
Prosper: Program Stack Persistence in

Hybrid Memory Systems

HPCA 2024

Arun KP1 Debadatta Mishra 1 Biswabandan Panda2

1
Indian Institute of Technology, Kanpur

2Indian Institute of Technology, Bombay

1 / 55

Crash Resilience

crash

24x7 24x7

i Resume and continue execution as if crash never happened.

i Save and restore state of the process.

2 / 55

Persisting State Without Disk I/O

^ Traditionally use storage to save

state.

Secondary Storage

24x7

^ Disk →file-system and storage

overheads.

^ Hybrid memory system has

benefit of NVM.

Secondary Storage

DRAM NVM

24x7

^ NVM→high read/write latency.

^ NVM→limited write endurance.

3 / 55

Maintaining State in Hybrid Memory

^ State in NVM.

Secondary Storage

DRAM NVM

24x7

24x7

^ State in DRAM and

save to NVM.

Secondary Storage

DRAM NVM

24x7

24x7

^ State in both

DRAM/NVM and

save to NVM.

Secondary Storage

DRAM NVM

24x7 24x7

24x7

4 / 55

Saving Process Memory State

i Memory state contributes significantly to saved state.

5 / 55

Saving Process Memory State

i Memory state contributes significantly to saved state.

i Efficiency of memory persistence technique is important.

6 / 55

Saving Process Memory State

i Memory state contributes significantly to saved state.

i Efficiency of memory persistence technique is important.

Claim: Maintaining stack in DRAM is efficient in hybrid
memory systems.

7 / 55

Techniques to persist memory state

8 / 55

Achieving Memory Persistence

i Techniques

– Operating in tandem with application execution.

write

log

write write

log log

9 / 55

Achieving Memory Persistence

i Techniques

– Operating in tandem with application execution.

write

log

write write

log log

i Timestone [ASPLOS-2020], SSP [MICRO-2019] and Romulus

[SPAA-2018] are examples of techniques operating in tandem.

10 / 55

Achieving Memory Persistence

i Techniques

– Periodic checkpointing.

write persistwrite write persist

Time

11 / 55

Stack Size vs Operations

i Number of stack operations is significant

for some applications.

i 70% of memory operations are to stack

in Gapbs_pr benchmark.

 0

 20

 40

 60

 80

 100

Gapbs_pr G500_sssp Ycsb_mem

M
e
m
o
r
y

O
p
e
r
a
t
i
o
n
s
(
i
n

%
)

Benchmarks

StackRead
StackWrite

HeapRead
HeapWrite

12 / 55

Achieving Stack Persistence

i In tandem techniques suffer due to grow-shrink pattern of stack.

13 / 55

Stack Property

1 i n t doubleit (i n t x) {

2 i n t a = x ;

3 a = a*2;
4 return a ; <−−
5 }

6 i n t main () {

7 i n t x = 10;

8 i n t y = 0;

9 y = doubleit (x) ;

10 return 0;

11 }

ret
x =10
y = 0
rbp
ret

stack

rbp

G
ro

w
th

rbp

...

rsp a = 20

14 / 55

Stack Property

1 i n t doubleit (i n t x) {

2 i n t a = x ;

3 a = a*2;
4 return a ;

5 }

6

7 i n t main () {

8 i n t x = 10;

9 i n t y = 0;

10 y = doubleit (x) ; <−−
11 return 0;

12 }

ret
x =10
y = 20

rbp
ret

stack

rbp G
ro

w
th

rbp

...

rsp

a = 20

15 / 55

Achieving Stack Persistence

i In tandem techniques suffer due to grow-shrink pattern of stack.

i Create entries for entire stack region.

ret
x =10
y = 20

rbp
ret

stack

rbp

rbp

...

rsp

a = 20

Secondary Storage

DRAM NVM

16 / 55

Benefits of periodic checkpointing for stack

17 / 55

Stack Persistence with Checkpointing

i Provides Stack Pointer awareness by limiting operations to active

stack region.

18 / 55

Stack Pointer Awareness

i SP awareness indicates knowing the

active Stack Pointer at the time of

persistence.

ret
x =10
y = 20

rbp
ret

stack

rbp

rbp

...

rsp

a = 20

Ac
tiv

e

19 / 55

Stack Persistence with Checkpointing

i Allows maintaining stack in DRAM, avoiding excess writes to NVM.

Secondary Storage

DRAM NVM

stack

20 / 55

Stack Persistence with Checkpointing

i Copying from DRAM to NVM is limited to the active stack region.

ret
x =10
y = 20

rbp
ret

stack

rbp

rbp

...

rsp

a = 20

ac
tiv

e
Secondary Storage

DRAM NVM

21 / 55

Stack Persistence with Checkpointing

i Copying from DRAM to NVM is limited to the active stack region.

ret
x =10
y = 20

rbp
ret

stack

rbp

rbp

...

rsp

a = 20

ac
tiv

e
Secondary Storage

DRAM NVM

i Provides visibility to stack, handling indirect usage of stack.

