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Abstract

Name of the student: Arun KP Roll No: 18111263
Degree for which submitted: PhD Department: CSE Department
Thesis title: Facilitating Process Persistence in Hybrid Non-Volatile Memory
Systems

Thesis supervisors: Dr. Debadatta Mishra and Dr. Biswabandan Panda

Computing systems with persistent process semantics enable applications to resume ex-
ecution from a consistent state after an abrupt system restart due to a crash or power
failure, saving computation time and energy. Enabling process persistence capability in
systems requires storing the state of a process consisting of CPU registers, memory state,
and operating system metadata in a persistent device. In this thesis, we focus on saving
the state of a process in a hybrid memory system comprising Non-Volatile Memory (NVM)
along with volatile DRAM. While NVM allows access through the load/store interface of
a CPU, using NVM for persistence requires special care to guarantee consistent data up-
dates in NVM. Therefore, we need mechanisms at the hardware and/or software layers to

ensure a consistent memory state in NVM across reboots.

In this thesis, we first analyze the performance overhead associated with different memory
persistence mechanisms for NVM on Intel x86-64 and Arm64 systems. We study the perfor-
mance of conventional persistence barrier primitives to modify data reliably in NVM. We
also analyze the performance of advanced mechanisms, such as logging, for memory persis-
tence. We study performance overhead by incorporating memory persistence mechanisms
in data structures widely used in modern operating systems to maintain process states.
We observe that the performance overhead of different persistence techniques depends

upon the nature of the data structure; for example, queue incurs the highest performance


https://www.cse.iitk.ac.in/users/kparun/
https://www.cse.iitk.ac.in/users/deba/
https://www.cse.iitb.ac.in/~biswa/index.html

Abstract A

overhead compared to other data structures across different persistence barrier primitives
on Intel x86-64 and Arm64. We also observe that using memory serialization operations to
enforce the order of writes to NVM contributes significantly to the performance overhead

of all memory persistence mechanisms.

The design choices to persist different process states determine the performance of achiev-
ing process persistence. Thus, we need a simulation framework to study end-to-end perfor-
mance trade-offs across different design choices for achieving process persistence in a hybrid
memory system. As the existing simulation infrastructure requires nontrivial adaptation
to incorporate hybrid memory for process persistence study, we create a hybrid memory
simulation framework, Kindle, that supports process persistence. Kindle provides an end-
to-end framework consisting of an operating system and a hardware simulator to enable
quick prototyping of mechanisms and policies for process persistence in a hybrid memory
system. Using Kindle, we compare the efficiency of two design choices to persistently
maintain the virtual address translation of processes. We also implement prototypes of
two state-of-the-art hybrid memory schemes using Kindle to show its capability to realize

complex designs.

From the empirical analysis, we observe that the working set size and memory access
patterns of applications influence the performance of memory persistence mechanisms.
Among the persistent process states, the memory state is a crucial component in size and
importance. Thus, the performance of the memory state persistence mechanism decides
the overall performance of process persistence. The memory layout of a process consists
of heap and stack areas, and they exhibit distinct usage patterns. To analyze the stack
usage of different applications, we create an efficient stack tracing framework, SniP, for
multi-threaded applications. SniP, with its targeted stack tracing capability, generates a
trace file containing only stack access of an application, reducing the time taken to create
a stack trace compared to tracing the entire memory area of a program using a state-of-
the-art program tracing tool like Intel Pin and separating stack accesses from it. SniP

results in ~75x reduction in trace file size for the TinyDBM key-value store application
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and up to ~24x reduction in tracing time for the Python3 HTTP server compared to Intel
Pin.

We further investigate unique properties of the program stack, such as the grow and shrink
pattern of usage, presence of activation record, and indirect usage, with the help of SniP.
We identify that these unique stack properties necessitate nontrivial adaptations to state-
of-the-art memory persistence mechanisms for NVM to achieve program stack persistence
efficiently. Even with adaptations, state-of-the-art memory persistence mechanisms such
as undo and redo logging incur more than 35x slowdown in persisting stack compared to
no persistence (i.e., stack in DRAM). Thus, to address inbuilt inefficiencies in state-of-the-
art memory persistence approaches while using them for the stack, we propose Prosper, a
periodic checkpointing-based hardware-software co-designed approach that handles unique
stack properties. Prosper hardware tracks stack modifications at sub-page granularity,
resulting in ~4x reduction (on average) in checkpoint size compared to the state-of-the-
art scheme based on the memory management unit for tracking memory updates (dirty bit
scheme). Prosper hardware introduces performance overhead of less than 1% on average,
providing up to 3.6x reduction in stack persistence overhead compared to the state-of-
the-art NVM memory persistence schemes. Integration of Prosper with existing state-of-
the-art memory persistence mechanisms for heap also benefits achieving persistence for
the entire memory area, providing 2.6 x improvement over solely using the state-of-the-art

mechanism for the entire memory area persistence.

This thesis contributes infrastructure and mechanisms for process persistence in a hybrid
memory system with NVM and DRAM. The thesis initially provides insights into the per-
formance overhead of primitive and advanced memory persistence mechanisms for NVM
and later proposes a hybrid memory simulation framework with NVM and DRAM. The
framework incorporates process persistence semantics using a periodic checkpoint-based
scheme to maintain the execution context and memory state of a process consistently.
Notably, we create an efficient stack tracing framework and show the need to specialize
memory persistence schemes based on the memory area (heap or stack) under consider-

ation by bringing out stack-specific properties using the framework. Finally, we propose
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a checkpoint-based memory persistence scheme for the stack that handles unique stack

properties and provides efficient stack persistence.
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Chapter 1

Introduction

Process persistence enables applications to resume execution from a consistent state after
restart or system crash. Process persistence requires periodically saving the state of a
process consisting of CPU registers, memory, and OS meta-data in a persistent device [1].
The time needed to save state in a persistent device depends upon the access latency of
the device and the method used to persist data. For example, using file system layers [2, 3]
to persist data on secondary storage devices (HDDs and SSDs) incurs serialization and
other related software overheads. Therefore, an efficient process persistence approach
requires a device with better access latency. The device should also provide access without
additional software layers. Byte addressable Non-Volatile Memory (NVM) meets this
requirement by providing access through the CPU load/store interface and persists data
with access latency comparable to volatile DRAM [4]. NVM, connected to a system’s
memory interface, facilitates direct access by eliminating complex storage management
middle-wares such as file systems [5]. Thus, NVM provides an opportunity to build efficient
infrastructure and mechanisms to achieve process persistence with minimum performance

overhead.

However, using NVM for persistence presents the following challenges related to crash
consistency and system efficiency. Crash consistency challenges arise due to direct access
from the CPU through the load/store interface. The system efficiency challenge occurs if

NVM is used as the sole memory in the system by replacing conventional DRAM memory.

1. Crash consistency: Data path from CPU to NVM consists of intermediate volatile
components such as hardware caches. Ensuring consistency of memory updates in

the presence of these volatile components requires specialized techniques to provide a

1
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FiGure 1.1: Illustration of the need to order stores to NVM in the presence of
volatile caches.

consistent memory state across system restarts. In-flight data in these intermediate
volatile components are lost in case of a power failure or abrupt restart. Moreover,
these components can change the order of writes to NVM based on exerted data
eviction policies, causing deviation in the actual memory state from the expected
program state. These intricacies of processor-memory data path organization re-
quire non-trivial adaptation of traditional file systems or database techniques (e.g.,

journaling and transactions [6]) to use for NVM [7-10].

2. System Efficiency: NVM has higher read and write latency than DRAM; for ex-
ample, phase change memory (PCM) is 1.6x slower than DRAM [11]. Therefore,
using NVM as a drop-in replacement for DRAM leads to poor application perfor-

mance.

1.1 Crash consistency challenge

The crash consistency challenge is due to the presence of volatile intermediate components
in the data path to NVM. Therefore, addressing this challenge requires mechanisms to
determine whether writes reach the persistent domain and verify the order in which writes
reach the persistent domain. Persistent domain encompasses system components that can
retain data across reboots. Thus, mechanisms to address this challenge, i.e., memory
persistence mechanisms, should ensure the order of writes to the persistent domain. The
mechanisms should also provide detectability, i.e., assurance on whether a write is complete

or not from the objective of recovery after a crash [12-15]. For example, Figure 1.1
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FiGURE 1.2: Illustration of persistent barrier to order stores to NVM in the
presence of volatile caches.

demonstrates the need to order writes to the persistent domain in the presence of volatile

caches.

The persistent domain in Figure 1.1 comprises of write pending queue (WPQ) and NVM.
The program order expects store to memory location B persists after A, but stores to
memory locations A and B may reach the persistent domain out of program order due to
cache eviction policy, which is independent of the program order. In Figure 1.1, store to
B reaches the persistent domain, but store to A remains in the volatile cache. In this case,
only the value at memory location B survives after an unexpected restart, creating an
inconsistent memory state after reboot. The issue highlighted in Figure 1.1 can be fixed
by ensuring store to A reaches the persistent domain before store to B. The schemes that
impose such an order of writes to NVM, i.e., memory persistency [16], define the order of

NVM writes with respect to failures.

We can broadly categorize memory persistency as strict or relaxzed based on its association
with the memory consistency model. Under the strict category, the order in which writes
persist is the same as in which writes become visible outside a core, as defined by the
memory consistency models. A store’s visibility is associated with persistence under strict
persistency. Some of the approaches for strict persistence are,

(i) store instruction completes after updating value in NVM, which requires access latency
of NVM.

(ii) use an intermediate persistent buffer in the data path to NVM for pooling stores.

Relaxed persistence disassociates the order of NVM writes from memory consistency se-
mantics, requiring persistence barriers [17] to enforce the required persistence order guar-

antees. Figure 1.2 shows the usage of a persistent barrier to enforce the order of NVM
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writes. Pelley, S et al. [16] propose epoch persistency, an example of relaxed persistence
that allows multiple stores inside an epoch, demarcated with persistent barriers. Epoch
persistence allows reordering persistent stores inside an epoch but not across persistent

barriers demarcating epoch boundaries.

We can implement strict and relaxed persistence methods in software and/or hardware.
An example of a software-based approach for strict persistence is to flush modified cache
lines to the persistent domain, and a hardware-based approach is to make caches part of
the persistent domain by providing enough power backup to writeback changes to NVM in
the event of power failure. Relaxed persistence provides more flexibility and can provide
a failure atomicity section (FASE) by ensuring the durability of stores inside a section
demarcated by persistence barriers. FASE [18] guarantees that a set of operations is

completed as a whole or none.

FASE implementation approaches include write-ahead-logging (WAL), dual-copy, Copy-
on-Write (CoW), checkpointing [18]. WAL has variants that log old values before mod-
ification (undo log [9, 19-21]), new value of modification (redo log [22-24]), or memory
operations [8]. CoW or shadow paging makes a copy of the memory page before modi-
fication to retain the old value if required, with optimizations allowing copy at sub-page
granularity [25]. The dual copy mechanism keeps two versions of a data structure: a
working version and a consistent version. The working version is modified in place, and
the consistent version is synced with changes at the end of consistency intervals [26]. A
periodic checkpointing-based scheme keeps track of modifications and persists changes at
the checkpoint interval end [1]. These Memory persistency schemes ensure that NVM is
in a consistent memory state by handling challenges associated with the order of writes

and intermediate volatile components.

1.2 System efficiency challenge

The system efficiency challenge is due to the higher read/write latency of NVM compared
to DRAM. Therefore, an approach to address this challenge is to compensate for the access
latency of NVM by using a hybrid memory organization with DRAM [27]. A hybrid
memory setup can provide better application performance than a system with only NVM
by taking advantage of both DRAM and NVM. A hybrid memory system allows data to be
placed in NVM and/or DRAM, enabling OS memory managers to coordinate allocations
for high memory capacity with low access latency [28]. For example, a typical OS policy



Chapter 1. Introduction 5

DRAM NVM DRAM NVM DRAM NVM
Secondary Storage Secondary Storage Secondary Storage
(a) Use NVM (b) Use DRAM (¢) Use DRAM and
NVM

FI1GURE 1.3: Schematic diagram for different ways to persist data in hybrid mem-
ory systems.

can place frequently accessed hot memory pages in DRAM and migrate cold pages to NVM
for better performance. Applications can also employ different performance, capacity, and

persistence approaches by keeping data in NVM or DRAM in a hybrid memory system.

Figure 1.3 illustrates different configurations to maintain data, such as process state in
a hybrid memory system for persistence. The process state can be maintained entirely
in NVM with state changes wrapped inside one of the persistence mechanisms to provide
failure atomic section (FASE) [18] for state changes (Figure 1.3(a)), or the process state
can be maintained in DRAM and periodically persisted to NVM by copying from DRAM
to NVM (Figure 1.3(b)). In this approach, copying modifications from DRAM to NVM
should be performed in a failure atomic manner to maintain a consistent state in NVM.
Finally, we can have a mixed approach by maintaining some states in DRAM and some in
NVM, and copying states in DRAM to NVM in a failure atomic manner (Figure 1.3(c)).
Maintaining the process state completely in NVM has the advantage of immediate persis-
tence but encounters the overhead due to higher read /write latency of NVM. Retaining the
process state in DRAM has the advantage of better read /write access but provides delayed
persistence due to the copy operation from DRAM to NVM. Thus, using hybrid memory
systems, we can design process persistence schemes that address both crash consistency

and system efficiency challenges of NVM.

1.3 Process persistence in a hybrid NVM system

Process persistence enables applications to continue execution from a consistent state af-

ter an abrupt system restart. Process persistence in a hybrid memory system with NVM
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allows saving the process state in NVM by employing memory persistence mechanisms.
Therefore, in the context of process persistence, choosing a memory persistence mecha-
nism that allows coordination with OS activities is essential to retrieve the process state.
It is crucial to communicate OS operations such as context switches to memory persis-
tence mechanisms for maintaining a per-process consistent state. Memory persistence
mechanisms at hardware [9, 20, 24, 29] and user space [22, 30-34] generally guarantee
memory persistence for a section of code in the application. Hence, these mechanisms
require non-trivial adaptation for process persistence, especially for identifying the bound-
aries of a process memory state that spans across the user and OS layers. For example, a
hardware-based undo logging mechanism such as ATOM [9] provides consistency for mem-
ory updates from sections of code demarcated between atomic_begin and atomic_end,
thus limiting the scope of ATOM to the user space of an application. Thus, generic mem-
ory persistence mechanisms have challenges in coordinating with OS activities to capture
the process state. Therefore, OS-level checkpoint solutions are more practical for process

persistence.

OS-level checkpoint mechanism can capture per-process state as it has visibility into pro-
cess boundaries. OS-level checkpoint procedures can leverage the additional hardware sup-
port for memory persistence to simplify the complexities associated with periodic memory
checkpointing. This thesis uses a periodic checkpoint-based technique [35-37] in a hybrid

memory system with NVM and DRAM to achieve process persistence.

1.4 Contributions

This thesis makes four contributions to enable process persistence in hybrid memory sys-
tems with NVM. First, we quantify the performance implications of persistent barriers,
which are essential for enforcing the order of stores to NVM. The second contribution is an
open-source hybrid memory framework incorporating process persistence, allowing quick
prototyping of designs and ideas for a hybrid memory system. Owur third contribution
is an open-source stack tracing framework providing insights into stack usage of multi-
threaded applications. Finally, the fourth contribution provides a hardware-software (OS)
co-designed checkpoint-based approach for program stack persistence. The details about

each contribution are mentioned in the following subsections.

Figure 1.4 shows a high-level representation of contributions in this thesis. In the following

sections, we outline details on the contributions of this thesis (§ 1.4) and its organization

(§ 1.5).
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FIGURE 1.4: Contributions in this thesis.

1.4.1 Empirical analysis of architectural primitives

We study the overhead of primitive architectural artifacts, such as cache line flush and
memory fences, typically used as persistent barriers in NVM systems [38]. The study
also provides insights into the overhead of high-level software-based memory persistence
mechanisms such as redo and undo logging since they use persistent barriers to order log
writes to NVM. Persistent barriers also play a crucial role in the data structures, mem-
ory allocators, and memory management schemes proposed specifically for NVM [39-46].
Most instruction set architectures (ISAs) provide a set of instructions (e.g., c1flush and
mfence in x86-64) along with the required extension of the persistent domain (e.g., Intel
ADR [47]) to propagate changes to NVM consistently. We empirically analyze the perfor-
mance overhead of different data consistency methods provided by Intel x86-64 (c1flush,
clflushopt, clwb) and Arm64 (civac, cvac) ISAs [48][49]. Understanding the perfor-
mance implications of persistence primitives can guide application/middleware developers
in choosing the right technique and accounting for the resource overheads during capacity
planning. Moreover, the analysis presented in this empirical study can provide directions
to improve the efficiency of architectural primitives for NVM consistency. We observe that
there is no one-size-fits-all approach to choosing persistency primitives, as the performance
overhead of persistency primitives depends upon the nature of the workload. Moreover,

the influence of memory footprint and memory access pattern on performance overhead of
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data persistency primitives mostly depends on the nature of workloads. Insights from this
empirical study provide information on the expected overhead to consistently maintain

process and memory states using different mechanisms.

1.4.2 Hybrid memory framework with DRAM and NVM

Kindle is an open-source hybrid memory framework based on gemb [50, 51] and gemOS [52].
We created Kindle because the nature of problems and proposed solutions for hybrid mem-
ory systems require an infrastructure allowing extension, validation, and evaluation of the
complete system stack. Kindle serves as a platform to explore and prototype research ideas
in hybrid memory systems crossing hardware-software boundaries. Kindle uses gemOS as
the operating system component since using gem5-Linux full-system simulation setup to

explore ideas in hybrid memory systems has the following shortcomings,

(i) While gemb models NVM controller and Linux kernel can detect NVM on real hardware
(such as Intel DCPMM) [53, 54], their integration is non-trivial (in gemb), especially

considering constantly evolving hardware and OS design.

(ii) Linux kernel is heavy with features whereby the OS functions and services can consume
a significant part of a simulation, which may not be desirable for quick prototyping of

design ideas.

(iii) Designing proof of concepts in Linux requires considerable understanding and changes

in the Linux memory management subsystem, which has non-trivial complexities.

Kindle provides process persistence in hybrid memory systems while facilitating the anal-
ysis of different design challenges and alternatives. We showcase two design choices to
consistently maintain the page table containing virtual to physical address translation

information as part of achieving process persistence using Kindle,

o Hosting the page tables directly on NVM.

o Hosting the page tables in DRAM while performing periodic checkpoints into NVM.

Kindle aided as a platform to perform our study on process persistence and designing a

memory persistence scheme specialized for program stack (Prosper).
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1.4.3 Stack tracing framework for multi-threaded programs

SniP is an open-source stack tracing framework for multi-threaded applications. Stack
captures a program’s dynamic run time state and can provide insights [55] into program
behavior. Stack analysis requires dynamic intervention as run-time stack usage can not
be foreseen, which makes static analysis techniques ineffective. Therefore, we depend on
dynamic run-time techniques for stack analysis. Using debugging tools (e.g., GDB [56])
can provide insights into the stack usage but requires manual intervention and does not
scale for long-running applications. Dynamic binary instrumentation (DBI) tools are very

convenient as they require no preparation and can trace the entire program [57, 58].

One of the approaches for run-time stack analysis is to trace all memory accesses and filter
stack-specific accesses during the offline analysis phases. However, stack analysis through a
trace-driven approach by tracing the program results in large trace files and higher tracing
time. In addition, the offline analysis approach requires dynamic stack virtual address
ranges to filter the trace, and offline analysis can use memory layout information provided
by the operating system for this purpose. However, capturing the stack range information
for different threads in multi-threaded applications is challenging. The stack areas for
threads can be allocated anywhere in the program address space depending on the state of
the address space and OS support for dynamic allocation. For example, stack areas for the
threads created using the POSIX thread library in the Linux OS are allocated at run time
in the non-contiguous areas in the address space. SniP handles the challenge of identifying
stack areas of threads in a multi-threaded application, making dynamic tracing possible.
SniP is built around Intel’s binary instrumentation tool Pin [58]. It provides a framework
for efficient run-time tracing of stack areas of multi-threaded applications by identifying
the stack areas dynamically. The targeted tracing capability of SniP reduces trace file
size by up to 75x and time to trace by up to 24x, showing its efficacy in reducing the
trace size and time to trace. Using SniP, we analyze the potential benefit of incorporating

stack-specific properties into memory persistence mechanisms for program stack.

1.4.4 Checkpoint based scheme for program stack persistence

Prosper is a hardware-software (OS) co-designed checkpoint-based approach for providing
program stack persistence in a hybrid memory system. For process persistence, one of
the crucial components of the execution state of any process is its memory state, which
consists of mutable stack and heap segments. The properties that differentiate the program

stack from the heap are its unique grow/shrink usage pattern and activation record write
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characteristics. Moreover, the stack is used in a programmer-agnostic manner; the compiler
uses the support provided by the underlying ISA to use the stack, and the OS manages
the memory used by the stack region in an on-demand fashion. Additionally, even though
the stack size is smaller than the heap, the number of operations on the stack can be
significant for some applications. Prosper considers these stack properties and tracks stack
changes at sub-page byte granularity in hardware, allowing symbiosis with OS to realize
efficient checkpointing of the stack region. Prosper significantly reduces (on average ~4x)
the amount of data copied during checkpoint and improves the overall checkpoint time
with minimum overhead (less than 1% on average). Integration of Prosper with existing
state-of-the-art memory persistence mechanisms (such as SSP [25]) for heap provides 2.6 x
improvement over solely using the state-of-the-art mechanism for the entire memory area

persistence.

We summarize our contributions in the following.

e Empirical evaluation of performance overhead of architectural primitives used for

persistent barriers in Intel x86-64 and Arm64 ISAs.

e Open-source hybrid memory framework with built-in process persistence, Kindle, for

enabling research and prototyping ideas crossing hardware-software layers.

e Open-source stack tracing framework, SniP, for efficiently capturing stack accesses

in multi-threaded applications and enabling dynamic stack analysis.

e Periodic checkpoint-based mechanism, Prosper, with hardware-software co-designed

approach for persisting program stack.

1.5 Thesis Organization

Chapter 2 introduces the background material on the need for NVM data persistence
mechanisms and details existing primitive and advanced data persistence mechanisms at
the software and hardware layers. Chapters 3, 4, and 5 present an empirical analysis of
architecture primitives for data persistence to understand the persistence overhead and
factors influencing data persistence overhead, a hybrid memory framework with process
persistence capability to prototype and steer process persistence research, and a framework
for multi-thread program stack analysis to expose unique properties of the stack, respec-

tively. Chapter 6 presents a memory persistence scheme for the program stack that handles
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properties specific to the stack to enable overall process memory persistence. Chapter 7

concludes the thesis with a discussion of possible future research directions of the thesis.



Chapter 2

Background

Using NVM for process persistence has associated challenges, and we have introduced
these challenges in Chapter 1. Understanding existing approaches and mechanisms to
address these challenges requires details on the context of NVM usage in a hybrid memory
system with DRAM. In this chapter, we discuss the need to maintain a consistent state of
data in NVM and a set of available support at ISAs such as Intel x86-64 and Arm64 for
building mechanisms at primitive and advanced levels to ensure a consistent memory state
in NVM. We further provide details on existing process persistence approaches, which aim
to address the ephemeral nature of the process and the challenges in achieving process
persistence in traditional operating systems due to the design approach of associating the

lifetime of data with the process.

2.1 Importance of Data Consistency in NVM

Modern systems have multiple levels of caches, with the last-level cache (LLC) shared
across cores. CPU caches offer significant performance improvements by leveraging both
temporal and spatial locality of memory accesses and help to bridge the memory wall
problem [59] to a large extent. However, the volatile nature of caches poses challenges
when NVM is accessed for data persistence using LOAD and STORE instructions; caches
lose data during a power failure or a crash. The challenge here is a possible inconsistency
between the execution state (program counter, register values, etc.) and the memory state

after a system crash.

12
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0x1101 STORE(A, 1)
0x1102 STORE(B, 1)
0x1103 X = A+B
0x1104 if( X =2 )
0x1105  JUMP OUT
0x1106 else

0x1107 JUMP ERR

LI1STING 2.1: Persistent Stores to NVM

Pseudo code in Listing 2.1 shows an example with stores to NVM addresses A, B, and a
branch to output (OUT) or error (ERR) section based on the value of variable X, calculated
as the sum of A and B. There can be two consistency issues if the system crashes before the
cache line containing the updated value of A is written back to the non-volatile memory
and the program counter (PC) points to the instruction following Store B (instruction
address 0x1103).

1. At the time of application restart, assuming the PC restores to a point after the
Store A instruction, the application will not see the updated value of A as it was in

the volatile cache.

2. If the cache line corresponding to B is written back before A due to cache eviction
reordering, at the time of restart, the application will find that B is updated while A
is not, causing an incorrect calculation of X = A+B and taking error (ERR) branch in

code listing 2.1.

0x1201 fn_PB(Addr){
0x1202 FENCE
0x1203 FLUSH Addr
0x1204 FENCE
0x1205 }

0x1206 STORE(A, 1)
0x1207 fn_PB(A)
0x1208 STORE(B, 1)
0x1209 fn_PB(B)

LisTING 2.2: Usage of Persistent Barrier

The second one is a more serious issue as it makes any smart recovery process non-
deterministic; the recovery process can not determine where to resume by analyzing the

memory content at the time of application restart. Using a persistent barrier as shown
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in code Listing 2.2, the cache line corresponding to store address A is written back to the
persistent domain, guaranteeing data availability in NVM in case of a system crash after

store to A.

Implementation of a persistent barrier depends on the Instruction Set Architecture (ISA).
In the next section, we look into the architecture primitives available in Intel x86-64 and

Arm64 ISAs for constructing persistent barriers.

2.2 Architecture primitives for Data Consistency

A persistent barrier uses flush and fence instructions, as shown in the code listing 2.2.
Wu, Kai, et al. [60] observed that the overhead of flushing a cache line depends upon
whether the cache line is in a clean or dirty state. The authors also observed overhead
in the concurrency of flushing cache lines, as concurrent flushes may create contention in
the internal buffers of NVM device. Existing approaches for cache line flushing include
flushing the cache line immediately after modification [16], flushing asynchronously using a
thread, flushing multiple cache lines at the end of an interval, relying on natural cache line
eviction [61], or bypassing cache [33]. Ribbon [60] improves cache line flush performance
by controlling concurrency and proactive flushing of cache lines. Intel x86-64 and Arm64

provide various flush and fence instructions.

