
Parallel Computing

Kamlesh Tiwari

1 Introduction Parallel Comput-
ing

Evaluation of the computer architecture have undergone
following stages.

Sequential machines

Pipelined machines

Vector machines

Parallel machines

1.1 Pipelining

Instruction execution have following stages.

⇒ [Instruction fetch]
↪→ [instruction decode]

↪→ [argument decode]
↪→ [argument fetch]

↪→ [execution]
↪→ [result storage]

This can be made faster either by pushing technology, or
by efficient use of hardware.

A pipeline is the continuous and somewhat overlapped
movement of instruction to the processor or in the arith-
metic steps taken by the processor to perform an instruc-
tion. It is an efficient hardware utilization to increase
throughput.

1.1.1 Example

Consider a 5 stage pipeline of a RISC processor.

IF instruction fetch IR1 = mem[PC2];
NPC3 = PC + 4

ID instruction decode/Operand fetch A = Regs[IR6..10];
B = Regs[IR11..15];
Immediate = [IR16..31];

EX execution stage

� Memory reference
ALUoutput = A + Imm

� Register-Register ALU operation
ALUoutput = A op B

1Instruction register
2program counter
3Next program counter

� Register-Immediate ALU operation
ALUoutput = A op Imm

� Branch
ALUoutput = NPC + Imm
Cond = (A op 0)

MEM memory access

� Memory reference
MDR = Mem[ALUoutput] or,
Mem[ALUoutput] = B

� Branch
if (Cond) PC = ALUoutput
else PC = NPC

WB write-back stage

� Reg-Reg ALU instruction
Regs[IR16..20] = ALUoutput

� Reg-Imm ALU operation
Regs[IR11..15] = ALUoutput

� Load instruction
Regs[IR11..15] = MDR

Instruction flow:

Clock number
Inst No. 1 2 3 4 5 6 7 8 9
Inst 1. IFIDEXMEM WB
Inst 2. IF ID EX MEM WB
Inst 3. IF ID EX MEM WB
Inst 4. IF ID EX MEM WB
Inst 5. IF ID EX MEMWB

Question: Assume a non-pipelined version of the proces-
sor with 10ns clock. Four cycles for non-memory (ALU
and branch ops) Five cycles for memory ops. 40% instruc-
tions are memory ops. pipelining the machine needs 1ns
extra on clock. What is speedup?

Answer: Average time for the execution of an instruction
on non pipelined processor. (0.4×5+0.6×4)×10ns = 44ns

Pipelined version will execute every instruction in one
clock cycle. Since in pipelined version there is an over
head of 1ns therefore time to execute one instruction will
be of 10ns+ 1ns = 11ns.

Hence the speedup is 44ns/11ns = 4

1.1.2 Pipeline Hazards

There can be basically three type of hazards.

1

1.2 Advanced Techniques 1 INTRODUCTION PARALLEL COMPUTING

1. Structural hazards arises due to resource conflict.
When two different instructions in the pipeline want
to use same hardware this kind of hazards arises, the
only solution is to introduce bubble/stall.

Question: Ideal CPI4 1.0 for machine without struc-
tural hazard. 40% instructions causing structural haz-
ards, clock rate of machine with structural hazards
1.05 time faster. compare the performance.

Answer: Out of 100 instructions 60 will be normal
taking 1 CPI, rest 40 instructions will take one extra
CPI due to structural hazards. Therefore for 100 in-
structions total CPI consumed is 60×1+40×(1+1) =
140. On an average one instruction will take 1.4 CPI.

Since the clock pulse is 1.05 times faster, therefore the
time taken by a single instruction is 1.4/1.05 = 1.33
CPI. Conclusion: if machine takes t sec to execute
an instruction in pipeline without structural hazards,
then it will take 1.33t sec with structural hazards.

2. Data hazards arises due to instruction dependence.
For example in following code
ADD R1, R2, R3 ;R1�R4+R3
SUB R4, R5, R1 ;R4�R5-R1
until the value of R1 becomes available the execution
of second instruction can not be carried out.

To minimize data hazards we can do internal forward-
ing, that is ALU output is fed back to the ALU input
(if the hardware detects that the previous ALU op
has modified the register corresponding to the source
of current ALU op, ALU output is forwarded).

Data hazards are classified as below. (in instruction
i and j instruction i occurs before j)

� RAW (Read After Write) j tries to read a
source before i writes it.

� WAW (Write After Write) j writes an operand
before i writes it.

� WAR (Write After Read) j writes an operand
before i reads it.

� RAR (Read After Read) NOT a hazard!!!

Not all but some data hazards can be avoided. The
general practice is to handle data hazards is to in-
troduce sufficient bubble by pipeline interlock (This is
done by a hardware).

Some time compiler handle the data hazards effi-
ciently; for example see following codes (which uses
rescheduling of instructions).

With data hazard Without data hazard
ADD R1, R2, R3 ADD R1, R2, R3
SUB R4, R5, R1 SUB R6, R2, R3
SUB R6, R2, R3 MUL R7, R5, R3
MUL R7, R5, R3 SUB R4, R5, R1

3. Control hazards arises due to branches5.

We can handle control hazards with compiler’s as-
sistance by static branch prediction, or by reducing
dependency stalls by instruction rescheduling.

4cycle per instruction
5Every fifth instruction is typically a branch in compiled program

1.2 Advanced Techniques

� Basic pipeline scheduling
To reduce stalls between instructions, instructions
should be fairly independent of each other.

Consider following loop
for (i = 1, i <= 1000; i+ +)X[i] = X[i] + S;

Which is compiles to

X: LD F0, 0(R1) ;F0 = M(0+R1)
ADD F4, F0, F2 ;F4 = F0 + F2
SD 0(R1), F4 ;M(0+R1) = F4
SUB R1, R1, 8 ;R1 = R1 + 8
BNEX R1, X

Due to stalls introduced the execution of the program
becomes as below

X: LD F0, 0(R1) ;F0 = M(0+R1)
Stall
ADD F4, F0, F2 ;F4 = F0 + F2
Stall
Stall
SD 0(R1), F4 ;M(0+R1) = F4
SUB R1, R1, 8 ;R1 = R1 + 8
BNEX R1, X
Stall

Which takes 9 cycles per iteration.

Compiler can reschedule loop as below.

X: LD F0, 0(R1) ;F0 = M(0+R1)
Stall
ADD F4, F0, F2 ;F4 = F0 + F2
SUB R1, R1, 8 ;R1 = R1 + 8
BNEX R1, X
SD 0(R1), F4 ;M(0+R1) = F4

Which will require only 6 cycles per iteration and
hence will save 33% of execution time.

