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ABSTRACT
Practical understanding of the working of different sub-systems of
the operating system (OS) is crucial to develop a comprehensive
understanding of computing systems. Virtual memory mechanisms
such as virtual to physical memory translation using multi-level
page tables are commonly found in most computing devices, rang-
ing from hand-held devices to desktops and servers. From the ped-
agogy perspective, one of the primary challenges in explaining
virtual to physical address translation through practical demon-
strations is the dependency of virtual memory sub-system on the
underlying hardware architecture. Furthermore, complicated, di-
verse, and ever-evolving nature of the multi-level page table support
for address translation presents non-trivial challenges for educa-
tors to enable a smooth journey for the students from conceptual
understanding to hands-on programming experience.

While there are some system utilities to capture information
related to virtual memory and address translation in open-source
OSes such as Linux, these utilities are not designed for education
and learning. In this paper, we propose an educational tool, 𝐿𝑒𝑛𝑠 , to
assist students in understanding the virtual memory concepts along
with the process of virtual to physical address translation using
multi-level page tables.𝐿𝑒𝑛𝑠 provides a simple, flexible, and intuitive
interface which can be used to develop a holistic understanding of
virtual to physical memory address translation using multi-level
page tables by correlating execution of simple C programs with
OS-level status of the multi-level page tables.

CCS CONCEPTS
• General and reference → Experimentation; • Applied comput-
ing → Collaborative learning; Computer-managed instruction.
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1 INTRODUCTION
Virtual memory using paging is a crucial concept covered as part
of operating system courses. Virtual memory concepts are basic
building blocks used not only for OS development and enhance-
ment [2, 12–14, 16, 23] but also for performance engineering [7, 10,
25, 35, 36], virtualization and cloud computing [3, 5, 6, 19, 31, 34],
and embedded system development. Solid understanding of the
address translation mechanisms can build strong foundation for stu-
dents aspiring to become system engineers and system researchers.
One important component of teaching virtual memory is to intro-
duce the concept of virtual-to-physical address translation using
multi-level page tables. The importance of multi-level page tables
is due to its ubiquitous support in most modern architectures such
as x86-64, ARM, RISC-V. General purpose OSes such as Linux, BSD,
Windows, Solaris, and teaching OSes such as Xv6 [8], JOS [20],
GemOS [18] implement the virtual memory abstraction using multi-
level page table support provided by the underlying ISA. Therefore,
practical exposure to the orchestration and usage of multi-level
page tables in any OS course is very crucial and is the scope of this
paper.

Typical OS courses introduce virtual memory concepts in an
abstract manner introducing single level page tables followed by
exploration of multi-level page table concepts through figures and
examples. Excellent conceptual treatment of the concept in OS
books [1, 30, 33] and other course materials (e.g., lecture slides) help
the students to understand the working principles of multi-level
page tables. However, in a practical course such as OS, first-hand
practical experience and visualization plays a significant role which
may not be possible to gain using the conceptual materials only.
For example, to appreciate lazy physical memory allocation feature
of an OS, the student should be able to examine and interpret the
content of the page tables corresponding to an address allocated
using malloc() before and after accessing the allocated memory.
One possible approach to achieve this could be to profile the OS
code with debug statements to generate required logs and exam-
ine them afterwards. However, there are several challenges with
this approach. First, the OS code for paging is complex and spans
thousands of lines of code which makes profiling difficult, even for
simplified teaching OSes. Second, targeted profiling requires special
skills, especially in monolithic OSes because the execution flow in
OS can be really confusing for students getting introduced to the OS
concepts for the first time. Third, because of heavy inter-dependence
of OS paging logic and complex architecture specifications span-
ning hundreds of pages in the manuals, the student may find it very
difficult to even interpret the contents of the page table.