2.2.1 Intel x86-64

Intel x86-64 provides three cache-line flush instructions, c1flush, c1flushopt, and clwb,
with subtle differences in their implementation. c1flush invalidates the cache line contain-
ing the linear address from all cache hierarchy levels and performs write back of the dirty
cache lines to the memory if required. Similar to the c1flush instruction, c1flushopt
also invalidates the cache line containing the linear address from all levels of the cache
hierarchy in the coherence domain and writes back data to memory if the cache line con-
tains modified data at any level of the cache hierarchy [48]. clwb differs from these two
instructions in that it retains the cache line in a clean state after writing back the mod-
ified cache line to memory. Therefore, clwb is beneficial for cases where future access to
the data is expected. clflush, c1flushopt and clwb are ordered by store-fence (mfence
and sfence) instructions. clflushopt is an optimized variant of clflush as it is not
ordered with respect to execution of other c1flushopt, c1flush and clwb. clflushopt

is also not ordered with respect to younger writes to the same cache line being invalidated.
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For example, while flushing two addresses A and B using c1flushopt as clflushopt (4),
clflushopt (B) then flushing of address B could happen before A. So c1flushopt allows
concurrent flushing of multiple cache lines from a thread [47]. The persistent barrier in
code listing 2.2 can be optimized in Intel x86-64 systems by removing fence before flush
because c1flush instruction orders with respect to writes and other c1flush instructions.
Similarly, the c1flushopt and clwb instructions order with respect to older writes to the

cache-line being flushed [48].

2.2.2 Arm64

Arm Cortex-A provides mechanisms to invalidate or clean a cache line. civac and cvac
are two such operations provided by Arm64 to perform invalidate or clean on data cache.
The civac instruction performs both clean and invalidate of a virtual address to the point
of coherency, and cvac performs clean of a virtual address to the point of coherency; more

information about Point of Coherency (PoC) is given below.

0x1201 fn_PB(Addr){
0x1202 dsb ish

0x1203 dc civac, Addr
0x1204 dsb ish

0x1205 }

0x1206 STORE(A, 1)
0x1207 fn_PB(A)
0x1208 STORE(B, 1)
0x1209 fn_ PB(

LISTING 2.3: Persistent Barrier in Arm64

Invalidation of a cache line clears the valid bit; cleaning writes the content of cache line to
the next cache level or the main memory if the cache line is dirty. Cleaning clears the dirty
bit and makes the content of a cache line consistent with the next level of cache or memory.
The invalidate or clean operation takes either the virtual address or the set-and-way of
the cache line. If we use a virtual address, Arm64 allows invalidation and clean operations

at two points,
(i) Point of Coherency (PoC)

(ii) Point of Unification (PoU)
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PoC is the point at which all observers see the same copy of a memory location, and PoU
for a core is the point at which all operations of the core see the same copy of a memory

location. Both civac and cvac operates at PoC [49].

For implementing persistent barrier corresponding to code listing 2.2 on Arm64, we can
use data memory barrier (DSB ISH) as fence [49] along with civac and cvac operations.

Code listing 2.3 shows persistent barrier on Arm64 using civac.

2.3 Advanced Techniques for Data Consistency

A persistent barrier using flush and fence combination ensures consistent NVM update
for a memory address. However, ensuring consistency for a code section performing multi-
ple NVM writes, such as adding a new element into a linked list or rotating a red-black tree
for height balancing requires advanced memory persistence techniques. Failure atomicity
(FASE [18]) for memory writes in code listing 2.2 can be ensured by using a transaction
scheme with begin_tx and end_tx semantics as in code listing 2.4. The FASE ensures

that either NVM locations A and B are updated with the latest value or none of them are

updated.
begin_ tx
STORE(A, 1)
STORE(B, 1)
end  tx

LISTING 2.4: Usage of FASE

We can broadly partition a failure atomic transaction into four phases, as shown in list-
ing 2.5. The begin_ tr performs operations that prepare for a new transaction based on the
underlying memory persistence scheme, assuming a scheme based on dirty bit, these oper-
ations involve clearing dirty bits in page table entries. The body contains loads and stores
within a transaction and associated operations, such as setting dirty bits in the page table
entries for modified pages. The end_tx performs operations that consume the metadata
populated during the transaction and associated operations to ensure consistency, such as
reading dirty bits in page table entries and copying modified pages from DRAM to NVM
in a hybrid memory setup. The recover tz phase only comes if a transaction aborts due
to system failure. Listing 2.5 shows the total performance overhead of a transaction if it

succeeds or fails.
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TABLE 2.1: Memory persistence mechanisms for NVM

Scheme | Usage Granularity | Existing Works
Software Approach
Logging Data Structure AsymNVM [62], PMAlloc [63], InCLL [21],
NV-Heaps [30]
Transaction Rewind [64], HPTPM [65],
Mnemosyne [22]
Shadowing Data structure MOD [66], SoftPM [67], CDDS [68]
Transaction DudeTM [69]
Checkpoint Application NVM-checkpoints [70], Aurora [1],

Liberpm [71], ResPCT [72],MemSnap [73]

System wide

Exascale [74]

Cache line flush/bypass

Data Structure

NoveL.SM [40], WAlloc [43]

System wide

Dual Copy Transaction Romulus [26]
Recompute Data structure CLBC [75]
Hardware-Software Approach
Logging Transaction NV-HTM [76], SpecPMT [77], Proteus [20]
Shadowing Transaction SSP [25]
Hardware Approach
Logging Transaction Silo [78], Atom [9], LOC [79], HOOP [29],
ASAP [80]
Whole system Capri [81]
Checkpoint Application ThyNVM [82]

Dual-page [83]

failure_atomic_ tx_ phases()

begin_tx — operations to prepare for new tx,
body — loads and stores inside tx,
end_tx — operations to finish current tx,

recover__tx — recovery operations for current tx,

failure__atomic__tx_overhead ()

if completes:

Total overhead - W+ X +Y

if aborts:

incurs overhead W

incurs overhead X

incurs overhead Y

incurs overhead Z

a — % of loads and stores completed before failure
Total overhead —» W + axX + Z

LisTING 2.5: Components and overhead of failure atomic memory section

Maintaining a consistent NVM state for a group of NVM updates requires advanced tech-

niques built around architectural primitives for cache line flushing and memory store or-

dering. These advanced techniques can be employed at different levels of usage granu-
larity, such as data structure [12, 14, 30, 40, 41, 62, 64, 66-68, 84-90], memory alloca-
tor [42, 43, 63], file system [91-95], or transaction [65, 69, 76, 96].
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FI1GURE 2.1: Broad classification of Memory persistence mechanisms for NVM

Figure 2.1 shows the broad classification of memory persistence mechanisms based on
schemes such as logging, shadowing, and approaches at hardware, software, and hardware-
software layers. Figure 2.1 also shows the granularity at which persistence mechanisms
provide memory persistence guarantees, such as data structure, application, and system-

wide. Table 2.1 expands on classifications in Figure 2.1 with a list of state-of-the-art
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memory persistence strategies under each classification in Figure 2.1. For example, NV-

Heaps [30] ensures memory persistence at the data structure level using a logging scheme.

In summary, the advanced memory persistence mechanisms can be classified based on
the granularity of usage, such as data structure or transaction, based on the underlying
scheme for achieving consistent memory updates, such as logging or shadowing, based
on the approach that is used to monitor updates to memory locations, i.e., dirty data

monitoring.

2.3.1 Classification Based on Usage Granularity

We can employ memory persistence mechanisms at different levels of usage granularity,
such as data structure, application, transaction, or system-wide. Mechanisms at data
structure granularity ensure consistency for operations that modify a data structure by
inserting, updating, or deleting elements. These mechanisms provide consistency for a
specific data structure. Similarly, mechanisms at the application granularity ensure a
consistent memory state for the application that may contain multiple data structure
updates. The system-wide granularity persistence mechanism ensures a consistent memory
state for all applications on the system. Mechanisms at the transaction granularity provide
consistency for memory operation in a section of code demarcated between begin and end

of the transaction.

Data Structure Granularity

Mechanisms at data structure granularity ensure consistency for different operations such
as insert, update, and delete on a specific data structure. For example, Guerra, Jorge, et
al. [67] proposed SoftPM, a lightweight container abstraction for data structure persistence
within conventional systems. The application developer creates a container and points the
root structure of the container to the data structure, which needs to be maintained consis-
tently. Kannan, Sudarsun, et al. [40] created a persistent key-value store, NoveLSM, based
on log-structured merge tree (LSM). NoveLSM maintains mutable persistent memtable in
NVM and allows parallel reads to multiple levels of LSM. The benefits of using NVM
in NoveLSM are, (i) memtable in NVM reduces serialization and deserialization cost of
data compared to keeping it in secondary storage, (ii) enables direct updates to persis-
tent memtable as NVM is accessible through the CPU load/store interface, (iii) reduces

application stalls due to compaction, and committing changes to memtable directly avoids
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the need to maintain logs. Venkataraman, Shivaram, et al. [68] presented consistent and
durable data structure (CDDS) that ensures consistent memory updates for data struc-
tures using versioning. CDDS creates a version for every update and tracks the latest
version to return recent values on read. CDDS garbage collects old versions based on ref-
erence count. Intel released development kit for persistent memory, PMDK [47]. PMDK

provides a set of libraries and tools for persistent memory programming.

Application Granularity

Memory persistence mechanisms at application granularity handle memory persistence
for modifications in an application consisting of multiple data structures. Tsalapatis,
Emil, et al. [1] proposed Aurora, memory persistence at application granularity using a
single-level store [97], which eliminates the distinction between the transient and persistent
state of an application. As the state of an application spans both user and kernel space,
creating problems in capturing the application state, Aurora incorporates persistence as
a service in OS to handle difficulties in capturing the application state. Libcrpm [71]
is a library that improves the checkpoint performance of applications in NVM. It uses
static instrumentation to capture memory changes at fine granularity. Libcrpm reduces
the size of checkpoint data and the number of required fence instructions. Ren, Jinglei,
et al. [82] proposed a software transparent memory persistence mechanism, ThyNVM,
for hybrid memory systems with DRAM and NVM. ThyNVM uses a hardware-assisted
periodic checkpoint mechanism. ThyNVM is a dual-scheme checkpointing mechanism,
which checkpoints data at two granularities, cache line for sparse and page for dense

writes, to reduce metadata overhead associated with checkpoints.

Transaction Granularity

Memory persistence mechanisms at transaction granularity provide consistency for mem-
ory updates from a section of code demarcated as a transaction. Chatzistergiou, Andreas,
et al. [64] proposed Rewind, a user library for managing updates in a transaction using
logging. Mnemosyne [22] provides a durable transaction mechanism by converting regu-
lar code to transactions with compiler support. Mnemosyne uses a per-thread redo log
to ensure consistent updates. Liu, Mengxing, et al. [69] proposed DudeTM, a shadow-
memory-based approach for providing durable transaction updates. DudeTM captures
transaction modifications in a shadow memory that acts as a redo log. It then flushes log

entries from shadow memory to persistent memory and finally modifies the original data



Chapter 2. Background 21

using the persistent redo log. DudeTM uses a redo log to transfer updates from shadow
volatile memory to persistent memory. Atom [9] uses hardware-based undo logging to pro-
vide consistency for stores in a region marked between atomic_begin and atomic_end.
Atom modifies the memory controller to ensure ordering between log and data write. Cai,
Miao, et al. [29] designed a hardware-assisted mechanism for out-of-place update, HOOP,
using redo logging. HOOP stores modified data in a dedicated NVM location and ap-
plies these changes to the actual memory location using a garbage collection scheme; it
also uses an address redirection table to get updated values from the dedicated NVM re-
gion. Proteus [20] uses a hardware-software approach for durable transactions. Proteus
introduced new instructions for logging, and the compiler augments each store inside a
transaction with these log instructions. ASAP [80] uses a hardware undo logging scheme
that allows atomic regions to commit asynchronously by tracking control and data depen-
dencies between atomic regions in hardware. It maintains a dependency list in the memory
controller that tracks active atomic regions and dependency between atomic regions. All

dependencies of an atomic region are resolved before freeing undo log.

File-system Granularity

Memory persistence mechanisms at the file-system level expose NVM through the file-
system layers, albeit using optimization to minimize software layer overheads. File-system
approaches include techniques such as NOVA [94] and SplitFS [98]. NOVA is a log-
structured file system for hybrid memory systems with NVM. NOVA maintains per inode
log as a linked list of 4 KB pages and atomically updates the tail pointer on log append.
NOVA uses a radix tree in DRAM to perform search operations and keeps log and file
data in NVM. The log contains meta-data about changes and uses copy-on-write for file
data. SplitF'S [98] is built upon ext4 DAX [99], bypassing page cache and using memory
mapping to access persistent memory. SplitF'S consists of a user-space library file system
for data operations and a kernel persistent memory file system (ext4 DAX) for handling
metadata operations. SplitF'S provides applications with transparency and offers a variety

of crash consistency guarantees.

Whole System Granularity

Mechanisms at whole system granularity ensure persistence for all data updates in the
system. Jeong, Jungi, et al. [81] proposed a compiler and architecture co-design approach,

Capri, for providing persistence for the whole system at the region level. Capri compiler
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FIGURE 2.2: Write-Ahead logging mechanisms

defines regions in a program and inserts instructions for checkpointing registers. Capri
uses a non-volatile proxy buffer in hardware to maintain data updates from in-progress
regions. It combines undo and redo logging, allowing dirty cache line writeback to NVM.
Dual-Page Checkpointing [83] is a hardware-based approach for whole system persistence
by tracking memory changes at cache line granularity in the memory controller. Each
virtual page is associated with two physical pages. It uses two-bit vector per cache line to

track whether a cache line is dirtied and the location of dirty cache lines in these physical

pages.

2.3.2 Classification Based on Scheme

Memory persistence mechanisms can use different underlying schemes such as write-ahead
logging (WAL), copy-on-write (CoW), shadow paging [25, 100, 101], or dual copy [26] to

ensure consistent memory state.

Write-Ahead Logging

Write-ahead logging (WAL) creates a log entry before modifying the memory location.
The values saved in a WAL depend upon the logging variation; it can be either the old
value (undo logging) before modification or the new value after modification (redo logging).
Figure 2.2 shows the working of a failure-atomic transaction (marked between begin_tx

and end_tx) using a WAL-based mechanism.



Chapter 2. Background 23

The undo log mechanism stores the old value (in a log area in the NVM) prior to the
modification and discards the log if operations in the atomic section are completed suc-
cessfully (Figure 2.2(a)). A memory location is modified in place after persisting the log
record. In case of a failure, the recovery mechanism uses values in the undo log to revert
changes. Read operations inside an atomic section access values directly from the corre-
sponding memory location as the memory contains updated values. In the example shown
in Figure 2.2(a), store(A,1) creates an undo log entry containing the address of A and
the value of A prior to store (step (2)). The application is allowed to modify the value of
A inside the atomic section after persisting the undo log entry (using a persistent barrier),
as shown in Figure 2.2(a). In redo logging, updated values are stored in the log during
a transaction. Read requests for modified values from an application are served from the
log area (Figure 2.2(b)).

The redo log entries persist during the transaction commit, and modifications are applied
to the memory location from the log either synchronously during the commit or asyn-
chronously after committing the transaction. In case of a failure, the recovery mechanism
re-performs operations in the redo log for committed but not applied transactions. The
recovery mechanism discards logs for an uncommitted transaction since the memory loca-
tions still have old, consistent values. In the redo logging example shown in Figure 2.2(b),
store(A,1) creates a redo log entry containing the address of A and updated value of A
(step 2)). Transaction mechanism updates the value of A during the commit operation

after persisting the redo log, as shown in Figure 2.2(b) (step 3)).

Undo and redo logging mechanisms present different trade-offs; transaction commit is
faster with undo logging since the memory locations are modified in place, whereas redo
logging requires applying changes during commit. With undo log, overhead referred to
as X in components of a transaction listing 2.5 is expected to be higher than redo since
each write requires persisting the log before the memory location is modified, whereas
overhead referred to as Y in listing 2.5 is expected to be lower for undo compared to
redo. Failed transaction recovery is faster for redo logging since the memory location is
not modified until the transaction is committed, whereas undo logging requires reverting
modifications using log entries during recovery, indicating a lower overhead referred to as
Z in listing 2.5 for redo. There is also a difference in the number of persistent barriers
required in undo and redo logging techniques; undo logging requires a persistent barrier
after each log write, while redo logging requires only one persistent barrier for all log
entries during the commit [18, 102]. Undo logging performs better for workloads with

more reads and is more sensitive to the read-write ratio, as observed by Hu et al. [102].
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The redo logging incurs the additional overhead of redirecting reads to the log area to get
the updated value, contributing to overhead referred to as X in listing 2.5. Both redo and
undo logging mechanisms cause write amplification and lead to cache pollution because of

additional memory operations.

Shadowing

Shadowing-based schemes create a consistent copy of data before modification. Shadowing
can be at different levels based on the granularity of copying, such as page, object, or cache
line. Compared with write-ahead logging schemes, shadowing or copy-on-write (CoW) at
page granularity (shadow paging) makes a copy of the page on the first write to the page
for preserving old content, and subsequent writes in the failure atomic section have no
additional overhead. Figure 2.3 shows that store(A,1) (step (D) creates a copy of the
page containing A (step (2)), and the value of A is updated in the new page (step ).
The copy operation is performed only on the first write, and future writes to the page

containing A in the transaction are directed to the new page.

One general approach to implement shadow paging in conventional systems is by marking
pages as read-only to raise page fault on first write and then copy page and update page
table mapping to point to newly copied page [103, 104]. These newly copied pages remain
the final valid page if the failure atomic section commits, i.e., on a successful transaction,
we can discard pages from which copies are created (old pages). On failure, page table

mappings are reverted to old pages and new pages are reclaimed.

The CoW-based mechanism avoids extra operations required to create and manage logs in
a logging scheme but with a drawback of write amplification if the modification size is less

than half of the page size [105], indicating a higher overhead referred to as X in listing 2.5.
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In addition to ensuring a consistent memory state in a transaction, the copy-on-write
mechanism at page granularity is also used for fork system calls, data deduplication, and

snapshotting [103].

Checkpointing

Creating failure atomic section using checkpointing [74, 83, 106] requires saving the state of
an application into a persistent device for fault tolerance. We can perform checkpointing at
the full-system level or specific to an application. Multi-level checkpoint methods combine
frequent local checkpoints with infrequent remote checkpoints for better checkpointing
performance [70]. As an alternative to checkpointing, a recompute-based method recovers
from a failure by recomputing parts that are not complete, avoiding the need to restore a
copy from the checkpoint or log [75]. Checkpointing may generate a large volume of data,
and to reduce the volume of data, checkpointing can be performed incrementally [70, 74].
Incremental checkpointing involves monitoring state changes and copying changes to a

persistent device, contributing to overheads referred to as X and Y in listing 2.5.

For checkpointing memory, conventional systems allow monitoring memory state changes
at page granularity using virtual address translation infrastructure [104]. Zhang et al. [107]
enable sub-page granularity tracking by placing objects on different virtual pages and using
the page-protection mechanism to identify modified objects in a checkpoint interval. In
their approach, objects in different virtual pages are allocated on the same physical page
to avoid physical memory wastage. Libcrpm [71] is a software approach for incremental
checkpointing that divides the NVM area into main and backup regions to save the working
and checkpoint states of objects. The main and backup regions are further divided into
segments (2MB each) and blocks (256B each) for meta-data maintenance. Libcrpm uses
static instrumentation to track memory changes for recording memory dirty information
and initiating copy-on-write on the first write to the main region segment in an interval.
In Libcrpm, first write to a segment triggers the copying of dirty blocks from the main
to the associated segment in the backup region and also adds the segment to the list of
dirty segments. At the end of a checkpoint interval, modified blocks in each segment from
the list of dirty segments are flushed to memory using a persistent barrier consisting of
clwb and sfence constructs. Wu, Song, et al. [83] provide hardware-based checkpointing
at cache line granularity using two physical pages for a virtual page. These two physical
pages store checkpoint and working data and use two-bit vector per cache line to denote

the page with working/checkpoint data and dirty/clean status.
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2.3.3 Classification Based on Memory Update Monitoring

We can further categorize these existing memory persistence mechanisms for failure atom-
icity as tracking and mon-tracking based on their method for monitoring and capturing

memory updates.

Mechanisms with Memory Access Tracking

In tracking-based mechanisms, memory modifications are tracked in the hardware and/or
software layers for periodic checkpointing. Aurora [1] tracks memory changes using the
per-page dirty bit [48] to provide checkpoint-based process persistence in the OS layer by
incrementally saving various subsystem states associated with a process, including mem-
ory. Kona [108] proposes tracking memory modifications at cache line granularity using
a memory exposed through FPGA. Improvements in memory dirty tracking techniques
using software and hardware enhancements ( [104, 108-110]) attempt to reduce the dirty
tracking overhead or support dirty tracking at a finer granularity (e.g., 64 bytes). OS-
driven checkpoint solutions require tracking at a finer granularity for efficiency. Moreover,
OS-level checkpointing requires flexibility in terms of programming and orchestrating ad-

ditional hardware support from the OS layer.

Mechanisms without Memory Access Tracking

Non-tracking techniques employ two main approaches, logging [22, 23, 72, 77, 78, 102]
and shadow paging [25, 100]. SSP[25] is a shadow paging-based mechanism at cache line
granularity that redirects modifications to two different physical pages using hardware-
assisted cache line remapping and consolidates these pages using a background OS thread.
ATOM [9] uses hardware-based undo logging and manages log allocation, ordering, and
truncation in the hardware. InCLL [21] is based on in-cacheline undo logging to provide
fine-grained checkpointing. Compiler-assisted techniques can add log instructions for each
store inside a transaction and use special log registers to improve the performance of log-
based checkpoint solutions. Shin et al. [20] use hardware support to order log write and
data update operations to realize an efficient compiler-assisted logging solution. LOC [79]
uses logging by extending the CPU load/store interface and cache, ensuring memory persis-
tence through a relaxed order of writes within and between persistent memory transactions
(PTM). Capri [81] modifies the compiler to assist the hardware in maintaining undo+redo
logs in a targeted fashion. HOOP [29] uses hardware-based redo logging, while JUSTDO
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[31] is a software logging approach that minimizes log size by storing only the most recent
store instruction executed within an atomic session. ThyNVM [82] provides a hardware-
assisted dual checkpointing scheme for DRAM+NVM hybrid memory that dynamically
decides the checkpoint size to reduce overhead. These software, hardware, or software-
hardware combined approaches under non-tracking require non-trivial operation during a

persistence interval.

2.4 Achieving Process Persistence

We can use FASE [18] mechanisms to maintain a consistent memory state for process com-
ponents to achieve process persistence, allowing resumption from its last saved consistent
state. The state of a process includes multiple components such as CPU registers, memory,
execution context in the OS, etc. Traditional OSes use the classical process/thread execu-
tion model. In these OSes, data and pointer references to the data last till the lifespan of
a process [111]. This process-centric design requires special mechanisms and support from

OS to persist the state of a process in a crash-consistent manner.

Existing approaches to provide process persistence aim to tackle the transient nature of
a process by proposing new abstractions for a process in NVM or using a data-centric
approach in which data is treated as a first-class citizen by having its lifespan beyond the
process that creates it. NV-Process [112] follows the former approach to provide a fault-
tolerant process abstraction using NVM by decoupling the notion of processes from OS. In
conventional OS, the process state is intermingled with the OS state, making segregation of
the process state from OS difficult. This entanglement destroys the state of a process and
associated meta-data on OS reboot. Therefore, NV-process maintains the process state
independently from the OS state. Twizzler [113] follows the latter approach and proposes a
data-centric OS for NVM, extending the design principles of Grasshopper[97], a single-level
store OS. Twizzler aims to minimize OS intervention in persisting data and disassociates
persistent data from ephemeral virtual memory context. For this, Twizzler divides NVM
into persistent objects within a global object space and uses a library OS to map objects
into address space. The user and kernel space share the address space layout (view object),
and the user-space maps objects into this address space at a specific location, kernel then
reads this view object to define the required virtual address layout. Twizzler also enables
persistent pointers that remain valid across reboots; persistent pointers are represented
using offsets inside objects. The persistent object model of Twizzler is motivated by

the object model in NV-heap [30]. NV-heap implements persistent objects (Non-volatile
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Memory Heap) and handles persistent pointers by ensuring that there are no pointers from
non-volatile heap to volatile data and from one non-volatile heap to another non-volatile
heap. NV-heap maintains a root; all objects reachable from the root are persistent. As
Twizzler and NV-heap aim to provide persistent data objects, adapting them for process

persistence is non-trivial.

This thesis proposes a checkpoint-based scheme for process persistence in a hybrid memory
system with DRAM and NVM. As process persistence requires consistently maintaining
process states, we show the overhead of using architecture primitives through persistence
barriers in achieving data persistence for common data structures associated with process
states in OS. We create a hybrid memory framework with process persistence capability
to explore research directions in hybrid memory systems about persistence and capacity.
We showcase that persistence schemes for maintaining a process’s memory state require
techniques specialized for the memory area under consideration by exposing peculiar char-
acteristics of the stack area through an efficient stack tracking framework. We then propose
a checkpoint-based memory persistence scheme for the stack that handles unique proper-
ties of the program stack and provides lower overhead than using other advanced memory

persistence techniques for the program stack.

In the next chapter, we study the performance overhead of different hardware primitives
and logging-based mechanisms to achieve NVM consistency on Intel x86-64 and Arm64

systems.
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Empirical Analysis of

Architectural Primitives

Byte addressable Non-Volatile Memory provides persistent memory semantics and large
memory capacity with access latencies comparable to volatile memory (DRAM). The per-
sistent semantics offers an attractive alternative to meet data persistence requirements of
applications’ without relying heavily on off-the-chip persistent storage devices (e.g., HDDs
and SSDs) and complex storage management middleware such as file systems [5]. The tra-
ditional application programmer interfaces need a revisit to leverage the benefits of NVM
by storing the data directly in NVM, avoiding any serialization requirements [114]. How-
ever, the transition from volatile memory to non-volatile memory presents some unique
challenges. One of the major research challenges is to design specialized techniques to
provide consistent memory state for applications using NVM across system restarts as
mentioned in § 1.1. Considering the intricacies of processor-memory data path organiza-
tion, traditional file system or database techniques (e.g., journaling and transactions) may
require non-trivial adaptation. To provide consistency and atomicity guarantees for the

applications using NVM, several techniques are proposed [7-10].

