four read ports. For L = 11 (as
per our configuration), ideally 11 read ports would be needed
in the PTB. However, to avoid port conflicts in a bank, the
banks are over-provisioned with read ports. The PTB organi-
zation is shown in Figure 13. Each of the 11 circular FIFO
queues is sized so that the overall storage overhead remains
within 128 KB, the budget provisioned by the championship.
Each queue has 13 entries and the total storage needed for
these queues including the read, write, and queue pointers
is 1.29 KB. Taken together, the overhead of the per-bank
write buffers, the read scheduling FIFO queues, the PTB port
occupancy bitmaps, and per-cycle prefetch injection states
is 1.61 KB. The previously computed total overhead was
126.3 KB. Thus, the total overhead after including the PTB
microarchitecture details is 127.91 KB.

We measure the access latency of one PTB bank (256 14-
way sets) having four read ports and one write port using
CACTI [8]. To make the analysis amenable to CACTI, we
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Figure 13: PTB microarchitecture. RQ and WQ are re-
spectively read scheduling and write queues. RP and WP
are respectively read and write pointers. Within a PTB
bank, the write port is denoted by W and the read ports
are denoted by R.

slightly oversize each PTB bank to have 256 sets, 16 ways,
4-byte blocks, and 17-bit tags. For 22 nm technology, CACTI
reports an access latency of 0.45 ns meeting the cycle time
of a 2 GHz clock. The per-bank area reported by CACTI
is 0.18 mm2. For a front-end with higher than 2 GHz fre-
quency, the PTB access needs to be pipelined to avoid losing
performance. This implementation offers an average speedup
of 27.3% over the baseline. This is close to the speedup of
27.6% achieved by the unconstrained design evaluated in the
last section.

6. SUMMARY
We have presented the design of an L1 instruction cache

prefetcher that directly inherits its operations and storage
structures from well-known control speculation hardware.
This is made possible by posing the code prefetching prob-
lem as a control flow speculation problem at the grain of
cache blocks. The proposed prefetcher sports a branch tar-
get buffer-like structure referred to as the prefetch target
buffer. Each prefetch target buffer entry also embeds a pat-
tern history counter derived from a partially tagged gshare
predictor. Compared to a baseline that has no L1 instruc-
tion cache prefetcher, the proposed prefetcher achieves a
speedup of 27.6% averaged over fifty dynamic instruction
traces collected from client, server, and SPEC CPU applica-
tions. A more realistic implementation that takes into account
port constraints of the prefetch target buffer and latency con-
straints of prefetch injection achieves an average speedup of
27.3%. This performance comes close to the ideal oracle
prefetcher which speeds up execution by 30.6% on average
while offering 100% L1 instruction cache hit rate.1

1 Source codes available at
https://www.cse.iitk.ac.in/users/mainakc/code_prefetchers.html.
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