Open source OSes such as Linux provides user space entry points
(through procfs and sysfs) to collect information regarding the
virtual address space (e.g., using /proc/pid/maps) and their phys-
ical mapping (e.g., using /proc/pid/pagemap). These interfaces
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are designed to primarily support process memory state track-
ing [15, 32] used for several system services such as container
migration [4, 27, 28]. These interfaces are not suitable for peda-
gogy purposes because they do not provide a holistic view of the
multi-level page table and can not be easily co-related with program
execution (explained further in §2). Tools available online [9, 24, 29]
attempt to provide visual representation of the working of virtual
to physical address translation. However, these tools do not show
the complete end-to-end picture i.e., they randomly generate cer-
tain virtual address and translate it to a physical address instead
of allowing the students to write their own programs and experi-
ence how instructions and data in their programs gets translated to
physical addresses. Moreover, the existing tools abstract the virtual
address translation process through a single-level page table and
lack comprehensiveness to demonstrate the working of pages with
hybrid sizes (4KB, 2MB and 1GB).

In this paper, we propose 𝐿𝑒𝑛𝑠 , an educational tool designed to
aid the users in understanding and experiencing the working of
4-level page tables used in real world operating system Linux on
64-bit x86 systems. The design objective of 𝐿𝑒𝑛𝑠 is to further the
conceptual understanding of multi-level page tables by providing
control knobs operable by a𝐶 programmer and reporting the inner
details of the page table levels in a simple and easy to understand
form. For example, to observe the page table details of a stack vari-
able (declared in function scope), the user needs to configure the
𝐿𝑒𝑛𝑠 with the variable address and the line number in the𝐶 source.
After the execution, the user can inspect the page table contents for
the variable at the designated line number captured by 𝐿𝑒𝑛𝑠 and pre-
sented in a simple tabular form. We demonstrate the utility of 𝐿𝑒𝑛𝑠
throughmultiple use-case scenarios—practical understanding of vir-
tual memory related system calls such as mprotect, demonstrating
the lazy allocation of the physical memory and the hybrid page size
usage (4KB, 2MB and 1GB). 𝐿𝑒𝑛𝑠 is released as an open source tool
downloadable from https://anonymous.4open.science/r/Lens-21F2.

2 SCOPE AND MOTIVATION
Typically students are exposed to the OS course after gaining knowl-
edge in programming with widely used programming languages
such as 𝐶 . Therefore, involved OS concepts like virtual addressing
and address translation should be demonstrated through simple
𝐶 programs to provide conceptual continuity. We motivate 𝐿𝑒𝑛𝑠
by demonstrating the challenges in connecting the execution of a
simple 𝐶 program to the OS-layer information related to the page
tables.

1 i n t main ( ) {
2 i n t s i z e = 1 6 ;
3 char ∗ p t r = ma l l oc ( s i z e ∗ s i z e o f ( char ) ) ;
4 p r i n t f ( " v i r t u a l addr o f s i z e v a r i a b l e : %p \ n " , &s i z e ) ;
5 p r i n t f ( " v i r t u a l addr o f ma l l o c ' d memory : %p \ n " , p t r ) ;
6 p r i n t f ( " v i r t u a l addr o f main ( ) f u n c t i o n : %p \ n " , &main ) ;
7 f r e e ( p t r ) ;
8 r e t u r n 0 ;
9 }

Listing 1: A simple C program showing different address
regions in the process address space

Listing 1 shows a simple C program printing virtual addresses of
different program regions i.e., a stack variable (size) in the stack

9 bits 9 bits 9 bits 9 bits 12 bits

Physical
Frame
(4 KB)

pgd_offset pud_offset pmd_offset pte_offset

pgd_t pud_t pmd_t pte_t
CR3

48 bit virtual address

pmd_t (h)

Huge
page
(2MB)

Huge
page
(1GB)

pud_t (h)

9 bits 9 bits 9 bits 21 bits

9 bits 9 bits 30 bits

Figure 1: 4-level page table supported by Intel x86-64 proces-
sors.