To leverage the full benefits of the NVM systems, applications can store and access data
in the form of in-memory data structures residing in the NVM. The root cause of inconsis-
tency arises in the event of a system crash where hardware storage elements such as caches
and other volatile micro-architectural components lose in-flight memory modifications, as

mentioned in § 2.1. There can be two major repercussions in the above scenario,

(i) The system is left in a corrupt memory state

29
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(ii) The expected program execution state is different from the NVM state.

One of the approaches used to address this inconsistency is to allow the application devel-
oper achieve a guaranteed temporal order for moving data into the persistent domain (i.e.,
NVM) [38]. With this approach, the application developer is guaranteed to see the updated
memory content even after an abrupt system reboot caused by software/hardware failure.
Persistent barrier is one of the fundamental techniques to achieve NVM consistency in an
efficient manner. The application programmer (or the NVM support library) inserts per-
sistent barriers at appropriate places to ensure data propagation to the NVM and achieve
crash consistency as mentioned in § 2.1. In this chapter, we analyze the performance im-
plications of different architectural primitives for NVM consistency. This study aims to
guide application, support library, and middleware developers in choosing the appropriate
architecture primitives based on their performance objectives and memory access patterns
to achieve NVM consistency. We also show other techniques like controlling the data cache

behavior using page table attributes (e.g., PAT in x86) for NVM consistency.

The primitive architectural artifacts such as cache flush and memory fences are used to
realize persistent barriers in NVM systems [38]. Logging based techniques (similar to file
system journaling) such as redo or undo logging [9, 19, 21, 31, 115] also depend heavily
on the architectural implementation of persistent barriers as mentioned in § 2.3. Persis-
tent barriers also play a key role in the data structures, memory allocators and memory
management schemes proposed specifically for NVM [39-46]. Most instruction set archi-
tectures (ISAs) provide a set of instructions (e.g., c1flush and mfence in x86 ISA) along
with required extension of the persistent domain (e.g., battery powered memory controller
a.k.a. Intel ADR [47]) to propagate changes to NVM in a consistent manner. We empir-
ically analyze the performance overhead of different data consistency methods provided
by Intel x86-64 (clflush, clflushopt, clwb) and Arm64 (civac, cvac) ISAs [48][49].

Through this empirical study, we answer following questions,

(i) What is the performance overhead of different consistency primitives for different ISAs

(x86-64 and Arm64) with single and multi-threaded applications?

(ii) How does the memory footprint and access characteristics (read-to-write ratio) of
different applications influence the performance overhead of different data consistency

methods?

(iii) Transaction-based consistency mechanisms like redo and undo logging use the un-

derlying architectural persistence barriers to achieve atomic update semantics. In this
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TABLE 3.1: Microbenchmarks used in the experiments

Benchmarks | Description

BST Binary Search Tree

BST P Parallel Binary Search Tree
CUH Cuckoo Hashing Table [116]
QUE Linear Queue

RBT Red-black Tree [117]

context, an interesting question is: What is the comparative performance overheads for

redo and undo logging schemes with different data consistency methods?

Answering the above questions can provide guidelines for application/middleware devel-
opers to choose the right technique and account for the resource overheads during capacity
planning. Moreover, the analysis can provide directions to improve the efficiency of ar-
chitectural primitives for NVM consistency. We have used a set of workloads designed
to operate on well known data structures and executed them on gemb architecture simu-
lator [50, 51] to analyze the performance implication by providing justifications through

different architecture layer metrics.

3.1 Setup and Methodology

3.1.1 Benchmarks and Parameters

We have used micro-benchmarks implementing well-known data structures (Table 3.1)
to study the performance overhead of different data consistency methods. We choose
these data structures as they are commonly used in applications and operating systems to
maintain different states. For example, Queues are extensively used to manage tasks, I/O
requests, and network packets in operating systems. Similarly Red-black trees or other

tree data structures are used to manage processes’ virtual memory areas.

BST benchmark performs insert, delete and search operations on a binary search tree. One
of the data consistency methods (passed as a parameter to the benchmark) is used after
each insert and delete operation to push changes into the persistence domain. BST P is
a parallel implementation of binary search tree using POSIX threads to parallelize search
and update operations where a read-write lock is used for synchronization across the three

operations.
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FIGURE 3.1: Insert operations on Cuckoo Hashing data structure.

CUH benchmark uses cuckoo hashing [116], a dictionary data structure with constant
worst case lookup time. Cuckoo hashing uses two hash tables, with two hash functions
hash1 and hash2, respectively. Every key x is stored in the cell hash1(x) of the 15 table
or the cell hash2(x) of the 2°d table. During insertion of any key x, if the cell hash1 (x)
is free, then key is inserted there. Otherwise, the previous occupant of the cell hashi (x)
becomes “nestless” after x is inserted in that position. The nestless key is inserted into
the 274 table by following the same procedure. This process continues until the nestless
key finds a free slot or reaches “MaxLoop” count. Reaching “MaxLoop” count results in
resizing of the hash table. Note that, an insertion may cause multiple keys to become
“nestless”. Figure 3.1 shows an example of inserting keys x1, x2 in a cuckoo hash table.
Insertion of x1 finds an empty cell in 15 table, whereas inserting x2 moves the previous
occupant of the cell in 15 table to 2"¢ table which necessitates moving x0 to 15 table. We

use data consistency methods for each cell update in the hash tables.

QUE benchmark is based on linear queue with a head and a tail pointer providing en-
queue and dequeue operations. Enqueue operation adds a new element at the rear end
and updates the tail pointer. The enqueue operation ensures that both tail pointer and
newly added item reach persistence domain by using one of the data consistency methods.
Dequeue operation removes an item from the front and updates the head pointer while

ensuring that the head pointer updation reach the persistent domain.

RBT benchmark performs different operations on a height balanced binary search tree
(red-black tree) with red-black properties—(i) each node is either red or black, (ii) both
children of a red node are black, (iii) path from a node to descendant leaves have same

number of black nodes, and, (iv) root and leave nodes are black. An insert or delete
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TABLE 3.2: Working set sizes used for experiments on gemb

Type Size Description | Inserts | Deletes | Searches*
Tiny 0.90 x L1-D Size 460 400 600
Small 0.90 x L2 Size 7370 4000 6000
Medium | 0.90 x LLC Size | 29490 4000 6000
Large 4 x LLC Size 131070 4000 6000
*Queue does not support search operations
Hash Table
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FIGURE 3.2: Schematic diagram of LRU micro-benchmark.

operation may violate the red-black property, thus requiring change of color for multiple
nodes or rotation operations to restore the red-black properties. RBT uses one of the data

consistency methods when the tree is updated to ensure data persistence.

To study the performance implications with different cache working set size, we have
used four variants— tiny, small, medium and large (Table 3.2), as parameters for the
experiments. Table 3.2 shows the number of insert, delete and search operations performed
under each working set size variant; insert and delete operations maintain the working set
size (mentioned under the size description) of the micro-benchmarks. For example, in case
of tiny working set, size of micro-benchmarks always fits into L1 data cache (L1-D) while

performing insert and delete operations.

3.1.2 Redo and Undo Logging

As discussed in § 2.3, the undo-logging technique records old values in the log area and
discards them on successful transactions. In contrast, the redo-logging technique records
new values in the log area and applies them to memory locations on successful transactions.
To study the influence of different data consistency primitives with redo and undo logging

schemes, we use a micro-benchmark as shown in Figure 3.2 that maintains the LRU order
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TABLE 3.3: Gemb configuration

CPU Out-of-order CPU

L1-D/I 32 KiB/core (8 way)

L2 512KiB/core (16 way)

L3 2 MiB/core shared (16 way)
MSHRs 16, 32, 32/core at L1-D, L2, L3
Cache data access latency | 2, 9, 15 cycles at L1-D, L2, L3
Cache line size 64 B in L1, L2, L3
Replacement policy LRU

L1 prefetcher StridePrefetcher with degree=4
Memory controller Nvmain*[118]

Memory PCM with configuration based on [119]
Memory capacity 10 GB (20GB for § 3.3.1)

*gemb NVM Interface [51] used for results in § 3.3.1

of objects in the presence of different access patterns. The LRU micro-benchmark consists
of a linked list of objects where the recently accessed object is maintained at the head of
the list. The implementation consists of a hash table to speed up the access where an
entry in the hash table index points to an object in the LRU linked list. The hash table
resolves collision at an index using chaining. Each object in the LRU list also contains
a fixed-size data field. For accessing an object, the hash table entry is used to get the
object’s index in the LRU linked list, and the object is moved to the head position of the
list after access. To ensure failure atomicity, undo or redo logging is implemented as a
separate linked list of entries, with each entry consisting of a <address, value> pair, where
the value is a pointer to a memory address of configurable size to support different log
values. In our redo implementation, read access is implemented by looking up the item in
the LRU data structure. Our study differs from Wan et al. [102] as we have compared the
performance with different persistent barrier primitives while Wan et al. [102] used redo

and undo logging with Intel PMDK framework.

For the experimental evaluation, we have configured gem5 [50] with parameters in Table
3.3.

3.1.3 Why do we focus on flush-based data consistency methods?

Even though cache line flushing is the most common approach to ensure data consistency
in NVM, we can design other alternative mechanisms using cache bypassing, write-through
caches, or non-temporal stores [120]. To understand the behavior of these alternatives, we

compared the performance overhead of uncacheable (UC) and write-through (WT) [48]
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FIGURE 3.3: Performance overhead of data consistency methods. Y-axis values
are slowdown with respect to noflush (not using any data consistency method).

memory against different cache line flush-based data consistency methods. We used a
set of micro-benchmarks (Table 3.1), with LLC thrashing working set size, on an Intel
Xeon(R) 3.20 GHz system with L1-D/I 32KB (8 way), L2 1MB (16 way) and L3 8MB (11
way), with Ubuntu 18.04.3 LTS (kernel 4.19.13).

We have used Page Attribute Table (PAT) of x86-64 systems to set the memory type
as UC or WT. We augmented the mmap system call in the Linux kernel (v4.19.13) to
introduce a special flag (MAP_SENSITIVE) to allow the user space to control the caching
behavior. Depending on the value of the flag passed from the user space, any given
virtual address range is mapped as UC or WT by configuring the page table entry with
appropriate PAT value [48]. Figure 3.3 shows the performance overhead of different data
consistency methods normalized to noflush. The performance overheads with UC and
WT is significantly higher (between 5x - 31x) compared to the cache line flush based data
consistency methods. The results clearly demonstrate the benefits of cache flushing-based
techniques, and therefore, we focus on studying different cache line flushing-based data

consistency methods in this chapter.

3.2 Evaluation of data consistency primitives

In this section, we study the performance overhead of different data consistency methods
with Intel x86-64 and Arm64 systems using the micro-benchmarks in Table 3.1. To analyze
the performance implication of working set size with different levels of cache occupancy,
we vary the working set size by configuring the benchmark parameters as mentioned in
Table 3.2.
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3.2.1 Performance with Intel x86-64

We analyze the impact of persistent barrier methods on the performance of data structures
on a simulated gemb system with configuration in Table 3.3 and on a real system with

Intel Optane persistent memory module [5] using micro-benchmarks in Table 3.1.

(A) Performance on simulated gem5 system:

Figure 3.4 shows the performance slowdown of different micro-benchmarks with different
data consistency methods. The slowdown is the ratio of completion time with different data
consistency methods to noflush (i.e., not using any data consistency method). Memory
allocation for noflush happens from NVM in the simulated system. The result shows
that clflush and clflushopt have similar slowdown across all working set sizes with
all workloads. This similarity in slowdown is primarily due to the inevitable requirement
of ordering the flushes to ensure NVM consistency, which negates the optimizations (i.e.,
concurrency of flush operations) provided by cl1flushopt (Refer § 2.3 for details). With
clwb, the performance overheads are lower (by 1x - 1.3x) compared to both clflush
and clflushopt depending on the benchmark and working set size. The performance
overheads of different flush methods vary between (1x - 2.5x) compared to noflush,
where QUE benchmark results in the highest performance overhead for all working set

sizes and CUH has the lowest for all working set sizes.
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For QUE micro-benchmark, with c1flush and clflushopt, each insert results in two

additional cache misses
(i) cache miss while updating the next pointer of the previously inserted element.
(ii) cache miss while updating tail pointer.

The delete operation also results in additional cache misses while updating the head
pointer. By taking large working set size as an example, we study the cache misses at
L1-D for QUE with c1flush and clflushopt compared to other benchmarks (Table 3.4).
QUE also results in the highest MPKI (misses per kilo instruction) based on demand
misses for CPU data at LLC for c1flush and clflushopt as shown in Table 3.4. It is
interesting to note that, QUE with clwb results in a significant slowdown (Figure 3.4)
even though the MPKI at LLC is lower compared to other techniques (Table 3.4). This
slowdown in QUE with clwb relates to the delay in committing instructions at the reorder
buffer (ROB) head. Table 3.4 reports number of times committing an instruction that
reaches the ROB head has to stall because the instruction has not finished execution. The
number of such stalls is high for clwb and all other data consistency methods in compari-
son with noflush as shown in Table 3.4. Therefore, the presence of flushes and memory
fences to order flushes contributes significantly towards the overall performance overhead.
The highest number of commit stalls at ROB head is for c1flush and decreases by 33%
to 50% with clflushopt or clwb for all micro-benchmarks except for BST_P. BST P
experiences high number of commit stalls at the ROB head even with noflush due to the

usage of locks.

The minimum performance overhead of CUH with different data consistency methods can
be correlated with its similar miss rate at L1-D and similar MPKI values at LLC (Table
3.4). The similar cache miss behavior can be attributed to the number of keys becoming
“nestless” during inserts, which remains same across all techniques. The L1-D miss rate
and LLC MPKI indicates that, CUH benchmark do not exhibit high temporal locality,
and therefore, the performance impacts due to cache line flushing is negligible. RBT has
a higher performance slowdown than BST with different flush methods, as inserting or
deleting elements in the tree may create multiple changes to balance the tree’s height.

RBT has 1.4x higher LLC MPKI for c1flush and clflushopt than noflush.

There is a decrease in slowdown (with all flush methods) between medium and large
working set sizes, as shown in Figure 3.4. An increase in time taken for noflush can
result in a comparatively lower slowdown because we calculate the slowdown in a relative

manner (w.r.t. the noflush performance). As the medium working set benchmark fits into
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TABLE 3.4: Cache miss and ROB stall behavior with large working set

Methods | BST | CUH | QUE | RBT |BST P
LLC MPKI
noflush 1.74 1.68 5.23 2.56 0.73
clflush 1.79 1.68 20.42 3.79 1.16
clflushopt 1.79 1.67 19.27 3.77 1.15
clwb 1.69 1.66 0.69 2.49 0.71
L1-D miss rate (in %)
noflush 6.23 0.65 2.63 6.39 12.56
clflush 5.97 0.63 7.89 6.52 12.33
clflushopt 5.96 0.63 7.55 6.51 12.65
clwb 6.03 0.63 3.11 6.08 12.73
#commit stalls at ROB
noflush 6 34 6 161 1091245
clflush 798,423 | 3,348,775 | 536,286 | 1614611 | 1489288
clflushopt | 532,284 | 2,232,528 | 270,146 | 779187 | 1356583
clwb 532,284 | 2,232,528 | 270,146 | 779187 | 1351100

the LLC while the large working set does not, noflush results in better performance with
medium working set by maximizing the benefits of temporal locality of memory accesses.
Therefore, there is a decrease in the relative slowdown with large working set size compared
to that of medium working set size. We can confirm the change in noflush performance
under medium and large working set sizes by comparing the MPKI at LLC with noflush
and clflush methods by taking BST benchmark as an example. The MPKI values at LLC
for medium working set size are—0.22 for noflush, 1.04 for c1flush, 1.04 for c1flushopt
and 0.22 for clwb, as shown in Table 3.5. All benchmarks show higher LLC MPKI with
clflush and clflushopt compared to noflush for medium and small working set types.
The MPKI at LLC for clflush compared to noflush is 4.7x and 0.02x for medium
and large working sets, respectively, resulting in higher relative performance overhead for
medium working set in Figure 3.4. The cache-friendly nature of benchmarks decides the

comparative performance slowdown for different persistent barrier mechanisms.
(B) Performance on real system:

We examined the impact of persistent barrier primitives on a real x86-64 system with NVM
using micro-benchmarks in Table 3.1. As the baseline in this study, micro-benchmarks
allocate memory from volatile DRAM instead of NVM and do not flush cache lines after
modification. With this baseline, the results mainly signify the performance overhead
after migrating applications from volatile DRAM to NVM for persistence. Figure 3.5

shows the performance overhead of different data consistency methods on a two-socket
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TABLE 3.5: LLC MPKI with Medium and Small working set

Methods | BST | CUH | QUE | RBT | BST P

Medium
noflush 0.22 0.9 4.76 | 0.92 0.18
clflush 1.04 | 1.06 | 19.97 | 2.13 0.77
clflushopt | 1.04 | 1.04 | 18.87 | 2.11 0.8
clwb 0.22 | 0.88 | 0.54 0.5 0.17
Small

noflush 0.11 | 0.19 | 3.86 | 0.14 0.1
clflush 0.55 | 0.39 | 19.03 | 0.92 0.36
clflushopt | 0.52 | 0.39 | 18.03 | 0.91 0.36
clwb 0.11 | 0.19 0.5 0.91 0.09

TABLE 3.6: Working set sizes used for real system experiments

Type Size Description | Inserts | Deletes | Searches®
Tiny 0.90 x L1-d Size 460 90 138
Small 0.90 x L2 Size 14746 2947 4423
Medium | 0.90 x LLC Size | 324403 | 64880 97320
Large 2 x LLC Size | 720896 | 144177 216268

*Queue does not support search operations

Intel(R) Xeon(R) Gold 6226R system with private L1d (32 KB, 8 ways) and L2 (1 MB, 16
ways) and shared L3 (22 MB, 11 ways) cache, running Ubuntu 20.04.5 operating system.
This system contains an Intel Optane persistent memory module of capacity ~512 GB [5],
exposed to applications through the direct access (DAX) [99] feature of Linux ext4 file
system. Figure 3.5 shows four working set size variants, tiny, small, medium, and large,
performing a number of insert, delete, and search operations as shown in Table 3.6. In
this experiment, micro-benchmarks allocate memory from NVM using mmap system call
by mapping the DAX file. Figure 3.5 shows the slowdown in execution time while using
one of the cache line flush methods with respect to the case when not flushing the cache
line, i.e., noflush. The micro-benchmarks use sfence instruction to order cache line flush
instructions in all flush variants in Figure 3.5, and as mentioned earlier, micro-benchmarks
allocate memory from volatile DRAM instead of NVM and do not flush cache line after

modification in the noflush setup.

The cuckoo hashing table (CUH) exhibits the lowest slowdown across tiny, small, and
medium working set sizes. CUH shows similar slowdown across all cache line flush variants,
with a maximum change in slowdown of 3.20x to 3.35x from clflush to clflushopt for
tiny working set size and 2.57x to 2.53x change in slowdown from clflush to clwb for

small working set size. It shows that CUH gets minimum benefit by retaining the cache
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FIGURE 3.5: Performance slowdown under data consistency methods in real x86-
64 system. Y-axis values are slowdown with respect to noflush (lower the better).

line in a clean state by using clwb. Linear queue (QUE) has the highest slowdown across
all working set sizes, with c1f1lush showing a higher slowdown than c1flushopt and clwb.
QUE gets benefit by keeping the cache line in a clean state using clwb, showing a maximum
reduction in slowdown, 67X to 59.45%, from c1flush to clwb for medium working set size.
Binary search tree (BST) gets benefits when cache line is invalidated using c1flush as
it shows lower slowdown than clwb for cache fitting working set sizes tiny, small, and
medium. Whereas, the Red-black tree (RBT) gets the benefit of keeping the cache line
in a clean state using clwb by providing a maximum reduction in a slowdown, 3.38x to

3.27x from clflush to clwb for medium working set size.

In summary, the choice of cache line flush variant in persistent barrier primitives should
depend upon the nature of the workload and working set size. The performance overhead
of different persistent barriers depends upon the cache-friendly nature of benchmarks. For
example, CUH shows minimum slowdown across all working set types in simulated and real
x86-64 systems. Similarly, QUE has the highest slowdown in simulated and real systems
across all working set types. The difference in the extent of slowdown between simulated
and real system is because of the difference in configurations of simulated and real system,
and the difference in memory allocation for the noflush case. The noflush in simulated
system allocates memory from PCM memory attached to gemb albeit without performing

flushes and noflush in real system allocates memory from volatile DRAM. Thus, results
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FIGURE 3.6: Performance slowdown with different data consistency methods in
gem5 simulation of Arm64 system. Y-axis values are slowdown normalized to
noflush (lower the better).

from the simulated system show the overhead of persistent primitives, whereas real sys-
tem results include overhead due to differences in memory technologies and persistent

primitives.

3.2.2 Performance with Arm64

We characterized the performance of different benchmarks (Table 3.1) with civac and
cvac consistency primitives for ARM (refer §2.2 for details) on a simulated gem5 system
with configuration in Table 3.3. As Figure 3.6 shows, cvac performed better and resulted
in a lower slowdown compared to civac across all micro-benchmarks and working set sizes.
We can functionally equate cvac with clwb as both of these mechanisms retain cache lines
in a clean state and show the same performance trend across different working set sizes.
Like in the case of x86-64, the QUE benchmark results in the highest performance overhead
for all working set sizes, and CUH has the lowest for all working set sizes. The performance
overhead of QUE is associated with the cost of ordering clean operations because MPKI
at LLC for QUE is lower for cvac than for noflush and total number of times commit
has to stall is higher for cvac than noflush due to usage of memory fence to order writes
to NVM.

We experimented using the read:write ratio as a parameter to study the impact of ap-
plication memory access behavior. For this experiment, we used three variants for each
benchmark: (i) read-light with read:write ratio of 10:90 (ii) read-balanced with read:write

ratio of 50:50; and (iii) read-heavy with read:write ratio of 90:10. Note that, the write
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TABLE 3.7: Influence of read-to-write ratio on performance slowdown in gemb
simulation of Arm64 system

Benchmark | read-light | read-balanced | read-heavy
civac

BST 1.67 1.78 1.89

BST_P 1.54 1.64 1.97

QUE 2.47 2.34 2.22

RBT 1.66 1.71 1.82
cvac

BST 1.53 1.63 1.83

BST P 1.45 1.48 1.88

QUE 2.08 1.98 1.88

RBT 1.48 1.51 1.61

operation comprises both insert and delete operations. All benchmarks with different
working set sizes result in similar slowdown across the three variants (i.e., read-heavy,
read-balance, and read-light) except for the medium working set (shown in Table 3.7).
With an increase in the percentage of read operations, the performance overhead increases
for all benchmarks except for QUE. With read-heavy, BST_ P results in 1.27x perfor-
mance degradation compared to read-light. Interestingly, QUE results in comparatively
less overhead with increasing number of read operations, with read-heavy QUE results in
~10% less overhead compared to read-light; the L1-D miss rate is reduced by 5% with
read-heavy as compared with read-light for QUE.

3.3 Performance of Redo and Undo Logging

3.3.1 Performance with x86-64

We studied the performance overhead of redo and undo logging with different data consis-
tency methods to ensure consistency of the LRU benchmark (§ 3.1.2). The characterization
uses the nature of modifications (Data-only, Meta-only, Hybrid) and logging requirements
(Log Heavy, Log Medium, Log Light) as parameters for a transaction with a total of 1000
operations. In the LRU benchmark, Data-only corresponds to a write access operation
to an object in the LRU list where both the LRU structure and data field of the object
are modified. Meta-only refers to a read operation to an object in the LRU list where the
LRU structure is modified. Hybrid comprises of 75% of Data-only and 25% of Meta-only
accesses. The logging requirement denotes the percentage of total operations requiring

logging. For example, Log Heavy requires logging for 90%, Log Medium requires logging
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for 50% and Log Light requires logging for 10% of total operations performed in the LRU
benchmark. All operations are performed under a single transaction demarcated between

tr_begin and tx_end.

Figure 3.7 shows that using undo log causes a slight performance slowdown for all mod-
ification categories and all types of logging requirements, whereas the redo log performs
better compared to the vanilla case of no logging for all modification categories except for
Hybrid. Figure 3.7 also shows that c1flush or c1flushopt performs better than clwb for

some cases with undo log, which suggests that clwb is not always the best.
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TABLE 3.8: L1-D cache miss and replacements with logging using clwb in gem5
simulation of x86-64 system

Methods Data-only ‘ Meta-only | Hybrid
L1-D miss rate (in %) with logging
Log Heavy
vanilla 20.46 20.43 20.27
redo 18.44 18.52 17.76
undo 20.23 20.27 20.17
Log Medium
vanilla 15.60 15.59 15.51
redo 14.65 14.81 14.58
undo 14.75 15.55 14.41
Log Light
vanilla 11.27 11.33 11.26
redo 11.08 11.20 11.19
undo 10.59 11.28 11.16
% of change in L1-D replacements with redo
Log Heavy <0.1% | <0.1% | | 21.89% 1
Log Medium | <0.4% 1 | <0.4% 1 | 12.62% 1
Log Light <0.3% 1 | <03% 1 | 3.18% 1
1 increase | decrease w.r.t. vanilla

With redo log, clwb performs marginally better than c1flush and cl1flushopt. We can
interpret the benefit of redo log by analyzing the reduction in percentage of L1-D cache
misses in Table 3.8 for the redo log with clwb. We have also noticed that L1-D cache
write-backs are reduced (between 31% to 5%) in comparison with vanilla (no memory

persistence) while using redo with clwb (because of log access locality).