� Loop unrolling
Loop unrolling reduces number of branches therefore
control stalls. It is a better pipeline scheduling which
reduces the overhead of loop control code as well.

Continuing with the previous example of for loop, its
unrolling is shown below.

X: LD F0, 0(R1)
ADD F4, F0, F2
SD 0(R1), F4
LD F6, -8(R1)
ADD F8, F6, F2
SD -8(R1), F4
LD F10, -16(R1)
ADD F12, F10, F2
SD -16(R1), F4
LD F14, -24(R1)
ADD F16, F14, F2
SD -24(R1), F4
SUB R1, R1, 32
BNEX R1, X

It will require 27 cycles per four iteration (due to
hazards).

2 of 18
o
κtiwari [at] cse.iitk.ac.in

1.4 Loop level parallelism 1 INTRODUCTION PARALLEL COMPUTING

But if compiler reschedules the instructions as below

X: LD F0, 0(R1)
LD F6, -8(R1)
LD F10, -16(R1)
LD F14, -24(R1)
ADD F4, F0, F2
ADD F8, F6, F2
ADD F12, F10, F2
ADD F16, F14, F2
SD 0(R1), F4
SD -8(R1), F4
SD -16(R1), F4
SUB R1, R1, 32
BNEX R1, X
SD -24(R1), F4

It will require only 14 cycles per four iteration, and
thereby saving 60% as compared to original loop.

� Dynamic scheduling

� Register renaming

� Branch prediction

� Multiple issue of instructions

� Dependence analysis at compilation

� Software pipeline

� Memory pipeline

1.3 Data Dependence

There can be following types of data dependence.

1. True dependence (or True Data Dependence)
See following example

SUB R1, R1, 8 ;R1 = R1 - 8
BNEZ R1, X

2. Name dependencies
Arises due to reuse of register/memory.

3. Anti-dependence
Instruction i executes first and reads a register which
instruction j writes later. WAR hazards.

4. Output dependence
Instruction i executes first and writes a register which
instruction j writes later. There must be serialization.
WAR hazards. WAW hazards.

5. Control dependence
Consider following instruction
if P1 {S1;}
instruction S1 is control dependent on P1.

1.4 Loop level parallelism

Consider following instructions

1. for(i = 0; i <= 1000; i+ +)A[i] = A[i] + s;
There is no dependence between two iterations.

2. Consider following instructions

for(i = 0; i <= 1000; i+ +)
{

A[i+ 1] = A[i] + C[i]; //S1
B[i+ 1] = B[i] +A[i+ 1]; //S2

}
S1 depends on S1 of previous iterations. S2 depends
on S2 on previous iterations and S1 of this iterations.

S1 can’t be parallised.

3. Consider following instructions

for(i = 0; i <= 1000; i+ +)
{

A[i] = A[i] +B[i]; //S1
B[i+ 1] = C[i] +D[i]; //S2

}
S1 depends on S1 of previous iterations. Can it be
parallised ?

4. Consider following instructions

A[1] = A[1] +B[1];
for(i = 0; i <= 1000; i+ +)
{

B[i+ 1] = C[i] +D[i]; //S1
A[i+ 1] = B[i+ 1] +A[i+ 1]; //S2

}
B[101] = C[100] +D[100];

?.................................

1.5 Dynamic scheduling

Pipeline forces to in-order instruction execution, which
sometimes introduces stall due to dependency between
two closely spaced instructions. This in-order instruction
execution is always not necessary. We can overcome data
hazards by dynamically scheduling instructions.

Consider following example.

DIV F0, F2, F4 ; F0 = F2/F4
ADD F10, F0, F8 ; F10 = F0 + F8
SUB F12, F8, F12

Due to dependence between DIV and ADD instruction we
can not execute SUB instruction. ADD instruction have
to wail until DIV is complete, as a consequence SUB also
have to wait. This limitation can be removed if in-order
execution can be relaxed as below.

DIV F0, F2, F4
SUB F12, F8, F12
ADD F10, F0, F8

� Dynamic scheduling allow out-of-order execution as
long as there is no dependence.

3 of 18
o
κtiwari [at] cse.iitk.ac.in

1.5 Dynamic scheduling 1 INTRODUCTION PARALLEL COMPUTING

� Issue instructions in-order

� Instruction begins execution as soon as their data
operands are available.

� Split ID pipeline stage into.

– Issue - Decode instruction and check for struc-
tural hazards.

– Read operands - wait until no data hazards,
then read operands.

1.5.1 Dynamic scheduling with Score-boarding

Score-boarding allows the out-of-order execution when
there are enough resources and no data dependence. Every
instruction goes through scoreboard. Scoreboard keeps
track of data dependence and decides when an instruction
can read operands and begin execution.

In case, instruction can’t begin execution immediately, it
monitors the changes in hardware and decides when an
instruction can begin execution. It also decides when an
instruction can write its results.

Steps of Execution:

� Issue:
Functional unit needed by instruction is free and no
other active instruction has same destination register.
Avoids WAW hazard.

� Read Operands:
A source operand is available if no earlier issued ac-
tive instruction is going to write it or if the register
containing the operand is being written by a currently
active functional unit. RAW hazards are resolved and
out-of-order execution may take place.

� Execution:
The functional unit begins execution and notifies
scoreboard on completion.

� Write result:
Scoreboard permits the writing only after it ensures
that no WAR hazard will take place. A completing
instruction cant be permitted to write the results if

– There is an instruction that has not read its
operands that precedes the completing instruc-
tion.

– One of the operands is the same register as the
result of the completing instruction.

Scoreboard doesnt take advantage of internal forwarding.
It has also to take care of number of buses available for
data transfer.

Structure of scoreboard:

1. Instruction status:

Indicates which one of the four steps the instruction
is in.

2. Functional unit status:

� Busy

� Operation to be performed

� Fi : Destination register.

� Fj , Fk : Source registers.

� Qj , Qk : Functional unit producing source reg-
isters Fj , Fk.

� Rj , Rk : Flags indicating when Fj , Fk are ready.
Set to No after operands are read.

3. Register result status:

Indicates which functional unit will write each reg-
ister if an active instruction has the register as its
destination.