region, a dynamically allocated variable (ptr) in the heap region
and the address of a function (main) in the code region. This simple
program can act as an example to introduce the concept of virtual
memory and process address space layout in a practical manner.
However, the virtual to physical address translation takes place in a
transparent manner, and hence the students may not gain sufficient
insight into the working of page tables by observing the program
behavior only. It can be easily observed that two important practical
aspects are required to connect the dots from the address of a
program variable to its translation—understanding the architecture
support for page tables and collection of the information from the
OS. Given the lack of generality in the two aspects mentioned above,
it is very difficult to gain this knowledge from text books and other
conceptual materials.

2.1 Complexity of Multi-level Page Tables
Figure 1 shows the structure of a 4-level page table in the 64-bit
x86 system supporting translation of 48-bit virtual addresses. As
depicted in the Figure 1, the architecture specification allows the
address space of a process to be constituted of a mixture of 4 KB
pages, 2 MB pages and 1 GB pages. Depending on the design of
OS, some of the page sizes may or may not be used. Architecture
vendors such as Intel publish manuals [11] explaining the struc-
ture of the multi-level page tables, their usage and feature set in a
comprehensive manner. These manuals discuss details of the topics
such as address translation in great depth and cover the behavior of
the translation for different combination of configurations. In our
experience, even seasoned system programmers find it a daunting
task to extract relevant information from the manuals.

Even after understanding the broad layout and working of 4-
level page tables, one has to understand the structure and semantics
of the entries at different levels to program/interpret the translation
entries. For example, Figure 2 shows the structure of a page table
entry in the last level page table (a.k.a. PTE) in x86-64 system. It
can be observed that there are many fields present in a PTE entry
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Figure 2: Page table entry in Intel x86-64 system

Figure 3: Information about mapped memory regions of the
program in Listing 1 obtained from the /proc/pid/maps in-
terface

whose functionality and purpose can be hard for the students to
grasp. Therefore, architecture manuals designed for completeness
may be too advanced for the students at the introductory level and
a simple expression of the information expanding the conceptual
aspects is required.

2.2 Complexity of Existing Interfaces
Widely used open source OS such as Linux provides interfaces to
examine the process address space and the translation information
through different user space interfaces. To find out the address
translation information of a program variable (Listing 1), one has
to find out the virtual address and its mapping information.

The /proc/pid/maps is a pseudo file maintained under proc file
system for each process which can be used to read the virtual mem-
ory layout of a process during its lifetime. This interface provides
information about currently mapped memory regions, their access
permissions, and shared/private mapping type. It also provides file
information for VM areas backed with files. Figure 3 shows the
contents of the maps file corresponding to the 𝐶 program shown
in Listing 1. As shown in the figure, the output contains memory
regions as ranges of addresses with many different fields. It may not
be straight-forward to co-relate against a given program variable
from this output. Further, the /proc/pid/maps interface provides
limited information in terms of virtual to physical address trans-
lation. For example, it only shows read/write/execute permissions
corresponding each memory region and does not exhibit informa-
tion related to physical mapping.

01354   5360..576263

SD: Soft Dirty

...................................

Page Frame Number

555661

0 SDEMTSR

24

E: Exclusively Mapped Page
MT: Mapping Type

                        (file-mapped page or a   
                          shared anonymous page)

S: Page is in swap space
R: Page is in RAM

Figure 4: Layout of a eight byte entry in the
/proc/pid/pagemap corresponding to a virtual page

Interestingly, Linux also provides another user space interface
(/proc/pid/pagemap, referred to as pagemap) to examine the phys-
ical mapping information.