Additionally, Table 3.9 shows L1-D cache misses for redo and undo logging under different
cache line flush mechanisms. With Log Heavy logging requirement, redo log reduces L1-D
cache misses for Data-only and Meta-only modification categories, signifying the benefit
of locality in accessing redo log; for example, modifying the data structure may result in
accesses to different memory locations, whereas with redo, accesses happen to the log area,
providing locality. The redo log also reduced L1-D cache misses under Log Medium and Log
Light logging requirements, showing a lower slowdown in Figure 3.7. However, the Hybrid
modification category did not provide any cache benefits for the redo log mechanism, as
the L1-D cache misses are higher than the vanilla in Table 3.9. In addition to higher L1-
D cache misses with Hybrid for redo, one more possible reason for comparatively higher
performance slowdown for Hybrid with redo logging can be the L1-D cache pollution since
L1-D replacements are increased with Hybrid as shown in Table 3.8 for clwb with respect

to vanilla. This cache pollution may be created by the hardware prefetcher at L1-D
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TABLE 3.9: L1-D cache misses with redo and undo logging in gem5 simulation of x86-64

system
Methods | Scheme Data-only | Meta-only | Hybrid
Log Heavy

vanilla 13258270 | 13220313 | 13220555
clflush 12152891 | 12092364 | 13531899

redo clflushopt | 12148182 | 12089823 | 13529220
clwb 12140265 | 12081518 | 13521065
clflush 13274812 | 13255702 | 13292138

undo clflushopt | 13264238 | 13249313 | 13303524
clwb 13292468 | 13257919 | 13281894

Log Medium

vanilla 10084048 | 10066492 | 10075016
clflush 9593982 9629593 | 10360906

redo clflushopt | 9591458 9628106 | 10359366
clwb 9587053 9623506 | 10354846
clflush 10072095 | 10105160 | 10139698

undo clflushopt | 10060922 | 10103187 | 10096180
clwb 10077741 | 10100200 | 10097703

Log Light

vanilla 7295364 7321849 7321750
clflush 7224271 7260415 7404615

redo clflushopt | 7223820 7260180 7404331
clwb 7222878 7259267 7403427
clflush 7287481 7301643 7349731

undo clflushopt | 7283329 7305540 7350459
clwb 7293082 7302328 7352758

since we noticed a 37% increase in the number of prefetch requests for Hybrid compared

to vanilla.

The undo log scheme creates more L1-D misses than vanilla for Log Heavy, showing a
slowdown with respect to vanilla in Figure 3.7. For undo log, the slight performance
slowdown for all modification categories across different cache line flush schemes in Fig-
ure 3.7 is due to higher L1-D misses for undo in Table 3.9. However, the undo log shows
a slight (~0.1%) decrease in L1-D misses for Data-only modification category with Log
Medium and Log Light even though Figure 3.7 shows up to 1.04x to 1.05x slowdown for
undo under Data-only modification category with Log Medium and Log Light. We can
correlate this slowdown with the block in the rename stage of CPU pipeline because of
ROB becoming full, as shown in Table 3.10. The rename pipeline stage is blocked more
times with undo logging than vanilla since the undo log creates and flushes a log entry

before each data modification to preserve the old value. In contrast, the redo log flushes log
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TABLE 3.10: Number of times rename stage is blocked due to no space in ROB in gemb
simulation of x86-64 system

Methods ‘ Scheme Data-only | Meta-only | Hybrid
Log Heavy

vanilla 1296 1336 1511
clflush 1450 1493 1755

redo clflushopt 1453 1506 1757
clwb 1455 1493 1752
clflush 2554 1532 1533

undo clflushopt 5699 4430 4350
clwb 3959 2909 3820

Log Medium

vanilla 1597 1583 1598
clflush 1572 1666 1760

redo clflushopt 1572 1671 1770
clwb 1572 1669 1759
clflush 2088 1665 1869

undo clflushopt 6203 3488 4430
clwb 3780 3056 4152

Log Light

vanilla 1649 1617 1685
clflush 1571 1454 1583

redo clflushopt 1574 1460 1594
clwb 1571 1457 1585
clflush 1712 1583 1931

undo clflushopt 2938 2086 2907
clwb 2733 1989 2725

entries on transaction commit, reducing the number of flush operations compared to undo
logging. The undo log blocks rename stage by 2x on average across all cache line flush
schemes and modification categories with a maximum of 4.39x for Data-only category
with c1flushopt scheme. The redo log experiences less number of blocks in the rename
stage than undo logging, with an average of 1.03x across all cache-line flush schemes and

modification categories.

3.3.2 Performance with Arm64

We repeated the undo and redo logging experiments (with the same workload scenario as
in § 3.3.1) for ARM using the gemb simulator. Figure 3.8 shows that redo and undo logging

have slowdown with all types of LRU access patterns and logging requirements. Similar
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to the previous experiment, the slowdown in the Figure 3.8 is normalized to vanilla (no

memory persistence).

The slowdown with respect to vanilla in Figure 3.8 can be correlated with the number
of times instruction commits stalls for civac and cvac with redo and undo logging in
Table 3.11. Redo logging experiences an average number of commit stalls of 1.10x with
respect to vanilla across all cache line flush schemes and logging requirements. The
undo logging experiences 1.15x average number of commit stalls with respect to vanilla

across all cache line flush schemes and logging requirements. Cvac performs better than
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TABLE 3.11: Number of times instruction commit has stalled in gem5 simulation of
Arm64 system

Methods ‘ Scheme | Data-only | Meta-only | Hybrid
Log Heavy

vanilla 61470 61470 66304

civac 75876 72275 73176

redo cvac 75876 72275 73176

civac 83072 77671 79021

undo cvac 83072 77671 79021

Log Medium

vanilla 58032 58032 59430

civac 66037 64037 64537

redo cvac 66037 64037 64537

civac 70033 67033 67783

undo cvac 70033 67033 67783
Log Light

vanilla 56848 56848 57058

civac 58452 58052 58152

redo cvac 58452 58052 958152

civac 59248 58648 58798

undo cvac 59248 58648 58798

TABLE 3.12: L1-D miss rate (in %) with logging using cvac in gemb simulation of
Arm64 system

Methods ‘ Data-only ‘ Meta-only | Hybrid
Log Heavy

vanilla 21.41 21.47 21.39

redo 19.15 18.99 18.43

undo 21.16 21.22 21.12
Log Medium

vanilla 16.64 16.68 16.61

redo 14.58 14.12 15.02

undo 16.57 16.58 16.54
Log Light

vanilla 12.01 12.04 12.04

redo 10.34 9.69 11.42

undo 12.06 12.03 12.03

civac with redo as cvac is functionally equivalent to clwb. Further, cvac also performs
better with undo for most of the cases, especially with medium logging requirement. The
benefit of cvac with redo logging can be correlated with better cache performance since
we observe a lower percentage of L1-D misses while using redo with cvac in comparison

to vanilla as shown in Table 3.12.
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TABLE 3.13: Number of L1-D replacements in gem5 simulation of Arm64 system

Methods ‘ Scheme ‘ Data-only | Meta-only | Hybrid

Log Heavy
vanilla 12763128 | 12751614 | 12757110
civac 12755605 | 12749959 | 15555022
redo cvac 12755604 | 12749956 | 15555053
civac 12771195 | 12773142 | 12771654
undo cvac 12776485 | 12777142 | 12778770
Log Medium
vanilla 12709850 | 12704835 | 12704950
civac 12747279 | 12744681 | 14302353
redo cvac 12747277 | 12744675 | 14302358

civac 12717631 | 12713516 | 12715445
undo cvac 12714569 12716420 | 12716895

Log Light
vanilla 12728623 | 12724426 | 12721995
civac 12759929 | 12769325 | 13129054
redo cvac 12759929 | 12769320 | 13129064
civac 12727151 | 12725661 | 12724371
undo cvac 12725427 | 12731740 | 12727743

Similar to x86-64 setup, the higher slowdown under Hybrid set of modifications with redo
can be correlated with an increase in L1-D replacements under redo compared to vanilla
as shown in Table 3.13.

There is an increase in performance slowdown while using redo for meta-only modification
with light logging requirements; this is because the completion time of LRU benchmark
using redo with cvac for meta-only modifications increases by 1.18% (Log Medium), 3.4%
(Log Light) as compared with data-only modifications, whereas vanilla case decreases by
1.16% (Log Medium), 1.11% (Log Light) as compared with data-only modifications, show-
ing comparatively higher performance slowdown for meta-only modification with respect

to data-only for light logging requirement.

3.4 Influence on co-running applications

Data consistency operations (flush+fence) may influence the performance of co-running
applications due to the presence of shared resources such as LLC, internal buffers, and
interconnects. We studied the impact of data consistency methods of co-running applica-
tions on the performance of standard applications. We use an x86-64, 4-core gemb setup

where cpul executes SPEC CPU 2017 [121], and the remaining three cpus execute a mix
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TABLE 3.14: Performance of SPEC while co-running with micro-benchmarks in gem5
simulation of x86-64 system

cpul cpul | cpu2 | cpud | Scheme | CPI(cpu0)
noflush 30.11

clflush 29.99

BST | CUH | QUE clflushopt 30.12
clwb 30.10

noflush 30.07

clflush 30.14

BST | CUH | RBT clflushopt 30.09
clwb 30.11

605.mcf_s noflush 30.02
clflush 30.07

BST | QUE | RBT clflushopt 30.07
clwb 30.07

noflush 31.51

clflush 31.45

RBT | CUH | QUE clflushopt 31.48
clwb 31.58

noflush 2.25

clflush 2.20

BST | CUH | QUE clflushopt 2.22
clwb 2.21

noflush 2.10

clflush 2.13

BST | CUH | RBT clflushopt 2.07
clwb 2.05

544.nab_r noflush 2.20
clflush 2.21

BST | QUE | RBT clflushopt 2.21
clwb 2.21

noflush 2.28

clflush 2.23

RBT | CUH | QUE clflushopt 2.24
clwb 2.27

of different benchmarks from the set of micro-benchmarks (Table 3.1). We configure these
micro-benchmarks with large working set size with 131070 inserts, 10 million operations
split as 50% deletes, and 50% searches. Table 3.14 shows the performance of different
SPEC benchmarks co-running with a mixture of micro-benchmarks with different flush
methods against the case when micro-benchmarks do not use flush (noflush). Table 3.14
shows that, among the SPEC benchmarks, 605.mcf s experiences less than ~1% slow-
down across different micro-benchmark combinations and flush schemes, and 544.nab_r

experiences ~1.25% slowdown while co-running with BST, CUH, and RBT performing



Chapter 3. Empirical Analysis of Architectural Primitives 51

TABLE 3.15: LLC MPKI of SPEC while co-running with micro-benchmarks in gem5
simulation of x86-64 system

cpul cpul | cpu2 | cpud | Scheme | LLC MPKI LLC Avg
(cpu0 data) Miss
Latency in
Cycles
(cpu0 data)
noflush 5.3453 3861061.01
clflush 5.3415 3851644.19
BST | CUH | QUE clflushopt 5.3563 3874173.41
clwb 5.3544 3856103.79
noflush 5.3464 3835715.25
clflush 5.355 3834648.06
BST | CUH | RBT clflushopt 5.348 3839118.09
605.mef clwb 5.3495 3832508.45
eS8 noflush 5.3524 3869823.12
clflush 5.3658 3866151.66
BST | QUE | RBT clflushopt 5.3658 3866151.66
clwb 5.3658 3866151.66
noflush 5.4922 4029302.46
clflush 5.4768 4025681.34
RBT | CUH | QUE clflushopt 5.4721 4025792.41
clwb 5.4841 4034405.5
noflush 0.1209 4342599.48
clflush 0.1208 4230257.61
BST | CUH | QUE clflushopt 0.1167 4292193.18
clwb 0.1156 4324631.82
noflush 0.1211 3822136.77
clflush 0.1193 3987475.03
BST | CUH | RBT clflushopt 0.1227 3776774.4
44 nab T clwb 0.1207 3614881.83
B noflush 0.1179 4199030.09
clflush 0.1194 4130111.8
BST | QUE | RBT clflushopt 0.1194 4130111.8
clwb 0.1194 4130111.8
noflush 0.1226 4400267.69
clflush 0.121 4188637.3
RBT | CUH | QUE clflushopt 0.1213 4268630.32
clwb 0.1218 4377243

clflush.

Table 3.15 shows LLC MPKI and average LLC miss latency of SPEC benchmarks corre-
sponding to their performance in Table 3.14. 605.mcf s has less than a 0.5% difference

in LLC MPKI while using different cache-line flush schemes across all micro-benchmark
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combinations compared to noflush. 544.nab_r has a maximum of 1.32% difference in
LLC MPKI while co-running with BST, CUH, and RBT performing c1flushopt scheme.
605.mcf s and 544.nab_r have a reduction in average LLC miss latency for most flush
schemes across micro-benchmark combinations compared to noflush. 605.mcf s has a
maximum reduction of ~0.25% while co-running with BST, CUH, and QUE performing
clflush, and 544.nab_r has a maximum reduction of ~5.4% while co-running with BST,
CUH, and RBT performing clwb. Even though there is a reduction in LLC MPKI for
544.nab_ r while co-running with BST, CUH, and RBT performing c1flush, the overhead
in CPI for this case in Table 3.14 is primarily due to the increase in LLC miss latency of

~4.3% with respect to noflush.

We also observe that even with an increase in LLC MPKI, there is a chance for a decrease
in LLC average miss latency and vice versa; for example, 544.nab_r co-running with
BST, CUH, and RBT performing clwb has an increase in LLC MPKI but a decrease in
LLC miss latency, indicating the influence of flushing on shared elements between LL.C and
memory such as memory controller queues and others. Thus, it will be interesting to study
memory and cache-congested scenarios further to analyze the extent of the performance

implications.

3.5 Summary

Application state recovery in a consistent manner with NVM requires data consistency
mechanisms supported by underlying architectural primitives like f1lush and fence. In this
chapter, we empirically analyzed the performance overhead of data consistency methods on
Intel x86-64 and Arm64. Table 3.16 lists key points and observations from this empirical

analysis.

In this chapter, we studied data structures that are commonly employed in applications
and operating systems. OS majorly uses these data structures to maintain different states
of a process, i.e., the program in execution. Process persistence requires saving all state
elements of a process. Thus, understanding the performance overhead associated with
consistently maintaining these popular data structures provides insights into the overhead
for process persistence. Process persistence also requires the persistence of other state
elements, such as execution context and memory state. Therefore, we need a framework
to study the end-to-end performance overhead of process persistence, especially one that
supports a hybrid memory system with DRAM and NVM. Such a framework aims to aid

in exploring alternative design approaches for process persistence.
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TABLE 3.16: Key takeaways from the empirical analysis

Key points

Observations

Performance overhead of data
consistency methods.

Depends upon the nature of workload,
proportion of read-to-write operations,
and working set size.

Depends upon the usage of serialization
operations such as sfence to enforce order
of writes to NVM.

Usage of clwb and its equivalents for
data consistency methods.

Benefits applications with cache locality,
for example, clwb benefits in redo log
schemes.

Using clwb and its equivalents over other
methods, such as clflushopt, may not
always be advantageous for better perfor-
mance.

Performance of clflush or clflushopt
for data consistency methods.

Better than clwb in some cases with undo
log.

Selection of data consistency methods for
persistence in NVM.

Should be decided on a case-by-case ba-
sis depending on the workload character-
istics.

93

Keeping this motivation, in the next chapter, we introduce an open-source framework, Kin-
dle, based on gemb [49] and gemOS [51], to explore and prototype research ideas in hybrid
memory systems crossing the hardware-software boundaries and perform comprehensive

empirical evaluation.



Chapter 4

Kindle: A Hybrid Memory

Framework

Non-volatile memory (NVM) provides high memory capacity with reduced energy cost
compared to volatile memory (DRAM). However, higher read/write latency of NVM [11]
raises performance concerns when used as a drop-in replacement for DRAM. Therefore,
a more attractive memory organization is a hybrid memory system with DRAM and
NVM [27], designed to complement each other to reduce energy costs, achieve persis-
tence, and improve performance. A hybrid memory system allows placing data in NVM
and/or DRAM, enabling OS memory managers to coordinate allocations for high mem-
ory capacity with low access latency. For example, a typical OS policy can place fre-
quently accessed hot memory pages in DRAM and migrate cold pages to NVM to increase
the overall system performance. Several existing works on hybrid memory systems pro-
pose efficient access for large workloads by intelligently placing data across the NVM and
DRAM [122-125], reducing energy consumption by migrating data across the DRAM and
NVM tiers [126-129]. Another usage of NVM is as an alternative to external storage hard-
ware (HDD or SSD) for data persistence. In this usage scenario, application developers
or file system designers must incorporate consistency and durability semantics into their
design. Existing research works attempt to address the memory consistency issues by
designing solutions such as persistent object stores [130], lock-based failure atomicity for
multi-threaded programs [19, 34, 131], and hardware and/or software memory consistency
mechanisms [17, 21, 24-26, 132].

Hybrid memory provides extensive opportunities in system design, Figure 4.1 shows the

number of publications on hybrid memory systems with NVM between 2018 and 2023

54
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FIGURE 4.1: Number of publications on hybrid memory systems with NVM,
listed in Google Scholar.

based on data extracted from Google Scholar [133]. The number of publications shows
an average of 120 research papers annually, demonstrating the wide range of research
opportunities in hybrid memory systems. The nature of problems and proposed solutions
for hybrid memory systems require an infrastructure allowing extension, validation, and

evaluation of the complete system stack.

Architecture simulators capable of full-system simulation, such as gem5 [51], provide plat-
forms for prototyping ideas crossing the hardware-software boundaries. However, using
gemb-Linux full-system simulation setup to explore new ideas in hybrid memory systems
has the following shortcomings. First, while gem5 models the NVM controller and the
Linux kernel can detect NVM on real hardware (such as Intel DCPMM) [53, 54], their
integration is non-trivial (in gemb), especially considering constantly evolving hardware
and OS design. Second, the Linux kernel is heavy with features whereby the OS functions
and services can consume a significant part of a simulation, which may not be desirable
for quick prototyping design ideas. Third, designing a proof of concepts (PoCs) in Linux
requires significant understanding and changes in the Linux memory management subsys-

tem, which has non-trivial complexity.

This chapter proposes Kindle, a comprehensive infrastructure for quick prototyping and
evaluating novel mechanisms and policies crossing architecture and operating system bound-
aries in hybrid memory systems. In the core of Kindle, support for full process persistence
is provided, whereby a process can restart consistently after a system crash. Several de-
sign alternatives, challenges, and performance insights in achieving process persistence in
hybrid /persistent memory systems. As one specific illustration, we compare two design
choices for consistently maintaining the page table across system restarts— (%) hosting the
page tables directly on NVM and (%) hosting the page tables in DRAM while performing
periodic checkpoints into NVM. Next, we present a complete evaluation framework for

hybrid memory systems by combining the process persistence support with other tracing
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and simulation techniques where a user can perform end-to-end modeling of real-world
application benchmarks such as SPEC [121], GAP [134], and YCSB [135] in a generic
manner (§ 4.1). Finally, we showcase the utility of Kindle in gaining new insights by using
prototype implementations of two well-established research ideas proposing optimizations

for hybrid memory systems in OS and/or hardware layers (§ 4.2).

We design and implement Kindle with support for full process persistence by modifying a
lightweight OS (i.e., gemOS [52]). We modify the gemOS system call APIs to allow user
applications to allocate memory in DRAM and/or NVM using memory allocation API,
enabling exploration of memory usage and access behavior of standard applications on

hybrid memory systems. At a high level, Kindle consists of two components.

1. A preparation component for transforming and extracting required information from
the application (and its interaction with the OS) to prepare the stage for the simu-

lation run.

2. A simulation component for running the applications in full persistence mode with

the configurations provided by the user.

Kindle aids in quickly realizing complex design goals and providing new insights into ex-
isting schemes, as we show through the prototype implementations of two state-of-the-art
hardware-software hybrid memory schemes—Shadow Sub-Paging (SSP) [25] and Hard-
ware/Software Cooperative Caching (HSCC) [27]. SSP handles the memory consistency
requirement of NVM by using shadow sub-paging. HSCC provides memory capacity by
arranging DRAM and NVM in a flat address space and managing DRAM as a cache to
NVM using a hardware/software cooperative caching mechanism. These prototype im-
plementations show the capability of Kindle to quickly validate ideas in hybrid memory
systems and gather new insights. Through the SSP prototype, Kindle provides new in-
sights into the impact of consistency interval on the performance overhead of SSP, showing
that a wider consistency interval reduces the overhead. HSCC prototype with Kindle pro-
vides insights into the migration overhead due to the OS activities, which authors did not

shown in the original work as the evaluation framework did not have an OS component.

4.1 Design and Implementation

Kindle provides a hybrid memory system, allowing applications to allocate memory from
NVM and DRAM. Figure 4.2 shows the interactions between gem5 [50] and gemOS [52]
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FIGURE 4.2: Interaction between gemb and gemOS in Kindle

TABLE 4.1: gem5 Memory Configuration

’ Parameter

Used Setting

DRAM interface

DDR4-2400 16x4

NVM interface PCM i
NVM Write buffer size 48
NVM Read buffer size 64

Memory capacity

3GB DRAM + 2GB NVM

IPCM timing parameters based on [119]

in Kindle to provision memory based on the application requirements. Kindle partitions
the physical memory address range between NVM and DRAM and inserts corresponding
entries in the gem5 BIOS implementation of €280 (BIOS memory map). We configure the
NVM memory controller interface in gem5 with the specifications mentioned in Table 4.1.
Kindle provides a hybrid memory system in flat address mode, allowing the OS to expose
DRAM and NVM to applications.

// mmap() does not follow POSIX mmap semantics

int main(){
charx ptrl= (char=)mmap(NULL,4096 ,PROT WRITEMAP NVM); //allocation in NVM
charx ptr2= (char*)mmap(NULL,4096 ,PROT WRITE,0); //allocation in DRAM
ptrl1 [0] = ’A’; //store to NVM
ptr2[0] = 'B’; //store to DRAM
//munmap allocations

return O;

L1STING 4.1: Sample mmap() code to allocate in NVM
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The gemOS in Kindle exposes DRAM and NVM to user-space applications through an
extended mmap system call API. An application differentiates memory requests for NVM
from DRAM by passing an additional flag MAP_NVM in mmap () system call as shown in the
sample code Listing 4.1.

Additionally, the virtual memory area (VMA) layout in gemOS is modified to tag each
VMA as either DRAM or NVM depending on the value of MAP_NVM flag passed in the
mmap () system call invocations from the user space. The physical memory allocation from

the NVM or DRAM page frames is performed based on this memory type tag.

4.1.1 Process Persistence

Process persistence requires saving the state of a process that consists of CPU registers
and memory state encompassing the code, heap and stack areas. Process persistence also
requires saving the OS meta-data (e.g., address space layout, process relations) to resume

execution from a consistent state after a system crash.

We employ a process persistence scheme based on periodic checkpointing of process con-
texts in the modified gemOS. We maintain a per-process saved state in NVM, containing
two copies of the execution context—one as a consistent copy and another as a working
copy. We use a redo log (stored in NVM) to capture all modifications to the OS-level
process meta-data. As part of the saved state, we also maintain a list of virtual page
to NVM physical page frame mappings. At the end of each checkpoint interval, we first
log the CPU state and update the working copy using all logged entries in that interval.
We consider only the consistency of the CPU state and OS-level meta-data and assume
that all heap/stack data pages are consistently maintained in NVM using some existing
memory consistency techniques [18, 21, 24, 29, 83, 132]. The list containing the virtual
to NVM physical page mapping is maintained to preserve the association from any vir-
tual to a physical page, as it is useful for scenarios where we need to rebuild the virtual
memory mapping of a process in the page table after reboot. We also modify the physical
page allocation mechanism in gemOS to persist the page allocation meta-data to ensure

correctness after crash and reboot scenarios.

At the end of a checkpoint interval, the saved state of a context is updated to reflect changes
in the interval, which includes modifying the virtual to NVM physical page mapping list
by traversing the page table of the process, getting the working copy of context and
applying changes in the redo log. After applying all changes in the redo log, mark the

updated context as the latest consistent copy of the context in the saved state. The
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FIGURE 4.3: Schematic diagram of Kindle

resume procedure reconstructs the execution context using the latest consistent copy of
the context in the saved state after a crash and reboot. The recovery procedure scans
through the list of saved states and creates a new execution context for each saved state.
We copy the latest consistent copy of the context for each process and recreate the virtual
memory layout as part of the recovery procedure. Finally, the recovery process sets up the
page table mapping for the virtual address space and marks the process state as ready for

execution.

4.1.2 Kindle Framework

Figure 4.3 shows the complete Kindle framework and interactions between its different
components. Kindle consists of two major components—a simulation sub-system and a
preparation sub-system. The simulation part holds cycle-accurate architecture simulator
gem5 [50, 51| and the extended lightweight operating system gemOS [52], specialized for

running on gems.

The preparation component creates the disk image for gem5 and the benchmark template
code for gemOS. The vanilla gemOS can not run standard workloads as it is primarily
designed for OS education and has limited user-space libraries. We use gemOS as the op-
erating system component of Kindle since the primary aim is to provide a framework for
quick prototyping, and gemOS reduces simulation time compared to Linux. GemOS, while
providing most of the POSIX-compliant APIs, does not include most of the background
processes present in production OSes as they interfere with the application under study
and hide its actual behavior in the statistics collected. Thus, gemOS benefits in providing
cleaner statistics. As gemOS currently has limited support for user space libraries, the
preparation component overcomes this limitation by setting up an environment for trac-
ing and replaying the memory operations on gemOS for running standard applications.

The preparation sub-system consists of a driver program (D) to trace the instructions
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executed by the application of interest using Intel’s dynamic binary instrumentation tool
Pin [58]. The driver program (using fork and exec) coordinates an application’s execution
and memory access tracing with Pin while saving the virtual memory layout by reading
the /proc/pid/maps pseudo file exposed by the Linux kernel. In case of multi-threaded
applications, Kindle can use SniP [136] along with the maps file to capture address layout
of application. SniP is a framework capable of capturing the stack area of threads. The
trace generated by Pin contains the type of memory access (read/write), address and size

of memory access, and time of access.

The code/image generator component (2)) makes the disk image required by gem5 in
the simulation part of Kindle. It processes the trace file to generate a tuple containing
(period, offset, operation, size, area) for each memory access. The period shows the time
of memory access, offset shows the address of memory access within a heap/stack area,
operation indicates the type of memory access, whether it is a read /write, and size denotes
size of memory read/write and area denotes the name of the memory area, i.e., which
heap and stack area is read/written. The ¢mage generator labels each memory area in
the virtual memory layout information captured using the maps pseudo-file and then
associates memory accesses in trace to an ares name by checking whether access lies
within the address range of that area. The prepared disk image contains (period, offset,
operation, size, area) information of all memory accesses in the trace. The code generator
prepares a template gemOS code containing heap and stack allocations matching the
number and size of allocations in the application. The generated code also contains routines
to access (period, offset, operation, size, area) tuple from the disk image for mimicking the
memory access in the application. Users of the Kindle framework can update this template
code to include additional functionality before launching the init process (the first user
process in gemOS) with required arguments [52]. For example, we added a loop counter to
compensate for the time interval between two memory accesses in the generated code as

an approximation for computation between memory accesses before running experiments.