22 / 55

Stack Persistence with Checkpointing

Periodic checkpointing is good for stack persistence.

23 / 55

Stack Persistence with Checkpointing

Periodic checkpointing is good for stack persistence.

However

24 / 55

Checkpoint Copy Size

i Memory is dirty tracked at page granularity in conventional systems.

 1
 4

 16

 64
 256

 1024
 4096

 16384

1 2 3 4 5 6 7 8 9 10

C
o
p
y

S
i
z
e
(
B
y
t
e
s
)

Time Interval(10ms)

8B

4096B

Page Size

Gapbs_pr

 1

 4

 16

 64

 256

 1024

 4096

1 2 3 4 5 6 7 8 9 10
Time Interval(10ms)

8B

4096B

G500_sssp

 1
 4

 16

 64
 256

 1024
 4096

 16384

1 2 3 4 5 6 7 8 9 10
Time Interval(10ms)

8B

4096B

Ycsb_mem

i Sub-page granularity dirty tracking reduces checkpoint size for stack.

25 / 55

Prosper for periodic stack checkpointing

26 / 55

Prosper Design

i Allows checkpointing at sub-page granularity.

27 / 55

Prosper Design

i Software and hardware coordination.

Operating System

Parameters

Application

Prosper h/w DRAM

Application

Prosper s/w

NVM

28 / 55

Prosper Design

i Software component collects and

passes parameters.

i Parameters include stack address range,

tracking granularity, bitmap area.

i Hardware component tracks stack

modifications.

Operating System

Parameters

Application

Prosper h/w DRAM

Application

Prosper s/w

NVM

29 / 55

Prosper Design

i Hardware component saves bitmap in memory.

Operating System

Parameters

Application

Prosper h/w DRAM

Application

Prosper s/w

NVM

30 / 55

Prosper Design

i OS utilizes metadata to copy changes from DRAM to NVM.

Operating System

Parameters

Application

Prosper h/w DRAM

Application

Prosper s/w

NVM

31 / 55

Prosper Design

i How does prosper hardware interact with loads/stores?

– Hardware should not stall load/store requests from processor.

– Bitmap stores should create minimum interference in memory hierarchy.

lookup table

core

dirty tracker

L1-D

32 / 55

Prosper Design

i When does OS utilize meta-data?

– OS consumes meta-data after quiescence of dirty information.

OS

1 1

DRAM NVM

Prosper
h/w

1 1

DRAM NVM

Time

33 / 55

Results

34 / 55

Full-System Simulation Setup

i Setup-I with GemOS, measuring end-to-end checkpoint performance.

i Setup-II with Linux, measuring hardware dirty tracking overhead.

i Table shows gem5 configuration.

Parameter Used Setting Setup

CPU 3GHz I&II

L1-D/I 32 KiB/core (8 way, 3 cycles) I&II

L2 512KiB/core (16 way, 12 cycles) I&II

L3 2 MiB/core (shared) (16 way, 20 cycles) I&II

MSHRs 16, 32, 32/core L1-D, L2, L3 I&II

Cache line size 64 B in L1, L2, L3 I&II

DRAM interface DDR4-2400 16x4 I&II

NVM interface PCM ‡ I

NVM Write buffer 48 I

NVM Read buffer 64 I

Memory capacity 3GB DRAM + 2GB NVM I

Memory capacity 32GB DRAM II

35 / 55

Performance of persisting stack

i SSP thread interval varied from 10 µs to 1 ms.

i Prosper is configured with 8 bytes tracking granularity.

i Execution time is normalized to time without memory persistence.

 0

 1

 2

 3

 4

 5

 6

Gapbs_pr
G500_sssp

Ycsb_mem
 Random

 Sparse
 Stream

E
x
e
c
u
t
i
o
n

T
i
m
e
(
N
o
r
m
a
l
i
z
e
d
)

Benchmarks

Romulus
SSP-10us

SSP-100us
SSP-1ms

Dirtybit
Propser

23 31 25 55 17 81

36 / 55

Performance of persisting stack

i SSP thread interval varied from 10 µs to 1 ms.

i Prosper is configured with 8 bytes tracking granularity.

i Execution time is normalized to time without memory persistence.