The pagemap interface is provided as psuedo file system entry in
the proc file system for each process. The pagemap file can be read
at a calculated offset for a virtual page to return an eight-byte entry
containing information such as the page frame number allocated to
the virtual page and other information related to address mapping
type and permissions. Figure 4 shows the layout of an eight-bytes
entry read from the pagemap file corresponding a virtual address.
To use the pagemap interface in this context require modifying the
program logic by manually introducing code to calculate the file off-
set corresponding to a program variable and collecting the mapping
information using read system call. Further, the pagemap interface
is designed to track virtual address mapping and writes to different
memory regions using features such as Softdirty [15]. Therefore,
the pagemap interface gives only the information present in the last
level of a page table (PTE entry) and it doesn’t allow a user to visual-
ize the conversion of a virtual address to a physical address through
a multi-level page table. Moreover, it does not provide important
mapping information for huge pages and important status of the
mapping (e.g., accessed, execute and other permissions). Therefore,
using the pagemap interface, one can not experience the impact of
system calls like mprotect and madvise.

2.3 Related Works
2.3.1 Teaching operating systems. Teaching operating systems like
Xv6 [8], JOS [20], GemOS [18] etc. do not provide any special sup-
port to analyze the virtual memory of a userspace program. Inter-
ested users have to modify the code of these operating systems
themselves to understand the working of multi-level page tables.
𝐿𝑒𝑛𝑠 tool is specially designed to gain better understanding of vir-
tual memory internals. Any user with a little bit of programming
experience can use the 𝐿𝑒𝑛𝑠 tool.

2.3.2 Virtual memory simulators. Virtual memory visualization
(VMV) [21], PARACACHE [24], CAMERA [22] are visualization
simulators for virtual memory. They allow the users to visualize
the translation of a synthetic virtual memory address to its corre-
sponding physical address using TLB and page table. They simulate
a single level page table. 𝐿𝑒𝑛𝑠 allows users to visualize the trans-
lation of virtual addresses of real userspace programs running on
the Linux operating system to physical addresses with multi-level
page table support.
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An educational game has been developed by de Souza et al. [9],
challenging users to convert a virtual address to a physical ad-
dress in the game. This game abstracts out a lot of details of the
address translation. 𝐿𝑒𝑛𝑠 maintains a balance between abstraction
of information as well as bogging down a user by divulging too
much information. For example, apart from frame number, PTE
also maintains certain flags that control how translation happens.
𝐿𝑒𝑛𝑠 equips users to view the physical frame number as well as the
values of these flags (such as read/write permission flag, user/su-
pervisor permission flag etc.) maintained for each entry present in
each level of the page table.

MOSS Memory Management Simulator [29], SIME [17] are some
other virtual memory simulators that allow users to visualize virtual
to physical address translation. However, they also have limited
functionality and are not suitable for exploring the working of
multi-level page tables.

2.4 Motivation
Existing tools, books, manuals and OS interfaces fall short in terms
of providing a simple and complete picture of theworking of address
translation using multi-level page tables. For clarity on this topic,
the teaching team either limits the content to abstract and simplify
conceptual explanation or the learners are tasked to parse complex
documentation and code base to gain an up-close view. Therefore,
there is a requirement for an educational tool that provides an
easy understanding of the concept of address translation using
multi-level page tables through visualizations. Such a tool should
be easy to use and the students should be able to use this tool if
they posses working background in programming. Moreover, this
tool should be able to provide visual demonstration to connect
programs execution with virtual to physical address translations
process in real world systems. While simplicity of the interface
is important, this educational tool should not compromise on the
learning aspect by omitting important subtle aspects. Thus, the
proposed tool should show a step by step walk through of address
translation at each level in a multi-level page tables. Moreover, this
tool should expose the learners to the associated concepts such as
the notion of page faults, presence of huge pages in the process
address space, lazy allocation of physical memory. The proposed
tool (𝐿𝑒𝑛𝑠) tries to meet these requirements as we explain in the
next sections.

3 DESIGN AND IMPLEMENTATION
Lens is designed to enable OS learners to inspect the virtual to
physical memory translation of programs written in 𝐶 language.
Figure 5 shows a high-level schematic diagram of Lens. It consists
of an easy-to-use graphical interface at the front-end and a Linux
kernel interface at the back-end (referred to as ATT) for collecting
address translation details from the operating system page table.