Validation of Kindle

We have validated the process persistence feature of Kindle by crashing and restarting the
application multiple times. Validating the working of Kindle can be associated with the
fidelity of individual components such as Intel Pin and gem5. Additionally, Kindle does

not impact the simulation time of gem5.
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TABLE 4.2: Benchmark Details

’ Benchmark ‘ Total Ops ‘ read % \ write % ‘

Gapbs_pr [134] | 10,000,000 77 23
G500_sssp [137] | 10,000,000 63 32
Yesb_mem [135] | 10,000,000 71 29

Availability of Kindle

Kindle is open-sourced and available at https://github.com/arunkp1986/Kindle. Users
can explore new hardware-software designs in hybrid memory systems by changing the sim-
ulation part, implementing software level changes in gemOS and hardware level changes
in gemb, and then running applications of interest by following the README documen-
tation. Kindle earned all three badges in the artifact evaluation, Code Awvailable, Code

Reviewed, and Code Reproducible.

4.2 Evaluation

In this section, we show a consistency scheme based on checkpointing for execution context
to achieve process persistence. We study trade-offs in checkpoint performance while using
two different approaches to keep the page table consistent. We also demonstrate the
capability of Kindle in performing an initial evaluation of existing or new ideas on a
hybrid memory system. To demonstrate the utility of Kindle in hybrid memory research,

we implemented two research ideas,

(i) Shadow sub-paging (SSP) [25] to ensure consistent memory state of an application in

NVM by employing shadow paging [25, 91] at sub-page cache line granularity.

(i) A hardware-software co-operative caching mechanism, HSCC [27], for managing DRAM
as cache to NVM.

In these two studies, we used standard applications in Table 4.2 and configured gemb with
Intel 64-bit in-order CPU at 3GHz with 32KB L1, 512KB L2 and 2MB/core LLC.


https://github.com/arunkp1986/Kindle

Chapter 4. Kindle: A Hybrid Memory Framework 62

0405 °
10 . $ 800
¢ Persistent & v =1 Persistent
E 104l Rebuild &= g 7001 &= Rebuild
g , ; 600 -
S10°% E500F
B - E 400
107 & 5] = 300
0 5 B o
o[ B KX = 200
2107 F £ RS +
= hoss K 5 100
(ST o 0
910 B o 054G 2 4
& Memory Allocation Size H Memory Access Stride
(a) sequential access (log scale) (b) stride access

FIGURE 4.4: Influence of memory access size and stride length on execution time
with periodic checkpointing for context while using different page table consistency
schemes.

4.2.1 Process Persistence

As the end-to-end performance of checkpointing the execution context depends upon vir-
tual address space management, we study the performance trade-offs in maintaining the

page table using two approaches,

(i) Rebuild the page table from virtual to NVM page using the mapping maintained in

the saved state (i.e., rebuild scheme) on reboot.

(ii) Maintain the complete page table in NVM and wrap page table modifications inside the
NVM consistency mechanism [17]; this only requires setting the PTBR (Page Table Base

Register) to point to the first level of page table after a reboot (i.e., persistent scheme).

While the rebuild scheme allows hosting page tables in DRAM, it may suffer from check-
point overheads due to additional maintenance of virtual to physical mapping information.
On the other hand, while the persistent scheme simplifies the checkpoint process, it adds

additional overheads to host and maintain the page table in NVM in a consistent manner.

We looked into the impact of address space size and page table size on the end-to-end per-
formance of periodic checkpointing of execution context while using rebuild and persistent
schemes for page table consistency. Figure 4.4 shows the end-to-end execution time (in
msec) for consistently maintaining context using periodic checkpointing under rebuild and
persistent page table maintenance schemes. The periodic checkpoint interval is fixed to 10

msec (based on Aurora [1]).

In the sequential memory allocation and access experiment (Figure 4.4(a)) using a micro-

benchmark, we allocate virtual memory of different sizes using mmap system call with
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MAP_NVM flag and sequentially access all pages in the allocated space. Sample code in
Listing 4.2 shows the sequential micro-benchmark for memory allocation and access of 64
MB.

// Removed error checks for brevity.
#define PAGE_SIZE 4096
#define SIZE (1UL<<24)
checkpoint_ start () ;
charx ptr[4];
ptr[0] = (char=)mmap(NULL, SIZE ,PROT_WRITE|PROT_READ,MAP_NVM) ;
for (int i=0; i < SIZE; i+=PAGE_SIZE){
ptr[0][i] = i;
}
ptr[1] = (charx)mmap(NULL, SIZE ,PROT WRITE|PROT READ,MAP NVM) ;
for (int i=0; i < SIZE; i+=PAGE_SIZE){
ptr[1][i] = i;
}
ptr[2] = (charx)mmap(NULL, SIZE ,PROT WRITE|PROT READMAP NVM) ;
for(int i=0; i < SIZE; i+=PAGE_SIZE){
ptr2][i] = i;
}
ptr[3] = (char=)mmap(NULL, SIZE ,PROT WRITE|PROT READMAP NVM) ;
for(int i=0; i < SIZE; i+=PAGE_SIZE){
ptr[3][i] = i;
}

checkpoint__end () ;

LisTING 4.2: Sequential memory allocation and access of 64MB.

In the stride access experiment (Figure 4.4(b)), the micro-benchmark performs a fixed
number of 4KB page allocations with a predefined gap (1GB, 2MB, or 4KB) in the virtual
address space to ensure different page table levels are populated to result in larger page
table size. For example, with a 1GB gap, the micro-benchmark allocates ten 4KB pages
at a gap of 1GB to make entries at page-directory-pointer-table (Level-3), page-directory-
table (Level-2), and page-table (Level-1) in Intel x86-64 system page table [48], the micro-
benchmark allocates 256 4KB pages at a gap of 2MB in the 2MB case and 512 4KB pages
at a gap of 4KB in the 4KB case. Sample code in Listing 4.3 shows the stride micro-
benchmark with a 1GB gap. The outer loop (j) iterates through 25 times in 2MB and
4KB cases.

In the sequential access experiment (Figure 4.4(a)), the rebuild scheme results in higher
execution time for all allocation sizes with overhead ranging from ~2.4x (64MB) to ~74.2x
(512MB) compared to the persistent scheme. The overhead in the rebuild scheme comes
from the need to maintain a list containing virtual to NVM physical page mapping for

reconstructing the page table after reboot, and the overhead to maintain this list increases
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with an increase in mapped virtual memory area size, ~44x increase in execution time
from 64MB allocation size to 512MB. On the other hand, for the stride access experiment
(Figure 4.4(b)), the persistent scheme results in slightly more execution time compared to

rebuild for 1GB and 2MB stride access scenarios, as more page table levels are updated
for 1GB and 2MB.

// Removed error checks for brevity.
#define PAGE_SIZE 4096
#define SIZE (1UL<<12)
checkpoint_start () ;
charx ptr[10];
int j = 0;
while (j <100){
char x addr = (char=)mmap(NULL, SIZE ,PROT WRITE|PROT READ,MAP NVM) ;
munmap (addr , SIZE) ;
for (int i=0; i<10; i++){
ptr[i] = (chars)mmap(addr,SIZE ,PROT WRITE|PROT READ,MAP FIXED |MAP NVM) ;
ptr[i][0] = i;
addr = ptr[i]+(1UL<<30);
}
for (int i=0; i<10; i++){
munmap(ptr[i],SIZE);
}
i+t
}

checkpoint__end () ;

LisTING 4.3: Stride experiment with 1GB gap.

Page table modifications are minimal for the 4KB case, and the persistent scheme performs
better than the rebuild scheme. The overhead in the rebuild scheme can be attributed to
maintaining virtual to NVM physical page mapping, similar to memory allocation size
experiment. In short, the persistent scheme results in more overhead if the virtual address
space is sparsely populated. However, the persistent scheme performs better than the
rebuild for scenarios with minimum page table modifications, as shown in the memory

allocation size experiment where the page table is updated only on the first access.

Next, we looked into a scenario with more page table updates using a sequence of mmap
and munmap operations. Sample code in Listing 4.4 shows the mmap and munmap micro-

benchmark.

The micro-benchmark allocates a virtual address space of 512MB and writes to all pages in
512MB to create valid page table entries. The benchmark then frees a fixed size memory
(i.e., 256 MB, 128MB, and 64MB) from the start of 512MB space by calling munmap and

reallocated the same fixed size memory by calling mmap. Similarly, munmap and mmap of
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TABLE 4.3: Execution time with periodic checkpointing of execution context for different
VMA modification size

’ Alloc/Free Size | Persistent (msec) ‘ Rebuild (msec) ‘

64MB 325 19377
128MB 389 23438
256MB 517 29376

the same fixed size are performed on 512MB space for one more time. The newly allocated
fixed size regions are then accessed for reading, and finally, the entire area is unallocated

by called munmap. Sample code in Listing 4.4 uses fixed memory size as 64 MB.

// Removed error checks for brevity.
#define PAGE_SIZE 4096
#define SIZE (1UL<<29)
checkpoint__start () ;
char * ptr = (char*)mmap(NULL, SIZE ,PROT_WRITE|PROT_READMAP_NW) ;
for (int i=0; i<SIZE; i+=PAGE SIZE){
ptr[i] = i%10;
}
munmap( ptr , SIZE>>3);
char % ptrl = (char=)mmap(NULL, SIZE>>3PROT WRITE|PROT READMAP NVM) ;
for (int i=0; i<(SIZE>>3); i+=PAGE_SIZE){
ptrl[i] = i%10;
}
munmap ( ( ptr+(SIZE>>3)) ,SIZE>>3);
char % ptr2 = (char=)mmap(NULL, SIZE>>3PROT WRITE|PROT READ MAP NVM) ;
for (int i=0; i<(SIZE>>3); i+=PAGE SIZE){
ptr2[i] = i%10;
}
int sum = 0;
for(int i=0; i<(SIZE>>3); i+=PAGE_SIZE){
sum += ptrl[i];
}
munmap( ptrl ,SIZE>>3);
for (int i=0; i<(SIZE>>3); i+=PAGE SIZE){
sum += ptr2[i];
}
munmap( ptr2 ,SIZE>>3);
munmap ( ptr+(SIZE>>2) , (SIZE>>1)+(SIZE>>2)) ;
checkpoint__end () ;

LISTING 4.4: Micro-benchmark with sequence of mmap and munmap operations.

Table 4.3 shows end-to-end execution time with execution context checkpointing and main-
taining page table using persistent or rebuild method. The table shows execution time
while performing munmap and mmap sequences of different allocation/free fixed sizes.

The persistent scheme overhead increases with an increase in allocation/free size as more
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page table changes are required with increased munmap and mmap size, showing ~1.6x
increase in execution time from 64MB to 256MB. The execution overhead increases for
rebuild scheme as well since the virtual to NVM physical page mapping maintained for
page table rebuilding requires constant change due to changes in virtual memory area,

showing ~1.5x increase in execution time from 64MB to 256MB.

// Removed error checks for brevity.
#define PAGE_SIZE 4096
#define SIZE (1UL<<29)
#define TARCK SIZE 64
#define ITERATION 3
checkpoint__start () ;
char * ptr = (char*)mmap(NULL, SIZE ,PROT_WRITE|PROT_READMAP_NW) ;
int j = 0;
while (j<ITERATION) {
for (int i=0; i<SIZE; i+=PAGE_SIZE){
ptr[i] = i%10;
}
=1
}
munmap( ptr ,SIZE>>3);
char % ptrl = (char=)mmap(NULL, SIZE>>3PROT WRITE|PROT READMAP NVM) ;
i =0;
while (j<ITERATION) {
for (int i=0; i<(SIZE>>3); i+=PAGE SIZE){
ptrl[i] = i%10;
}
=1
}
munmap ( ( ptr+(SIZE>>3)) ,SIZE>>3);
char * ptr2 = (char=)mmap(NULL, SIZE>>3PROT_ WRITE|PROT_READ MAP NVM) ;
j=0;
while (j<ITERATION) {
for (int i=0; i<(SIZE>>3); i+=PAGE_SIZE){
ptr2[i] = i%10;

}
=1
}
int sum = 0;

for (int i=0; i<(SIZE>>3); i+=PAGE SIZE){
sum += ptrl[i];

}

munmap( ptrl ,SIZE>>3);

for (int i=0; i<(SIZE>>3); i+=PAGE_ SIZE){
sum += ptr2[i];

}

munmap( ptr2 ,SIZE>>3);

munmap ( ptr+(SIZE>>2) , (SIZE>>1)4(SIZE>>2)) ;

checkpoint__end () ;

L1STING 4.5: Micro-benchmark for pagetable maintenance with 64MB alloc/free size.
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TABLE 4.4: Influence of checkpoint interval on execution time for periodic checkpointing
of execution context

’ Alloc/Free Size | Interval | Persistent (msec) ‘ Rebuild (msec) ‘

10 msec 445 55270

64MB 100 msec 445 10580
1 sec 444 430

10 msec 534 68078

128MB 100 msec 532 13103
1 sec 532 515

10 msec 710 88193

256MB 100 msec 708 15775
1 sec 708 685

Finally, we look into the scenario which shows the benefit of keeping the page table in
DRAM. The page table is accessed in cases to update mapping entries as a result of
virtual memory area changes due to mmap, munmap, mremap, mprotect calls or to trans-
late /populate mapping corresponding to a virtual address after missing in TLBs and other
intermediate caches. Keeping the page table in DRAM benefits from increased page table
access as DRAM provides better read and write latency than NVM. We use a micro-
benchmark similar to the previous case to study the benefit of keeping the page table in
DRAM.

Listing 4.5 shows the micro-benchmark sample code for page table maintenance. Micro-
benchmark allocates a virtual address space of 512MB and accesses pages to make page
table entries and then frees a fixed size memory (i.e., 256 MB, 128MB, and 64MB) from
the start of 512MB space by calling munmap and reallocated the same fixed size memory
by calling mmap. After allocation, all pages in the virtual memory area are accessed
multiple times to cause TLB misses. The benchmark does one more round of deallocation
and allocation of the same fixed size and multiple rounds of accesses to allocated space.
Finally, the entire area is unallocated by calling munmap. Code in Listing 4.5 uses 64 MB

as the fixed freeing size from 512 MB.

Table 4.4 shows the end-to-end execution time to checkpoint process context with different
checkpoint intervals while using persistent and rebuild schemes for page table maintenance.
The execution time for the persistent scheme remains similar across different checkpoint in-
tervals for a virtual memory area size of alloc/free operations. This similarity in execution
time for the persistent scheme is because the overhead comes from the NVM consistency
mechanism, and the number of page table modifications remains the same for a modi-

fication size, irrespective of checkpoint intervals. Meanwhile, the execution time for the
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rebuild scheme increases with the frequency of checkpoints. The increase in execution time
is because of the overhead of checking and updating virtual to physical address mapping
during each checkpoint. Table 4.4 shows that increasing the checkpoint interval from 10 to
100 milliseconds reduces execution time by ~5x on average for the rebuild scheme across
all virtual memory area sizes of alloc/free operations. When we further increase the in-
terval to one second, beyond the execution time of the benchmark, the benefit of keeping
the page table in DRAM appears for the rebuild scheme as the execution time is lower
than the persistent scheme, highlighting the reason for performance overhead in rebuild
scheme as maintenance of virtual to physical address mapping. In summary, keeping the
page table in NVM with the persistent scheme benefits applications with minimal virtual
address modifications. Access to page table entries for address translation gets the benefit
of multiple levels of TLBs and intermediate caches, thus hiding NVM read latency while

accessing page table entries for address translation in the persistent scheme.

In the following two subsections, we show the prototype implementation of two research
ideas to demonstrate the benefit of using Kindle in exploring ideas and providing the initial

results below.

4.2.2 SSP using Kindle

Shadow Sub-Paging (SSP) [25] provides memory consistency in NVM. It ensures consis-
tency of memory modifications by maintaining a copy of unmodified data at cache line
granularity. SSP allocates two physical pages for each virtual page and uses a remapping
scheme at the cache controller hardware to route modifications at cache line granularity
to alternate physical pages. SSP also extends the TLB by adding extra fields per entry
to capture the supplementary physical page mapping and bitmaps (updated, current) to
track the page containing the latest modification. SSP proposes a background OS thread to
consolidate two physical pages but leaves out the detailed implementation and evaluation

of the consolidation aspects in the paper.

In Kindle, we allocate the additional physical page in the page allocation routine call in
gemOS. The original and extra page addresses and the bitmap values (commit, current)
are recorded in a metadata area (i.e., SSP cache). We extend the page table walker
hardware in gem5 to fill fields in the TLB during an address translation on TLB miss.
TLB may contain translations for DRAM and NVM pages in a hybrid memory system,
and the memory consistency requirement applies only to NVM pages. Therefore, in the

prototype design, we use Model Specific Registers (MSRs) to communicate the virtual
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FI1GURE 4.5: Influence of memory consistency interval on performance. Y-axis
shows normalized execution time with no memory consistency.

address range corresponding to NVM allocation to hardware. We also use MSR to pass
the base address of SSP cache to translation hardware in gem5. The address translation
hardware checks the address range and sets the corresponding bit in the updated bitmap
in TLB if a write happens to the NVM address range. The translation hardware generates
a memory request to modify metadata in SSP cache when a consistency interval ends or

a TLB entry eviction happens. We mark the entry as T'LB evicted in the SSP cache.

We use a programming model in which the user demarcates the failure atomic section
(FASE) in code using checkpoint_start and checkpoint_end calls. Usage of checkpoint_start
enables custom hardware components in the address translation and cache controller hard-
ware in gemb. A consistency interval of choice is set in gemOS. For example, setting
consistency intervals as 5 msec ensures that at every 5 msec interval ends, and activities
associated with checkpoint_end are performed, i.e., gemOS kernel instructs the address
translation hardware to initiate a memory request to send all modified bitmap in TLBs to
the metadata region. The gemOS kernel then calls clwb write-back instructions to flush
all data and metadata updates in hardware caches to NVM. Physical page consolidation
happens asynchronously; a thread periodically calls page consolidation routine to merge

pages corresponding to evicted TLB entries by inspecting the SSP cache entries in gemOS.

Figure 4.5 shows the overhead introduced by SSP in making the memory state of appli-
cations consistent. This study used consistency intervals of 1, 5, and 10 msec. The page
consolidation thread interval is fixed to 1 msec, as a lower interval would result in higher
consolidation overhead. Figure 4.5 shows the execution time of applications normalized
to the execution time with no memory consistency applied. Having a wider consistency

interval (10 msec) reduces the consistency overhead as the number of metadata inspections
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and clwb calls to write-back cache lines reduce with a wider consistency interval. All ap-
plications in Figure 4.5 show an average ~3x reduction in memory consistency overhead

with 10 msec compared to a 1 msec consistency interval.

Kindle provides an easy way to extend studies such as the influence of consistency interval
on the application performance, and it also allows carrying out additional studies on the
influence of page consolidation thread invocation frequency on an application by varying

the thread time interval, which is not explored in original SSP proposal.

4.2.3 HSCC using Kindle

Hardware/Software Cooperative Caching (HSCC) [27] aims to utilize high NVM capacity
in a hybrid memory system for improved system performance. HSCC maintains NVM
and DRAM in a flat address space and uses DRAM as a cache managed by OS in a
hardware /software cooperative manner. HSCC tracks the access count of NVM pages to
select candidate pages for migration to DRAM and maintains an NVM-to-DRAM page
mapping after migration. HSCC extends the page table and TLB to handle NVM to
DRAM remapping and track the access count of NVM pages. NVM pages with an access
count exceeding a specific fetch threshold value in a migration interval are selected for

migrating to DRAM.

HSCC extends page table entry (PTE) to record DRAM and NVM page frame numbers,
using 96 bits (12 bytes) for PTE as opposed to 64 bits in conventional x86-64 systems.
In this case, the last level page table in HSCC can only map 341 pages (i.e., 4KB/12B),
leaving 171 pages unmapped in a 2MB address region. In our implementation, we have
designed NVM to DRAM mapping in a lookup table to avoid the previously mentioned
PTE size issue. The mapping table entries can be looked up using both DRAM and
NVM page frame numbers as an offset. We also maintain a pool of DRAM pages (512
pages), categorized as lists of free, clean, and dirty pages, updated at the start of each
migration interval of 31.25 msec (equivalent to 10% cycles mentioned in the HSCC paper).
The migration activity inspects the page access count maintained in PTEs corresponding
to NVM pages and migrates the pages to the DRAM cache if the count exceeds the fetch
threshold. The page access count is also maintained in TLB and is incremented if data
access is missing in the LLC. The access count in TLB is written out to PTE on TLB
eviction or once during the translation in a migration interval. We have not incorporated

dynamic fetch threshold adjustment in our implementation but have fixed the threshold to
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TABLE 4.5: Number of Pages Migrated

’ Benchmark ‘ Th-5 ‘ Th-25 | Th-50

Gapbs_ pr 354 273 132
G500__sssp 4489 1475 1346
Yesb. mem | 23093 1661 21

N
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FiGURE 4.6: Influence of OS migration activities on application performance
under DRAM fetch threshold 5, 25, and 50.

static values. The page access count in PTEs is reset in each migration interval to ensure

that NVM pages from the most recent interval are considered for migration.

We investigated the migration-related processing overheads in the OS-mode and its impact
on the execution time of applications. The candidate pages for migration are identified
by inspecting the page access count maintained in the PTEs (by performing a software
page table walk) corresponding to the pages mapped to NVM. Migrating a page to DRAM

consists of two steps,
(i) page selection, selecting the destination DRAM page.
(ii) page copy, copying the page from NVM to DRAM.

Page selection includes allocating the destination DRAM page from the free, clean, or
dirty list of DRAM pages. If any page is selected from the dirty list, then we copy back
the page from DRAM to NVM before use. The page copy step includes flushing cache
lines corresponding to the NVM page under migration before copying data from NVM to
DRAM and then copying data to DRAM. The corresponding PTE entry is updated with
DRAM page address, the access count in PTE is reset, and the corresponding TLB entry
is invalidated. The page access count in all PTEs is reset, and corresponding TLB entries
are invalidated in a migration activity to ensure that page accesses for the most recent

interval are considered for migrations.
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TABLE 4.6: Percentage of time spent for page selection and page copy in OS migration
activity.

| Benchmark | Fetch Threshold | Page Selection (%) | Page Copy (%) |

Th-5 1.74 98.26
Gapbs_ pr Th-25 1.92 98.08
Th-50 2.06 97.94
Th-5 37.35 62.65
G500__sssp Th-25 1.37 98.63
Th-50 1.39 98.61
Th-5 21.71 78.29
Ycsb  mem Th-25 19.16 80.84
Th-50 1.86 98.14

Figure 4.6 shows the overhead of migration activities performed by OS. The figure shows
the execution time of applications with migration (i.e., performing hardware and OS mi-
gration activities) normalized to the execution time without OS migration activities (i.e.,
performing only hardware migration activities) under different fetch thresholds; the fetch
threshold decides the number of candidate NVM pages for migration. Two important
factors influencing the execution time of an application with migration are—the overhead
of activities performed by OS as part of the migration and the benefit in memory ac-
cess time after migrating pages to DRAM. All applications in Figure 4.6 show migration
overhead due to OS activities, and a higher value indicates that the overhead of activi-
ties performed by OS as part of the migration overshadows the benefit in memory access
time after migrating pages to DRAM. Gapbs_ pr shows the minimum overhead, indicating
that Gapbs_ pr has the maximum benefit in memory access time after migrating pages
to DRAM. For all applications, the migration overhead reduces with an increase in the
fetch threshold as the number of candidate pages migrated reduces with an increase in the
threshold, as shown in Table 4.5; hence, the overhead of OS activity reduces. For exam-
ple, Yesb__mem showed ~13x and ~101x reductions in the number of pages migrated for

Th-25 and Th-50 compared to Th-5 respectively.

Table 4.6 shows the percentage of time spent for activities associated with selecting a
destination DRAM page (referred to as Page Selection) and copying the page from NVM to
DRAM (referred to as Page Copy) as part of the total time required for the OS migration
activities, a higher percentage value for a particular activity under a specific migration
threshold signifies that the activity contributes predominantly to the total time required
for OS migration activities under that migration threshold. Two factors contributing to
page selection time are— (i) the number of pages migrated, and (i) the availability of

pages in the free and clean list of pages. The second component is relevant because if
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the page is unavailable in the free list, selecting a dirty page requires copying back data
to NVM before using that page. Table 4.6 shows which is the major contributing factor
among page selection and page copy in migration overhead. In the case of Gapbs_ pr, page
copy is the significant contributing factor in OS migration activities, and page selection
time is less than ~2% across all DRAM fetch thresholds as the number of pages migrated
for Gapbs_pr (Table 4.5) is lower than the total number of pages in the DRAM pool
(512 pages). Thus, most of requests for pages are satisfied from the free or clean list of
pages, requiring no copying from DRAM to NVM before use. In absolute numbers, page
selection takes 2924 nsec with Th-5, 1753 nsec with Th-25, and 1450 nsec with Th-50.
G500_sssp with fetch threshold five spends ~37% of time in for page selection, owing
to large number of pages migrated with fetch threshold five (Table 4.5), similar is the
case with Ycsb__mem with fetch threshold five. Even when relatively less number of pages
migrated, page selection can consume significant portion of time in OS migration activities
due to lack of free or clean pages. For example, Ycsb__mem with fetch threshold 25 takes
~19% of time in page selection even with 1661 pages migrated (refer Table 4.5). Across
all benchmarks and fetch thresholds, page copy occupies a significant portion of time in

OS migration activities.

HSCC, in its original work, used ZSim [138], a user-level simulator that replays traces
collected using Pin [58], and Zsim does not support OS-level simulation [27]. In HSCC,
authors accounted for performance overhead by adding delays in the simulator for stages in
NVM page caching such as flushing on-chip caches, DRAM page allocation, page migration,
and execution of dynamic threshold adjustment algorithm. As Kindle provides a full-
system simulation, it allows studying the actual effect of copying pages from NVM to
DRAM and associated OS activities on page migration, for example, accessing page-table
to find candidate pages for migration. Kindle also provides insights into the influence
of other OS activities, such as context switches, and the effect of cache pollution due to
OS activities on migration. On the contrary, user-level simulators like ZSim miss out
on such insights about OS interactions in hybrid memory systems. Kindle also allows
for separately investigating performance overhead due to hardware and OS activities, as

shown in Figure 4.6 for OS migration activities.