Example-01 of scoreboard:

Instruction status
Issue Read Execution Write

Instruction operand complete result
LD F6,34(R2) X X X X
LD F2,45(R3) X X X
MULTD F0,F2,F4 X
SUBD F8,F6,F2 X
DIVD F10,F0,F6 X
ADDD F6,F8,F2

Functional unit status
Name Busy OP Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F2 F3 No
Mult1 Yes Mult F0 F2 F4 Integer No Yes
Mult2 No
Add Yes Sub F8 F6 F2 Integer Yes No
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status
F0 F2 F4 F6 F8 F10 F12 ... F30

FU Mult1 Integer Sub Divide

Example-02 of scoreboard:

Instruction status
Issue Read Execution Write

Instruction operand complete result
LD F6,34(R2) X X X X
LD F2,45(R3) X X X X
MULTD F0,F2,F4 X X X
SUBD F8,F6,F2 X X X X
DIVD F10,F0,F6 X
ADDD F6,F8,F2 X X X

4 of 18
o
κtiwari [at] cse.iitk.ac.in

1.5 Dynamic scheduling 1 INTRODUCTION PARALLEL COMPUTING

Functional unit status
Name Busy OP Fi Fj Fk Qj Qk Rj Rk
Integer No
Mult1 Yes Mult F0 F2 F4 No No
Mult2 No
Add Yes Add F6 F8 F2 No No
Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status
F0 F2 F4 F6 F8 F10 F12 ... F30

FU Mult1 Add Divide

Example-03 of scoreboard:

Instruction status
Issue Read Execution Write

Instruction operand complete result
LD F6,34(R2) X X X X
LD F2,45(R3) X X X X
MULTD F0,F2,F4 X X X X
SUBD F8,F6,F2 X X X X
DIVD F10,F0,F6 X X X
ADDD F6,F8,F2 X X X X

Functional unit status
Name Busy OP Fi Fj Fk Qj Qk Rj Rk
Integer No
Mult1 No
Mult2 No
Add No
Divide Yes Div F10 F0 F6 No No

Register result status
F0 F2 F4 F6 F8 F10 F12 ... F30

FU Divide

Limitations of scoreboard:

1. Amount of parallelism available among instruction:
To determine if independent instructions can be found
to execute.

2. Number of scoreboard entries:
This limits the window size of the instructions to be
looked at. Window generally cant cross branch in-
structions or loop boundaries.

3. Number and types of functional units.

4. Presence of anti-dependence and output dependence
which may lead to WAR or WAW stalls.

1.5.2 Register renaming

Reduces the name dependencies. See following example.

ADD R4, R1, R2
BENZ R4, X
ADD R4, R1, R3
BENZ R4,Y

This can be transformed to

ADD R4, R1, R2
BENZ R4, X
ADD R5, R1, R3
BENZ R5,Y

Register renaming can be static or dynamic.

Dynamic Scheduling: Tomasulo approach

� Uses Reservation Stations in place of Scoreboard.

� Implements register renaming in hardware by buffer-
ing operands.

� More reservation stations than registers.

� Distributed approach for hazard detection and execu-
tion control.

� Results passed directly from reservation stations to
instruction.

� Reservation stations fetches and buffers the operand
as soon as it is available.

� Pending instructions designate the reservation sta-
tions which will provide their inputs.

� In case of successive writes to a register, only the last
one updates the register.

� Register renaming essentially means specifying differ-
ent reservation stations for pending operands elimi-
nating WAW and WAR.

Steps of execution:

1. Issue:
Fetch instruction from queue. Issue it if empty reser-
vation station is available and send the operands from
registers to RS. In case of load or store, issue the in-
struction if empty buffer is available. Non-availability
of RS or buffer leads to stall due to structural hazard.

2. Execute:
If some operand is not available, monitor the common
data bus (CDB) while waiting for the register to be
computed. Operand is placed in RS as soon as it is
available. Execution starts as soon as all operands
are available. Checks RAW hazards.

3. Write result:
Result is written on CDB and into registers and RS
waiting for it.

Structure of Reservation Station:

� OP : Operation to be performed.

� Qj,Qk : RS which will provide the source operands.

� Vj,Vk : Values of source operands.

� Busy

� Qi : For each register and store buffer indicating RS
that will provide result to be stored.

5 of 18
o
κtiwari [at] cse.iitk.ac.in

1.6 Branch Prediction 1 INTRODUCTION PARALLEL COMPUTING

Example-01: Dynamic scheduling

Instruction status
Instruction Issue Execution Write result
LD F6,34(R2) X X X
LD F2,45(R3) X X
MULTD F0,F2,F4 X
SUBD F8,F6,F2 X
DIVD F10,F0,F6 X
ADDD F6,F8,F2 X

Reservation status
Name Busy OP Vj Vk Qj Qk
Add1 Yes SUB Mem[34+Regs[R2]] Load2
Add2 Yes ADD Add1 Load2
Add3 No
Mult1 Yes MULT Regs[F4] Load2
Mult2 Yes DIV Mem[34+Regs[R2]]Mult1

Register status
Field F0 F2 F4 F6 F8 F10 F12 ... F30
Qi Mult1 Load2 Add2 Add1 Mult2

Example-02: Dynamic scheduling

Instruction status
Instruction Issue Execution Write result
LD F6,34(R2) X X X
LD F2,45(R3) X X X
MULTD F0,F2,F4 X X
SUBD F8,F6,F2 X X X
DIVD F10,F0,F6 X
ADDD F6,F8,F2 X X X

Reservation status
Name Busy OP Vj Vk Qj Qk
Add1 No
Add2 No
Add3 No
Mult1 Yes MULT Mem[45+Regs[R3]] Regs[F4]
Mult2 Yes DIV Mem[34+Regs[R2]] Mult1

Register status
Field F0 F2 F4 F6 F8 F10 F12 ... F30
Qi Mult1 Mult2

===========================
insert page 66, 67 here
==========================

1.6 Branch Prediction

Reduces branch penalties by letting the processor to guess
the outcome of a branch early enough such that stalls are
reduced. For incorrect prediction, no harm is done because
pipeline flush starts.

Branch prediction buffer or branch history table is used to
store the program behavior. The table is indexed by the
address of branch instruction. Information contained in
this table helps in predicting whether this branch is taken
or not.

The simplest scheme stores a single bit of information giv-
ing whether last time this branch was taken or not. Pre-
diction is to take branch if it was taken last time. Update
information after prediction turns out to be false. Assume
initially table contains false (branch not taken)

How many miss-predictions for the following program?

for i=1 to 100 do
Two Times

X[i]=Y[i]

How many miss-predictions?

for i=1 to 100 do
Always

if odd(i) X[i]=Y[i];

1.6.1 2-bit Branch Prediction

Miss-prediction should occur twice before table is changed.