A user uses the graphical interface to write (or copy-paste) a
𝐶 code and provide input parameters to Lens (refer Figure 6a for
details). Lens front-end coordinates with the address translation
tracer (ATT) at the back-end through a kernel interface. The front
end starts user code execution and provides relevant input parame-
ters to the address trace. The tracer accesses the specific process’s
address translation table and captures its virtual to physical address

Lens user
interface

 Address
translation

tracer (ATT)

student

C progam

Input
parameters

Translation
details

Multi-level
translation table

User space

Kernel space

Figure 5: Schematic diagram of Lens

translation details. The tracer supplies collected translation details
to the Lens user interface for visualization and analysis. Finally, the
virtual to physical address translation details of a multi-level page
table is displayed on Lens user interface as shown in Figure 6b.

Figure 6a and 6b show the user interface of Lens. The user writes
a C program of interest in the code area and provides three Lens
input parameters—the line number, variable address and number
of entries. The line number represents the program location where
the user wants to examine the page table contents. The variable
address parameter allows the user to specify the program variable
for inspection. Using the number of entries, the user can specify
the number of pages starting with the variable address for which
the address translation information to be collected. For example, in
Figure 6a, the user is interested in observing the address translation
of the size variable. She provides the line number after the size
variable is declared or initialized in the code, the address of size
variable as &size, and the number of pages to be inspected as 1.
The interface shows the output of the program, and the user can
navigate to the address mapping window using theMapping button
on the interface. Figure 6b shows the address mapping interface.
The interface displays the variable’s virtual page address and its
translation details at different levels of a 4-level page table in Intel
x86-64 systems. The details displayed in the mapping interface
include the physical address of 4KB page referenced by an entry
at each level and protection/permission flags currently set at each
level. Lens also provides details about 2MB huge page mapping at
PMD (page directory entry) level and 1GB page at the PUD (page
directory pointer table entry ) level by setting appropriate flags in
the mapping interface. Users can easily modify the code and inspect
corresponding address translation changes using Lens as we show
for some example usage scenarios in Section 4

3.1 Implementation Overview
We implement 𝐿𝑒𝑛𝑠 in a Linux x86-64 system with kernel version
6.1.4. Figure 7 shows the flow of events in Lens. We perform static
code instrumentation on the input 𝐶 program (step 1 ) to include
instructions to access Lens kernel interface and coordinate with
the back-end ATT to initiate address translation tracing (step 2 ).
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address mapping
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clear input parameters
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flags

flags

(b) Address translation visualization interface

Figure 6: Lens graphical user interface

The tracer (implemented as a kernel module) starts the page table
walk to record address translation details using the input details
passed from the user interface (step 3 ). The user input includes
the code line number containing the variable of interest, the address
of the variable, and the number of translation entries to record, as
shown in Figure 6a. The address tracer collects and stores data
in a temporary staging area to be consumed later through the
user interface (step 4 ). The user subsequently views the address
translation details about the variable of their interest (step 7 )
using the visualization interface (as shown in Figure 6b) by initiating
a request to fetch data from the tracer’s staging area (step 5 )
through the kernel interface (step 6 ).

Lens’s graphical user interface is implemented using Python
Tkinter version 8.6 and back-end address translation tracer (ATT)
is implemented as a loadable kernel module (LKM) in Linux kernel
version 6.1.4.