Kindle allows researchers to quickly evaluate ideas crossing hardware-software layers on

hybrid memory systems, as shown in the two prototype implementations.
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4.3 Summary

The hybrid memory system provides the benefit of both DRAM and NVM technol-
ogy. NVM offers high capacity and data persistence, and DRAM delivers lower read-
/write access latency. The existing infrastructure for hybrid memory exploration crossing
architecture-OS boundary using simulators such as gemb is limited by the complexity of
integrating NVM support in Linux for gem5 and the simulation overhead of Linux due to
OS services and functions running. Incorporating NVM support in Linux requires modi-
fying the memory management system in Linux to expose NVM to applications through
memory allocation APIs such as mmap and allocate physical pages from NVM. The changes
in Linux also require modifying physical memory allocation routines such as buddy alloca-
tor and persisting changes to associated data structures to consistently maintain memory

page allocation metadata for NVM pages to retain it across reboots.

This chapter introduced an open-source framework, Kindle, based on gemb and gemOS
for hybrid memory exploration in architecture and operating systems. Kindle enables hy-
brid memory with NVM and DRAM in a flat addressing mode, allowing users to study
the memory behavior of applications with required hardware-software changes. Using
Kindle, we study end-to-end overhead in maintaining execution context using periodic
checkpointing to achieve process persistence under two schemes to keep the page table in
a consistent manner. Kindle also provides a quick way to study and prototype solutions for
hybrid memory systems. We show prototype implementation of state-of-the-art hardware-
software hybrid memory schemes, SSP [25] and HSCC [27], using Kindle to demonstrate
its efficacy in realizing complex design goals and analyzing new insights. While Kindle
can provide process persistence, it also has limitations originating from the trace-based
approach used in its design to run applications, similar to any other trace-based simula-
tors such as ChampSim [139], as the trace file only captures the non-speculative path of
application and loses possible thread interleaving in multi-threaded applications, etc. We
target memory system study using Kindle and hence focus on tracing memory operations.
Kindle also enables studying NVM memory technologies beyond Phase-Change Memory
(PCM). We configure the NVM interface in gem5 with PCM configuration (a widely used
NVM technology) to showcase the utility of Kindle and the process persistence feature.
However, we can use Kindle to study other NVM technologies by changing NVM interface
parameters in gem5. The scope for such studies increases the value of Kindle in hybrid

memory research.
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Achieving process persistence requires consistently maintaining the memory state, and
with Kindle, we can analyze overheads associated with memory state persistence. Design-
ing schemes for memory state persistence requires special consideration since the memory
area consists of different types, such as heap and stack, having distinct usage character-
istics. Thus, the overhead of consistently maintaining the memory state may differ based
on its nature and usage pattern. Therefore, we need tools to study and understand the
unique characteristics of these memory segments and design efficient approaches for mem-
ory persistence. In the next chapter, we introduce an open-source tool named SniP to
examine the unique characteristics of the stack. SniP is a framework for efficient run-time
tracing of the stack for multi-threaded programs. We later propose a hardware-assisted

periodic checkpointing mechanism for the stack based on the insights provided by SniP.



Chapter 5

Framework for Multi-threaded
Program Stack Tracing

Stack is an important entity in software programs as it helps to efficiently implement
language constructs such as subroutine call and return, allocation and freeing of local
variables. Stack also plays a key role in program analysis as programs leave their footprint
in the stack throughout their execution. Programmers can gain insights into the behavior
and security loopholes, such as buffer overflow, by analyzing the stack usage. However,
programmers face some unique challenges in performing analysis related to run-time stack
usage. Unlike other program memory areas where the programmer explicitly controls the
usage (and can profile), the stack areas are hidden from the programmer. The usage of
the execution stack is transparent to programmers as the compiler inserts instructions to

manage the stack for the correct implementation of program logic, like function calls.

These unique properties of the stack make it a fascinating element in the domain of pro-
gram analysis. It is easy to observe that run-time stack usage can not be foreseen, which
makes static analysis techniques ineffective. Therefore, we depend on dynamic run-time
techniques for stack analysis. Debugging tools (e.g., GDB [56]) can provide a lot of in-
sights into stack usage but require manual intervention and, therefore, do not scale for
long-running applications. On the other hand, run-time memory access tracing techniques
provide flexibility to perform automated tracing and analysis. Dynamic binary instrumen-
tation (DBI) tools such as Intel Pin [58] are widely used to trace the program at run-time

and perform offline analysis using variety of techniques [140-142].
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DBI tools are very convenient as they require no preparation and can trace the entire
program [57, 58]. One of the approaches adopted for run-time stack analysis is to perform
full program tracing and filter stack specific accesses during the offline analysis phases.
However, stack analysis through a trace-driven approach by tracing the program results
in large trace files and higher tracing time (§ 5.2.1). In addition, the offline analysis
process requires the stack virtual address ranges to filter stack accesses in the trace. For
this purpose, we can use memory layout information provided by the operating system.
However, capturing the stack range information for different threads in multi-threaded
applications is challenging. The stack areas for threads can be allocated anywhere in the
program address space depending on the state of the address space and the OS support
for dynamic allocation. For example, stack areas for the threads created using the POSIX
thread library in the Linux OS are allocated at run-time in the noncontiguous regions of
the address space. So one possible simple approach to capture the stack range of a thread
is to inspect its virtual address space layout to identify stack. In Linux, we can inspect
the virtual address space layout of a process in the maps file of the proc pseudo filesystem.
The maps file has [stack/ field to show the stack range, but the [stack/ field shows the
stack range of main thread in the threads’ maps file. POSIX thread library allocates stack
areas of threads using mmap system call, and in current versions of Linux (5.11.0-49), it

is not evident which mmap area is the stack area of a thread by inspecting its maps file.

In this chapter, we propose a framework that takes a different approach for tracing stack.
We filter the stack accesses during tracing to avoid the additional overheads (trace size and
tracing time) and remove the requirement of identifying the stack virtual address ranges
during offline analysis. We propose techniques to identify and manage an information base
for the stack address ranges of different threads, which is consumed by the DBI tool to
apply stack address range filters at the time of tracing. SniP, a Stack tracing framework
for multi-threaded applications, is built on top of Intel’s Pin [58] (niP). SniP captures
and manages the information regarding the stack of different threads using an OS-level
extension where the operations relating to the stack areas (starting from the creation) are
monitored. Further, the up-to-date information related to the stack areas is shared with

the user-space tracing process to enable target tracing.

To the best of our knowledge, SniP is the first framework for tracing stack in multi-
threaded programs; showcasing reduced trace sizes (75x less trace file size with key-value
store TinyDBM [143]) and tracing time (24 x less tracing time with Python3 HTTP server)

compared to tracing the programs in entirety. Furthermore, with the targeted tracing
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FIGURE 5.1: Schematic diagram of SniP

capability of SniP, the offline analysis process becomes simpler for multi-threaded appli-
cations, which enables seamless integration with existing trace based analysis tools. SniP
provides strength to the multi-threaded application stack analysis spectrum as multiple
tools and use-cases can be built around SniP. We show two such sample use-cases using

SniP (§ 5.2.2) to demonstrate its capabilities.

Availability of SniP

SniP is open-sourced and available at https://github.com/arunkp1986/SniP.git

5.1 Design and Implementation

The high-level design of SniP is shown in Figure 5.1. The major components of SniP are
the user space program (Driver) and the OS module (Monitor). The user space program
is responsible for executing the application and Intel’s dynamic binary instrumentation
tool Pin [58]. The monitor module captures the application threads’ stack range at the
point of thread creation and stores this information in the metadata region (Figure 5.1).
This design enables the monitor module to record stack ranges of newly created threads
throughout the application’s lifetime. When tracing starts, Pin consumes the stack range

information stored in the metadata region and generates traces only for access to the stack.

We implement SniP in Linux (kernel version 4.19.83). As Figure 5.1 shows, the user
space driver program creates two child processes, one for executing the application (to
be traced) and the other for Pin. The driver program also passes its process ID (step

@) to the monitor module (implemented as a kernel module) through a character device.
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The process ID enables the monitor module to identify the application using the parent-
child relationship between the driver and the application process. The monitor module
intercepts thread creation of the application process by hooking the wake_up_new_task
function in clone system call handler of the Linux kernel and saves the stack range (step
@) of each application thread in the metadata region. The metadata region is exposed
from the kernel module using the kernel sysfs API which the Pin process can access using
the file API. The driver passes the application process ID to Pin (step 2)) for tracing. Pin
starts reading stack ranges from metadata area (step (4) and generate output by tracing

the application (step (®).

In the current implementation, we need to turn off Address Space Layout Randomization
(ASLR) to prevent the exec system call (in create & manage) from changing the stack
range of the application’s main thread (after its fork from the driver process). We intend
to address this limitation by hooking the exec system call handler in the future. All
the configurations for using the Pin tool remain unchanged in the proposed system, and

therefore, SniP does not hamper the vast feature set provided by Pin.

5.2 Evaluation

5.2.1 Stack tracing with SniP

To analyze the trace size and tracing time, we used the following workloads: merge-
sort (MS) with four threads, each sorting 250 numbers, Python3 default HTTP-server
(HS) used to download 4 files with each 200+ MB size, decision tree classifier (DT) from
Python scikit-learn library used with 77280 training and 19315 testing samples, in-memory
key-value stores BabyDBM (BD), CacheDBM (CD), TinyDBM (TD) from Tkrzw [143]
performing 50 set and 50 get operations, Graph500 (G500) benchmark [137] BFS kernel
run with scale parameter as 10. Figure 5.2 shows the benefits of using SniP for multi-
threaded program stack tracing where we compare trace file size and tracing time between
full program tracing using Intel Pin [58] and stack tracing using SniP. For long-running
applications such as Python HTTP-server, machine learning algorithms, and in-memory
key-value store applications, the difference between Pin and Snip is significant. For exam-
ple, a reduction of 17x in trace file size and 2.5 in trace time is observed for the HTTP
server workload. The benefit of SniP is marginal for short-running applications with heavy

stack usage, such as merge-sort which extensively uses the stack for recursive calls.
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TABLE 5.1: Comparison of size and time for SniP stack tracing w.r.t Pin full tracing

workload Method Size Time

Memcached-YCSB (workloada load) Sljll;) ??8 ﬁg lgzgfg Ez

Pin 233 MB | 53337 ms
SniP 74 MB 12822 ms

Pin 495 GB 214 Hrs

Memcached-YCSB (workloada run)

MySQL-Wikipedia (load)

MySQL-Wikipedia (execute) SljlliI;’ %42 gBB 72 Eﬁ:

To confirm the robustness, we also used SniP to trace long-running applications such
as MySQL with Wikipedia [144] and Memcached with YCSB workloads[135]. Table 5.1
shows ~ 6.9 x reduction in trace file size with SniP for Memcached with YCSB workload
performing workloada load and ~ 4.15 X reduction in trace time for workloada run. SniP
reduced trace file size by ~ 72.7 x and trace time by ~ 21 x for MySQL (version 8.0.42)
with Wikipedia load. We used batchsize as 64 for Wikipedia (execute) and 128 for
Wikipedia (load) in the benchmark configuration file.
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FIGURE 5.3: Percentage of read and write access to stack of Machine Learning
classification algorithms.

5.2.2 Use cases

In this subsection, we show different usage scenarios of SniP for tracing the stack. We

show that SniP can be easily extended to build use-cases around stack analysis.

5.2.2.1 Tracing ML Classification Algorithms

The popularity of machine learning in a wide range of domains is driving software and
hardware changes in computer science. ASICs and accelerators are designed to meet spe-

cific performance demands [145]. Understanding the memory access patterns of machine
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learning algorithms helps designers perform optimizations [146] at software and hardware
levels. Moreover, understanding the memory access patterns is important for systems
with non-volatile memory due to its internal micro-architecture difference with DRAM
and asymmetric read, write access time [147]. First commercially available persistent
memory, Intel’s Optane DC persistent memory performance depends upon access size,

access type (read vs. write), and pattern [148, 149].

Given the popularity of machine learning algorithms and the availability of non-volatile
memory, it will be of great benefit to programmers to know the expected performance
of machine learning algorithms executing on systems with non-volatile memory. In this
context, we show a use-case for SniP by collecting the stack read and write access patterns
of popular machine learning classification algorithms such as decision trees, extra trees,
gradient boosting, and Gaussian naive bayes in Figure 5.3. These classification algorithms
used 75 features from DeepDetect [150] and used 77280 samples for training and 19315 for
testing. During this tracing, Decision Tree Classifier created 22, Extra Trees Classifier 14,
Gradient Boosting Classifier 22, and Gaussian Naive Bayes 21 threads.

Figure 5.3 shows fraction of read and write operations to stack area in 1 minute intervals.
We observed that stack accesses in these algorithms are dominated by reads. Using SniP,
we also performed a further study on the influence of feature set size on stack usage for ML
classification algorithms by taking the extra-tree classifier as an example. Figure 5.4 shows
that the feature set size did not influence stack read/write usage in the initial stage of the
extra trees classifier algorithm, but impacted in the later stage of the algorithm. Figure
5.4 also shows that there is an increase in bytes read from and decrease in bytes written
to stack in the later stage of extra tree classification. We suspected it to be due to data
access pattern differences in training and test phases of the classification algorithm but
confirmed that the pattern is present even after separating out training and test phases of
extra tree classification, which implies the access pattern is a property of the algorithm in

this case.

5.2.2.2 Detecting uninitialized memory usage in stack

Memory corruption bugs such as buffer overflow, Use-After-Free (UAF), and uninitialized
memory use happen due to incorrect programming practices or mistakes [151]. These are
common memory bugs in a program, and static code analysis tools are effective in catching

bugs based on a set of predefined rules, but they have a high false positive rate [152].
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In these common bugs, the uninitialized memory usage can expose kernel data to user

programs, thus breaking the security guarantee [153].

1 int main(){

int data[20];

2

int i;

for (1=0;i <20;i++)
data[i] += 1;
for (1=0;i <20;i++)
printf(”Value at data[%d] = %d\n”,i,data[i]);

return 0;

LisTING 5.1: Prototype of uninitialized memory bug.
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bug

The number of uninitialized memory bugs reported at CVE over the years in Figure 5.5
indicates the importance of detecting it. We show that SniP can detect uninitialized

memory bugs, such as shown in code listing 5.1.

In this use-case, we developed a prototype to identify uninitialized memory bugs by parsing
the stack trace generated by SniP. The parser tagged instances where read to any stack
location happened before write, thus indicating an uninitialized memory usage bug in
the code. SniP’s trace contained details such as access type (read/write), instruction
address, and memory access virtual address. The parser generated a JSON file containing
uninitialized memory bug virtual addresses and instruction addresses as shown in Figure
5.6. Even though we parsed the SniP trace in an offline mode to detect bugs, this can be
done to detect uninitialized memory bugs at run-time by running the parser alongside the

traced program.

5.3 Related Work

Static and dynamic analysis are two well known techniques for program analysis. Static
analysis parses the code or uses abstract models, whereas dynamic analysis executes the
program and observes the runtime behavior; hence, no abstractions or approximations
are required [154]. Dynamic analysis requires inclusion of analysis routines within the

program, which is called binary instrumentation. Binary instrumentation can be done
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statically (binary is modified before the program runs) or dynamically (modification occurs

at run-time) [155].

Dynamic binary instrumentation (DBI) is very convenient for the users to trace and an-
alyze programs as it requires no preparation and can be applied in a flexible manner.
Valgrind [57] is a DBI framework that uses shadow values, which maintains a copy of the
program state containing register values and user-mode address space. Dynamo performs
run-time performance optimization. It generates an optimized version of the hot code se-
quence in the program to a code cache by interpreting the instructions [156]. Intel Pin [58]
uses dynamic compilation to instrument programs while they are executing. Users place
analysis routines at points of interest in binary using instrumentation routines. Pin also
allows attaching and detaching to a running process, and we use this feature of Pin in
SniP for tracing. Chabbi et. al. integrated a call path collection library with Pin that

collected call path context for each executed instruction using a shadow stack [157].

SniP generates trace for program stack accesses; stack trace holds important pieces of
information in debugging and program analysis, as shown by Schroter et. al. [158] in
their empirical study on the usefulness of stack trace. Experienced users can write their
own tools for analyzing trace generated by SniP or use existing tools such as STAT [140],
which is used in debugging thousands of processes by sampling stack trace to form pro-
cess equivalence class, then performing root cause analysis on the representative processes
from equivalence class. Stack trace can also be used to compute similarities between bugs
while reporting [159] or to identify dependency conflicts in projects using an automated
approach [141]. Stack trace plays an important role in system security as well, as high-
lighted by Feng et al., by using stack trace for anomaly detection, they extracted return

address information from the stack for anomaly detection [142].

5.4 Summary

Stack holds important pieces of information to gain insights into the program behaviour
which can help with debugging, security and performance analysis. In this chapter, we
discussed the challenges of tracing the stack accesses in multi-threaded applications using
existing tools like Intel Pin. We introduced SniP, an efficient stack tracing framework
for run-time tracing of application stack using techniques that combine tools like Pin and
intelligent extensions to the OS. We implemented SniP in the Linux OS and demonstrated

its efficacy in terms of its light tracing footprint and flexibility in terms of applicability. Our
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experiments with a set of multi-threaded applications show that SniP not only outperforms
Intel Pin in terms of resource usage but also makes the offline analysis of stack access traces
comparatively simpler. Furthermore, we demonstrated the utility of SniP to perform stack
analysis with contemporary application use cases by performing offline analysis of the stack

access traces collected using SniP.

Based on this stack analysis, in the next chapter, we show the benefit of a checkpoint-based
mechanism for stack persistence and the inefficiency of adapting existing generic memory
persistence mechanisms for the stack region. We propose Prosper, a hardware-software

(OS) co-designed checkpoint approach for stack persistence.



Chapter 6

Program Stack Persistence in

Hybrid Memory Systems

Process persistence using checkpoint techniques [35-37] has gained popularity with the
emergence of hybrid memory systems consisting of traditional volatile random access mem-
ory (DRAM) and byte-addressable non-volatile memory (NVM).

To achieve process persistence through checkpoints, it is required to persist the process
state periodically. The process state, which consists of the CPU register state, memory
state, and other associated states, should be checkpointed so that the process can resume
from the last execution point across system restarts [1]. Capturing periodic snapshots of
the memory state of processes consisting of different mutable memory segments (e.g., heap
and stack) presents non-trivial challenges regarding checkpoint complexity and checkpoint
size [160]. Therefore, many research contributions treat the general problem of consistently
persisting the memory state in isolation by employing techniques at both the software
layers [8, 26, 30-32, 161] and at the hardware layer [25, 29, 80, 162].

In the context of process persistence, the OS-level checkpoint solutions are more practical
than the generic memory persistence solutions, considering the semantic proximity of the
OS to the notion of processes. For example, it is non-trivial for a memory persistence
technique at hardware or user space to demarcate the boundaries for the memory state
of a process spanning across the user and OS layers. On the other hand, OS-level check-
point procedures can potentially leverage the additional hardware support for memory
persistence (with some adaptation) to simplify the complexities associated with periodic

memory checkpoints. In this chapter, we demonstrate that the state-of-the-art solutions

87
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FIGURE 6.1: Memory operations to the stack and heap regions (in %) demon-
strating the significance of stack operations.

are not suitable for all memory segments, specifically for memory segments with unique
characteristics such as the program stack. Furthermore, we propose specialized hardware
extensions to efficiently checkpoint the stack region and show that it can improve the
overall efficiency of OS-level checkpoint solutions when combined with tailored generic

memory persistence techniques.

Typically, the stack segment size is smaller than the heap segment, but the number of
operations on the stack can be significant for some applications. Figure 6.1 shows the
fraction of memory operations in the stack region for three representative benchmarks
from the graph and cloud workloads—Gapbs_ pr [134], G500_sssp [137], and YCSB [135].
We traced these benchmarks for stack and heap operations using Intel Pin [58] on a
four-core Intel(R) Xeon(R) W-2104 system for the highest weighted interval identified by
SimPoint [163]. For Gapbs_pr, 70% of operations (reads and writes) are performed to
the stack regions. We highlight some of the important usage characteristics of the stack
segment (used to implement function calls and store program objects in local scope) that
differ from other memory segments before discussing the applicability of state-of-the-art

techniques.

Usage pattern: The stack exhibits a grow and shrink pattern, i.e., back-and-forth movement
of the stack pointer (SP) during the lifetime of processes (and threads), which differs from

the allocate-use-free pattern of other memory segments such as heap.

Write characteristics: The stack region is not only write-intensive (Figure 6.1), but also
maintains activation records across function invocations and returns, resulting in a signif-

icant number of writes to a cluster of memory addresses.

Indirect usage: Unlike heap, where the application layer uses the region through explicit
allocation and de-allocation, for a stack, the compiler or run-time system introduces the

required stack operations that are hidden from the application layer. The role of the OS
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is a little different for the stack as it handles the growth and shrinkage of a stack in an

on-demand fashion [6].

For stack persistence, periodic commit-based techniques operating in tandem with applica-
tion execution [29, 32, 162] may give rise to inefficiencies because they can not adequately
address the subtleties of stack usage. First, the stack usage pattern may lead to unneces-
sary operations in periodic commit-based techniques, which operate in cooperation with
application execution because the SP may grow and shrink multiple times during an in-
terval. For example, the stack grows from address A to B, then from B to C, then shrinks
from C to B during a checkpoint interval. The stack pointer at the commit point is address
B, so the active stack region for the checkpoint interval is between addresses A and B. Ac-
cesses between B and C are beyond the active stack region for the checkpoint interval. We
show that having future knowledge regarding the value of SP at commit points (referred
to as SP awareness) significantly improves the efficiency of existing techniques (§ 6.1.1).
We designate a memory persistence mechanism to be SP aware if the overhead incurred to
persist the stack region is predominantly determined by the active stack region at the com-
mit point. Second, considering the write-intensive nature of the stack region, maintaining
the stack in NVM leads to performance and endurance issues [147, 164]. Approaches that
do not employ periodic checkpoints have to maintain the stack in NVM along with the
meta-data required to achieve consistency. Third, many existing approaches, specifically
the logging-based approaches—redo, undo [17, 102], and its variations [31])—require in-
vocation of special APIs from the application layer for different events such as load, store,
and commit. Considering the indirect usage of the stack region, non-trivial extensions are
required for the compiler to insert calls appropriately for different operations in the stack

region.

Checkpoint-based solutions allow allocation and usage of the stack in DRAM while achiev-
ing persistence by copying the dirtied stack memory addresses into NVM at the end of
every checkpoint interval. An OS-level periodic checkpoint solution for the stack region
can address the previously mentioned challenges for the following reasons. First, the check-
point mechanism is SP aware as the activity performed by OS at the checkpoint time (i.e.,
copying the dirtied stack memory into NVM) depends upon the active stack region(s).
Second, hosting the stack region in DRAM alleviates the problem of excessive writes to
NVM. Moreover, periodic checkpoints allow higher levels of write coalescing, addressing
the inefficiency concerns due to the write characteristics. Third, an OS-layer checkpoint
solution for stack regions can be used in a generic manner without requiring any special

support from the compiler/run-time, addressing the challenges arising due to the indirect
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TABLE 6.1: Comparison of existing memory persistence mechanisms.
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usage of the stack memory. One of the challenges in capturing the snapshot for stack
region is the amplification of checkpoint size due to limited hardware support for efficient
dirty tracking. For example, as we show in § 6.1.2, dirty tracking of the stack region at
the OS page granularity (e.g., SoftDirty [165], LDT [104]) results in significantly large

checkpoint sizes compared to dirty tracking at the sub-page granularity.

Observations. Without OS-level adaptations, existing memory persistence techniques
in their current form are inadequate to achieve efficient process persistence. Even with
OS-layer adaptations, there can be inefliciencies when existing techniques are used for
stack, considering the usage and access pattern of the stack region. A summary of existing
techniques and their applicability is presented in Table 6.1. While the OS-layer checkpoint
approach for the stack can be seen as an extension to checkpointing other non-memory
states of the process (e.g., the register state), checkpointing overhead for the stack should
be minimized. Moreover, generic hardware-layer solutions for dirty tracking at sub-page
granularity [108, 109] require special hardware support and are used to address specific
usage scenarios such as disaggregated memory and capturing VM snapshots. The flexibility
required by the OS to manage and consume dirty tracking information in a generic manner

is not trivial to achieve using these hardware extensions.

Design Approach. We propose Prosper, a hardware-assisted checkpointing mechanism
for the stack region, to achieve efficient process persistence. The hardware assistance
provided by Prosper can track stack modifications at a finer granularity with very little
overhead, reducing data copy overheads compared with dirty tracking at page granularity.
To provide greater flexibility to the OS, we propose a hardware-software co-design approach

where the OS can control and take advantage of Prosper to checkpoint the stack region
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efficiently. Further, the design of Prosper allows the OS to combine existing hardware-layer
solutions for memory persistence with Prosper for different memory regions in the process

address space.

Key results. Our experiments show that the performance overhead introduced by the
Prosper hardware extension is, on average less than 1% (maximum ~3%). Leveraging
dirty tracking at sub-page granularity, Prosper significantly reduces (on average ~4x) the

amount of data copied during checkpoint and improves the overall checkpoint time.

For a workload performing sparse writes to the stack region, Prosper reduces checkpoint
size by 99% compared to page granularity dirty tracking, resulting in ~22x improvement
in the time taken to checkpoint the stack region. Prosper performs better than state-of-
the-art NVM memory persistence schemes such as Romulus [26] and SSP [25] for providing
stack persistence. Prosper provided up to 3.6x reduction in stack persistence overhead
with respect to SSP and a maximum of 1.27x reduction with respect to the page-level
Dirtybit mechanism. A process persistence solution combining Prosper and SSP results
in up to 2.6 x improvement in achieving memory state persistence compared to a scenario

when only SSP is used for the entire memory.