�� ��Predict not taken

�� ��Predict taken

�� ��Predict not taken

�� ��Predict taken

-Not taken

-Not taken

?

Not taken

�

Taken

�

Taken
6

Taken

Not taken

Taken

The generalized branch prediction which is a n-bit branch
prediction based on last m branches is called (n,m)
scheme. Generally (2,2) scheme is a sufficient scheme.

Pipeline improvements aim for one clock per instruction
(CPI), since because of stalls due to dependencies, effective
CPI is more than one. Our aim is to get CPI< 1. This is
possible only if multiple instructions are issued in a single
clock.

1.6.2 Co-relating branch predictors

Branch predictors that use the behavior of other branches
to make a prediction are called correlating predictors or
two-level predictors. In the general case an (m,n) pre-
dictor uses the behavior of the last m branches to choose
from 2m branch predictors, each of which is an n-bit pre-
dictor for a single branch. The number of bits in an (m,n)
predictor is given by 2m×n×Number of prediction entries
selected by the branch address

1.6.3 Multiple issue of instruction

Consider the following program

X: LD F0, 0(R1) ;F0 = M(0+R1)
ADD F4, F0, F2 ;F4 = F0 + F2
SD 0(R1), F4 ;M(0+R1) = F4
SUB R1, R1, 8 ;R1 = R1 - 8
BNEZ R1, X

Assuming one floating point unit and one integer unit in
the processor, we can schedule the unrolled version of this
code as below. Unfolding of five loops is performed.

6 of 18
o
κtiwari [at] cse.iitk.ac.in

1.6 Branch Prediction 1 INTRODUCTION PARALLEL COMPUTING

Integer unit Floating point unit Cycle
X: LD F0, 0(R1) 1

LD F6, -8(R1) 2
LD F10, -16(R1) ADD F4, F0, F2 3
LD F14, -24(R1) ADD F8, F6, F2 4
LD F18, -32(R1) ADD F12, F10, F2 5
SD 0(R1), F4 ADD F16, F14, F2 6
SD -8(R1), F8 ADD F20, F18, F2 7
SD -16(R1), F12 8
SD -24(R1), F16 9
SUB R1, R1, 40 10
BNEZ X, R1 11
SD 8(R1), F20 12

This will only require 12 cycles per 5 iterations!!!

Multiple issue with Dynamic Scheduling Issues as
many instructions as possible. In case of dependence
or resource conflict, stop issuing instructions till that
conflict is resolved.

Multiple issue with Static Scheduling VLIW in-
struction and VLIW architectures. Compiler assisted
scheduling in a very long instruction word. Difficult
to scale, Incompatibility.

Compiler support for ILP exploitation Depen-
dence analysis puts independent instructions next to
each other such that hardware does not stall. Several
dependence tests are available for example GCD test.

1.6.4 GCD-test

A dependence exists between two iterations of a loop if

1. There are two iteration indices, j and k, both within
the limits of the loop. That is m ≤ j ≤ n, m ≤ k ≤ n.

2. The loop stores into an array element indexed by a×
j + b and later fetches the same element when it is
indexed by c× k+ d, i.e., A[a× j + b] = A[c× k+ d].

A loop-carried dependence occurs if GCD(c, a) divides (d−
b).

Example: In following code snippet.

for(i = 1; i <= 100; i+ +)
X[2 ∗ i+ 3] = X[2 ∗ i] ∗ 5.0;

GCD(a, c) = 2,
d− b = −3;

Therefore there is NO dependence.

1.6.5 Software Pipelining

Reorganize loops such that each iteration in the software
pipelined code is chosen from different iteration of the
loop. Like a pipeline, start up and clean up code is needed.

Consider the following code

X: LD F0, 0(R1) ;F0 = M(0+R1)
ADD F4, F0, F2 ;F4 = F0 + F2
SD 0(R1), F4 ;M(0+R1) = F4
SUB R1, R1, 8 ;R1 = R1 - 8
BNEZ R1, X

iteration(i)
LD F0, 0(R1)
ADD F4, F0, F2
SD 0(R1), F4

iteration(i + 1)
LD F0, 0(R1)
ADD F4, F0, F2
SD 0(R1), F4

iteration(i + 2)
LD F0, 0(R1)
ADD F4, F0, F2
SD 0(R1), F4

X: SD 0(R1), F4 ; store A[i]
ADD F4, F0, F2 ; add to A[i+1]
LD F0, -16(R1) ; load A[i+2]
SUB R1, R1, 8
BNEZ R1, X

Above transformation requires 5 cycles/iteration. Al-
though it requires some start up/clean up code.

Hardware can also have the support for ILP exploita-
tion. For example to replace a statement of kind “if
(A==0) S=T;” Hardware can supply following instruc-
tion “CMOVZ R1, R2, R3”. Control dependencies emplies
data dependence.

1.6.6 Memory Pipeline

RISC processors demand high memory bandwidth, super-
scalar processors demand even higher memory bandwidth.
There is always a long job queue for memory. Through
processor support we can split phases of memory requests
(put requests vs get data), able to schedule another in-
struction in between, multiple pending reads, out of se-
quence reads.

Processors supporting split phase memory operations like
Multi-threaded architectures which run several threads of
execution and schedule them automatically in case of de-
pendencies (examples - PowerPC 620, DEC-Alpha and
other recent super-scalars).

RAMBUS memory structure utilizing pipelined accesses.

1.6.7 Summary

Processors with low CPI may not always be fast. Increas-
ing issue rate while sacrificing the clock rate may lead to
lower performance.

7 of 18
o
κtiwari [at] cse.iitk.ac.in

2.2 Sementec Attributes 2 SCALABLE COMPUTER ARCHITECTURE

2 Scalable computer architecture

Scaling-up refers to improving the computer resources
to accommodate performance and functionality demand.
Scaling-down is done to reduce cast. Scaling-up may in-
clude

� Functionality and performance.

� Scaling in cast

� Compatibility

Common Architectures for scalable parallel computers are

Shared nothing architecture: Macro architecture.

Shared disk architecture:

Shared memory architecture: Micro architecture.

Advantages: size scalability, resource scalability, software
scalability, memory scalability, scalability in problem size,
generation scalability, space scalabiliy, hetrogenity scala-
bility.

2.1 Parallel ram (PRAM) model

Fully synchronous at instruction level. At each cycle, all
memory read from all n instructions must be performed
before any processor can perform memory write/branch.