 0

 1

 2

 3

 4

 5

 6

Gapbs_pr
G500_sssp

Ycsb_mem
 Random

 Sparse
 Stream

E
x
e
c
u
t
i
o
n

T
i
m
e
(
N
o
r
m
a
l
i
z
e
d
)

Benchmarks

Romulus
SSP-10us

SSP-100us
SSP-1ms

Dirtybit
Propser

23 31 25 55 17 81

37 / 55

Performance of persisting stack

i SSP thread interval varied from 10 µs to 1 ms.

i Prosper is configured with 8 bytes tracking granularity.

i Execution time is normalized to time without memory

persistence.

 0

 1

 2

 3

 4

 5

 6

Gapbs_pr
G500_sssp

Ycsb_mem
 Random

 Sparse
 Stream

E
x
e
c
u
t
i
o
n

T
i
m
e
(
N
o
r
m
a
l
i
z
e
d
)

Benchmarks

Romulus
SSP-10us

SSP-100us
SSP-1ms

Dirtybit
Propser

23 31 25 55 17 81

38 / 55

Performance of persisting stack

i Prosper reduced stack persistence overhead

by 2.1× on average compared to SSP-10µs.

 0

 1

 2

 3

 4

 5

 6

Gapbs_pr
G500_sssp

Ycsb_mem
 Random

 Sparse
 Stream

E
x
e
c
u
t
i
o
n

T
i
m
e
(
N
o
r
m
a
l
i
z
e
d
)

Benchmarks

Romulus
SSP-10us

SSP-100us
SSP-1ms

Dirtybit
Propser

23 31 25 55 17 81

39 / 55

Performance of persisting stack

i Maximum of 1.27× reduction for G500_sssp

with respect to Dirtybit.

 0

 1

 2

 3

 4

 5

 6

Gapbs_pr
G500_sssp

Ycsb_mem
 Random

 Sparse
 Stream

E
x
e
c
u
t
i
o
n

T
i
m
e
(
N
o
r
m
a
l
i
z
e
d
)

Benchmarks

Romulus
SSP-10us

SSP-100us
SSP-1ms

Dirtybit
Propser

23 31 25 55 17 81

40 / 55

Performance of persisting stack

i Maximum of 1.27× reduction for G500_sssp

with respect to Dirtybit.

 0

 1

 2

 3

 4

 5

 6

Gapbs_pr
G500_sssp

Ycsb_mem
 Random

 Sparse
 Stream

E
x
e
c
u
t
i
o
n

T
i
m
e
(
N
o
r
m
a
l
i
z
e
d
)

Benchmarks

Romulus
SSP-10us

SSP-100us
SSP-1ms

Dirtybit
Propser

23 31 25 55 17 81

Prosper performed better than Romulus and SSP.

41 / 55

Performance of persisting heap+stack

i Combined stack persistence techniques with SSP.

i {SSP→heap+stack}, {SSP→heap and Dirtybit/Prosper→stack}.

i Execution time is normalized to time without memory persistence.

 0

 1

 2

 3

 4

 5

Gapbs_pr

G500_sssp
Ycsb_memE

x
e
c
u
t
i
o
n

T
i
m
e

(
N
o
r
m
a
l
i
z
e
d
) SSP

SSP-Dirtybit
SSP-Prosper

10 µs

 0

 0.5

 1

 1.5

 2

 2.5

Gapbs_pr

G500_sssp
Ycsb_mem

100 µs

0

0.4

0.8

1.2

1.6

2.0

Gapbs_pr

G500_sssp
Ycsb_mem

1ms

i SSP thread interval varied from 10 µs to 1 ms.

42 / 55

Performance of persisting heap+stack

i Combined stack persistence techniques with SSP.

i {SSP→heap+stack}, {SSP→heap and Dirtybit/Prosper→stack}.

i Execution time is normalized to time without memory persistence.

 0

 1

 2

 3

 4

 5

Gapbs_pr

G500_sssp
Ycsb_memE

x
e
c
u
t
i
o
n

T
i
m
e

(
N
o
r
m
a
l
i
z
e
d
) SSP

SSP-Dirtybit
SSP-Prosper

10 µs

 0

 0.5

 1

 1.5

 2

 2.5

Gapbs_pr

G500_sssp
Ycsb_mem

100 µs

0

0.4

0.8

1.2

1.6

2.0

Gapbs_pr

G500_sssp
Ycsb_mem

1ms

i SSP thread interval varied from 10 µs to 1 ms.

43 / 55

Performance of persisting heap+stack

i Combined stack persistence techniques with SSP.

i {SSP→heap+stack}, {SSP→heap and Dirtybit/Prosper→stack}.

i Execution time is normalized to time without memory

persistence.