 Address translation tracer (ATT)

4

3

2

1

Kernel interface

access page table save translations
data

user's code

static code
instrumentation

collect address
translation details

visualize translation
table

Code + Input
parameters

Initiate
address trace

Start page
table walk

Pass data on
read request

Provide data

Format data for
visualization

Data

5

6

7

User space
Kernel space

Figure 7: Flow of events in Lens

4 RESULTS
We demonstrate three use case examples to demonstrate 𝐿𝑒𝑛𝑠’s
utility as an educational tool to visualize address translation using
simple C programs. These use cases exhibit three fundamental OS
concepts related to lazy allocation, access permission change, and
huge page allocation, showcasing the clarity that 𝐿𝑒𝑛𝑠’s visualiza-
tion brings to these concepts, allowing the learners to understand
these concepts more effectively.

4.1 Use case 1: Lazy page allocation
The Linux systems performs lazy allocation of physical pages for
user allocated virtual addresses, i.e., delaying physical page alloca-
tion until first access to the virtual address takes place. For example,
in program 2, only one physical page is assigned at line number
#4 even though 2MB virtual memory is allocated using the mmap()
system call. Users can use 𝐿𝑒𝑛𝑠 to visualize address translation after
ptr[0] = ’A’ to understand the fact that only one physical page is
allocated at that location in the code. In program 2, students can
also use the malloc library call in place of mmap() as malloc()
uses the mmap() system call to serve memory allocation requests.

1 # d e f i n e TWOMB 2097152
2 i n t main ( i n t argc , char ∗ argv [ ] ) {
3 char ∗ p t r = ( char ∗ )mmap(NULL , TWOMB, PROT_READ |

PROT_WRITE , MAP_PRIVATE |MAP_ANONYMOUS, 0 , 0 ) ;
4 p t r [ 0 ] = 'A ' ;
5 p r i n t f ( " p t r :% p \ n " , p t r ) ;
6 p t r [ 4 0 9 6 ] = ' B ' ;
7 mpro tec t (& p t r [ 4 0 9 6 ] , 4 0 9 6 , PROT_READ ) ;
8 munmap ( pt r , TWOMB) ;
9 r e t u r n 0 ; }

Listing 2: Program used to explain use cases one and two

Figure 8 shows address mapping details from 𝐿𝑒𝑛𝑠 for program 2
with input parameters as line number of ptr[0] = ’A’ in code,
virtual address of ptr[0] (i.e., &ptr[0]) and number of entries as 2.
Figure 8 demonstrates the lazy allocation behavior of program 2
as only one physical page is allocated corresponding to ptr[0] =
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physical page allocated no physical page allocation

Figure 8: Output of 𝐿𝑒𝑛𝑠 for program in Listing 2 demonstrat-
ing lazy allocation behavior of Linux

before mprotect after mprotect

Figure 9: Output of 𝐿𝑒𝑛𝑠 for program in Listing 2 demonstrat-
ing the permission change

’A’ access. For the virtual address corresponding to ptr[4096], no
physical mapping is done as the address is never accessed.

4.2 Use case 2: mprotect() usage
Page table entry records the read(R), write(W) and execute (X)
access permissions for any given page in Intel x86-64 systems.
One common requirement is to change the access permission of a
memory region from write to read or vice-versa. For example, to
load an executable (in the form of a dynamic library), the memory
region should have write permission before the load of library and
the write permission should be revoked after loading the library.
For this purpose, Linux provides a system call, mprotect(), for
applications to change access permissions of an address range.
𝐿𝑒𝑛𝑠 facilitates users to understand the page table manipulation of
mprotect() like system call by visualizing permission changes in
address mapping. To demonstrate this use case of 𝐿𝑒𝑛𝑠 , the program
in Listing 2, access permission of the second page in the mapped
area is changed to read using mprotect at line number #7. Students
can then use 𝐿𝑒𝑛𝑠 to visualize address mapping of the second page
(i.e., &ptr[4096]) before and after the execution of mprotect()
system call.

Figure 9 shows the permission flags for the second page (i.e., the
address &ptr[4096]) before and after execution of the mprotect()
system call. The output clearly shows that the permission of the
page is changed from write (W) to read (R) after execution of the
mprotect() system call.