�� ��Shared Memory

�� ��P
�� ��P

�� ��P- - - - -

2.2 Sementec Attributes

� Homogeneity
Likeness of processors. Single processors: SISD; mul-
tiple processors: MIMD, SIMD, SPMD6

� Synchrony
Extent of synchronization among the processors.
Fully synchronous at instruction level PRAM7,
SIMD. MIND : asynchronous; synchronous operation
must be executed. BSP8: Synchronization at every
“superstep”.

� Interaction mechanism
The way process interact each other.

6Single Program, Multiple Data
7A Parallel Random Access Machine (PRAM) is a shared memory

abstract machine which is used by parallel algorithms designers to
estimate the algorithm performance.

8Bulk Synchronous Parallel Model

? Shared Variable

? Message Passing

? PRAM shared variable/memory

? Multiprocessors: asynchronous MIMD using
shared varaible/memory

? Multicomputers: Asynchronous MIND using
message passing.

� Address space
Single address space for all memory location
vs.

? Multiple address space in Multicomputers

? Uniform memory access (UMA) machine

? Non Uniform Memory Access (NUMA) ma-
chine

? Distributed shared memory (DSM)

? Concept of local and global memory.

� Memory model
How to handle shared-memory access con-
flicts.

? Consistency rules.

? PRAM : Exclusive read exclusive write
(EREW) rule.

? Cocurrent read exclusive write (CREW) rule

? Cocurrent read Cocurrent write (CRCW) rule

2.2.1 Read/write conflicts in PRAM

The read/write conflicts in accessing the same shared
memory location simultaneously are resolved by one of
the following strategies:

1. Exclusive Read Exclusive Write (EREW) - every
memory cell can be read or written to by only one
processor at a time

2. Concurrent Read Exclusive Write (CREW) - multiple
processors can read a memory cell but only one can
write at a time

3. Exclusive Read Concurrent Write (ERCW) - never
considered

4. Concurrent Read Concurrent Write (CRCW) - mul-
tiple processors can read and write.

Here, E and C stand for ’exclusive’ and ’concurrent’ cor-
respondingly. The read causes no discrepancies while the
concurrent write is further defined as:

Common all processors write the same value; otherwise
is illegal

Arbitrary only one arbitrary attempt is successful, oth-
ers retire

Priority processor rank indicates who gets to write

8 of 18
o
κtiwari [at] cse.iitk.ac.in

2.3 Flynn’s classification 2 SCALABLE COMPUTER ARCHITECTURE

2.3 Flynn’s classification

Single Instruction, Single Data (SISD):
A sequential computer which exploits no parallelism in ei-
ther the instruction or data streams. Examples of SISD ar-
chitecture are the traditional uni-processor machines like
a PC.

Single Instruction, Multiple Data (SIMD):
A computer which exploits multiple data streams against a
single instruction stream to perform operations which may
be naturally parallelized. For example, an array processor
or GPU.

Fully synchronous at instruction level. At each cycle, all
memory read from all n instructions must be performed
before any processor can perform memory write/branch.

Multiple Instruction, Single Data (MISD):
Multiple instructions operate on a single data stream. Un-
common architecture which is generally used for fault tol-
erance. Heterogeneous systems operate on the same data
stream and must agree on the result. Examples include
the Space Shuttle flight control computer.

Multiple Instruction, Multiple Data (MIMD):
Multiple autonomous processors simultaneously executing
different instructions on different data. Distributed sys-
tems are generally recognized to be MIMD architectures;

either exploiting a single shared memory space or a dis-
tributed memory space.

Asynchronous. Synchronization operations must be exe-
cuted.

Single program multiple data (SPMD):
Multiple autonomous processors simultaneously executing
the same program (but at independent points, rather than
in the lockstep that SIMD imposes) on different data. Also
referred to as Single Process, multiple data. SPMD is the
most common style of parallel programming.

Multiple program multiple data (MPMD):
Multiple autonomous processors simultaneously operating
at least 2 independent programs.

Bulk Synchronous Parallel Model (BSP):
A BSP computer consists of processors connected by a
communication network. Each processor has a fast local
memory, and may follow different threads of computation.
A BSP computation proceeds in a series of global super-
steps. A superstep consists of three ordered stages:

1. Concurrent computation : Several computations take
place on every participating processor. Each process
only uses values stored in the local memory of the
processor. The computations are independent in the
sense that they occur asynchronously of all the others.

2. Communication : At this stage, the processes ex-
change data between themselves.

3. Barrier synchronization : When a process reaches this
point (the barrier), it waits until all other processes
have finished their communication actions.

BSP is a MIMD system which does synchronization at
every superstep. Message passing or shared variable are
used.

Cluster: A computer cluster is a group of linked com-
puters, working together closely so that in many respects
they form a single computer. The components of a cluster
are commonly, but not always, connected to each other
through fast local area networks. Clusters are usually de-
ployed to improve performance and/or availability over
that of a single computer, while typically being much more
cost-effective than single computers of comparable speed
or availability.

9 of 18
o
κtiwari [at] cse.iitk.ac.in

2.3 Flynn’s classification 2 SCALABLE COMPUTER ARCHITECTURE

The advantages are Single-system image, inter-node con-
nection, and enhanced availability.

2.3.1 Interaction mechanism

There are two ways

1. Shared variables.

2. Message passing

2.3.2 Granularity

Granularity is the extent to which a system is broken down
into small parts, either the system itself or its description
or observation. It is the extent to which a larger entity is
subdivided. For example, a yard broken into inches has
finer granularity than a yard broken into feet.

Coarse-grained systems consist of fewer, larger compo-
nents than fine-grained systems; a coarse-grained de-
scription of a system regards large sub components while
a fine-grained description regards smaller components of
which the larger ones are composed. The terms granu-
larity, coarse and fine are relative, used when comparing
systems or descriptions of systems.

2.3.3 Address space

Parallel vector processor (PVP):
MIMD, UMA, large grain. small number of powerful pro-
cessors connected by custom designed crossbar switch.

Uniform memory access (UMA):
All the processors in the UMA model share the physi-
cal memory uniformly. In a UMA architecture, access
time to a memory location is independent of which proces-
sor makes the request or which memory chip contains the
transferred data. Uniform Memory Access computer ar-
chitectures are often contrasted with Non-Uniform Mem-
ory Access (NUMA) architectures. In the UMA architec-
ture, each processor may use a private cache. Peripherals
are also shared in some fashion, The UMA model is suit-
able for general purpose and time sharing applications by

multiple users. It can be used to speed up the execution
of a single large program in time critical applications.