6.1 Motivation

For the experiments presented in this section, we traced the stack usage of some memory-
intensive application benchmarks (Figure 6.1) using SniP [136], an open-source stack trac-
ing framework, on a four-core Intel(R) Xeon(R) W-2104 system. For Gapbs_ pr, the input

227 vertices, 1000 iterations, le~* tolerance, and

parameters are: kronecker graph with
16 trials. G500_sssp uses scale as 16 and edge factor as 64. For Ycsb__mem, we traced
Memcached while performing YCSB workload-A load followed by workload-B run. We

traced for the highest weighted interval identified by SimPoint [163].

6.1.1 Inefficiency due to Stack Pointer Unawareness

Existing techniques without SP awareness perform non-trivial operations (e.g., create a log
entry) throughout the interval to maintain the persistence state of the stack. The overhead
of such operations depends upon the specific persistence mechanism under consideration.
For example, a log-based scheme may create log entries for each write to the stack region,

resulting in overall performance overhead proportional to the number of writes and the
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FIGURE 6.2: Number of total stack writes and writes beyond final stack pointer
(SP) aggregated at 100 intervals with each interval of 10ms for Ycsb_mem bench-
mark.

cost of creating and serializing log entries. In this case, the overhead incurred to persist
stack is not determined by the active stack region at the end of an interval; therefore,
a log-based scheme is not SP aware. Towards capturing the overhead quantitatively, we
calculate the number of stack modifications during an interval that is beyond the active
stack region (i.e., beyond the value of SP) at the end of the interval using the access
traces. Figure 6.2 shows the total number of stack writes and writes beyond the final
SP, aggregated for 100 consistency intervals with each interval of 10ms duration (used for
process persistence in Aurora [1]) for the Yesb__mem benchmark. On average, more than
36% of the stack modifications are beyond the final SP for Yesb__mem, and the behavior is
similar for other benchmarks such as Gapbs_ pr and G500_sssp (not shown in Figure 6.2).
The impact of SP unawareness on a persistence mechanism can be significant, considering

the non-negligible proportion of operations turning out to be wasteful.

Next, we analyze the benefit of incorporating SP awareness into common memory persis-
tence mechanisms such as flush, undo, and redo to understand the extent of performance
penalty these mechanisms suffer due to SP unawareness. We replayed the read/write ac-
cesses in the stack memory traces using a custom program on an Intel(R) Xeon(R) Gold
6226R system with NVM (Optane DCPM [147]). The custom program performed an
equivalent number of reads/writes in the trace with the configured memory persistence
methods (i.e., flush, undo, or redo) in “No SP awareness” scenario, whereas it applied
the persistence method only to the active stack region in “SP awareness” scenario. The
flush technique used a clwb instruction after every store operation. Note that, inherently,
the above memory persistence mechanisms can not have SP awareness as they have to
intervene and perform operations for every write to stack. The trace-driven replay allows

us to incorporate SP awareness in these techniques for analysis purposes.
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Figure 6.3 shows the potential benefit of incorporating SP awareness in flush, undo, and
redo techniques to achieve stack persistence. The results show the execution time for
different mechanisms with and without SP awareness (in NVM) normalized to execution
time when no persistence mechanism is used, i.e., stack region is allocated in the DRAM.
We observe two important performance trends from this experiment. First, as shown in
Figure 6.3, all persistence mechanisms benefit from having “SP awareness”; the average
performance improvement compared to “No SP awareness” scenario across all workloads is
observed to be 30%, 31%, and 33% for flush, undo, and redo, respectively. For example,
the execution time for Gapbs_ pr while using flush with SP awareness is 8.5 seconds,
10.6 seconds without SP awareness, and 0.2 seconds with no persistence. Even though
Ycsb  mem has comparatively fewer stack modifications (~15% in Figure 6.1), it has more
number of stack modifications beyond the active stack region compared to Gapbs_ pr and

G500__sssp, thus benefiting more due to “SP awareness.”

Second, even with SP awareness, the overhead is significant—more than 35x slowdown
across all benchmarks. Techniques requiring the maintenance of the stack in NVM and
lacking the capability to merge the consistency-preserving operations incur significant
overhead, considering the write-intensive nature of stack operations. For example, for
flush, every store to the stack region would result in a write-back to NVM. A checkpoint
solution, apart from allowing the stack allocation in DRAM, provides enough opportunities
for coalescing as the checkpoint is performed only at the end of a checkpoint interval.
Moreover, checkpoint techniques are required to perform limited operations during an
interval (i.e., dirty tracking) and hence, the amount of wasted work can be minimized

with efficient dirty tracking.
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6.1.2 Inefficiency of Page-level Dirty Tracking

The primary sources of overhead in checkpointing any memory region are,

1. Dirty tracking overhead, i.e., overhead associated with designating dirty status of

memory chunks.

2. Data copy overhead, i.e., time taken to copy modified data from DRAM to NVM.

Dirty tracking techniques in contemporary systems depend upon the information gathered
during the virtual to physical address translation. There are two standard techniques for

dirty tracking at page-level granularity.

o Using the dirty bit indicator set by the address translation hardware (e.g., the dirty
bit in the page table [104]). We refer to this as the Dirtybit approach.

o Disabling the write access by write-protecting the pages in the page table [165, 166].

We refer to this approach as a write-protection based approach.

The write-protection bit-based scheme forces page faults on write access to a page during a
dirty tracking interval. This scheme removes the write permission bit from the page table
entries (PTEs) for all physically mapped addresses at the start of a tracking interval.
Therefore, the first write to such pages in an interval would generate a page fault where
the system software (OS) may record the page as dirty, which can be used at the end of the
tracking period. In the Dirtybit approach, the dirty bit in the page table entries (PTEs)
is reset at the start of a tracking interval. The hardware page-table walker (PTW) sets
the dirty bit in PTE if there is any writes to the pages corresponding to the PTEs. At the
end of the tracking interval, the OS can examine the PTEs to determine the dirty pages.

Both page granularity dirty tracking techniques require the OS to walk the page table to
collect dirty page information and prepare the PTEs for the next interval. However, the
write-protection-based approach incurs additional overhead due to page faults and may
lead to significant overheads, as shown by Singh et al. [104]. On the other hand, the
Dirtybit approach is nimble and is supported by default in most hardware architectures.
LDT [104], a technique leveraging dirty bit support of x86-64 systems, shows that LDT
can reduce the dirty tracking overhead in the Linux OS compared to the write-protection-
based technique [165]. In this chapter, we use LDT [104] as the reference implementation

to design Dirtybit-based approach for comparative analysis. For the stack region, dirty
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(8 Byte) granularity tracking for benchmarks in Figure 6.1.

tracking overhead should be minimized to reduce the wasteful work during the tracking
interval. However, the granularity of tracking memory modifications is limited by the
address translation unit, typically an OS page [104, 166]. This can be a bottleneck in

terms of increased checkpoint size, resulting in higher copy overheads.

Ideally, a dirty tracking approach should track modifications at sub-page (or byte-level)
granularity and copy only modified bytes at the end of a checkpoint interval. This conven-
tional wisdom of tracking modifications at lower granularity [21, 25] is much more crucial
for the stack than other memory areas since the stack modifications majorly happen at
lower granularity due to procedure calls or local variable writes. To understand the extent
of reduction in checkpoint copy size with dirty tracking at byte-level (sub-page) granular-
ity for stack modifications, we compared data copy size in byte-level dirty tracking with

conventional page-level granularity.

We post-processed the traces of benchmarks in Figure 6.1 to calculate the data copy size
with page and 8-byte granularity dirty tracking at 10ms intervals for the stack regions.
Figure 6.4 compares the data copy size for the page (4KB) and 8-byte granularity dirty
tracking for the stack regions. Dirty tracking at sub-page byte granularity for stack reduces
the checkpoint size by a factor of 300x for Gapbs_pr, 56x for G500_sssp, and 33x for

Yesb  mem.

Summary. Observations presented in this section form the basis of Prosper, where we
make a case for tracking stack modifications at a finer (byte) granularity to reduce the
checkpoint size. Apart from dirty tracking at a finer granularity, the proposed system
by virtue of its design, should allow stack allocation in DRAM, better symbiosis with
the OS-layer process persistence mechanisms, support efficient software implementation
to capture stack checkpoints, and limit the penalties of SP unawareness by efficient dirty

tracking.
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6.2 Dirty Tracking with Prosper

To achieve process persistence through OS-level periodic checkpointing, the memory state
of the process needs to be persisted in a crash-consistent manner along with other process
states. Hardware-only approaches face non-trivial challenges for stack persistence due to
SP unawareness and integration difficulties with the OS layer checkpoint procedures. As
summarized previously, a periodic checkpoint approach for stack persistence has many
advantages. However, tracking stack modifications at sub-page granularity to reduce the
checkpoint size requires additional hardware support. A desirable solution should provide
low-overhead dirty tracking of the stack region while organically supporting the OS-layer
checkpointing. One possible design choice can be an OS-hardware co-design where the

following non-trivial design challenges are addressed.

(i) OS should notify hardware about stack address range and start/stop tracking at
the beginning/end of any checkpoint interval. Thus, separation of responsibilities
along with an efficient communication protocol between the hardware and software
(OS) components is necessary. For correctness, the co-design approach must confirm
synchronization between the OS and hardware to ensure the quiescence of dirty

information before consuming it from the OS.

(ii) Hardware tracker monitors stack modification and should not stall load/store re-
quests from the processor to the stack memory. Tracking must be done out of the
critical path of demand requests from the processor. Hardware tracker should also
generate minimum memory requests as part of tracking to reduce its footprint in the

memory hierarchy.

(iii) The OS and hardware components should coordinate information sharing regarding
the tracking granularity, address ranges of stacks used by different execution entities
(such as threads), and their corresponding meta-data regions to record tracking
information efficiently, which the OS later consumes. Across different events, such
as checkpoints, context switches, and others, correctness and efficiency should be

ensured.

Prosper uses a hardware-software (OS) co-design approach in which the OS records stack
address range, and the hardware component tracks stack modifications. Even though

Prosper is proposed for tracking stack modifications, its generic design can be leveraged
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FIGURE 6.5: Schematic diagram of Prosper.

to track modifications to any virtual address range. For example, we can use Prosper to

track modifications to dynamically allocated virtual address ranges in the heap.

Figure 6.5 shows the division of responsibilities and handshakes between the hardware and

the OS components in Prosper.

6.2.1 Prosper Software

The software (OS) component assists the hardware component by providing required in-
formation through a set of parameters, addressing the first and third communication chal-
lenges between software and hardware. Prosper’s OS component records the stack address
range of an application thread (D in Figure 6.5) and passes it along with other informa-
tion, such as tracking granularity and address of memory area to record metadata about
stack modifications through parameters (2)). Prosper’s h/w component uses these param-
eters (@) to track the application’s stack modifications. Prosper saves the tracked dirty
information in memory (@) using a bitmap, addressing the second challenge regarding
metadata storage, and OS utilizes it ((5)) to decide which stack areas are modified in the
current checkpoint interval. A bit in the dirty bitmap corresponds to a stack address range
based on the tracking granularity. OS finally initiates a copy of data ((6)) in memory after
ensuring all dirty tracking information is in a consistent state. Before performing bitmap

inspection, the OS ensures quiescence of the bitmap area using a two-step process,
(i) Instruct the Prosper h/w to flush all tracked dirty information.
(ii) Ensures completion of flush related activities by checking a hardware indicator.

The OS may perform other activities (e.g., preparing for copy) between the two steps to

reduce overheads due to stalling in the second step. The OS clears the recorded dirty
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bits before starting the next checkpoint interval to ensure the correct recording of dirty

information in the next interval.

The efficiency of OS processing depends on performing targeted processing of the stack
region where the OS examines the dirty meta-data and performs copy operations only for
the active stack region. To avoid walking the entire meta-data area to clear the bits set
in the last iteration, the OS should know the maximum active stack region during the
checkpoint interval. The Prosper hardware tracks this information and shares it with the
OS at the end of the checkpoint interval. The OS component also handles events such as

context switches and process/thread migration, which are not shown for simplicity.

6.2.2 Prosper Hardware

The nucleus of Prosper’s hardware component is a dirty tracker hardware, as shown in
Figure 6.6. The tracker (shown as (D in Figure 6.6) is active during a checkpoint interval
(i.e., between a checkpoint start and end). The tracker monitors memory store operations
and filters the ones to the stack region without interfering with the progress of the store
operation, addressing the second challenge (mentioned previously). The primary task of
the tracker is to set bit(s) in the bitmap area (shown as (2)) corresponding to the addresses
of the filtered store(s). Each bit in the bitmap is associated with an address range in the
stack based on the tracking granularity. The tracker can be configured with granularity

as multiples of 8-byte.
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With Prosper, the bitmap and volatile state of an application reside in DRAM (shown
as @) in Figure 6.6). A per-thread persistent stack is maintained in NVM (not shown in
figure), which is consistently updated in two steps. In the first step, after inspecting the
bits in the bitmap area, the OS copies (@) data to a temporary buffer in NVM (shown
as (5 in Figure 6.6) at the checkpoint end. In the second step, the per-thread persistent
stack in NVM is updated using the data copied to the temporary buffer in the first step.
To reduce the overheads due to bitmap inspection and copy operations, the OS looks for

coalescing opportunities within every eight bytes of the bitmap.

We build different design elements through the following series of questions related to the

maintenance of the bitmap area during the tracking interval.

(A) When should the tracker issue bitmap store?

A straw-man approach could be to issue bitmap-store requests as and when a bit needs
to be set in the bitmap due to stack modification. However, the straw-man strategy could
interfere with the demand stores from the core because of the additional bitmap-store
requests it generates. Therefore, we use a lookup table as a small cache within the tracker
to coalesce the bitmap store requests for a given stack range. Bitmap store requests are

generated due to,

(i) Eviction of an entry from the lookup table due to lack of space in the table.
(ii) The entry has reached the coalescing threshold as explained below.

(iii) At the end of a checkpoint interval.

Each entry in the lookup table is a tuple of <bitmap location address (64bits), bitmap
value (32bits)> (Figure 6.7). The lookup table has parallel search capability using the
bitmap location address as the key. The target address for each bitmap store is searched
in the table where a hit results in an update of bitmap value and a miss results in creating
a new entry in the table, evicting an existing entry if required. We considered two design

choices while creating a new bitmap entry in the table.

1) Accumulate and Apply: Tracker creates an empty entry in the lookup table without
loading the old bitmap value from memory. Bitmap value changes are accumulated in
this entry until a bitmap store request is generated for this entry. The store request is
converted into a load request for the old bitmap value; then, the accumulated bitmap value
is merged with this old value and stored back if required. Loading the old bitmap value is

delayed until a bitmap store request is initiated. The advantage of this approach is that
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the table entry is allocated instantaneously without waiting for the load operation of the

old bitmap value from memory to be completed.

2) Load and Update: Tracker issues a load request for the old bitmap value from memory
into the table and updates the bitmap value in the table. The table contains the latest
bitmap value when a bitmap store request is generated for this entry. The advantage
of this approach is that no additional load apart from the initial load is required when
the exact bitmap location is modified after evicting from the table multiple times in an
interval. The drawback is the need to delay bitmap entry allocation until the load for the

old value is completed.

We use the first option, Accumulate and Apply in Prosper for creating a new bitmap entry
in the table as it allows quick allocation of lookup table entries. This avoids complications
of reserving an entry marked as “not ready” in the table for the duration of load and

queuing of stores corresponding to the same entry.

(B) What are the coalescing thresholds?

As bits corresponding to stack modifications have coalesced in the lookup table entry, the
tracker should decide on an appropriate event to issue bitmap store requests. The tracker
should not be too eager or lazy; the former may increase the interference in the memory
hierarchy, while the latter can result in more evictions to accommodate new bitmap store
requests. In the current design, the tracker issues a bitmap write request when the number
of bits set in any lookup table entry reaches a high-water-mark (HWM) threshold. An
optimal HWM attempts to strike a balance between memory bandwidth usage for bitmap

store requests and the number of evictions.

(C) What is the eviction strategy for the look-up table?

As the lookup table has a limited size, the tracker should employ an eviction policy to
accommodate new bitmap store requests. Under the current eviction policy, the tracker
selects victims based on the number of bits set in the bitmap value of all table entries. The
tracker evicts the entries for which the number of bits set in the lookup table is less than
a low-water-mark (LWM) threshold. The tracker may evict a random entry if no suitable
entries adhering to the LWM criteria are found. The rationale for this simple LWM-based
design is to give priority to table entries corresponding to frequently modified stack areas.
Moreover, function calls and returns may touch stack areas momentarily without a lot of

reuse, which should be evicted from the table with higher priority.
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HWM threshold value decides the lifetime of a lookup table entry before generating a
bitmap store request. A high HWM threshold value allows for longer retention of lookup
table entries and enables setting more bits before issuing a bitmap store request. Thus,
applications with spatial locality of reference to program stack benefit from high HWM
and also reduce the number of bitmap loads and stores generated by such applications
compared to a low HWM threshold value. LWM threshold value decides the number
of vacant entries created in the lookup table during eviction. A high LWM creates more
vacant entries in the lookup table during eviction, and applications without spatial locality
in stack access require more entries in the lookup table. These applications benefit from
high LWM value.

6.2.3 Multi-threading Support

As each software thread has its own stack, the stack can be tracked on the logical CPU on
which the thread is scheduled. Prosper’s per hardware thread dirty tracker can track the
stack modifications of software threads and set bit(s) in the dedicated bitmap areas. During
the process (and thread) context switch, the OS is required to save and restore the dirty
tracker state (i.e., configuration and bitmap information), similar to other architectural
states. During a context switch, quiescence of the bitmap area for outgoing context is
ensured using the two-step process mentioned in § 6.2.1. Specifically, as soon as the
OS decides the incoming context, it instructs the Prosper h/w to flush entries from the
lookup table to update the bitmap area of the outgoing context. Next, the OS ensures the
completion of flushing before resuming the incoming context by loading the saved Prosper

hardware state.

One of the challenges in multi-threaded scenarios is to handle inter-thread stack modifi-
cations, i.e., when one thread of a process accesses (writes to) the stack region of another
thread of the same process. Inter-thread stack modification is possible because threads
share the address space and can access each other’s stack region. However, we observed
that such inter-thread stack modifications are rare in applications such as the ones used
in § 6.1. Nonetheless, the issue can be addressed by combining Prosper with existing
privilege separation mechanisms in multi-threaded applications [167] where inter-thread
stack accesses can be tracked by forcing OS interventions such as raising page faults. For
Propsper, this can be achieved by maintaining separate page table entries for stack address
ranges of different threads. The permission bits in page tables are set such that a thread
has write access to its own stack but has read-only access to the stacks of other threads.

On a write fault to any stack address, OS allows the write to proceed after setting the
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FIGURE 6.7: Working of the Prosper hardware tracker.

required bits in the bitmap area. Similar to the design of Wang et al. [167], changes to the
stack page table of any thread need to be propagated to the page table entries of other
threads in this design.

6.2.4 Implementation

The dirty tracker hardware employs mechanisms to identify and filter stores of interest
(SOI). The demand store requests from the processor are inspected by the Prosper dirty
tracker while being forwarded to the L1D. To filter the SOIs, a comparator circuit compares
the store addresses against the address range set by the OS using two custom per-core
model-specific registers (MSRs). The hardware dirty tracker identifies and filters required
information from SOIs without impacting their progress. The comparator circuit is placed
near L1D to track accesses as early as possible before they are translated or merged. In
comparison to employing tracking further down in the memory hierarchy (e.g., at the

memory controller), this approach has two primary benefits,

(i) h/w filtering logic to identify SOIs becomes simple as the virtual address range for
the stack is contiguous which need not be the case when filtering is based on physical

addresses.

(ii) the tracker has immediate visibility of all stack modifications, which may not be
possible at further levels in the memory hierarchy because the accesses can be served from

the upper-level cache(s).

Figure 6.7 shows the working of per-core dirty tracker hardware after filtering the SOlIs.
The tracker uses the tracking granularity and bitmap base address values passed through

two additional MSRs to calculate the corresponding bitmap address and the bit position
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in the bitmap value () The lookup table coalesces bitmap store operations to reduce
the number of bitmap store requests generated by the tracker. The tracker performs
concurrent address comparison to search the bitmap location address in the lookup table
, by comparing it against addresses stored in the lookup table. Next, if an entry exists,
the tracker sets the appropriate bit in the bitmap value of the existing entry in the lookup
table. Otherwise, it creates a new entry where only the corresponding bit for the SOI
address is set in the bitmap value (Accumulate and Apply approach). The tracker finally
issues a bitmap store request @ when the number of bits set in the lookup table value is
higher than a high-water-mark (HWM) . The bitmap store request for a given entry is
performed in two steps—first, the old bitmap value is loaded by generating a load request
to the address of the bitmap entry, and second, the old value is merged with the value
in the lookup table and stored back, if necessary. The eviction operation also follows the

same path, albeit the entry is marked free.

Entries in the lookup table are flushed by performing eviction of all entries when the OS
indicates the end of a checkpoint interval. In this case, the OS polls the tracking hardware
to ensure all tracker-generated operations (load and store) are completed before proceeding
further. The tracker maintains outstanding load and store request counters to ensure the
completion of all in-flight operations and coordination with OS. We implement Prosper

hardware component on gem5 [50, 51] (version 21.2.1.1).

End-to-end Checkpoint Solution

A typical process checkpoint mechanism for hybrid memory systems consists of an OS layer
to capture the process state periodically. Thus, the OS should support hybrid memory
(DRAM + NVM) and baseline checkpoint operations for different process states. The OS
on a system with Prosper must also incorporate additional support for Prosper software
component. While gem5 [50, 51] supports Linux in full system mode, Linux does not
support the baseline features mentioned above for a hybrid memory. Therefore, to design
an end-to-end checkpoint solution using Prosper, we create an application checkpoint-

restore infrastructure on Kindle, the hybrid memory framework with NVM and DRAM.

The memory management subsystem in Kindle supports hybrid memory where the pro-
cess uses DRAM and stores checkpoints in the NVM (refer to chapter 4). Kindle also
enables periodic checkpoint operations for a process by passing the checkpoint interval as

a parameter.

The baseline checkpoint mechanism in GemOS, which is part of Kindle, captures all process

states (including the stack) in an incremental manner and stores them in the NVM. The
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TABLE 6.2: gemb5 Configuration

’ Parameter ‘ Used Setting ‘ Setup ‘

CPU 3GHz I&IT

L1-D/I 32 KiB/core (8 way, 3 cycles) 1&I1

L2 512KiB/core (16 way, 12 cycles) I&I1

L3 2 MiB/core (shared) (16 way, 20 cycles) | I&II

MSHRs 16, 32, 32/core L1-D, L2, L3 I&IT

Cache line size 64 Bin L1, L2, L3 1&I11

DRAM interface DDR4-2400 16x4 I&IT
NVM interface PCM i I
NVM Write buffer 48 1
NVM Read buffer 64 1
Memory capacity 3GB DRAM + 2GB NVM 1
Memory capacity 32GB DRAM II

IPCM timing parameters based on [119]

memory modifications for the process are tracked at a page granularity using Dirtybit
approach (§ 6.1.2). For byte granularity checkpointing with Prosper, we incorporate the
Prosper software component into the GemOS component of Kindle to perform different
handshake operations with the underlying Prosper hardware component using custom
MSRs. To test the correctness, we emulate abrupt system crashes by killing the gemb
component of Kindle on the host while an application process is active within Kindle
framework. After the crash, we restarted the gemb component of Kindle and observed

that the process within Kindle framework restarted from the last checkpoint successfully.

6.3 Experimental Setup

We performed two sets of experiments using two setups (referred to as Setup-I and Setup-
IT). The first set of experiments demonstrates the end-to-end improvement of checkpoint
performance with Prosper, while the second set of experiments analyzes the hardware
dirty tracking overhead introduced by Prosper. We used gemb (version 21.2.1.1) [50]
with configurations mentioned in Table 6.2 for the experiments. Table 6.2 lists the NVM
parameters that are different from the default NVM interface (i.e., NVM-2400 1x64) in
gemb. The parameters not mentioned in Table 6.2 are set to the default settings of the
gemb simulator. Unless explicitly mentioned, we use the lookup table size as 16, HWM
as 24, LWM as 8, tracking granularity as 8 bytes, and checkpoint interval as 10 ms for all

experiments (refer to § 6.2.4).



Chapter 6. Program Stack Persistence in Hybrid Memory Systems 105

6.3.1 Checkpoint Performance

We used Setup-I to demonstrate the efficacy of Prosper through the following experiments.

1) Performance of Prosper to persist the stack in a consistent manner vis-a-vis other
memory persistence mechanisms such as Romulus [26], SSP [25], and page-granularity

checkpoint using hardware dirty bit support [104] (referred to as Dirtybit).

2) Comparatively analyze the performance of achieving process memory state persis-

tence by combining different stack persistence techniques with SSP.

3) Performance of Prosper for different stack usage patterns using micro-benchmarks
(Table 6.3).

We modified GemOS [52] for this set of experiments, running on gem5 with DRAM +
NVM hybrid memory. Further, we implemented Romulus and SSP in GemOS.

Romulus [26] provides memory persistence by maintaining twin copies of data in NVM,
with one copy considered backup and the other as main. The authors have proposed
Romulus as a user-space library; however, since the compiler manages the stack opera-
tions, we have implemented Romulus as a hardware-software co-design to interpose stack
modifications. The hardware component logs the address and size of stack modifications.
The software component copies modifications from main to backup by inspecting the log

entries created by the hardware.

SSP [25] ensures memory persistence at cache line granularity using a shadow paging
scheme. SSP maintains two physical pages for each virtual page and distributes mod-
ifications across these two pages at cache line granularity. Using an OS thread, SSP
consolidates two physical pages associated with an inactive virtual page. We have varied
the OS page consolidation thread invocation frequency as 10 us, 100 us, and 1ms in the
experiments (OS thread invocation frequency is not mentioned in the paper). At the end
of each consistency interval, SSP writebacks modified cache lines using clwb, sends up-
dated bitmap in extended TLB to the SSP cache, and applies it on the commit bitmap
maintained in NVM.

To study the performance of Prosper with different stack usage scenarios, we compare it
against the page-level dirty-bit mechanism (Dirtybit) applied for the stack. The micro-
benchmarks in Table 6.3 capture different stack access categories by operating on an array

allocated in the function scope. The Sparse micro-benchmark dirties four bytes of each
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memory page used for stack across recursive invocation of a function. The Random micro-
benchmark writes to a fixed number of random words, while the Stream micro-benchmark
writes to the entire stack region. The Sparse, Random, and Stream micro-benchmarks are

designed to explore the best, average, and worst case performance of Prosper, respectively.