H indicates PS bit set at pmd level

Figure 10: Address mapping from Lens for program 3 show-
ing huge 2MB page

4.3 Use case 3: Huge page allocation
Huge pages allow better program performance by providing higher
translation lookaside buffer (TLB) coverage [26]. In Intel x86-64 sys-
tems, a 2MB huge page allocation is designated by setting page size
(PS) bit in PMD entry (Page-Directory Entry) [11]. Linux provides
MAP_HUGETLB flag in the mmap() system call to allow users to allo-
cate huge pages while performing memory alloaction. Linux also
provides transparent huge page support [23] to promote 4KB pages
to 2MB huge pages in an application transparent manner. Users
can expand their understanding of huge pages by inspecting the PS
bit manipulation in the PMD entry. As 𝐿𝑒𝑛𝑠 provides flag details
about inner page table levels, students can use 𝐿𝑒𝑛𝑠 to understand
the PS bit change at PMD by allocating huge pages using mmap()
system call as shown in the program in Listing 3. In this program,
we examine the content of PMD entry after allocation using the
specified flags and access at line #9.

1 # d e f i n e EIGHTMB 8388608
2 # d e f i n e TWOMB 2097152
3 i n t main ( i n t argc , char ∗ argv [ ] ) {
4 i n t sum = 0 ;
5 char ∗ p t r = ( char ∗ )mmap(NULL , EIGHTMB+TWOMB, PROT_READ

| PROT_WRITE , MAP_PRIVATE |MAP_ANONYMOUS, 0 , 0 ) ;
6 uns igned long a l i g n _ p t r = ( ( ( uns igned long ) p t r +TWOMB)

> >21) < <21;
7 munmap ( pt r , EIGHTMB+TWOMB) ;
8 p t r = ( char ∗ )mmap ( ( vo id ∗ ) a l i g n _ p t r , EIGHTMB , PROT_READ |

PROT_WRITE , MAP_PRIVATE |MAP_ANONYMOUS |MAP_HUGETLB
, − 1 , 0 ) ;

9 memset ( p t r , 0 , EIGHTMB) ;
10 munmap ( pt r , EIGHTMB) ;
11 r e t u r n 0 ; }

Listing 3: Example 3 C program

Lens denotes a huge page using the ‘H’ in flags output. Figure 10
shows that the mmap call at line #8 allocates a huge 2MB page as
the ‘H’ flag is set in pmd_flag in address mapping information for
the address ptr. Note that, the address need to be aligned to 2MB
to allow the OS to map the virtual address as a huge page and also
huge pages are enabled in Linux.

5 CONCLUSION
Practical understanding of the working of multi-level page tables is
a crucial component of gaining insights into virtual memory con-
cepts. Students aspiring to become low-level programmers should
not only be exposed to clear conceptual foundation but also experi-
ence these subtle concepts through hands-on exposure. However,
the complexity of the subject grows due to the hardware depen-
dence where the architecture specifications are complicated and
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OS code base for paging being non-trivial for early learners. The
virtual address translation examples provided in existing educa-
tional materials are conceptual and do not capture the practical
intricacies of multi-level page tables in a comprehensive manner.
This leaves a gap between conceptual learning and its practical
ramification in real systems resulting in lack of confidence to work
on design/implementation of projects involving virtual memory
sub-systems. We proposed an educational tool, 𝐿𝑒𝑛𝑠 , to bridge this
gap in understanding of virtual memory concepts, specifically the
modern multi-level page tables, by providing an easy-to-use visu-
alization tool to experience virtual to physical address translation
using simple 𝐶 programs.

Lens provides a simple, flexible, and easy-to-use interface for
students to write C programs and correlate the program’s address
translation behavior with the OS-level status of the multi-level page
tables. We presented three use case examples to demonstrate the
ease with which 𝐿𝑒𝑛𝑠 can be used to bring clarity in understanding
fundamental OS concepts related to virtual memory management.
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