Physical memory is uniformly shared by all processors.
all processors have equal access time to all memory world.
Suitable for general purpose or time-sharing application.

Non uniform memory access (NUMA):
Non-Uniform Memory Access or Non-Uniform Memory
Architecture (NUMA) is a computer memory design used
in multiprocessors, where the memory access time depends
on the memory location relative to a processor. Under
NUMA, a processor can access its own local memory faster
than non-local memory, that is, memory local to another
processor or memory shared between processors. NUMA
architectures logically follow in scaling from symmetric
multiprocessing (SMP) architectures.

Cache coherent NUMA (CC-NUMA):
Nearly all CPU architectures use a small amount of very
fast non-shared memory known as cache to exploit locality
of reference in memory accesses. With NUMA, maintain-
ing cache coherence across shared memory has a significant
overhead.

Although simpler to design and build, non-cache-coherent
NUMA systems become prohibitively complex to program
in the standard von Neumann architecture programming
model. As a result, all NUMA computers sold to the mar-
ket use special-purpose hardware to maintain cache co-
herence, and thus class as “cache-coherent NUMA”, or
CC-NUMA.

Typically, this takes place by using inter-processor com-
munication between cache controllers to keep a consistent
memory image when more than one cache stores the same
memory location. For this reason, CCNUMA performs
poorly when multiple processors attempt to access the
same memory area in rapid succession. Operating-system
support for NUMA attempts to reduce the frequency of
this kind of access by allocating processors and memory
in NUMA-friendly ways and by avoiding scheduling and
locking algorithms that make NUMA-unfriendly accesses
necessary. Alternatively, cache coherency protocols such
as the MESIF protocol attempt to reduce the communi-
cation required to maintain cache coherency.

Intel announced NUMA introduction to its x86 and Ita-
nium servers in late 2007 with Nehalem and Tukwila
CPUs, both CPU families will share a common chipset;
the interconnection is called Intel Quick Path Intercon-
nect (QPI).

Distribute shared memory (DSM):
It refers to a wide class of software and hardware imple-
mentations, in which each node of a cluster has access
to shared memory in addition to each node’s non-shared
private memory. It is also known as a distributed global
address space (DGAS).

MIMD, NUMA, NORMA, large grain. Shared memory ar-
chitecture. Cache directory is used to support distributed
coherent caches.

Cluster of workstations (COW):
It is a computer network that connects several computer

10 of 18
o
κtiwari [at] cse.iitk.ac.in

2.3 Flynn’s classification 2 SCALABLE COMPUTER ARCHITECTURE

workstations together with special software forming a clus-
ter.

MIMD, NUMA, coarse grain. Distributed memory archi-
tecture. Each node is a complete computer. Low cost
commodity network is used. There is always a local disk.

Cache only memory architecture (COMA):
It is a computer memory organization for use in multipro-
cessors in which the local memories (typically DRAM) at
each node are used as cache. This is in contrast to using
the local memories as actual main memory, as in NUMA
organizations.

In NUMA, each address in the global address space is typ-
ically assigned a fixed home node. When processors ac-
cess some data, a copy is made in their local cache, but
space remains allocated in the home node. Instead, with
COMA, there is no home. An access from a remote node
may cause that data to migrate. Compared to NUMA,
this reduces the number of redundant copies and may al-
low more efficient use of the memory resources. On the
other hand, it raises problems of how to find a particular
data and what to do if a local memory fills up (migrating
some data into the local memory then needs to evict some
other data, which doesn’t have a home to go to). Hard-
ware memory coherence mechanisms are typically used to
implement the migration.

It is special case of NUMA, in which the distributed mem-
ories are converted to cache. all caches forms a global
address space.

No remote memory access (NORMA):
A distributed memory multi-computer system is called a
NORMA model if all memories are private and accessible
only by local processors. In DSM system NORMA will
disappear.

2.3.4 Memory models

Exclusive read exclusive write (EREW):

Concurrent read exclusive write (CREW):

Concurrent read Concurrent write (CRCW):

2.3.5 ACID

Atomicity: Transactions are guaranteed to either com-
pletely occur, or have no effects. Consistency: Always
transfers from one consistent state to another. Isolation:
Result not revealed to other transactions until committed.
Durability: Once committed, the effect of transition per-
sists even if system fails.

2.3.6 Overheads in parallel processing

? Parallelism Overhead : Due to process manage-
ment.

? Communication Overhead

? Synchronization Overhead

? Load Imbalance Overhead

Example: Algorithms A,B,C with complexities 7n,
(n log n)/4, n log log n on n-processor computer. For, n =
1024 the fastest one is B.

2.3.7 Process

Process is a four-tuple

1. Program code

2. Control state

3. Data state

4. Status

Thread is a light-weighted process which may share the
address with other threads and parent process.

2.3.8 Interaction modules

Synchronous: All participant must arrive before interac-
tion begins. A process can exit when all other processors
have finished interaction. A two barrier synchronization.

Blocking: A process can enter its portion of code as soon
as it arrives and can can exit as soon as it finishes.

Non-Blocking: A process can enter its portion of code as
soon as it arrives and can exit even before it has finished.

Interaction patterns : This can be point-to-point,
Broadcast, Scatter, Gather, Total-exchange, Shift, Reduc-
tion. Scan.

2.3.9 Bulk Synchronous Parallel (BSP) model

Has concept of superstep (Computation, Communication,
Barrier).

? w: Maximum computation time within each super-
step. Takes care of load imbalance.

? l: Barrier synchronization overhead (lower bound
of the communication network latency).

? g: h relation coefficient(each node sends/receives
at most h words within gh cycles.

? g is platform-dependent but is independent of com-
munication pattern.

Time for a superstep = w +gh+l or max(w, gh, l) in case
of total overlapping of operations.

Example: Inner product of two N-dimensional
vectors on 8-processor BSP machine.

1. Superstep 1

� Computation: Each processor computes its
local sum in w = 2N/8 cycles.

� Communication: Processors 0,2,4,6 send
their local sums to processors 1,3,5, 7 using
(h=1) relation.

11 of 18
o
κtiwari [at] cse.iitk.ac.in

3 PHYSICAL MACHINE MODEL

� Barrier Synchronization

2. Superstep 2

� Computation: processors 1,3,5,7 perform
one addition (w = 1).

� Communication: Processors 1 and 5 send
their local sums to processors 3 and 7 using
(h=1) relation.

� Barrier Synchronization

3. Superstep 3

� Computation:Processors 3 and 7 perform
one addition (w = 1)

� Communication: Processor 3 sends its in-
termediate result to processor 7 using (h=1)
relation.