The Quicksort and Recursive micro-benchmarks capture the stack access pattern with
repeated function calls and returns. Finally, we use Normal and Poisson micro-benchmarks
to study the performance when the number of stack accesses between two computation
code fragments follows a probability distribution. To introduce stochastic behavior in
terms of the number of accesses between two compute code blocks, the number of stack
writes is chosen from a normal distribution (with x4 = 63 and o = 20) for the Normal
workload. For Poison workload, the number writes to stack between two compute code
blocks are chosen from a Poison distribution with A = 63. The compute code block in

these workloads increments a register value one thousand times.

6.3.2 Tracking Overhead Experiments

We used gemb with Setup-II configurations and Linux (kernel version 5.2.3) to measure
the dirty tracking overhead of the Prosper hardware. We modified the Linux kernel to
incorporate the system software component of Prosper. A kernel thread coordinates with
the Prosper hardware to control and collect dirty information for the stack region(s) in
every 10ms interval. At the start of an interval, the kernel thread communicates tracking
parameters and stack address range to Prosper hardware using custom MSRs. At the end
of the interval, the thread synchronizes with Prosper hardware to ensure the completion

of tracking activity before examining the dirty tracking meta-data.

We used SSSP from Graph500 [137], PR from GAPBS [134], SPEC CPU 2017 (SPEC-
speed) benchmarks [168], and micro-benchmark Stream (Table 6.3) for this study and
allowed the benchmark application to run for one minute (as warm-up time) before start-
ing the incremental checkpoint. The kernel thread performed a total of 6000 checkpoints

at 10ms intervals.

6.4 Evaluation

In the first set of experiments, we evaluate the performance benefits of Propser in pro-

viding process persistence by comparing it against state-of-the-art memory persistence
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TABLE 6.3: Microbenchmarks with different stack usage scenarios

Category ‘ Name ‘ Description

Write to random elements of
an array allocated in the stack
Write to all elements of an array
allocated on stack sequentially
Write to 4KB spaced elements of
an array allocated on the stack

Random

Access Pattern Stream

Sparse

Sorting elements of an
Function array allocated in the heap
Invocation Recursive function invocation

Quicksort

R .
eeursive with parameterized call depth
Normally distributed stack writes
Normal . .
Access between computation operations
Intensity . Poisson distributed stack writes
Poisson

between computation operations

mechanisms using Setup-I. Furthermore, we investigate the benefit of integrating Prosper
with state-of-the-art memory persistence mechanisms for achieving memory state persis-
tence (heap and stack combined). We analyze the performance of Prosper for different
stack usage patterns. In the second set of experiments, we evaluate Prosper’s hardware
overhead, the dirty tracker’s sensitivity to HWM and LWM thresholds using Setup-II, and

the energy requirements of Prosper’s hardware.

Performance of Prosper: Figure 6.8 shows the performance comparison of Prosper with
existing NVM memory persistence mechanisms—Romulus, SSP, and page-level Dirtybit

scheme, when used to achieve persistence of the stack region of different applications.

Figure 6.8 shows the execution time of different applications with one of the memory per-
sistence mechanisms applied for the stack normalized to execution time without memory
persistence. For SSP, the invocation interval for the OS page consolidation thread is varied
from 10us to 1ms (referred to as SSP-10us, SSP-100us and SSP-1ms).

Propser performs better than Romulus, and SSP for all workloads and performs better
than page-level Dirtybit for all except Random and Stream. SSP and Romulus require the
memory area to be allocated in NVM. In contrast, Dirtybit and Prosper allow allocating
stack in DRAM, which leads to improved performance due to the differences in access
latency between DRAM and NVM. For SSP, the page consolidation OS thread also con-
tributes to the performance overhead, as merging pages may interfere with the application

execution.
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In Dirtybit and Propser, metadata inspection and data copy happen at the end of the
checkpoint interval. Romulus results in significant performance overheads across all work-
loads as the hardware generates redo log entries for all stack modifications, and the soft-
ware may copy overlapping addresses from the primary memory location to the backup
memory location (in the absence of coalescing as is the case in our implementation). On
the other hand, Dirtybit and Propser coalesce bitmap updates for the same location and
avoid redundant copying at the interval end. The performance benefit of Prosper com-
pared to Dirtybit results from the reduction in copy size due to the sub-page granularity
dirty-tracking support of Prosper, as well as the efficient inspection/preparation of the
dirty information metadata (§ 6.2). Prosper results in an average of 2.1x (maximum of
3.6x for Yesb__mem) reduction in stack persistence overhead compared to SSP-10us and a
maximum of 1.27x reduction in stack persistence overhead for G500_sssp with respect to
Dirtybit. The stack persistence overhead for SSP decreases with an increase in page con-
solidation OS thread invocation interval from 10 us to Ims. For example, ~2x reduction
for Gapbs_ pr from 10us to 1ms is observed, but SSP incurs higher overheads compared
to Prosper even with 1ms setting. Prosper efficiently provides stack persistence compared
to other existing memory persistence mechanisms applied for stack persistence. Prosper
design allows changing tracking granularity based on the dirty behavior of an application

or turning it off to use a page-level Dirtybit scheme.

Process memory state persistence: The stack and the heap regions are two primary

mutable regions in a process. To analyze the performance overhead of achieving memory
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FIGURE 6.9: Performance comparison for heap+stack area persistence, with SSP
with different intervals.Y-axis shows the execution time normalized to no persis-
tence, lower the better.

state persistence in different applications, we used different combinations of SSP, Dirtybit,
and Prosper for the heap and stack segments. The combinations used for this experiment
are— (1) SSP for both stack and heap, (%) SSP for heap and Dirtybit for stack, and (7i)
SSP for heap and Prosper for stack. The design of Prosper is inclusive enough to integrate

with other memory persistence schemes, such as logging for heap area.

Figure 6.9 shows the execution time of different applications with one of the memory
persistence mechanisms applied for heap and stack normalized to execution time without
memory persistence. Figure 6.9 clearly demonstrates the benefit of combining Prosper or
Dirtybit with SSP to achieve memory persistence compared to using SSP for the entire
memory area under all three OS thread invocation intervals. SSP-Prosper performed better
than SSP-Dirtybit and SSP across all three SSP page consolidation thread invocation in-
terval scenarios. SSP-Prosper provided an average 2x (maximum of 2.6x for Ycsb__mem)
reduction in memory persistence overhead compared to SSP with 10 us thread invocation
interval and an average of ~1.4x and ~1.3x reduction in memory persistence overhead
compared to SSP with 100us and 1ms, respectively. An increase in SSP OS thread invoca-
tion interval benefits all three stack memory persistence mechanisms, with SSP showing a

2.4x reduction in memory persistence overhead for 1ms compared to 10us for Ycsb_ mem.

A combination of Prosper with other existing memory persistence mechanisms can provide

persistence for the entire memory area with minimum overhead.

Prosper with different stack usage scenarios: We study the performance impact
of different stack usage patterns with Prosper using micro-benchmarks in Table 6.3. For
this experiment, five different tracking granularities (8 byte, 16 byte, 32 byte, 64 byte,
and 128 byte) are used with a fixed checkpoint interval of 10 ms. Figure 6.10 shows the
performance of Prosper for different workloads vis-a-vis the baseline, i.e., the Dirtybit

(page-granularity) scheme.
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FIGURE 6.10: Stack checkpoint performance for different micro-benchmarks with
Prosper.

Figure 6.10(a) shows the checkpoint size for the stack averaged over all checkpoint intervals.
Figure 6.10(b) shows the time taken to complete the checkpoint with Prosper normalized
to the time taken for the page-level Dirtybit scheme. The checkpoint time consists of the
time taken to inspect the dirty tracking bitmap, clear bits in the bitmap, and copy the
modifications from DRAM to NVM. While inspecting the bitmap, contiguous bits set in
the bitmap are coalesced, allowing faster bitmap processing. Thus, the time required to
inspect a dirty tracking bitmap depends upon the bitmap area size (based on tracking
granularity) and the pattern of bits set in the bitmap (based on the stack access pattern

of the application).

Prosper benefits the most in reducing checkpoint size when the stack modification in a
checkpoint interval is localized to a range of stack region of size equal to or less than
the tracking granularity. For example, compared to the Dirtybit scenario, checkpoint size
is reduced by ~200x for Sparse with 8-byte tracking granularity. Due to the significant
reduction in checkpoint size for Sparse, maximum checkpoint time reduction is observed

with all tracking granularity (average 22x compared to the baseline).

The checkpoint performance of Prosper is negatively impacted when the stack modification
in a checkpoint interval is to a contiguous range of memory pages in the stack region (as in
the case of the Stream workload). In such a case, checkpoint sizes for both byte-level and
page-level dirty tracking are similar, and there is no reduction in the data copy overhead
with Prosper. Apart from having no benefits of byte-granularity dirty tracking, the Stream
benchmark incurred high checkpoint time due to the additional dirty bitmap processing
operations at the end of the checkpoint and resulted in a slowdown of ~1.5x compared
to the baseline with 8-byte granularity. As the size of the dirty meta-data (i.e., dirty

bitmap area in Prosper) decreases with increased tracking granularity, the checkpoint time
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FIGURE 6.11: Influence of checkpoint interval on checkpoint size with dirty stack
tracking using Prosper.

overhead for Stream reduces with an increase in tracking granularity, showing the lowest

for 128-byte granularity.

The Random micro-benchmark resulted in the second to lowest reduction in checkpoint
size compared to the page granularity checkpoint scenario. Even though 8-byte helped
in reducing checkpoint size, the checkpoint time overhead of ~1.2x in Figure 6.10(b)
is due to the overhead in dirty bitmap processing. The random access pattern limits
the coalescing opportunities in dirty bitmap processing. For Random, tracking at higher
granularity helped, showing a ~1.8x reduction in checkpoint time with 128-byte, which
benefited from improvement in dirty bitmap processing. A lower normalized checkpoint
time in Figure 6.10(b) is contributed by two components: a reduction in checkpoint size
with respect to the page-level Dirtybit scheme and a decrease in bitmap inspection time
(decided by the bitmap area size and coalescing opportunities in bitmap). The tracking
granularity plays an essential role in balancing the size of checkpoint and bitmap area size,

as a higher tracking granularity reduces bitmap area size but may increase checkpoint size.

Prosper performed better with all tracking granularity for Normal and Poisson micro-
benchmarks. The Quicksort benchmark sorted elements in a heap to ensure that the
stack usage is only due to function calls. Compared to the baseline, Quicksort performs
better with Prosper, showing maximum checkpoint time reduction with 128-byte tracking

granularity.

While Prosper reduces checkpoint size and checkpoint time for most stack access patterns,
the granularity setting should be dynamically adjusted (from the OS layer) to reduce the

overhead for workloads like Stream.

Prosper with different checkpoint Intervals: The checkpoint interval influences the

stack checkpoint size as the stack grows and shrinks multiple times during a checkpoint
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interval. A large checkpoint interval also allows the coalescing of multiple modifications

to the same stack location in a checkpoint interval.

We studied the influence of checkpoint interval on the stack checkpoint size using function
call benchmarks Quicksort and Recursive (Table 6.3) with call depths four (Rec-4), eight
(Rec-8), and sixteen (Rec-16). We used eight bytes as the tracking granularity for this
experiment. Figure 6.11 shows the checkpoint size (averaged over all checkpoint intervals)
for 1 ms, 5 ms, and 10 ms checkpoint intervals. For Recursive, checkpoint size increases
with an increase in checkpoint interval, denoting that the stack access pattern of Recursive
does not provide coalescing opportunity, and the stack does not shrink within an increased
checkpoint interval. Whereas, the stack access pattern of Quicksort provides benefits with
an increase in checkpoint interval as the checkpoint size for Quicksort reduces with 10 ms

interval.

We also observed that even though the checkpoint size is minimum with 1 ms interval for
Recursive, per byte checkpoint time (i.e., time to checkpoint a byte, measured as checkpoint
time to size ratio) is the highest for Recursive benchmark with 1 ms interval; 22 ns with
1 ms interval in comparison to 11 ns with 10 ms interval for Rec-4. This is because 1
ms interval results in several checkpoints with no stack modifications (i.e., checkpoint
size is 0) and incurs only dirty bitmap inspection overhead without any data copying.
Therefore, short checkpoint intervals may be counterproductive because of unnecessary

bitmap inspections.

The benefit of a longer checkpoint interval depends on the stack access pattern, and having

a shorter interval may be counterproductive, resulting in high checkpoint overheads.

Context switch overhead of Prosper: We use the Setup-I (Table 6.2) to study
the context switch overheads, i.e., GemOS with Prosper modifications executing on gemb
with Prosper hardware. In GemOS, while handling the timer interrupt, the OS instructs
the Prosper hardware to flush tracked information in the lookup table to memory if the
outgoing process is persistent. The scheduling logic in GemOS continues with other ac-
tivities related to context switch, such as selecting and preparing the new context. Before
scheduling the incoming context, OS ensures quiescence of the dirty tracker state for the
outgoing process by checking a counter maintained in the Prosper hardware (§ 6.2.3). De-
pending on the persistence requirement of the incoming process, OS loads the required
Prosper parameters of the incoming context (by setting the MSRs) to notify the Prosper

hardware.
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FIGURE 6.12: Tracking overhead for different SPEC workloads. Y-axis shows an
application’s performance under dirty tracking with respect to no dirty tracking.

We used a multi-threaded micro-benchmark with two threads to evaluate the context
switch overhead introduced by Prosper. Each thread performs a fixed number of random
writes to its stack, and the main thread waits for completion. The stack area of each
thread other than the main thread is persistently maintained using Prosper. To measure
the overhead introduced by Prosper during a context switch, we capture the time taken to
flush the outgoing context’s dirty tracker state and set the incoming context’s parameters.
The additional overhead introduced by the save-restore of the tracker state was ~870

cycles on average.

Dirty Tracking Overhead of Prosper: To analyze the overheads introduced by Pros-
per due to hardware tracking of stack modifications, we performed experiments with
selected benchmarks 605.mcf s, 620.omnetpp_s, 600.perlbench_s, 641.leela_s from the
SPEC CPU 2017, SSSP from Graph500, PR from GAPBS and micro-benchmark Stream
(Table 6.3).

For this experiment, we use the gemb configuration for Setup-II (Table 6.2) and the mod-
ified Linux kernel (refer to § 6.3). Each benchmark application was executed initially for
one minute without dirty tracking (for warm-up), and then the kernel thread performed
6000 checkpoints, each at a 10 ms interval. We used three tracking granularity—8bytes,
64bytes, and 128bytes for Prosper. At the end of an interval, an inspection of the bitmap
area corresponding to the active stack region is performed for Prosper, an inspection of

dirty-bit in page table entries for the stack address range is performed for Dirtybit.

Figure 6.12 shows the application’s performance with dirty tracking for a fixed interval
of 6000 checkpoints, calculated with respect to its performance with no dirty tracking.
To isolate the performance of the benchmark application from kernel interference, we
captured the number of instructions and number of cycles spent only in the user space,

and the speedup in Figure 6.12 is based on IPC in the user space. Prosper resulted in
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FIGURE 6.13: Sensitivity of HWM and LWM for bitmap load and store opera-
tions. For HWM study LWM is fixed at 4 and for LWM study HWM is fixed at
24.

minimum overhead (on an average less than 1%, a maximum of ~3% for G500_sssp)
across all applications for all tracking granularity. Note that, even the IPC values for
user space can be impacted by the execution of OS background services (e.g., due to
cache pollution), and therefore, the results should be interpreted considering the inherent
variations [169, 170].

Dirty Tracker Sensitivity to HWM and LWM Parameters: The HWM and LWM
parameters influence the state of the lookup table and impact the amount of memory load

and store operations to maintain the dirty bitmap area (§ 6.2.2).

We analyzed the influence of HWM and LWM values on the number of bitmap loads
and stores generated with mcf from SPEC CPU2017 and SSSP from Graph500 using the
gemb configuration for Setup-1I (Table 6.2) and the modified Linux kernel (refer to § 6.3).
Figure 6.13 shows the number of bitmap loads and stores issued by Prosper with varying
HWM and LWM thresholds. We have fixed the LWM threshold value to 4 while varying
the HWM (Figure 6.13(a) and Figure 6.13(c)) and the HWM value to 24 while varying the
LWM (Figure 6.13(b) and Figure 6.13(d)) for this study. For SSSP, the number of bitmap
loads and stores decreases with an increase in HWM, indicating spatial locality in its

stack access. At the same time, LWM variation marginally influences the loads and stores,
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indicating that creating more vacancies in the lookup table has no added benefits. On the
other hand, for mcf, the trend is reversed where the number of bitmap loads and stores
increases with increased HWM, indicating the lack of spatial locality. Further, we observe
a decrease in number of load and store operations with an increase in LWM, implying
more evictions can be helpful. The influence of HWM and LWM on bitmap loads and
stores depends on the stack access pattern. While we have used a fixed setting (LWM = 8,
HWM = 24) in the previous experiments, a dynamic scheme based on the access pattern

is left as a future direction.

Energy and area overhead: We obtain the dynamic energy consumption for read
and write operations on the lookup table (§ 6.2.2) configured with two read ports and one
write port, using CACTI-P [171] for 7nm FINFET technology. The total dynamic read
energy per access is 0.0000773194 nJ, the write energy per access is 0.000128375 nJ, and
the leakage power of a bank is 0.01067596 mW. The lookup table with 16 entries occupies
a cache area of 0.000704786 mm?.

6.5 Summary

Process persistence requires persisting its memory state consisting of mutable stack and
heap segments. In this chapter, we present Prosper, a sub-page byte granularity checkpoint-
based persistence mechanism for process stack that handles unique stack properties, pro-
viding an average of 2.1x (maximum of 3.6 x) reduction in stack persistence overhead with
respect to state-of-the-art memory persistence mechanism (SSP). We showed that Propser
complements well with existing memory persistence mechanisms for persisting the entire
memory area of a process for process persistence; Prosper with SSP provided an average
2x (maximum of 2.6 x) reduction in memory persistence overhead for persisting the entire
memory area of a process. Our evaluation using SPEC CPU 2017, SSSP from Graph500,
and PR from GAPBS showed that Prosper causes negligible tracking overhead compared
to baseline (on an average of less than 1%). Prosper addresses the unique stack proper-
ties for achieving stack persistence efficiently that can complement different varieties of

existing application checkpoint mechanisms in hybrid memory systems.

Source code of Prosper is available at https://github.com/arunkp1986/Prosper.git and
Prosper earned all 3 badges in artifact evaluation, Code Awailable, Code Reviewed, and
Code Reproducible.


https://github.com/arunkp1986/Prosper.git

Chapter 7

Conclusions and Future Directions

This thesis contributes to the domain of process persistence in hybrid memory systems
with NVM and DRAM. This chapter summarizes the four contributions of this thesis and
draws conclusions (§ 7.1). Next, we present two future directions for which this thesis

paves way in the domain of process persistence (§ 7.2).

7.1 Summary and Conclusions

Process persistence requires saving the state of a process in a persistent device such as
NVM. We first presented the challenges and mechanisms for achieving memory persistence
in a system with NVM for process persistence. Memory persistence mechanisms ensure
that writes to NVM reach the persistent domain in the order the application developer ex-
pects. Persistent process system designers can implement memory persistence mechanisms
in software and/or hardware to guarantee a consistent NVM memory state. These mech-
anisms utilize cache line flush and memory fence primitives in the underlying architecture
to enforce the required order of writes and persistence guarantee. We studied the perfor-
mance overhead of these architectural primitives as they form the basic building blocks of
existing memory persistence mechanisms. This empirical study included flush and fence
variants in two popular architectures, Intel x86-64 and Arm64. We examined the influence
of working set size and memory access characteristics of applications on the performance
of these data consistency primitives. We also studied the impact of data consistency prim-
itives on the performance of advanced memory persistence techniques based on undo/redo
logging. The study shows that the performance overhead depends upon the nature of the

workload and the proportion of the read-to-write ratio in memory access. The study also
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reaffirms that serialization operations such as sfence are the major contributing factors
in performance overhead. We also observed that it is not always advantageous to stick to
a particular architecture primitive (for example, clwb) for all memory persistence mech-
anisms (for example, redo and undo logging), and the selection of architecture primitives

should be decided on a case-to-case basis depending on the workload characteristics.

Using NVM as the only system memory for process persistence degrades application per-
formance because of the higher read/write access latency of NVM compared to volatile
DRAM. So, a better approach is to use a hybrid memory system with NVM and DRAM
that compensates for the high access latency of NVM by combining the access latency
benefits of DRAM, providing overall good system performance. We created a hybrid
memory simulation framework, Kindle, to study process persistence. Kindle enables an-
alyzing performance trade-offs in persisting individual process states such as execution
context, CPU register states, virtual to physical memory translation table, and memory
state comprising stack and heap areas across different design choices for achieving process
persistence. Kindle supports process persistence and provides an end-to-end framework
for quick prototyping of mechanisms and policies related to process persistence. Using
Kindle, we studied the overhead in maintaining the execution context of a process consis-
tently under two schemes for page table consistency. Kindle helps realize research ideas
crossing hardware-software layers in hybrid memory systems, as we showcased a prototype

implementation of two state-of-the-art hybrid memory schemes using Kindle.

Memory is a significant component in the state of a persistent process, and the perfor-
mance of the persistence scheme used for the memory state of a process determines the
overall performance of process persistence. The memory layout of a process consists of
heap and stack areas, each exhibiting different usage characteristics. The stack is crucial
in memory layout as it holds important information on program behavior and running
state. As existing state-of-the-art memory persistence schemes for NVM are majorly de-
signed for heap area and do not consider memory usage characteristics of memory area
in persistence scheme, we created a stack tracing framework, SniP, to analyze the pro-
gram stack of multi-threaded applications to understand stack usage characteristics such
as grow-and-shrink pattern of usage, activation record of usage and indirect usage and its
influence on memory persistence. SniP efficiently handles challenges in identifying stack
areas of threads for tracing the stack of multi-threaded applications. Stack analysis us-
ing SniP reveals that persisting the program stack requires special consideration due to
its unique usage characteristics. The state-of-the-art memory persistence mechanisms for

NVM require non-trivial adaptation to achieve stack persistence efficiently.
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To address this gap in state-of-the-art memory persistence mechanisms for stack persis-
tence usage, we created Prosper, a hardware-software co-designed checkpoint approach
for stack persistence. Prosper tracks changes at sub-page byte granularity and handles
stack-specific usage patterns such as grow and shrink patterns, indirect usage, and write
characteristics. Prosper provides an average of 2.1x (maximum of 3.6x) reduction in
stack persistence overhead with respect to the state-of-the-art memory persistence scheme
(SSP). We also show that using Prosper with existing memory persistence schemes for the
entire memory area is beneficial. Prosper with SSP provided an average of 2x (maximum
of 2.6x) reduction in memory persistence overhead for persisting the entire memory area.

Prosper had negligible tracking overhead compared to baseline (on average, less than 1%).

This thesis facilitates full process persistence in a hybrid memory system with NVM by
combining Kindle, which provides persistence for execution context and virtual address
translation state of a process with memory state persistence mechanisms, Prosper for stack
combined with a state-of-art scheme such as SSP for heap, to persist entire memory area

of a process.

7.2 Future Directions

We discuss two possible directions to extend the different problems addressed in this thesis.
First, exploring the influence of NVM device characteristics on persistent barrier perfor-
mance in multiple ISAs. In the second direction, study the overhead of cache line flush
and memory fence architectural primitives in the context of persistent devices attached to

a high-bandwidth PCle interface with Compute Express Link (CXL) capability.

7.2.1 Empirical Analysis on the Influence of NVM Device on Persistence

The read/write access latency of persistent memory varies based on the underlying tech-
nology, such as PCM, STTRAM, MRAM, and FeRAM. The device access latency then
impacts the expected performance overhead of primitive and advanced memory persistence
schemes, as the time taken for cache line writebacks varies from one device to another,
influencing the latency to flush cache lines to ensure NVM memory state consistency. The
aim is to study the performance of primitive and advanced memory persistence schemes for
different persistent memory technologies, such as PCM, STTRAM, MRAM, and FeRAM,
to understand the influence of device characteristics on memory persistence schemes. The

high-level questions that can be part of this analysis are,
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1. What is the extent to which the underlying persistent memory device technology

influences the latency of cache line writebacks?

2. Understand the performance of cache-line flush instructions in popular ISAs (Intel
x86-64, Arm64, RISC-V, PowerPC).

3. What is the deviation in cache-line flush performance from one memory technology

to another?

4. How much does cache-line flush performance based on devices impact the perfor-
mance of software-based advanced memory persistence techniques such as logging,

shadow-paging, and checkpointing?

5. How do the application characteristics, such as working set size and memory access

patterns, influence observed performance overhead?

This study gives insights into the benefit of opting for one memory technology over an-
other for various memory persistence schemes, and for which memory access patterns and

working set sizes.

7.2.2 Memory Persistence using CXL attached persistent memory

Compute Express Link (CXL) [172, 173] defines a family of interconnect protocols between
CPUs and devices, allowing devices to cache host memory and mapping device memory
to system cacheable memory space [174]. CXL allows persistent memory devices to be
attached to the CPU through PCle interconnect, enabling both memory expansion and
persistence. We can use byte-addressable storage class memory (SCM) on PCle with CXL

for process persistence.

In the second research direction, the aim is to study the influence of emerging interconnect
technologies such as CXL on the performance of memory persistence mechanisms, as the
performance of cache line flush and memory fence architectural primitives varies while
targeting persistent devices attached to high bandwidth PCle interface with Compute
Express Link (CXL) capability. The high-level questions are

1. How much do interconnect characteristics influence existing memory persistence
schemes, as existing mechanisms are mainly designed for persistent memory attached

to the memory bus?
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2. Which CXL interconnect characteristics influence memory persistence schemes for

CXL-attached persistent memory/storage?

3. What is the performance of existing primitive and advanced memory persistence,

and adapt/design memory persistence for memory attached using CXL

The goal is to propose a memory persistence scheme for CXL-attached persistent memory
because naively using a memory persistence scheme such as undo/redo logging may create
fabric congestion and affect overall system throughput. A CXL-attached persistent device
also enables process persistence for heterogeneous shared memory applications running on
CPU and accelerator, application scheduling based on IO characteristics, and composable

system design.
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