 0

 1

 2

 3

 4

 5

Gapbs_pr

G500_sssp
Ycsb_memE
x
e
c
u
t
i
o
n

T
i
m
e

(
N
o
r
m
a
l
i
z
e
d
) SSP

SSP-Dirtybit
SSP-Prosper

10 µs

 0

 0.5

 1

 1.5

 2

 2.5

Gapbs_pr

G500_sssp
Ycsb_mem

100 µs

0

0.4

0.8

1.2

1.6

2.0

Gapbs_pr

G500_sssp
Ycsb_mem

1ms

i SSP thread interval varied from 10 µs to 1 ms.

44 / 55

Performance of persisting heap+stack

i Combined stack persistence techniques with SSP.

i {SSP→heap+stack}, {SSP→heap and Dirtybit/Prosper→stack}.

i Execution time is normalized to time without memory persistence.

 0

 1

 2

 3

 4

 5

Gapbs_pr

G500_sssp
Ycsb_memE

x
e
c
u
t
i
o
n

T
i
m
e

(
N
o
r
m
a
l
i
z
e
d
) SSP

SSP-Dirtybit
SSP-Prosper

10 µs

 0

 0.5

 1

 1.5

 2

 2.5

Gapbs_pr

G500_sssp
Ycsb_mem

100 µs

0

0.4

0.8

1.2

1.6

2.0

Gapbs_pr

G500_sssp
Ycsb_mem

1ms

i SSP thread interval varied from 10 µs to 1 ms.

45 / 55

Performance of persisting heap+stack

 0

 1

 2

 3

 4

 5

Gapbs_pr

G500_sssp
Ycsb_memE

x
e
c
u
t
i
o
n

T
i
m
e

(
N
o
r
m
a
l
i
z
e
d
) SSP

SSP-Dirtybit
SSP-Prosper

10 µs

 0

 0.5

 1

 1.5

 2

 2.5

Gapbs_pr

G500_sssp
Ycsb_mem

100 µs

0

0.4

0.8

1.2

1.6

2.0

Gapbs_pr

G500_sssp
Ycsb_mem

1ms

i SSP-Prosper reduced overhead by 2× on average compared to SSP

with 10µs thread invocation interval.

46 / 55

Performance of persisting heap+stack

 0

 1

 2

 3

 4

 5

Gapbs_pr

G500_sssp
Ycsb_memE

x
e
c
u
t
i
o
n

T
i
m
e

(
N
o
r
m
a
l
i
z
e
d
) SSP

SSP-Dirtybit
SSP-Prosper

10 µs

 0

 0.5

 1

 1.5

 2

 2.5

Gapbs_pr

G500_sssp
Ycsb_mem

100 µs

0

0.4

0.8

1.2

1.6

2.0

Gapbs_pr

G500_sssp
Ycsb_mem

1ms

i SSP-Prosper reduced overhead by 2× on average compared to SSP

with 10µs thread invocation interval.

Combining Dirtybit/Prosper with SSP is better than using
SSP alone.

47 / 55

Where Does Prosper Stand?

i Comparing with existing memory persistence mechanisms.

Property Soft-

WrAP

[MSST-

2015]

JUSTDO

[CAN-

2016]

Romulus

[SPAA-

2018]

SSP

[MICRO-

2019]

Time-

stone

[ASPLOS-

2020]

Prosper

[HPCA-

2024]

Without compiler support 7 7 7 3 7 3

Stack pointer awareness 7 7 7 7 7 3

Allows stack in DRAM 3 7 7 7 7 3

48 / 55

Summary

i Prosper provides sub-page granularity checkpointing for stack.

49 / 55

Summary

i Prosper provides sub-page granularity checkpointing for stack.

i Provides 2.1× on average (max 3.6×) reduction in stack

persistence overhead compared to SSP.

50 / 55

Summary

i Prosper provides sub-page granularity checkpointing for stack.

i Provides 2.1× on average (max 3.6×) reduction in stack persistence

overhead compared to SSP.

i Complements well with existing memory persistence techniques.

51 / 55

Summary

i Prosper provides sub-page granularity checkpointing for stack.

i Provides 2.1× on average (max 3.6×) reduction in stack persistence

overhead compared to SSP.

i Complements well with existing memory persistence techniques.

i Prosper with SSP provides 2× on average (max 2.6×) reduction in

memory persistence overhead.

52 / 55

Summary

i Prosper provides sub-page granularity checkpointing for stack.

i Provides 2.1× on average (max 3.6×) reduction in stack persistence

overhead compared to SSP.

i Complements well with existing memory persistence techniques.

i Prosper with SSP provides 2× on average (max 2.6×) reduction in

memory persistence overhead.

i Prosper provides stack persistence for achieving process

persistence.

53 / 55

Questions?

Scan for Artifact

54 / 55

Thank You

Scan for Artifact

55 / 55

	Introduction