� Barrier Synchronization

4. Superstep 4

� Computation: Processor 7 performs one ad-
dition (w = 1)

Execution time = 2N/8 + 3g + 3l+ 3 = 2N/n+ (g +
l + 1) log n.

2.4 Clusters

Collection of complete computers, physically intercon-
nected by a high-performance network.

Features: Cluster Nodes, Single-System Image, Internode
connection, Enhanced availability, Better Performance.

Benefits and Difficulties of Clusters: Usability, Availabil-
ity, Scalable Performance, Performance/Cost Ratio.

Clusters have high availability due to : Processors and
Memories, Disk Arrays, Operating System. Clusters are
highly scalable in terms of processors, memories, I/O de-
vices and disks.

3 Physical machine model

1. PVP: Parallel Vector processor

2. SMP: Symmetric Multiprocessor

3. MPP: Massively Parallel Processors

4. DSM: Distributed Shared Memory

5. COW: Cluster of Workstations

6. Uniform Memory Access (UMA)

12 of 18
o
κtiwari [at] cse.iitk.ac.in

4 PARELLEL PROGRAMMING

7. Non-Uniform Memory Access (NUMA)

8. CC-NUMA: Cache coherance NUMA

9. Cache only Memory Access (COMA)

10. No-Remote memory Access (NORMA)

4 Parellel Programming

4.1 Process states

4.2 Fork() Example

main(){

int i=0;

fork();

fork();

printf("Hello");

}

4.3 Parallel blocks

parbegin

S1;

S2;

S3;

parend

parfor(i=0 ; i<=10 ; i++){

Process(i);

}

13 of 18
o
κtiwari [at] cse.iitk.ac.in

4.6 Commonly used interaction modes 4 PARELLEL PROGRAMMING

forall(i=1, N){

C[i] = A[i] + B[i];

}

int pid = my_process_id(i);

4.4 Dynamic Parallelism

Uses constructs as fork() and join()

While(C>0) begin

fork(f1(C));

C=f2(C);

end

4.5 Intercation/Communication Issues

4.5.1 Communication

Can be done through 1) through shared variables 2)
through parameter passing 3) through message passing

4.5.2 Synchronization

Causes processes to wait for one other or allows the waiting
proceses to resume.

� Atomicity

parfor(i:=1;i<n;i++){

atomic{

x=x+1;

y=y-1;

}

}

� Control Synchronization
Process waits until execution reaches certain control
states.

parfor(i:=1;i<n;i++){

Pi; barrier; Qi;

}

parfor(i:=1;i<n;i++){

critical{

x=x+1;

y=y-1;

}

}

� Data Synchronization
Process waits until execution reaches certain data
states.

wait(x>1)

parfor(i:=1;i<n;i++){

lock(S);x=x+1;y=y-1;unlock(S);}

4.5.3 Aggregation

To merge partial results generated by component pro-
cesses. Can be realized as a sequence of supersteps and
communication/synchronization.

parfor(i:=1;i<n;i++){

x[i]:=A[i]*B[i];

inner product=aggregate_sum(x[i]);

}

4.6 Commonly used interaction modes

4.6.1 Synchronous

All participants must arrive before the interaction begins.
A process can exit the interaction and continue to execute
the subsequent operation only when all other processes
have finished the interaction. Basically, a two-barrier syn-
chronization. Example: send/receive operations.

4.6.2 Blocking

A process can enter its portion of C as soon as it arrives
and can exit as soon as it finishes irrespective of status
of other processes. Example: Blocking send (completion
means sending the message not necessarily yet received by
destination.

4.6.3 Non-blocking

A process can enter its portion of C as soon as it arrives
and can exit even before it has finished its portion of C.
Example: Non-blocking send (completion means request-
ing the sending of the message and not necessarily sending
the message).

14 of 18
o
κtiwari [at] cse.iitk.ac.in

5 DISTRIBUTED MEMORY AND LATENCY TOLERANCE

4.7 Interaction Patterns

5 Distributed memory and latency
tolerance

5.1 Memory Hierarchy Properties

Three fundamental properties for designing an efficient
memory hierarchy.

� Inclusion M1 ⊂M2 ⊂M3...... ⊂Mn

� Coherence Same information at all levels. Effects at
memory/cache replacement policies.

– Write-through (mainly for on-chip I-cache and
D-cache)

– Write-back (Off-chip cache)

� Locality of Reference

1. Temporal locality: favours LRU replacement

2. Spatial locality assists in determining the size of
unit data transfer

3. Sequential locality affects the detrmination of
grain size for optimal scheduling and also affects
prefetch techniques.

5.2 Memory Capacity Planning

� Hit ratio
hi at level i represents the probability of finding in-
formation item at level i. h0 = 0, hn = 1.

� Access friquency to Mi

fi = (1− h1)(1− h2)....(1− hi−1)hi

f1 � f2 � f3 � f4 �� fn

� Effective Access Time

Teff = Σn
i=1fi.ti

� Hirarchy Optimization
Minimize Teff subject to following

Ctotal = Σn
i=1ci.Si < C0

Where Si is size of memory Mi, and ci is per unit cost
of Mi, and C0 is some value.

15 of 18
o
κtiwari [at] cse.iitk.ac.in

5.4 Latency Tolerance Techniques 5 DISTRIBUTED MEMORY AND LATENCY TOLERANCE

5.3 Cache Coherence Protocols

5.3.1 Sources of Incoherence

� The write by different processors into their cached
copies of the same cache line in memory, asyn-
schronously.

� Process migration among multiple processors without
alerting each other.

� I/O operations bypassing the owners of cached copies.

5.3.2 Snoopy Coherency Protocols

Constantly monitor the caching events across the bus be-
tween processor and memory modules. Generally imple-
mented using snoopy buses and require a broadcast mech-
anism. Write-Invalidate and Write-Update protocols.

5.3.3 MESI Snoopy Protocol

Keeps track of state of cache line, considering all
reads/writes, cache hits/misses etc. Write-invalidate pro-
tocol. Uses non-write-allocate policy: no fill from the
memory in case of write-miss. Cache line can go in fol-
lowing stages.

Modified (M) cache line updated with a write hit.

Exclusive(E) Cache is valid and is invalid in other
caches. Memory not updated yet.

Shared(S) Cache is valid and may be valid in one or
more caches and memory.

Invalid(I) Cache is invalid after reset or has been invali-
dated by write hit by another cache.

5.3.4 Memory consistancy models

� Sequential Consistency
All reads, writes and swaps by all processors appera

to execute serially in a single global memory order
confirming to program order.

� Weak Consistency
Relates memory order to synchronization points.

� Processor Consistency
Write issued by each individual processor are always
in program order, but writes issued by different pro-
cessors can be out of program order.

� Release consistency
Requires that synchronization accesses in pro-
gram can be identified either acquires(locks) or re-
leases(unlocks).

To reduce the overhead of cache coherence control with-
out affecting the correctness a Relaxed Memory is also
proposed.

5.3.5 Software-implemented DSM

Software-coherent NUMA (SC-NUMA) or Distributed
Shared Memory (DSM) model proposed to enable
Shared Memory computing on NORMA and NCC-
NUMA. Software-implemented DSM uses SW extensions
to achieve single address space, data sharing and coherence
control. In shared virtual memory (SVM), virtual mem-
ory management mechanism in a traditional node OS is
modified to provide data sharing at page level.

Alternatively, instead of modifying OS, compilers and li-
brary functions are used to convert single-address-space
codes to run on multiple address spaces. Application codes
may also have to be modified to include data sharing, syn-
chroniztion and coherence primitives.

5.3.6 Directory-Based Coherency Protocol

Dont use broadcast-based snoopy protocols. Cache Di-
rectory: Directory to record the locations and states of
all cached lines of shared data. A directory entry for each
cache line of data containing dirty bit and number of point-
ers to specify the location of all remote copies. Concept of
central directory to record all cache conditions (including
the presence information and all cache line states) suitable
only for a small-scale SMP with centralized shared mem-
ory. Central directory for large-cache SMP, NUMA or
distributed memory platform would require a huge mem-
ory to implement and must be associatively searched to
reduce the update time.

Cache Directory Structure can be 1) Full map cache direc-
tory 2) Limited cache directory 3) Chained cache directory

5.4 Latency Tolerance Techniques

1. Latency Avoidance
By organizing user applications to achieve
data/program locality to avoid long latency of
remote access.

16 of 18
o
κtiwari [at] cse.iitk.ac.in

6.2 Network Performance Metrics or Communication Latency6 SYSTEM INTERCONNECT AND NETWORK TOPOLOGIES

2. Latency Reduction
Data locality may be limited, Difficult to discover
and change. Latency reduction is achieved by making
communication subsystem efficient.

3. Latency Hiding
Prefetching Techniques, Distributed Coherent
Caches, Relaxed Memory Consistency, Multiple-
context processors.

5.5 Data Prefetching

Using knowledge about the expected misses in a program.
Controlled by SW/HW.

1. Binding Prefetch
Value directly loaded into working register during
prefetch. Value may become stale if another proces-
sor modifies the location between prefetch and actual
reference.

2. Non-binding Prefetch
Brings the data to the cache remaining visible
to cache coherence protocol(CCP). HW controlled
prefetch includes schemes such as long cache lines (ef-
fectiveness limited by reduced spatial locality in mul-
tiprocessor applications) and instruction lookahead
(effectiveness limited by branches and finite buffer
size).

5.6 Context-switching policies

1. Switch on cache miss
R: Av. interval between misses, L: Recovery time.

2. Switch on every load
R: Av. interval between loads. L1, L2: Latencies
with and without misses. p1, p2: prob. of switch
with or without miss.

3. Switch on every instruction
Interleaving of instructions. Supports pipelined exe-
cution but cache misses may increase due to breaking
of locality. Can hide pipeline dependence.

4. Switch on block of instructions
Improved cache-hit ratio due to preservance of local-
ity.

6 System Interconnect and Net-
work Topologies

6.1 Switched Networks

Allocate/deallocate media resources to one request at a
time. Even shared-media networks can be converted to
switched networks.

1. Circuit switched networks
Entire path from source node to destination reserved
for entire period of transmission.

2. Packet switched networks
Long messages broken into sequence of smaller pack-
ets containing routing information and segment of
data payload. Packets can be routed separately on
different paths. Better utilization of resources but
needs disassembly and reassembly of messages. Dif-
ferent messages may have different packet sizes.

3. Cell switched networks
Partitioning of long packets into fixed-size small cells.
Small packets need not wait for long packets. Con-
stant transmission delay is possible. Simplified HW
design of cell switches because of fixed size. May lead
to low network performance if retransmission of lost
cells not allowed.

6.2 Network Performance Metrics or
Communication Latency

1. SW Overhead associated with sending and receiving
of messages at bot ends of network. Contributed by
host kernels in handling the message.

2. Channel Delay caused by channel occupancy. Deter-
mined by bottleneck link or channel.

3. Routing Delay caused by successive switches in mak-
ing sequence of routing decisions along the routing
path. Depends on routing distance.

4. Contention Delay caused by traffic contentions in the
network. Difficult to predict. Network Latency Sum
of Channel Delay and Routing Delay.

Network Latency is sum of Channel Delay and Routing
Delay.

6.3 Routing Schemes and Functions

1. Store-and-Forward Routing
Packet stored in packet buffer in a node before for-
warding to outgoing link. Non-overlapped transmis-
sion of packets. Header determines the routing path
and then entire packet forwarded to next node.

2. Cut-Through or Wormhole Routing
Each node uses a flit buffer to hold one flit or cell of
the packet which is automatically forwarded through
an out-link to next node once the header is decoded.
Rest of the data flits of the packet follow the same
path in a pipelined fashion reducing the transmission
time significantly.

6.4 Network Topologies

Binary Tree, star, near neibour mesh, systolic array, illiac
mesh, 2-D tauras, cube, binary 4-cube.

17 of 18
o
κtiwari [at] cse.iitk.ac.in

6.4 Network Topologies 6 SYSTEM INTERCONNECT AND NETWORK TOPOLOGIES

Kind of networks.

� Multistage Interconnection Networks

� Mesh Connected Illiac Network

� Cube Interconnection Network

� Shuffle-exchange and Omega Networks

Matrix Multiplication Cube-network is done as below.

1. Let p2m1....pmpm1...p1p0 be the PE address in 2m
cube. Distribute n rows of A over n distinct PEs
whose address satisfy the condition: p2m1....pm =
pm1...p1p0

2. Broadcast rows of A over the fourth dimension and
front to back edges.

3. Transpose B to form B t over the m cubes
x2m1....xm0....0 in nlogn steps.

4. N way broadcast each row of bt to all PEs in the m
cube p2m1....pmxm1...0 in nlogn steps.

5. Get the multiplication in O(n) time.

18 of 18
o
κtiwari [at] cse.iitk.ac.in

